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Abstract. Let k be a real quadratic field. The Diophantine equation X3 = u + 27v in X ∈ Ok (the ring of

integers of k), u, v ∈ O×
k

(the group of units of k) is solved under some assumptions on k.

1. Main theorem

Let k be a real quadratic field. Throughout, Ok and O×
k denote the ring of integers of k

and the group of units of k, respectively. The Diophantine equation

X3 = u + 27v (1)

in X ∈ Ok , u, v ∈ O×
k arises from the study of elliptic curves with everywhere good reduction

over k. (See [2], [3], [4] and [6].) We treat this equation and prove the following theorem:

THEOREM. Let k = Q(
√

6) or k = Q(
√

3p), where p is a prime number such that

p �= 3 and p ≡ 3 (mod 4). If equation (1) has solutions in X ∈ Ok , u, v ∈ O×
k , then

k = Q(
√

6) or k = Q(
√

33), and the only solutions are

(X, u, v) = (w1(4 ± √
6),w3

1, w3
1(5 ± 2

√
6))

for any w1 ∈ O×
Q(

√
6)

, or

(X, u, v) = (w2(5 ± √
33),−w3

2, w
3
2(23 ± 4

√
33))

for any w2 ∈ O×
Q(

√
33)

. (Note that 5 + 2
√

6 and 23 + 4
√

33 are the fundamental units of

Q(
√

6) and Q(
√

33), respectively.)

This Theorem and a theorem in [5] imply the following criterion :
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CORALLARY 1. Let p be a prime such that p �= 3, 11, p ≡ 3 (mod 8), let k :=
Q(

√
3p), and let ε > 1 be the fundamental unit of k. If the following conditions are satisfied,

then there are no elliptic curves with everywhere good reduction over k.
(1) (hk, 3) = 1,

(2) 4 � hk( 3√ε)((3)P
(∞)
1 P

(∞)
2 ) or 4 � hk( 3√ε,

√−3)((3)).

Here, for a number field K and a divisor m of K , hK(m) is the ray class number of K

modulo m, and P
(∞)
1 ,P

(∞)
2 are the infinite primes of k( 3

√
ε).

PROOF. Let E be an elliptic curve with everywhere good reduction over k. We may

suppose that the discriminant of E is not a cube, because such a curve exists only on Q(
√

6)

and Q(
√

33). (See [3].) By Proposition 12 of [4], E admits a 3-isogeny defined over k. Thus
X3 = u + 27v or X3 = u + v has a solution in X ∈ Ok − {0}, u, v ∈ O×

k . But by Theorem
in this paper, the former equation has no solutions, and from a result in [5], which requires
p ≡ 3 (mod 8), the latter equation has no solutions. �

As a corollary, we have

CORALLARY 2. If m = 129, 177, 201 or 249, then there are no elliptic curves with
everywhere good reduction over Q(

√
m).

PROOF. Using KASH, we obtain ray class numbers appeared in Collorary 1 as follows:

p m = 3p hk hk( 3√ε )((3)P
(1)∞ P

(2)∞ ) hk( 3√ε,
√−3 )((3))

43 129 1 22 · 3 2 · 33

59 177 1 2 · 3

67 201 1 22 · 3 2 · 33

83 249 1 2 · 3

Thus Corollary 1 implies the assertion. �

2. Proof of Theorem

Let k be a real quadratic field.
When uv = �k (a square in k) or uv = −�k, we already have the following ([4]):

LEMMA 1. If there exist X ∈ Ok , u, v ∈ O×
k satisfying (1) and uv = ±�k , then k =

Q(
√

29) and (X, u, v) = (±εn
29,∓ε3n+4

29 ,±ε3n+2
29 ), (±εn

29,∓ε3n−4
29 ,±ε3n−2

29 ) (n ∈ Z). (Here

and in what follows, εm (> 1) is the fundamental unit of the real quadratic field Q(
√

m)).



DIOPHANTINE EQUATION 161

The outline of the proof of Lemma 1 is as follows. By changing (u, v,X) to

(u4, u3v, uX) if necessary, we may assume that Nk/Q(u) = Nk/Q(v) = 1. Thus taking
norm of (1), we have

Nk/Q(X)3 = 730 + 27 Trk/Q(uv−1) . (2)

By assumption, there exists a w ∈ O×
k such that uv−1 = ±w2. When uv−1 = w2, we

have

27 Trk/Q(w)2 = Nk/Q(X)3 − 730 + 54Nk/Q(w)

=
{

Nk/Q(X)3 − 676 if Nk/Q(w) = 1 ;
Nk/Q(X)3 − 784 if Nk/Q(w) = −1 .

When uv−1 = −w2, we have

27 Trk/Q(w)2 = {−Nk/Q(X)}3 + 730 + 54Nk/Q(w)

=
{

{−Nk/Q(X)}3 + 784 if Nk/Q(w) = 1 ;
{−Nk/Q(X)}3 + 676 if Nk/Q(w) = −1 .

Thus the problem is reduced to computing the integer points of some elliptic curves.
When uv �= ±�k , we cannot use the above method. However, as we shall see later, we

can use similar method under the assumption of Theorem. The following lemma is vital:

LEMMA 2. Let k be as in the assumption of Theorem and ε (> 1) the fundamental unit
of k. Then 3ε = �k.

