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Introduction

Let $A$ be a commutative ring with unit element and let $A[X]$

denote a polynomial ring over $A$ with an indeterminate $X$. For an ideal
$\mathfrak{a}$ of $A$ we put $\mathscr{B}(A, \mathfrak{a})=A[\{aX;a\in \mathfrak{a}\}, X^{-1}]$ , the A-subalgebra of $A[X, X^{-1}]$

generated by $\{aX;a\in \mathfrak{a}\}$ and $X^{-1}$ , and we call it the Rees algebra of a
over $A$ .

$\mathscr{B}(A, \mathfrak{a})$ is a graded subring of $A[X, X^{-1}]$ , whose graduation is given
by $\mathscr{G}_{n}(A, \mathfrak{a})=\mathfrak{a}^{*}X^{n}$ for $n\geqq 0$ and $\mathscr{G}_{n}(A, \mathfrak{a})=A$ for $n<0$ . Note that
$\mathscr{G}(A, \mathfrak{a})$ is canonically identified with the ring $\oplus_{r\iota eZ}\mathfrak{a}^{n}$ where $\mathfrak{a}^{\prime}=A$ for
$n<0$ .

The aim of this paper is to prove the following theorem.

THEOREM. Let $k$ be a Krull domain and let $W_{1},$
$\cdots,$

$W_{l}$ be indeter-
minates over $k$ . Then, for every positive integer $n,$ $\mathscr{B}(k[W_{1}, \cdots, W_{\epsilon}]$ ,
$(W_{1}, \cdots, W_{\epsilon})$“) is a Krull domain ancl $C(\mathscr{G})=C(k)\oplus Z/nZ$. (Here $C(\cdot)$

denotes the divisor class group.)

By the theorem we have the following result immediately.

$CoROLLARY$ . If $k$ is a field, then $\mathscr{G}(k[W_{1}, \cdots, W_{\epsilon}], (W_{1}, \cdots, W_{l})‘‘)$

is a Macaulay normal domain and $C(\mathscr{B})=Z/nZ$ .
\S 1. Proof of Theorem.

Let $k,$ $W_{1},$
$\cdots,$ $W_{l},$ $n$ be as in the introduction and let $X^{-1}=U$. We

denote $\mathscr{G}(k[W_{1}, \cdots, W_{\epsilon}], (W_{1}, \cdots, W_{\epsilon})^{n})$ by $T$. Let $A_{n}$ be the set of the
indexes $(\alpha)=(\alpha_{1}, \cdots, \alpha_{\epsilon})$ where $\alpha_{l}’ s$ are nonnegative integers with
$\sum_{j=1}^{\epsilon}\alpha_{j}=n$ and let $R=k$ [ $W_{1},$ $\cdots$ , W., $U$]. Then $T=k[W_{1},$ $\cdots$ , W., $U$,
$\{W^{(\alpha)}/U\}_{\alpha e\Lambda_{n}}]$ and $T$ is a k-subalgebra of $R[X]$ , where $W^{(\alpha}$ ‘ denotes
$ W_{1}^{\alpha_{1}}\cdots W^{a}\cdot$ .
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Now we give a graduation to $R$ and $R[X]$ by putting $R_{0}=k$ , degree $U=$

$n$ and $degreeW_{j}=1$ for every $1\leqq j\leqq s$ , then they become graded rings.
Moreover as degree $W^{(\alpha)}/U=0$ in $R[X],$ $T=T_{0}$ [ $W_{1},$ $\cdots$ , W., $U$], where $T_{0}=$

$k[\{W^{(\alpha)}/U\}],$ $U\in T_{n}$ and $W_{;}\in T_{1}$ for every $1\leqq j\leqq s$ , is also a graded subring
of $R[X]$ . We put $\mathfrak{p}=T_{+}=(W_{1}, \cdots, W_{*}, U)T$. Of course $\mathfrak{p}$ is a prime
ideal of $T$ and we have

PROPOSITION 1. (1) $\mathfrak{p}=rad(UT)$ .
(2) $T_{\mathfrak{p}}$ is a discrete valuation ring and $v_{\mathfrak{p}}(U)=n$ . ($He\gamma ev_{\mathfrak{p}}$ denotes

the discrete valuation corresponding to $T_{\mathfrak{p}}.$)

PROOF. (1) For any $q\in spec(T)$ such that $q\ni U$, we have $W_{j}^{*}=$

$U\cdot Wj/Ue\mathfrak{q}$ . Then $W_{j}\in \mathfrak{q}$ for every $1\leqq j\leqq s$ . Thus $q\supset \mathfrak{p}$ . Therefore we
have $\mathfrak{p}=rad(UT)$ .

