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Introduction

Let 2z, w be complex numbers. We assume that imaginary part of
z is positive. Set

&G, w, 2)=3 |m+nz+w|™,
where summation with respect to m, n ranges over all pairs of integers

such that m +nz-+w=+-0.
Put

7(e)=elz/24] II (1—e[nz]) ,
Sy (w, 2)=2¢[2/12] (sin Tw)n(2) i:[ (1 —e[w +n2])(1 —e[ —w +nz]) ,

_ where we write e[z]=exp(27iz). Furthermore, we set &'=dg/ds. A
version of the classical Kronecker limit formula is given as follows (see

e.g., [9).
If w¢ Z+Zz,
&' (0, w, 2)=—log dy(w, 2) exp niw(w:_w) :
If we Z+Zz,

&'(0, w, 2)=—log{4n*|7(2) |} .

For the proofs of the Kronecker limit formula, we refer to [4] and
papers quoted there. In this note we present a proof of the formula
which makes use of the theory of the double gamma function. The
author takes this opportunity to make an addendum of the reference to
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his previously published paper [6]. After the main part of [6] was
written down, the author received a preprint of [5]. There are some
overlaps between results of [5] and [6].

NOTATION. As usual we denote by Z and C the ring of rational
integers and the field of complex numbers. We denote by v the Euler
constant, by I the gamma function and by . the logarithmic derivative
of the gamma function. We put

t

t

6'1 —S B, (x)—q%- and B,=B.(0).
n=0 !

The Riemann zeta funection is denoted by (.

§1. We review the definition and basic properties of the double
gamma function. For details, we refer to [1], [2] and [3] (see also [7]).
Let z be a complex number and w=(w,, ®,) be a pair of complex numbers.
For a while we assume that z, @, and w, are all with positive real part.
For a complex number weC—(—, 0], we put w'=exp(slogw), where
logw=log |w|+7arg w (Jarg w|<zw). Set

L, 2, @)= 3, G+mo,+nw)"  (Res>2).

It is known that ¢, is continued to a meromorphic function in the whole
complex plane which is holomorphic except for simple poles at s=2 and
s=1.

Put

log I'}f(z, w)=C;(0, z, ), where (;=d(,/ds.
It is shown that z=0 is a simple pole of I'y(z, w). Put
1/p.(®)=residue at 2z=0 of I'}(z, w) and

I'y(z, ) _

I'}(z, w)=exp ;(0, z, ) .
pz(a’)

It is immediate to see that I', satisfies the difference equations:

Iy(z+o,, ©)/Ty(z, ©)=2r)"I'(z/®,)" exp {(1/2—z/w,) log w,}

D et @, o)z, @)= @ry (/o) exp (12— z/o) log @) .

It follows easily from the difference equations that

I'(w, 0)=Q2r|®,)"*,  I'l(®, 0)=02r/w,)",

1.2 (@, + @,, @)= (2m)(@,)"*(@,)7"" .



KRONECKER LIMIT FORMULA 193
§ 2.
PROPOSITION 1. Assume z, w>0.

(1) I'yw, (1, 2))
= (27)*"? exp ({(w —w?)/22 — w/2} log 2+ (W* —w)7Y/22)

x I'(w) ﬁ% exp {(w—w?)/2nz + (1 —w) log nz}

(2) p(1, 2)
= (2r)"* exp {—7/122 —2/12+20'(— 1)+ (2/12—1/4+1/122) log 2}

X ﬁ (2)*I'(14mz)~" exp {1/12n2+ (1/2+ nz) log nz —nz} .
n=1
Proor. To simplify the notation, set
I'*(w, 2)=1y(w, (1, 2))/0((1, 2)) .
It follows from (1.1) that
log I'*(w, z)—log I'*(w+z, z)=log {I"(w)/(27)"?} .

Hence
@.1)  log I'(w, z)=log I'*(w+nz, ) +2 log {I"(w +mz2)/2x)") .

Recall the following asymptotic expansion:

(2.2) log I'z+a)~(z+a—1/2)log z—z+log(2r)"*

s (=1)"Bn(@) ,i-m o
T m(m—1) i (i e

We transform (2.1) as follows:
log I'*(w, z)=log{l"(w)/(2x)"*} +log '*(w +nz, z)
+ :,5_:11 {log I'(w +mz)—(mz+w—1/2) log mz +mz—log(2r)"?
— B;(W)/2m2}
—l-:i_ll {(mz+w—1/2) log mz—mz+ B,(w)/2mz} .

