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Abstract. Let k be a real quadratic field. The Diophantine equation X 3—u+2winX e O (the ring of

integers of k), u, v € O]z( (the group of units of k) is solved under some assumptions on k.

1. Main theorem

Let k be a real quadratic field. Throughout, O and O denote the ring of integers of k
and the group of units of &, respectively. The Diophantine equation

X3 =u+27 1)

in X € O, u,v € O arises from the study of elliptic curves with everywhere good reduction
over k. (See [2], [3], [4] and [6].) We treat this equation and prove the following theorem:

THEOREM. Let k = Q(v/6) or k = Q(/3p), where p is a prime number such that
p # 3and p = 3 (mod 4). If equation (1) has solutions in X € Ok, u,v € ka, then

k = Q(+/6) or k = Q(v/33), and the only solutions are
(X, u,v) = (w1 (4 £ v6), w, w5 +2v6))
X
forany w; € OQ(JE)’ or
(X, u,v) = (w2(5 + +/33), —w3, w3 (23 + 4+/33))

for any wy € OS(@)' (Note that 5 + 2v/6 and 23 + 4+/33 are the fundamental units of
Q(\/g) and Q(~/33), respectively.)

This Theorem and a theorem in [5] imply the following criterion :
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CORALLARY 1. Let p be a prime such that p # 3,11, p = 3 (mod 8), let k :=
Q(/3p), and let ¢ > 1 be the fundamental unit of k. If the following conditions are satisfied,
then there are no elliptic curves with everywhere good reduction over k.

1 (. 3)=1,

@) 4y (BBLOBE) ord iy 3z 5 ().

Here, for a number field K and a divisor m of K, hg (m) is the ray class number of K
modulo m, and ‘Bgoo), gx’) are the infinite primes of k(J/¢).

PROOF. Let E be an elliptic curve with everywhere good reduction over k. We may
suppose that the discriminant of E is not a cube, because such a curve exists only on Q(+/6)
and Q(+/33). (See [3].) By Proposition 12 of [4], E admits a 3-isogeny defined over k. Thus
X3 =u+27vor X> = u+ vhasasolutionin X € O — {0}, u, v € O,z(. But by Theorem
in this paper, the former equation has no solutions, and from a result in [5], which requires
p =3 (mod 8), the latter equation has no solutions. O

As a corollary, we have

CORALLARY 2. Ifm = 129,177,201 or 249, then there are no elliptic curves with
everywhere good reduction over Q(/m).

PrROOF. Using KASH, we obtain ray class numbers appeared in Collorary 1 as follows:

p | m=3p | hi | hye)(OPEPBR) | hy3e.y=5,(B)
43 | 129 1 22.3 2.3
59 | 177 1 2.3
67 | 201 1 22.3 2.3
83 | 249 1 2.3
Thus Corollary 1 implies the assertion. O

2. Proof of Theorem

Let k be a real quadratic field.
When uv = U (a square in k) or uv = —LJi, we already have the following ([4]):

LEMMA 1. Ifthere exist X € O, u,v € ka satisfying (1) and uv = 00, then k =
Q(V29) and (X, u,v) = (£eky, Fesatt, £e30™2), (Lely, Feon *, £ea ) (n € Z). (Here
and in what follows, ey, (> 1) is the fundamental unit of the real quadratic field Q(y/m)).
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The outline of the proof of Lemma 1 is as follows. By changing (u, v, X) to
(u4, uv, uX) if necessary, we may assume that Ny,Q(u) = Ni/Q(v) = 1. Thus taking
norm of (1), we have

Nij(X)® =730 + 27 Try jq(uv ™) . )
By assumption, there exists a w € ka such that uv~! = +w?. When uv~! = w?, we
have
27 Ty jQ(w)* = Nij(X)® — 730 + 54Ny /g (w)
| Nijo(X)? =676 if Nyg(w) =1;
T | Nejo(X)? — 784 if Nijo(w) = —1.
When uv—! = —wz, we have

27 Ty jo(w)? = {—Niy(X)}? + 730 4 54N o (w)

NP +784if Nijo(w) = 1;
{=Ni/Q(X)}? + 676 if Nyjo(w) = —1.
Thus the problem is reduced to computing the integer points of some elliptic curves.

