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Abstract. For Damek-Ricci spaces (X, g) we compute the exact form of the Busemann function which is
needed to represent the Poisson kernel of (X, g) in exponential form in terms of the Busemann function and the
volume entropy. From this fact, we show that the Poisson kernel map ϕ : (X, g) → (P(∂X),G) is a homothetic
embedding. Here P(∂X) is the space of probability measures having positive density function on the ideal boundary
∂X of X, and G is the Fisher information metric on P(∂X).

1. Introduction

Let (Xn, g) be a Hadamard manifold and ∂X its ideal boundary, that is, the space of all
geodesic rays up to asymptotic equivalence, which is identified with an (n − 1)-dimensional
sphere. Then, we can consider the Dirichlet problem at infinity in a similar way to the classical

Dirichlet problem on a bounded domain in Rn, that is, for a given f ∈ C0(∂X), finding a
function u on X ∪ ∂X satisfying

�Xu = 0 and u|∂X = f (1)

where �X is the Laplace-Beltrami operator on X. We call the fundamental solution to the
Dirichlet problem at infinity the Poisson kernel, denoted by P(x, θ), on X. Namely, the
solution to (1) is given by the Poisson integral representation u(x) = ∫

θ∈∂X P (x, θ)f (θ)dθ .

In particular, for each x ∈ X we have
∫
∂X
P (x, θ)dθ = 1.

The first author and Y. Shishido [14] considered the map ϕ : X � x �→ P(x, θ)dθ ∈
P(∂X) called the Poisson kernel map. Here P(∂X) is the set of all probability measures
on ∂X with positive density function. P(∂X) carries a Riemannian metric G which is a
natural extension of the Fisher information matrix on statistical models, and we can regard
(P(∂X),G) as an infinite dimensional Riemannian manifold. We call this metricG the Fisher
information metric. The first author and Y. Shishido proved the following:

THEOREM 1 ([14, Theorem A]). If (X, g) is an n-dimensional rank one symmetric
space of non-compact type, then the Poisson kernel map ϕ is a homothetic embedding. More
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explicitly,

ϕ∗G = ρ2

n
g . (2)

Here ρ is the volume entropy of (X, g), which is a geometric quantity measuring the rate of
increase of volume, defined by

ρ = lim
r→∞

1

r
log VolB(x; r) .

REMARK 1. The first author and Y. Shishido note that the Poisson kernel map on a
rank one symmetric space of non-compact type is a minimal embedding [14, Theorem B].
However, in order to prove the minimality of the Poisson kernel map we need deeper consid-
erations (see [13]).

It is an interesting problem whether the converse statement of Theorem 1 is true or not.
That is, do there exist non-symmetric Hadamard manifolds such that the Poisson kernel map
is homothetic? Our aim is the following theorem concerning this question:

THEOREM 2. Let (X, g) be an n-dimensional Damek-Ricci space. Then, the Poisson
kernel map ϕ is a homothetic embedding. In particular, ϕ satisfies (2).

A Damek-Ricci space is a one-dimensional extension of a generalized Heisenberg group.
It is a solvable Lie group with a left invariant metric, and is a Riemannian homogeneous
Hadamard manifold which is harmonic (see [4] for details). A Riemannian manifold (X, g)
is harmonic if every sufficiently small geodesic sphere in X has constant mean curvature (see
[5, Chapter 6] and [4, p.11] for details). Damek-Ricci spaces are generalizations of rank

one symmetric spaces of non-compact type. Thus HN(C), HN(H), H 2(O) and HN(R) are
examples of Damek-Ricci spaces. From Dotti’s theorem [8] it is known that a Damek-Ricci
space is of strictly negative curvature if and only if it is rank one symmetric. A Damek-Ricci
space satisfies in general the visibility axiom, namely any points θ , θ ′ of its ideal boundary
can be joined by a geodesic (see [9, Theorem 2.3] and for the notion of visibility see [3]).