Thus
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(2.3) log I'*(w, 2z)—log {I'(2)/(27)"*}
— “i_‘tl {log I'(w +mz)/(27)"*— (mz +w —1/2)log mz +mz — By(w)/2mz}

=log I'*(w+mnz, z)+(w—1/2) log I'(n) +z’§_‘:1 (m log m —m)

+__'”'('"’2— De log 24 (w—1/2)(n—1) log z"'E%U_) ’i;llm )

We denote by LG(w) the function of w given by the following formula
if w is positive (cf. (1.12) of [7]):

1 exp(—wt) logt ;. v—mi
LG @)= S —5—dt+——B~B 0<e<2m),
(W) 271 Jrte,0) 1 — exp( — t) 12 + 2 2(’“)) ( <e< 71.')

where I(e, =) is the integral path consisting of (<o, ¢), counterclockwise
circle of radius ¢ around the origin and (¢, + ). Since LG(w)—
LGw+1)=wlog w—w (see Lemma 2 of [7]), we have

n—1 -

>, {m log m— m}=LG(1)—LG(n) .

m=1

Under the assumption that both w and z are positive it follows easily
from (1.16) of [7] that

log I"*(w, 2)=—-LG(w) — B, log {I'(w)/ (2"} —4(w) Bz[2-+ O(1/0)
if w—+o.
It follows from (iv) of Lemma 2 of [7] that
3 B
2

_ 2 2 1
LG(n)=—=1logn+-=—n*—B,(nlog n—n)—=2 log'n-i-O(-— ,
2 4 n

LG(w+nz)=— 1 (W +nz) log(nz) + 2 n*z: +nzB(w)+ O(—l—) .
2 4 n

Furthermore, in view of (2.2),

I'(w+mnz)__ _ _ 1
log ——_—(27:)‘ m (nz+w—1/2)log (nz)—nz+ O( ” ) ,

log I'(n) = (n—1/2) log »—n +log(2r)"*+ O(%) ,

Jr (W +nz)= log (nz) +O(%) ,
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n—1 1
>, 1/m=log n—l—’Y—l—O(?@-) .

Thus we obtain the asymptotic expansion of the right side of (2.3) when
n— +oco. Since the left side of (2.3) is convergent when n— +co,
diverging terms in the right side of (2.3) must cancel each other.
Hence we have

(2.4) log I'*(w, z)—log{I'(w)/(2m)"*}
— 21{102 I'(w+m2)/(27)*— (mz +w—1/2)log mz +mz — By(w)/2mz}

=(w—1/2) log (27)*+ LG(1)z— (w—1/2) log 2+ B,(w)7/2z

—-—él;— (w)log z+ (w—1/2)/2log z—z log 2/12 .

Set lw=1 in (2.4). Since I'*(1, 2)=1I".(1, (1, 2))/0(Q1, 2))=(2x/2)"*/0((1, 2))
and LG(1)=(1/12)—{'(—1) (see (ii) of Lemma 2 of [7]), we obtain the
second part of Proposition 1. The first part of Proposition 1 now follows
easily from (2.4) and the equality I'(w, (1, 2))=1"*(w, 2)p.((1, 2)).

COROLLARY TO PROPOSITION 1.

(1) Via infinite product expansion (1) of Proposition 1, I';(w, (1, 2))
is continued amalytically to a holomorphic function in the domain
{(w’ Z); 2 eC—(-—-oo’ O]’ w¢—(m+nz)(m’ 9’&:0, 1’ 2’ ot )}'

(2) Via infinite product expansion (2) of Proposition 1, p.((1, 2))
28 continued analytically to a holomorphic fumction im the dommn
{z; z€ C—(— o, 0]}.

PROPOSITION 2. Assume Im z2>0.

(1) Pz((l, —2)p,((A, 2))=(27)"*27*)(z) exp {7i(1/4+1/122)} .
(2) Set

o Ty, 4, 2)
r —Low, 4, 2))
w, 2)=— @, 2)

Then
| I'(w, ) *(t—w, —2)[*(L+z—w, 2)[*(w—2, —2)

—_N=@) exp wif—1/62+ (w—w?)/z} .
F(w, 2)

ProOF. The formula (1) is an easy consequence of (2) of Proposition
1 in view of the equalities log(—2z)=logz—xt and I'(z)"(1—z)=mr/sinwz.
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It follows from (1) of Proposition 1 that
Fz(wy (1; z))l’z(l—w, (19 _z))

. ‘ 1_eanu
=(2r/2)" — w22+ (1—w)/2}—= :
(27[2)"* exp wif(w —w?)/22+ (1 —w)/2} SN T A L — gt en

A straightforward computation now shows the validity of (2).

