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Introduction. -

The main purpose of the present paper is to settle the theorem of
v. Staudt-Clausen for ‘normalized Hurwitz-Herglotz function’ H,(z; u, v)
in the singular case (i.e. the case ¢ is imaginary quadratic and u, v € Q):

e21:1,(mu+m:)

. _ sl '
Ha(f’ b v)_—lz'l/z—;(m,n)ezz (ma)l—l-'na)z)’
where 7=w,/®w, and 4=4(w,, ®,) is the usual disecriminant function for
Weierstrass’ @-function with periods w,, ,.

The result is, roughly speaking, that the ‘theorem of v. Staudt-
Clausen’ is of the same type as Herglotz except for an algebraic additive
term whose denominator is divisible by at most prime factors of a finite
number of integers given in the respective case.

Here note that in Q1 —1), for example, H,(VV'—1; u, v) does not
vanish and has an additive contribution mentioned above to v. Staudt-
Clausen even for s=0 (mod 4), while H,(v"—1; 0, 0), the Hurwitz-Herglotz
number, vanishes for s%0 (mod 4).

Further it should be noted that as a byproduct of our theory, an
interesting identity is obtained from modular transformation formula
for function W; (see 2.2).

In the final part, we add some comment on Ramanujan’s formula
for series of Lambert type.

§1. Kronecker’s function K.

1.1. Let w, ¢ be complex variables and Im z be positive. We define

(1.1) 191(1,0, T)= i eritn 1/ toteni(nt1/2) (w=1/2)

n—=—co
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and for w,, w,€C, r=w,/®w,, 2€C and u, ve R,

i i — —; V@) (ut —v+(2/®,); T)
1.2) Gz @ O vy V)= =4 s DT —v3 1)

Here 7 is the so-called Dedekind 7-function:

77(T)=efrir/m ”ﬂ (l_eznimr) .

1
Then our starting point is the following function K which is ex-
tensively investigated by Kronecker:

(1.3) K(z; 0, @,; u, v>=-2(—0"-?ez’="“/le<z; ®, O U, V) .
1

Kronecker proved the following

THEOREM K (Kronecker). For 0<u<1,

e—z:n(nw+!w)

N
1.4 K(z; w,, w,; w, v)=1lim lim .
(1.4) & 0, 05w, 0)=lim 3 lim > 2

Here the sum on the right is called Eisenstein sum by A. Weil
[15]. For short, we write

limi‘,lim i=i i

Noowo a=~N Mo m=—M fN=—00 M=—00

1.2. For 1>|y|>|q|, we put

(1.5) Flg,z, 9= > 2L _.
=" q"r—1

Then two main points to get Theorem K are as follows:
The first. For 0<u, v<1l, we have

(1.6) F(q, x, y)=G(z; w,, ®,; u, v)
with
(1.7) = ez:riz/wl’ Y= gmiur=o  gnd q= it

Therefore we have

K(z; @,, @y u, v)=%"?x“F(q. x, Y) .
1

The second. For 0<u<1l, we have
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2Tiuz 1 1 oo e—z::imu ezzn'mu
1.8 € = . { n } ]
(1.8) e —1 2miz 2mim=il z4+m  z—m

This holds for =0 up to the additive constant —1/2 on the right.
As Kronecker put a stress, we represent (1.5) in a symmetric form:

(1.9) Flg, o p)=1——2_ —_ 1 1S5 5% gmngmy—r_zmy")
l—x l—y m=1 n=1

which is vaild for 1>|x|>|q]. Thus we have

(1.10) F(g, z,y)= 3 % _.
n=—c ( y——l

REMARK. Kronecker’s formula (1.8) is an easy consequence of
Dirichlet’s formula [8] in the Fourier analysis:

n o+1 .
lim 3 S F(z)etktv—amigy
o

n—0 f=—n

. {1/2 lim(F(v+0)+ F(v—9)) for o<v<p+1,
~ (1/2 lim(F(o+8)+ F(p+1—5)) for v=p or p+1
where F(v) is a function defined on [p, p+1] with some conditions.

In fact, take 0=0, F(v)=¢*** with arbitrary w. This is the original
proof by Kronecker. Another proof of (1.8) can be seen in Siegel [13].

1.3. We can easily derive the transformation formulas for K and
G under the full modular group I" since we know the transformation
formulas for » and &,.

For a=(g‘ 3) el’, we put

(.11 of=dw,+cw, , 0¥ =bw, +aw,
w*=du-+cv, v*=bu+t+av.

Then we have the following

THEOREM 1. Assume ¢>0.

( i ) G(Z; w-lx-, w;; u*’ ,v*):(GT+d)ezﬁcz(ur—-v)/(cr+d)w1G(z; wn a)z' u’ 'U)

(i) K(z; o, of: u*, v*)=K(z; @, 0,; u, v).

Now put #=0, v0. Taking a=((1) _(1)> in (ii) of the above theorem,
we have

K(z; w,, w,; 0, v)=K(2; w,, —w,; v, 0) .
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Thus, in what follows, we use this right hand side for the meaning of
Eisenstein sum in Theorem K in the case u=0, v+0:

(1'12) K(Z; ®,, @,; 0’ /U)———K(z; @;, —@,; , 0)

M N —2ri
g Imine

=lim >, lim 3, .
Moo m=—M N-co n=—Nz—|—m0)1+ nw,

This will be a supply of Theorem K. Further we have
K(z; w,, @,; 0, v)=K(z; @;, —@;; v, 0)=3F(qo, %oy ¥0) »

where x,=e***/%2, y,=e**""" and ¢,=¢€**"V", This is a supply to (L.7).
(See Weil [15] p. 71, 72.)