If we suppose that a Hadamard manifold (X, g) satisfies the strictly negative curvature

condition −b2 ≤ KX ≤ −a2 < 0 whereKX is the sectional curvature ofX, then the existence
and uniqueness of the Poisson kernel on (X, g) is guaranteed [18, Chapter II]. Furthermore,
when (X, g) is a rank one symmetric space of non-compact type, the Poisson kernel is explic-
itly written in an exponential form as

P(x, θ) = exp (−ρB(x, θ)) (3)

in terms of the volume entropy ρ and the Busemann functionB(x, θ) onX. This fact is crucial
for the proof of Theorem 1, which can be generalized as follows:

PROPOSITION 1. Let (X, g) is an n-dimensional Hadamard manifold.
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Assume (X, g) is Riemannian homogeneous and suppose that the Poisson kernel on X is
given by

P(x, θ) = exp (−cB(x, θ)) (4)

for a positive constant c. Then ϕ satisfies ϕ∗G = c2

n
g .

The geometric meaning of the formula (4), namely, the Poisson kernels thus analytically
defined coincide with the exponential form of the Busemann functions defined geodesically,
is as follows. For θ ∈ ∂X let Hx(θ) be the horosphere, namely the level hypersurface of
the Busemann function B(·, θ) through x ∈ X and centered at θ . Then the harmonicity of
exp(−cB(x, θ)), that is, �B(x, θ) = −c, is equivalent to the fact that the mean curvature of
any horosphere Hx(θ) takes a common constant value c, since the Hessian of B(x, θ) is the
second fundamental form of the Hx(θ). This gives rise to a Hadamard manifold (X, g) being
asymptotically harmonic (see [15]). As is well known as a counterexample of the Lichnerow-
icz conjecture, a Damek-Ricci space is a harmonic, Hadamard manifold. Thus, a Damek-Ricci
space is also asymptotically harmonic so that the harmonicity of exp(−cB(x, θ)) holds. In
order to have the formula (4) we need a further analytical criterion, that is, the Dirac delta
condition [11]: limx→θ ′ exp(−cB(x, θ))dθ = δθ(θ

′) for θ ′ ∈ ∂X which is equivalent to the
visibility axiom together with the integral normality condition∫

∂X

exp(−cB(x, θ))dθ = 1 (5)

for any x. The following lemma is derived from an exact form of the Busemann function of
Damek-Ricci spaces.

LEMMA 1. The Busemann function on Damek-Ricci spaces satisfies condition (5) for
c = ρ.

Hence, we can assert that (4) holds not only for rank one symmetric spaces but also for
Damek-Ricci spaces. From Proposition 1 and Lemma 1, we obtain Theorem 2.

REMARK 2. E. Damek [6] gives for Damek-Ricci spaces a form of the Poisson kernel
explicitly from harmonic analysis of Lie groups, which coincides with our construction of
P(x, θ). The details will be given in section 6.

REMARK 3. We also remark that when (X, g) admits a compact Riemannian quotient,
(4) implies that (X, g) is a rank one symmetric space of non-compact type [14, Theorem C].

REMARK 4. As in the case of the Poisson kernel map, by using the heat kernel we can
define the heat kernel map ϕt : X → P(X) parametrized by t > 0. If (X, g) is a harmonic
Hadamard manifold, ϕt is a homothetic embedding (see [12]).

The paper is organized as follows. In section 2 we introduce the space of all probability
measures with positive density function and the Fisher information metric on it. We recall in
section 3 some basic facts about the Poisson kernel and the Busemann function on a Hadamard
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manifold. In section 4 we consider the condition under which the Poisson kernel is described
in the form (3) and give a proof of Proposition 1. We present in section 5 some necessary
material about the Damek-Ricci spaces. In the final section we give the Busemann function
of a Damek-Ricci space in terms of the group structure in order to prove Lemma 1.

2. The space of probability measures and the Fisher information metric

LetM be a compact, oriented, n-dimensional Riemannian manifold and dvM the canon-
ical Riemannian volume form with unit volume.

A probability measure ρ = pdvM over M is an n-form over M satisfying
∫
M
ρ =

1. Each probability measure is assumed to have a density function p which is everywhere
positive. We define the space of probability measures having positive density function as

P(M) =
{
ρ = pdvM

∣∣∣∣p ∈ L2
k(M), p(x) > 0,

∫
M

ρ = 1

}
,

where k is an integer satisfying k > n/2. The Sobolev space L2
k(M) is needed to ensure that

a certain Sobolev inequality argument works. Any probability measure with positive density
function is considered as a point of the space P(M). We remark that P(M) ⊂ Γ (M,∧n(M))
which is the space of n-forms on M .