PROOF. There exists a π ∈ Ok such that (π)2 = (3), since 3 is ramified in k and the

class number of k is odd (see [1] for example). The facts that π2/3 > 0 and k �= Q(
√

3)

imply 3ε = (πεn)2 for some n ∈ Z. �

Now we treat the case uv �= ±�k. From now on, let k be as in the assumption of
Theorem and ε (> 1) the fundamental unit of k. Taking norm of (1), we have (2) again. (Note

that Nk/Q(η) = 1 for all η ∈ O×
k , since 3 is ramified in k.) Let uv−1 = ±εw2, w ∈ O×

k .
Then Lemma 2 implies, in k, that

27 Trk/Q(uv−1) = ±9 Trk/Q((
√

3ε w)2) = ±9{Trk/Q(
√

3ε w)2 − 2Nk/Q(
√

3ε)} . (3)

When Nk/Q(
√

3ε) = −3, equations (2) and (3) give

{3 Trk/Q(
√

3ε w)}2 =
{

Nk/Q(X)3 − 784 if uv−1 = εw2 ;

{−Nk/Q(X)}3 + 676 if uv−1 = −εw2 .

Using the software KASH, we obtain the following.

LEMMA 3. (a) There are no integer solutions of y2 = x3 − 784.

(b) The only integer solutions of y2 = x3 + 676 are (x, y) = (0,±26).
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Thus there is no solution in this case.
When Nk/Q(

√
3ε) = 3, equations (2) and (3) give

{3 Trk/Q(
√

3ε w)}2 =
{

Nk/Q(X)3 − 676 if uv−1 = εw2 ;

{−Nk/Q(X)}3 + 784 if uv−1 = −εw2 .

Using KASH again, we obtain the following.

LEMMA 4. (a) The only integer solutions of y2 = x3 − 676 are (x, y) = (10,±18),
(13,±39), (26,±130), (130,±1482), (338,±6214) and (901,±27045).

(b) The only integer solutions of y2 = x3 + 784 are (x, y) = (−7,±21), (0,±28),
(8,±36) and (56,±420).

In case uv−1 = εw2, Lemma 4 implies that Trk/Q(
√

3ε w) = ±6,±13,±494 or ±9015,
and

√
3ε w =




3 ± √
6 if Trk/Q(

√
3ε w) = 6 ;

−3 ± √
6 if Trk/Q(

√
3ε w) = −6 ;

(±13 ± √
157)/2 if Trk/Q(

√
3ε w) = ±13 ;

±247 ± √
2 · 11 · 47 · 59 if Trk/Q(

√
3ε w) = ±494 ;

(±9015 ± √
3 · 503 · 53857)/2 if Trk/Q(

√
3ε w) = ±9015 .

Thus k = Q(
√

6) and ε = ε6 = 5 + 2
√

6. Since
√

3ε6 = 3 + √
6 and

√
3ε6 ε′

6 = 3 − √
6, we

have

uv−1 = ε6w
2 =

{
ε6 if

√
3ε6 w = ±(3 + √

6) ;

ε′
6 if

√
3ε6 w = ±(3 − √

6) .

When uv−1 = ε6, since u + 27v = v(ε6 + 27) = vε6(4 − √
6)3, there exists w1 ∈ O×

Q(
√

6)

such that v = w3
1ε

′
6, u = w3

1 and X = w1(4 − √
6). When uv−1 = ε′

6, since u + 27v =
v(ε′

6 + 27) = vε′
6(4 + √

6)3, there exists w1 ∈ O×
Q(

√
6)

such that v = w3
1ε6, u = w3

1 and

X = w1(4 + √
6).

In case uv−1 = −εw2, Lemma 4 implies that Trk/Q(
√

3ε w) = ±7,±12, or ±140, and

√
3ε w =




(±7 ± √
37)/2 if Trk/Q(

√
3ε w) = ±7 ;

6 ± √
33 if Trk/Q(

√
3ε w) = 12 ;

−6 ± √
33 if Trk/Q(

√
3ε w) = −12 ;

±70 ± √
59 · 83 if Trk/Q(

√
3ε w) = ±140 .

Thus k = Q(
√

33) and ε = ε33 = 23 + 4
√

33. Since
√

3ε33 = 6 + √
33 and

√
3ε33 ε′

33 =
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6 − √
33, we have

uv−1 = −ε33w
2 =

{
−ε33 if

√
3ε33 w = ±(6 + √

33) ;

−ε′
33 if

√
3ε33 w = ±(6 − √

33) .

When uv−1 = −ε33, since u + 27v = vε33(5 − √
33)3, we have u = −w3

2, v = w3
2ε

′
33

and X = w2(5 − √
33) for some w2 ∈ O×

Q(
√

33)
. When uv−1 = −ε′

33, we have u + 27v =
vε′

33(5 + √
33)3, Hence there exists w2 ∈ O×

Q(
√

33)
such that u = −w3

2, v = w3
2ε33 and

X = w2(5 + √
33)

The proof of Theorem is now complete.
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