When uv # £[J;, we cannot use the above method. However, as we shall see later, we
can use similar method under the assumption of Theorem. The following lemma is vital:

LEMMA 2. Letk be as in the assumption of Theorem and & (> 1) the fundamental unit
of k. Then 3¢ = ;.

PROOE. There exists a 7 € O such that ()2 = (3), since 3 is ramified in k and the
class number of k is odd (see [1] for example). The facts that 7%/3 > 0 and k # Q(v/3)
imply 3¢ = (&")? for some n € Z. O

Now we treat the case uv 7# =[l;. From now on, let k be as in the assumption of
Theorem and € (> 1) the fundamental unit of k. Taking norm of (1), we have (2) again. (Note
that Ny /() = 1 forall n € OF, since 3 is ramified in k.) Let uv™! = tew?, w e o).
Then Lemma 2 implies, in k, that

27 TrgjQ(uv™") = £9 Try y((v/3e w)?) = £9{Try ;o (v3e w)* — 2Ng/o(vV38)} . (3)
When Nk/Q(\/g) = —3, equations (2) and (3) give

(3 Tre/Q(v3e w))? = Ne(X)? =784 if uv! = ew?;
(—Ney@(X)P +676 if uv="' = —gw?.

Using the software KASH, we obtain the following.

LEMMA 3. (a) There are no integer solutions of y* = x> — 784.
(b)  The only integer solutions of y* = x> + 676 are (x, y) = (0, £26).
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Thus there is no solution in this case.
When Ny, (+/3¢) = 3, equations (2) and (3) give

Nij(X)? — 676 if uv=! =ew?;

3T (v3ew)) =
(B Trre } {=Ni(X)P +784 if uv™! = —ew?.

Using KASH again, we obtain the following.

LEMMA 4. (a) The only integer solutions ofy2 =x3— 676 are (x,y) = (10, £18),
(13, £39), (26, £130), (130, £1482), (338, £6214) and (901, £27045).

(b) The only integer solutions of y2 = x3 + 784 are (x,y) = (—7,£21), (0, £28),
(8, £36) and (56, £420).

Incase uv~! = ew?, Lemma 4 implies that Try/q(v/3e w) = £6, £13, £494 or £9015,
and

3+46 if TrejQ(+v3ew) =6;
-3+.6 if Try/Q(+v/3ew) = —6;
V3ew = { (£13+/157)/2 if Tr/Q(v/3ew) = +13;

4247 £ /2 11-47-59 if Tr o(v/3¢ w) = +494;
(£9015 + +/3-503 - 53857)/2 if Try/q(+/3¢ w) = £9015.

Thus k = Q(\/g) ande =g =15 +24/6. Since V36 =3+ /6 and V3¢6 8’6 =3— 46, we

have

. , e if Vesw =+(3+6);
uwvo =gew =1
ey if 3eew = £(3 —6).
X
QW6)
such that v = w%sg, U= w% and X = w4 — \/6). When uv~! = 8/6, since u + 27v =

v(gg +27) = ve(4 + /6)3, there exists w; € O such that v = w?%, u = wf and

When uv~! = &g, since u + 27v = v(gg + 27) = veg(d — /6)3, there exists w; € O

QW6)
X = wi(4+6).
In case uv~! = —gw?, Lemma 4 implies that Try @ (v/3e w) = £7, £12, or 140, and
(F7£v37)/2  if Try(v3ew) =+£7;
6+ /33 if Tr, V3ew) =12;
e — ©/Q( w)

—6+4/33 if TrQ(v/3ew) = —12;
+70+ /35983 if Tryy(+v/3e w) = £140.

Thus k = Q(+/33) and ¢ = ¢33 = 23 4+ 44/33. Since +/3¢33 = 6 + +/33 and +/3e33 £§3 =
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6 — 4/33, we have

2 —e33  if /3e33w = (6 + +/33);

-1
uv- = —ex3w’ =
—8§3 if /3833w = (6 —+/33).
When uv—! = —e33, since u + 27v = ves3z(d — \/33)3, we have u = —w%, v = w§8g3
_ _ X -1 _ _ _
and X = wy(5 — +/33) for some wy € OQ(«/@)' When uv™" = —e&3,, we have u + 27v =
3 : _ 3 _ 3
v833(5 + +/33)”, Hence there exists wy, € Oé(@) such that u = —w;, v = wje33 and

X =w2(5++33)
The proof of Theorem is now complete.
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