§3. Let A=(a11 a“) be a matrix of size 2 and let x=(x,, x,)’ be a
Aoy oy

column vector of size 2. Assume that all entries of A are with positive

real part and that both z, and z, are non-negative and are not simul-

taneously equal to zero. Set

@3.1) Us, A, D=3 11 {3} aule+my)

2
i=1 ‘
where the summation with respect to m ranges over the set of all pairs
(m,, m,)’ of non-negative integers. Put {'(s, 4, x)=(d/ds)i(s, A, x). Fur-
thermore, we set (w,, w,)’=A« and a,=(a,, a,,)(i=1, 2).

PROPOSITION 3. The motation and assumption being as above,

(3.2) £'(0, A, x)=log {L%(’a)g)_} +log {%ﬂ}

+det A B,(x){log a,,—log a.,}/4a.a,,
+det A Byx,){log a,,—log a,,}/4a,a,, ,

where log is understood to be a holomorphic function on C—(— oo, 0)
which is real valued on the positive real axis.

Proor. If all entries of A are positive, the proposition is a special
case of Proposition 1 of [8]. It is immediate to see that Proposition 1
of [8] remains to be valid under the weaker hypothesis that all entries
of A are with positive real part.

Suppose A is of the form

1 2z

(3.3) A= < 1z

> (zl’ z2eC_(_°°9 0]) .

Then (x,+m,) +z,(x,+m,) €eC—(—c, 0] for any non-negative integers
m,, m,. Hence {(s, A, x) is defined by (8.1) even if 2z, and z, are not with
positive real part. It is shown that {’(0, 4, x) is a holomorphic function
of z, and 2, in the domain (C—(— o, 0]) X (C—(— oo, 0]).
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COROLLARY TO PROPOSITION 8. Assume A is of the form (3.3). Then
(3.2) remains to be wvalid for all 2, z,€ C—(— o<, 0].

§4. Now we are ready to derive the Kronecker limit formula. We
use the notation in the introduction without further comment. Since
&(8, w+m+mnz, 2)=£(s, w, 2)(m, n € Z), we may put w=u+vz 0=u, v<1).
Assume u and v are not simultaneously equal to zero. Then

&8, w,2)= 3, [m+nzt+w|™

(m,n)eZ

Im+nz+w|>+ >, |—1—-m+nz+w|™™
a0

m,na0

-+ Zéolm—(1+'n)z+wl‘“2‘+ S |—-1—-m—-—_QA+n)z+w|™™

020

oy (Do 22 037)
+(cc(:., ((;»:) )<l 2 (o)

Applying Corollary to Proposition 3, we have, if one puts I (w, z)=
I'y(w, (1, 2))/0Q1, 2)),

&'(0, w, 2)

=log | ™*(w, z)lz—Z—Bz(u)(logz log 2)

+log| ™ (1—w, —2)|*+

4

+log| ™ (w—z, —2)|"+ z Bz<u>{1og< z)—log(— z)}

+log | *(1+2z—w, 2) ;2—-%;;. ,(1—u)(log z—log Z) .

Since Im z2>0, log(—2)=log z—mx1i, log(—%Z)=7nt+logz. In view of (2) of
Proposition 2, we have

&0, w, z)
= 7(2) 1, w—wh|* 2=2 ;
log] B, )exp m( 3 —+¥ p, )l + - B (u)mt
— #(w, 7) . — W
log “ﬂ(z) exp(mw po— )
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Next assume w=u-+vz=0.
Then

£(8, 0, 2)=>) |m+mnz|™*
= >, 1+m+nz|*+ >, | -1—m+nz|™™

m,nzo m,na0
+ Zolm—z—nz |~ 4 Z‘éol —1—m—z—nz|™*+|2|*{(2s)
m,n »m,n

et Bl )
ol bl (2

Applying Corollary to Proposition 3 and taking (1.2) into account, we have
£'(0, 0, 2)
=log{(27)*|z|*| p(1, 2))p((1, —z))l"‘}+ Bzm

+log|z|+2log(27)~/* .
In view of (1) of Proposition 2, we have
£'(0, 0, 2)
=log{(2m)~" | 2|7 | n(z)|~*|exp 7w1/122|~*} + m +log | z| —log (27)

=log | 7(2)|*—log(4x”) .
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