By using a Sobolev space argument, one can show that this space is an infinite dimen-
sional manifold whose tangent space TρP(M) at a point ρ is identified with

TρP(M) �
{
τ = qdvM

∣∣∣∣q ∈ L2
k(M),

∫
M

τ = 0

}
.

Take a point ρ ∈ P(M) and a tangent vector τ ∈ TρP(M). Then, it is easily shown that in the
space P(M) there exists a parametrized curve ρ(s) = ρ + sτ in s ∈ (−ε, ε) for a sufficiently
small ε such that ρ(0) = ρ and the velocity vector ρ′(0) = τ .

On the space P(M) we introduce a Riemannian metric G.

DEFINITION 1. For ρ ∈ P(M), we define an inner product Gρ on TρP(M) by

Gρ(τ1, τ2) =
∫
M

dτ1

dρ

dτ2

dρ
ρ (6)

where τi = qidvM ∈ TρP(M), i = 1, 2 are tangent vectors at ρ and

dτi

dρ
(x) = qi(x)

p(x)

are the Radon-Nikodym derivative of τi with respect to ρ. So

Gρ(τ1, τ2) =
∫
x∈M

q1(x)

p(x)

q2(x)

p(x)
p(x)dvM(x) = Eρ

[
q1(x)

p(x)

q2(x)

p(x)

]

where Eρ[ · ] denotes the expectation with respect to the probability measure ρ. We call
G = {Gρ}ρ∈P(M) the Fisher information metric on P(M).
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The Fisher information metric G on P(M) is a generalization of the Fisher information
matrices on statistical models. We refer to [1] for more information on statistical models.

THEOREM 3 ([10]). The Riemannian structureG onP(M) enjoys the following prop-
erties:

(1) the Levi-Civita connection ∇ of G is

∇τ1τ = −1

2

(
dτ

dρ

dτ1

dρ
−

∫
M

dτ

dρ

dτ1

dρ
ρ

)
ρ , τ, τ1 ∈ TρP(M) , (7)

where τ is considered as a vector field extended by parallel translation,
(2) it has constant sectional curvature equal to 1/4,
(3) Diff+(M), the group of all orientation preserving diffeomorphisms of M , acts on

P(M) by pull-back transitively and isometrically,
(4) it is not geodesically complete.

REMARK 5. The property (3) in Theorem 3 stems from the well known Moser’s the-
orem on volume forms [16]. This fact means P(M) � Diff+(M)/K where K is the isotropy
subgroup of Diff+(M) fixing a certain point ρ ∈ P(M).

3. Hadamard manifolds, the ideal boundary and Poisson kernels

Let X be a simply connected complete n-dimensional Riemannian manifold whose
sectional curvature KX is non-positive. We call such a manifold a Hadamard manifold.
Hadamard manifolds are diffeomorphic, via the exponential map at any point, to the n-
dimensional Euclidean space.

Let G(X) be the set of all smooth half-open geodesics on X parametrized by arc length.
Two smooth half-open geodesics γi = γi(t) ∈ G(X) (i = 1, 2, 0 ≤ t < ∞) are asymptoti-
cally equivalent, denoted by γ1 ∼ γ2, if the distance d(γ1(t), γ2(t)) (t ≥ 0) is bounded from
above. The quotient space of G(X) by the equivalence relation ∼ is called the ideal boundary
of X, denoted by ∂X.

REMARK 6. Fix a point x0 ∈ X. Then we can identify the ideal boundary ∂X with
the unit sphere in the tangent space Tx0X because for an unit vector v ∈ Tx0X there exists a
unique smooth half-open geodesic γ (t) such that γ (0) = x0 and γ ′(0) = v. Hence we can

regard ∂X as an (n− 1)-dimensional sphere Sn−1(1) ⊂ Tx0X.