(2) As $\mathfrak{p}\cap T_{0}=(0)$ , we have $\mathfrak{p}\cap k=(O)$ . Thus we may assume that
kisa field. Since $Wi/UeT\backslash \mathfrak{p},$ $U=W_{1}^{n}\cdot U/W_{1}^{\prime}$ and $W_{j}=W_{1}\cdot W_{\dot{f}}Wi^{-1}/U\cdot U/Wi$

are contained in $WT_{\mathfrak{p}}$ for every $2\leqq j\leqq s$ . Therefore $\mathfrak{p}T,=(W_{1})T,$ . Thus
$T_{\mathfrak{p}}$ is a discrete valuation ring.

Next we prove $v,(U)=n$ . As $W^{(a)}=U\cdot W^{(\alpha)}/U$, we have $\mathfrak{p}^{n}T_{\mathfrak{p}}\subset(U)T_{\mathfrak{p}}$ .
On the other hand, as $ U=W_{l}^{n}\cdot U/W_{1}\in \mathfrak{p}^{n}\tau$, we have $\mathfrak{p}^{\#}T_{\mathfrak{p}}\supset(U)T_{\mathfrak{p}}$ . Thus
we have $v,(U)=n$ .

We need the following Proposition 2 that is a result of Valla [3].
Here we give a simple proof for it.

PROPOSITION 2. Let $A$ be a Macaulay ring and let $\{a_{1}, \cdots, a_{f}\}$ be an
A-regular sequence. Then, for any positive integer $n,$ $\mathscr{G}(A, (a_{1}, \cdots, a_{f})‘‘)$

is a Maeaulay ring.

PROOF. We put $\mathfrak{a}=(a_{1}, \cdots, a_{f})$ . Let $\varphi$ be an A-algebra endomorphism
of $A[X_{1}X^{-1}]$ defined by $\varphi(X)=X$“ and $\varphi^{\prime}$ be the restriction of $\varphi$ to
$\mathscr{G}(A, \mathfrak{a}^{\#})$ .

$\mathscr{G}(A, \mathfrak{a}^{n})=A[X_{1}X^{-1}]$

$\downarrow\varphi^{\prime}$ $\downarrow\varphi$

$\mathscr{G}(A, a)\subset\rightarrow A[X, X^{-1}]$

Then $\varphi^{\prime}$ is an injection and its image is the Veronesean ring $\mathscr{G}(A, \mathfrak{a})^{(*)}$ .
Therefore if $\mathscr{B}(A, \mathfrak{a})$ is a Macaulay ring, $\mathscr{G}(A, \mathfrak{a}^{n})$ is a Macaulay ring
since $\mathscr{G}(A, \mathfrak{a})$ is a direct summand of $\mathscr{G}(A, \mathfrak{a})$ and $\mathscr{G}(A, \mathfrak{a})$ is integral
over $\mathscr{G}(A, \mathfrak{a}^{n})$ . (cf. [2] Proposition 12) Thus we may assume $n=1$ .
As $\mathscr{G}(A, \mathfrak{a})/U\mathscr{G}(A, \mathfrak{a})=G_{u}(A)$ , we have only to prove that $G_{\alpha}(A)$ is a
Macaulay ring. This follows immediately from the fact that $G_{\alpha}(A)$ is a
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polynomial ring over $A/\mathfrak{a}$ since $\{a_{1}, \cdots, a_{r}\}$ is a regular sequence.
We put $B=R[X]$ . Note that we have also $B=T[X]$ .
LEMMA. $T=T_{\mathfrak{p}}\cap B$ .
PROOF. First, we assume that $k$ is a field. Then $T$ is a Macaulay

ring by the above proposition. Thus $T=\bigcap_{htq=1}T_{\eta}$ . Let $q\in spec(T)$ of
htq $=1$ and suppose $q\neq \mathfrak{p}$ . As $\mathfrak{p}=rad(UT)$ , we have $q\not\supset U$. Thus we have
$T_{\eta}\cap T[X]=B$ and hence $T\supset T_{\mathfrak{p}}\cap B$ . The opposite inclusion is trivial.