Fix a base point x0 ∈ X. For θ ∈ ∂X, we define a function B(·, θ) on X by

B(x, θ) = lim
t→∞ (d(γ (t), x)− t) (8)

where γ is the half-open geodesic parametrized by arc length with γ (0) = x0 and
limt→∞ γ (t) = θ . We call the above function B the Busemann function on X with base
point x0. We immediately get B(x0, θ) = 1 for any θ ∈ ∂X.
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REMARK 7. If for any θ, θ ′ ∈ ∂X there exists a geodesic γ : R → X such that
limt→∞ γ (t) = θ and limt→−∞ γ (t) = θ ′, then we say that X satisfies visibility axiom. This
condition is equivalent to limx→θ ′ B(x, θ) = ∞ (θ �= θ ′) (see [3, p. 54, Lemma]).

The Busemann function B(·, θ) is C1-class and satisfies

gradX B(x, θ) = −γ ′
x,θ (0) (9)

where γx,θ ∈ G(X) starts x ∈ X converging asymptotically to θ ∈ ∂X. In particular,
| gradX B| = 1. Moreover, for θ ∈ ∂X, the difference

Bp(·, θ)− Bq(·, θ) = Bp(q, θ) (10)

is a constant function (see [17, p. 213]). Here Bp(x, θ) is the Busemann function with base
point p ∈ X.

We denote by Isom+(X, g) the group of all orientation preserving isometries of (X, g).
Let ψ ∈ Isom+(X, g). Then ψ induces naturally an action on ∂X as follows: for θ ∈ ∂X,
ψ(θ) = limt→∞ ψ(γ (t)) where γ ∈ G(X) converges asymptotically to θ . Under this action
on X ∪ ∂X, we obtain the transition formula of the Busemann function.

LEMMA 2. Let B(x, θ) be the Busemann function on a Hadamard manifold (X, g)
with base point x0. Then, for ψ ∈ Isom+(X, g) we have

B(ψ(x), θ) = B(x,ψ−1(θ))+ B(ψ(x0), θ) .

PROOF. By using (10), we have

Bx0(ψ(x), θ) = lim
t→∞{d(ψ(x), γx0,θ (t))− d(x0, γx0,θ (t))}

= lim
t→∞{d(x,ψ−1γx0,θ (t))− d(ψ−1(x0), ψ

−1γx0,θ (t))

− d(x0, ψ
−1γx0,θ (t))+ d(ψ−1(x0), ψ

−1γx0,θ (t))

+ d(ψ(x0), γx0,θ (t))− d(x0, γx0,θ (t))}
=Bψ−1(x0)

(x, ψ−1θ)− Bψ−1(x0)
(x0, ψ

−1θ)+ Bx0(ψ(x0), θ)

=Bx0(x,ψ
−1θ)+ Bx0(ψ(x0), θ) .

�

On the manifold X ∪ ∂X with boundary ∂X, we can consider the Dirichlet problem at
infinity(1) with given boundary values. We call its fundamental solution P(x, θ) the Poisson

kernel on M , that is, for θ ∈ ∂X P(·, θ) ∈ C0(X ∪ (∂X \ {θ})) and the solution u to (1) is
given by

u(x) =
∫
θ∈∂X

P (x, θ)f (θ)dθ . (11)
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Here dθ is a probability measure on ∂X, identified with the standard measure on Sn−1(1) ⊂
Tx0X with unit volume. It is clear that u ≡ 1 is the harmonic function with boundary value
f ≡ 1. Hence we have ∫

θ∈∂X
P (x, θ)dθ = 1

for any x ∈ X. Thus, we can define the Poisson kernel map

ϕ : X → P(∂X); x �→ P(x, θ)dθ .

REMARK 8. If X is a Hadamard manifold satisfying −b2 ≤ KX ≤ −a2 < 0, then a
Poisson kernel uniquely exists for any θ ∈ X. Moreover, P is characterized by the following
condition [18, p. 45]:

(1) P(·, θ) is a positive, harmonic function on X,
(2) There exists a unique point x0 ∈ M such that P(x0, θ) = 1 for any θ ∈ ∂M ,

(3) for θ ∈ ∂X, P(·, θ) ∈ C0(X ∪ ∂X \ {θ}) and P(·, θ)|∂X\{θ} = 0.
In particular, when X is a rank one symmetric space of noncompact type, exp(−ρB(x, θ))
satisfies above three conditions. Hence the Poisson kernel is explicitly given as the exponen-
tial form of the Busemann function.

4. Proof of Proposition 1

Let (X, g) be a Hadamard manifold. Assume that the Poisson kernel of X normalized
at x0 ∈ X is given in the form (4). Then, from Lemma 2 we immediately get the transition
formula of the Poisson kernel:

P(ψ(x), θ) = P(x,ψ−1(θ))P (ψ(x0), θ) (12)

where ψ ∈ Isom+(X, g). Moreover, the standard measure dθ on ∂X in (11) satisfies the
following:

LEMMA 3.

(ψ−1)∗dθ = P(ψ(x0), θ)dθ . (13)

PROOF. For ψ ∈ Isom+(X, g), let u, v be the solutions to the Dirichlet problem with

boundary values f, f ◦ ψ ∈ C0(∂X), respectively, that is,

u(x) =
∫
∂X

P (x, θ)f (θ)dθ , (14)

v(x) =
∫
∂X

P (x, θ)f (ψ(θ))dθ =
∫
∂X

P (x,ψ−1(θ))f (θ)(ψ−1)∗dθ . (15)

On the other hand, since v(θ) = f (ψ(θ)) = u(ψ(θ)), we have from (12)

v(x) =
∫
∂X

P (ψ(x), θ)f (θ)dθ =
∫
∂X

P (x,ψ−1(θ))P (ψ(x0), θ)f (θ)dθ . (16)
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From (15) and (16), for any f ∈ C0(∂X) we have∫
∂X

P (x,ψ−1(θ))f (θ){(ψ−1)∗dθ − P(ψ(x0), θ)dθ} = 0

from which we get (13). �

PROOF OF PROPOSITION 1. From (12) and (13), we find that the Poisson kernel map
ϕ and ψ ∈ Isom+(X, g) satisfy

(ψ−1)∗ ◦ ϕ = ϕ ◦ ψ . (17)

Since X is a Riemannian homogeneous space and Isom+(X, g) acts on (P(∂X),G) isomet-
rically, it is sufficient to compute ϕ∗G at the base point x0. For v ∈ Tx0X, |v| = 1, we
have

ϕ∗G(v, v) =
∫
∂X

{v logP(·, θ)}2 P(x0, θ)dθ

= c2
∫
∂X

〈v, gradX B(x0, θ)〉2dθ

= c2
∫
∂X

〈v, γ ′
x0,θ

(0)〉2dθ

= c2
∫
u∈Sn−1(1)

〈v, u〉2dµSn−1(1)

= c2

n
.

�

REMARK 9. Under the assumption in Proposition 1, the Poisson kernel map is a min-
imal embedding. To prove this fact, we need the consideration of the harmonicity of the map
ϕ : X → P(∂X). See [13] for details.

In general exp (−cB(x, θ)) does not necessarily give a Poisson kernel. Neverthe-
less we have the following lemma which states a criterion for the Dirac delta condition of
exp (−cB(x, θ)).

LEMMA 4. Let X be a Hadamard manifold. If X satisfies the visibility axiom and∫
∂X

exp(−cB(x, θ))dθ = 1, then exp(−cB(x, θ))dθ satisfies the Dirac delta condition, that

is, for f ∈ C0(∂X)

lim
x→θ0

∫
θ∈∂X

f (θ) exp(−cB(x, θ))dθ = f (θ0) . (18)

PROOF. We set

u(x) =
∫
θ∈∂X

f (θ) exp(−cB(x, θ))dθ .
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Fix a point θ0 ∈ ∂X. Then, we have

u(x)− f (θ0) =
∫
θ∈∂X

(f (θ)− f (θ0)) exp(−cB(x, θ))dθ .