Now suppose that $k$ is not necessarily a field and let $f\in T_{\mathfrak{p}}\cap B$ . Then
$\gamma f\in T$ for some $\gamma\in k\backslash (O)$ by virtue of the result in case $k$ is a field. On
the other hand, since $f\in B=T[X]$ , we can express $U^{N}f=g\in T$ for some
integer $N>0$ . Therefore $U^{N}a=\gamma g$ in $T$ where $a=\gamma f$. Since $ T/rT\cong$

$\mathscr{B}(k/rk[W_{1}, \cdots, W_{l}], (W_{1}, \cdots, W_{\epsilon})^{n})$ and $U$ is a nonzero divisor on
$\mathscr{G}(k/rk[W_{1}, \cdots, W_{l}], (W_{1}, \cdots, W_{\epsilon})^{n})$ , we have $\{\gamma U\}$ is a T-regular se-
quence. Therefore we have $a\in\gamma T$. Hence we have $f\in T$.

PROOF OF THEOREM. If $k$ is a Krull domain, then $R$ is also a Krull
domain. As $U$ is a prime element of $R,$ $B$ is a Krull domain. Also by
Proposition 1 $T_{\mathfrak{p}}$ is a discrete valuation ring. From these results and
the above lemma, $T$ is a Krull domain.

Next we have an exact sequence

$0\rightarrow Z_{c1(\mathfrak{p})}\rightarrow C(T)\rightarrow C(B)\rightarrow 0$ .
Since we have $C(B)=C(R)=C(k)$ by Cor. 7.3 and Prop. 8.9 in [1], the
natural map $C(k)\rightarrow C(T)$ makes the sequence split. Hence we have $C(T)=$
$C(k)\oplus Z_{cl(\mathfrak{p})}$ .

Now we must prove that cl(p) is of order $n$ in $C(T)$ . Put $m=$
$order(cl(\mathfrak{p})),$ $(0<m\leqq n)$ , and we have $m\cdot c1(\mathfrak{p})=c1(aT)$ for some nonzero
$a\in Q(T)$ , where $Q(\cdot)$ denotes the quotient field. Hence we have $aT=$
$A:(A;\mathfrak{p}^{m})=\bigcap_{ht_{T}0=1}\mathfrak{p}^{m}\tau_{0}=\mathfrak{p}^{(m)}$ . Thus we have $\mathfrak{p}^{(m)}=aT$ for some nonzero
$a\in T$. Now we claim that $\mathfrak{p}^{(m)}$ is a graded ideal and $a$ is a homogeneous
element in $T$ with degree $m$ . Indeed, we put $\tilde{T}=Q(T_{0})[U, W_{1}, \cdots, W_{l}]=$

$Q(T_{0})[W_{1}]$ . Then we have $\mathfrak{p}^{(m)}=\mathfrak{p}^{m}\tau_{\mathfrak{p}}\cap T=[\mathfrak{p}^{m}\tau_{\mathfrak{p}}\cap\tilde{T}]\cap T=\mathfrak{p}^{m}\tilde{T}\cap T$. Thus
$\mathfrak{p}^{tm)}$ is a graded ideal. And $\mathfrak{p}^{m}\tilde{T}=W_{1}^{m}\tilde{T}=a\tilde{T}$. Hence $a$ is a homogeneous
element and $a$ equals to $W_{1}^{m}$ up to unit in $\tilde{T}$. Thus we have degree $a=$

degree wge $=m$ .
If $m<n,$ $\mathfrak{p}^{(m)}\supset \mathfrak{p}^{(n)}\ni U$. Thus we have $U=ab\in aT$. Since $a\in T$ and

degree $a=m$ , we can write $a=\sum_{\lambda}c_{(\lambda)}U^{x_{0}}W_{1}^{\lambda_{1}}\cdots W_{s}\lambda s$ where $n\lambda_{0}+\lambda_{1}+\cdots+$

$\lambda_{\epsilon}=m$ . Hence $\lambda_{0}=0$ as $m<n$ . Thus we have $a\in(W_{1}, \cdots, W.)T$. As
$T\subset R[X]$ , we can express $U=ab=d/U^{i}\cdot e/U^{\dot{f}}$ where $d\in(W_{1}, \cdots, W.)R$ and
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$e\in R$ . Thus we have $U^{i+j+1}\in(W_{1}, \cdots, W.)R$ , which is a contradiction
since $U,$ $W_{1},$ $\cdots$ , W. are indeterminates. The proof of the theorem is
now complete.

PROOF OF COROLLARY. As $k$ is a field, $T=\mathscr{G}(k[W_{1}, \cdots, W.],$ $(W_{1}$ ,. . ., $W.)^{\hslash}$) is a Macaulay ring by Proposition 2. By the theorem, $T$ is a
Krull domain and $C(T)=C(k)\oplus Z/nZ=Z/nZ$. Since $T$ is a Noetherian
ring and completely integrally closed, $T$ is a normal domain.
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