Since ∂X is compact and limx→θ0 B(x, θ) = ∞(θ0 �= θ), for any ε > 0 there exist a neigh-
borhood Uε ⊂ ∂X of θ0 and tε > 0 such that

max
θ∈Uε

|f (θ)− f (θ0)| < ε , and exp (−cB(γ (t), θ)) < ε for any t > tε ,

where γ (t) is the half-open geodesic from x converging asymptotically to θ0. Here we make
use of the cone topology of X ∪ ∂X. Let M ∈ R be the maximum value of |f − f (θ0)| on
∂X \ Uε . Then, for all t > tε we have

|u(γ (t))− f (θ0)| ≤
∫
Uε

|f (θ)− f (θ0)| exp(−cB(γ (t), θ))dθ

+
∫
∂X\Uε

|f (θ)− f (θ0)| exp(−cB(γ (t), θ))dθ

< ε

∫
Uε

exp(−cB(γ (t), θ))dθ + εM

∫
∂X\Uε

dθ

≤ ε

∫
∂X

exp(−cB(γ (t), θ))dθ + εM

∫
∂X

dθ

= (1 +M)ε

from which we obtain (18). �

5. Damek-Ricci spaces

Let (n, [·, ·]n) be a 2-step nilpotent algebra with an inner product 〈·, ·〉n. Denote by z the
center of n and by v the orthogonal complement to z. For Z ∈ z we define the linear map
JZ : v → v by

〈JZV, V ′〉n = 〈Z, [V, V ′]n〉n (V , V ′ ∈ v) .

If for every Z ∈ z

(JZ)
2 = −|Z|2 idv ,

then we say that n is the generalized Heisenberg algebra.
The corresponding simply connected Lie group N is called the generalized Heisenberg

group. When we identify N with its Lie algebra n via the exponential map, the multiplication
in N � n = v ⊕ z reads

(V ,Z) · (V ′, Z′) =
(
V + V ′, Z + Z′ + 1

2
[V, V ′]n

)
.
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Let n be a generalized Heisenberg algebra n. We set s = n ⊕ R and define the bracket
product [·, ·]s by

[(V ,Z, l), (V ′, Z′, l′)]s =
(
l

2
V ′ − l′

2
V, lZ′ − l′Z + [V, V ′]n, 0

)
(19)

and an inner product 〈·, ·〉s by

〈(V ,Z, l), (V ′, Z′, l′)〉s = 〈V, V ′〉 + 〈Z,Z′〉 + ll′ (20)

on s. We call the simply connected solvable Lie group S whose Lie algebra is s with the left
invariant Riemannian metric induced from 〈·, ·〉s the Damek-Ricci space. When we regard
S � v × z × R+, the group structure on S is given by

(V ,Z, a) · (V ′, Z′, a′) =
(
V + √

aV ′, Z + aZ′ +
√
a

2
[V, V ′]s, aa′

)
. (21)

REMARK 10. Every Damek-Ricci space is a harmonic, Hadamard manifold [4].

The left Haar measure on S is written by dvS = a−Q−1dadXdZ. Here Q = dim v
2 +

dim z, called the homogeneous dimension of N . In terms of the geodesic coordinate, dvS is
written in the form

dvS = 2dim v+dimz

(
sinh

r

2

)dim v+dim z(
cosh

r

2

)dim z

drdµSn−1(1)

from which the volume entropy is ρ = Q [2, 7].

LEMMA 5 ([4, Theorem 1, p. 93]). Let (U, Y, l) ∈ s be a unit vector. Then, the geo-
desic γ : R → S parametrized by arc length with γ (0) = (0v, 0z, 1) and γ ′(0) = (U, Y, l) is
written by

γ (t) =
(

2θ(1 − lθ)

χ
U + 2θ2

χ
JYU,

2θ

χ
Y,

1 − θ2

χ

)
(22)

where θ = θ(t) := tanh (t/2) and χ = χ(t) is a function of t , χ = χ(Y,l)(t) := (1− lθ(t))2 +
|Y |2θ(t)2.

From this lemma, we get immediately

lim
t→∞ γ (t) =




2

(1 − l)2 + |Y |2 ((1 − l)U + JYU, Y, 0) if l �= 1 ,

(0v, 0z,∞) if l = 1 ,
(23)

which means that we can regard ∂S � N ∪ {∞}.
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6. The Busemann function and the Poisson kernel on Damek-Ricci spaces

The aim of this section is to show that if X is an n-dimensional Damek-Ricci space S,
then

∫
∂X

exp (−ρB(x, θ)) dθ = 1 as will be given in Lemma 8. This, along with the visibility
of Damek-Ricci spaces, means that exp (−ρB(x, θ)) dθ is the Poisson kernel on S (Lemma
4). Thus, from Proposition 1, we obtain Theorem 2.

In order to compute the Busemann function on a Damek-Ricci space S with base point
eS := (0v, 0z, 1) the identity element of S, we state the explicit expression of the distance
function on S.

LEMMA 6 ([4, Section 4.4]). The distance d(eS, x) from eS to x = (V ,Z, a) ∈ S is

d(eS, x) = log

(
λ− 2 + √

λ2 − 4λ

2

)
(24)

where

λ = λ(x) := 1

a

{(
1 + a + 1

4
|V |2

)2

+ |Z|2
}
.

By using Lemmas 5 and 6, we obtain the following:

THEOREM 4. Let B(x, θ) be the Busemann function on S with base point eS for θ ∈
∂S � N ∪ {∞}. Then, we have

B(x, θ) =




− log

(
a
(
(1 + 1

4 |v|2)2 + |z|2)(
a + 1

4 |v − V |2)2 + ∣∣z− Z − 1
2 [V, v]n

∣∣2

)
if θ = (v, z) ∈ N

− log a if θ = ∞

where x = (V ,Z, a) ∈ S.

PROOF. Let γ (t) be the half-open geodesic from γ (0) = eS with velocity vector
γ ′(0) = (U, Y, l). Then we have

B(x, γ (∞)) = lim
t→∞(d(x, γ (t))− t)

= lim
t→∞(d(eS, x

−1 · γ (t))− t)

= lim
t→∞ log

(
λ− 2 + √

λ2 − 4λ

2et

)

= lim
t→∞ log

(
λ− 2

et

)

where λ = λ(x−1 · γ (t)). We set x−1 · γ (t) = (V (t), Z(t), a(t)). In fact, from Lemma 5, we
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have 


V (t) = 1√
a

(
− V + 2θ(1 − lθ)

χ
U + 2θ2

χ
JYU

)
,

Z(t) = 1

a

(
− Z + 2θ

χ
Y − 1

2

[
V,

2θ(1 − lθ)

χ
U + 2θ2

χ
JYU

]
n

)
,

a(t) =1 − θ2

aχ
,

where θ = tanh(t/2) and χ = (1 − lθ)2 + |Y |2θ2. Here

λ− 2

et
= 1

et

{
1

a(t)

((
a(t)+ 1 + 1

4
|V (t)|2

)2

+ |Z(t)|2
)

− 2

}

= a(t)

et
+ |V (t)|2

2et
+ 1

a(t)et

{(
1 + 1

4
|V (t)|2

)2

+ |Z(t)|2
}
.

(25)

If l = 1, that is, U = 0v, Y = 0z, then χ = (1 − θ)2 so that


V (t) = − 1√
a
V ,

Z(t) = − 1

a
Z ,

a(t) = 1 + θ

a(1 − θ)
= et

a
.

Hence, we have

B(x,∞) = log

(
1

a

)
. (26)

If l �= 1, then 0 < χ < +∞ for any t ≥ 0. Hence, |V (t)|2 and |Z(t)|2 are finite for any
t ≥ 0. Moreover, since

a(t) = 4

aχ
· 1

et + e−t + 2
, (27)

from (25) we have

lim
t→∞

λ− 2

et
= aχ∞

4

{(
1 + 1

4
|V∞|2

)2

+ |Z∞|2
}
, (28)

where V∞ = limt→∞ V (t), Z∞ = limt→∞ Z(t) and χ∞ = (1 − l)2 +|Y |2. We set γ (∞) =:
m = (v, z) ∈ N . From (23), we have V∞ = 1√

a
(v−V ) and Z∞ = z−Z− 1

2 [v, V ]n. Hence,
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we have(
1 + 1

4
|V∞|2

)2

+ |Z∞|2 = 1

a2

{(
a + 1

4
|v − V |2

)2

+
∣∣∣∣z− Z − 1

2
[V, v]n

∣∣∣∣
2}
. (29)

Here, (
1 + 1

4
|x|2

)2

+ |z|2 =
{

1 + |U |2
χ2∞

((1 − l)2 + |Y |2)
}2

+ 4

χ2∞
|Y |2

=
(

1 + |U |2
χ∞

)2

+ 4

χ2∞
|Y |2

=
(

1 + 2(1 − l)− χ∞
χ∞

)2

+ 4

χ2∞
|Y |2

= 4(1 − l)2

χ2∞
+ 4

χ2∞
|Y |2

= 4

χ∞
.

(30)

From (28), (29) and (30), together with (26), we get our lemma. �

Next, we give the explicit form of the standard measure dθ on ∂S � N with unit volume
of (11).

LEMMA 7. The standard measure on Sn−1(1) ⊂ TeSS � s is given in the form

dθ = c{(
1 + 1

4 |v|2)2 + |z|2}Qdvdz , (θ = (v, z))

where c is the constant, given as

c = 2k−1π−n/2Γ
(n

2

)
, k = dim v (31)

(see [2]).

PROOF. It suffices to write down the standard volume form dµSn−1(1) on Sn−1(1) with
unit volume in term of the coordinate (v, z) ∈ N under the identification

N � ∂S � Sn−1(1) ⊂ TeSS � s .

From (23), the identification N � Sn−1(1) ⊂ s is given by the map ∂C : N → s: (v, z) �→
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(U, Y, l) defined by 


U = U(v, z) =
(
1 + 1

4 |v|2 − Jz
)
v(

1 + 1
4 |v|2)2 + |z|2

,

Y = Y (v, z) = 2z(
1 + 1

4 |v|2)2 + |z|2
,

l = l(v, z) = −1 + ( 1
4 |v|2)2 + |z|2(

1 + 1
4 |v|2)2 + |z|2

.

Let π : s ⊃ Sn−1(1) → N be the stereographic projection with the projection point eS , that
is,

π(U, Y, l) = (̃v, z̃) = 1

1 − l
(V ,W) .

As is well known, we have

(π−1)∗dµSn−1(1) = c′(|̃v|2 + |̃z|2 + 1
)n−1 dṽdz̃

= c′
(

1 + 1
4 |v|2(

1 + 1
4 |v|2)2 + |z|2

)n−1

dṽdz̃ .

(32)

Here c′ is the constant satisfying
∫
(π−1)∗dµSn−1(1) = 1. Now we define two maps αi : N →

N (i = 1, 2) by

α1(v, z) = (v, z) =
(
v,

1(
1 + 1

4 |v|2)z
)
,

α2(v, z) = (̃v, z̃) =
(

1

2
(1 − Jz)v, z

)
.

Then, we find that π ◦ ∂C = α2 ◦ α1. Hence we have

dṽdz̃ = det d(π ◦ ∂C)(v,z)dvdz = det dα2(v,z) · det dα1(v,z)dvdz . (33)

By using the argument in [7] we get

det dα1(v,z) =
(

1

1 + 1
4 |v|2

)dimz

,

det dα2(v,z) =
((

1 + 1
4 |v|2)2 + |z|2)dim v/2

2dim v · (
1 + 1

4 |v|2)dim v
.

(34)

From (32), (33) and (34), we obtain our lemma. �
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LEMMA 8. ∫
θ∈N

exp (−QB(x, θ)) dθ = 1 .

PROOF. From Theorem 4 and Lemma 7, we have

exp (−QB(x, θ)) dθ = caQ{(
a + 1

4 |v − V |2)2 + ∣∣z− Z − 1
2 [V, v]n

∣∣2}Q dvdz (35)

where x = (V ,Z, a) ∈ S and θ = (v, z) ∈ N . An easy computation shows that the integra-
tion of the right hand side of (35) over N is independent of any (V ,Z, a) ∈ S and equal to
1. �

REMARK 11. E. Damek [6] defines the function Pa(n) on S by

Pa(n) = caQ{(
a + 1

4 |V |2)2 + |Z|2}Q (n = (V ,Z) ∈ N) ,

and shows

�P = 0 ,

lim
a→0

f ∗ Pa(n) = f (n) (f ∈ Lp(N)) ,

where the convolution is defined by using the group structure

f ∗ Pa(n) =
∫
m∈N

Pa(nm
−1)f (m)dm .

This means that P is the fundamental solution to the Dirichlet problem on S ∪N . In fact, we
have

Pa(nm
−1)dm = exp(−QB(x, θ))dθ

where x = (n, a) = (V ,Z, a) ∈ S and θ = m ∈ N .
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