§ 2. Normalized Herglotz-Hurwitz function.

2.1. First we recall Bernoulli’s case. Denote by B,(u), 0=u<1, the
Bernoulli polynomial. Its generating function is

2.1) te*t/(e!—1)
and B,(uw) is defined by

(2.2) =3 B~ .
On the other hand, from (1.8), we get

teut ) eZm'nu e—Zzn'nu »
2.3 =1+t3; } : 1.
(2.3) et — Z‘l t—2min + t+2min

Then developing the right hand side with respect to ¢t and comparing it
with (2.2), we have

2TiNnU

2.4 B(uw)=—s! 3S/_2 " |
(@.4) ) n=§—:'m 2rin)®
Here 3 means the sum except for #=0.

The formula (2.4) is fundamental in representing values of Dirichlet
L-function at integral arguments in terms of generalized Bernoulli
numbers in the sense of Leopol_dt.

2.2. Now we want to consider an analogy lying between Herglotz-
Hurwitz’s case and Bernoulli’s. We view (1.12) corresponds to (2.3). In
order to get a formula corresponding to (2.4), we expand G(z; w,, ®;; u, v),
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0<wu, v<1, in power series with respect to z: we have

1 1 271 \* 2
= = B
1—x 2miz +zz-f> ”1< w, > L+ 1)1

(2.5)

(f‘. DI L T m”‘y”)>z_o—( 2;”) Ry(z; w, v)

m=1n=1 i

where x, ¥y and ¢ are the same as in (1.7) and

Aym
(2.6) Rz, 0) =3 {(— WOV Ly |
1-qmy™ 1l—qmy
A=0, 1, 2, .-

Inserting this in the formula (1.6) combined with (1.9) and writing G as

| Wi(t; u, v) 2*
2.7 G(z; w,, w,; =@ ___3___’___
( ) (z @e; Uy ’U) 2712 1§=:(‘) a)l A

we get the following

PROPOSITION 1. Assume 0<u, v<1. Put

Ry(z; u, v)= Z{( 1)‘"“”’_ mzqmy}
1—q™y™ 1—q™y

Jor x=0,1,2, --- with q=¢e>,'y=e***""_ then
1

l_ean(ur—v)

(1) Wz u, v)=1— + B, +Ry(t; u, v)
(i) Wiz u, v)=<2ni)2{%+m(r; u, v)} .

Next, put

. . _1 & Sy, 0,5 u, v) i
(2.8) K(z; w,, @,; u, v)—‘-z—+§ ] S

Then using (2.7) and Proposition 1, the series expansion of e**#**/1 with
respect to z, we have

THEOREM 2.

2miu >‘+1 n 2ri(n+1)

SZ+1(w1y ;5 U, ’U)=< , w}+1 '

A=p+q
P, g0

< ; >(2niu)" W, (T; u, v)
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=( 2 >2,+1 {(7»+ L)u? '(1——-—1———-) + Byyi(w)

A 1_e2m(ur—u)

+(N+1) lg‘jrq(:) u'R,(7; u, v)} .

2,920

Further using the series expansion of the right hand side of the formula
in Theorem K, we get the following

THEOREM 3.

e~2zt(mu+nv)

(=D'O+DE Y

=8 (0, 0,;; u, v) .
(m,mezz(mwl+nw2)z+1 2+1( 1 @5 U, V)

The left hand side is a sort of Eisenstein sum. When w=0, the sum
means

lim 3 lim 3,

M=o m=—M N—ooo n=—N

This theorem is an analogy to (2.4).

We define
1
G =G wl’ a) = ! ’
=G 2) (,,.,%zz (.t o)
1
GszGo 1y Wp)= ’ 120
(0, @) (m,§22 (Mo, + nw,)’
and
(2.9) d=d(w,, w,)=G:—27G; .

In accordance with Herglotz [7], we call the following the “normalized
Herglotz-Hurwitz function”:

1\
(2.10) Hy(c5 u, v)=i§/——% S1n(@,, @35 u, v) .

This is an analogy to Bernoulli polynomial (2.4).

REMARK. In (2.10),' put formally w=v=0. Then H,;, becomes
Ciinse in the notation of Herglotz [7], which is called the normalized
coefficient of @-function by successors (see below).

2.3. Theory of Herglotz. We shall quote here some results of
" Herglotz [7], in the range of later necessity.
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As usual, ¢(2; w,, w,) is Weierstrass’ elliptic function with w,, @, as
periods. Its series expansion is

¥(z; 0, @,)=27"+38,2" + 58,2 + -+ - - -

where

3222822(“)11 @,; O’ 0)/(27\;)!
Herglotz defined '

2\)!
CZZ (g/jz 832

and derived the theorem of v. Staudt-Clausen for C,. This is a gener-
alization of Hurwitz [8] on the theorem of v. Staudt-Clausen for coeffi-
cients of series expansion of the lemniscate function.

Let j, 7,, 7, be functions as in Weber [14]; namely

(2.11) J=203G2/4
(2.12) .= ¥J=28G/ V4
(2.13) | Y =17 —1728=23G,\/ 7 .
Then Herglotz showed
kvl om 22/(p—1
(2.14) C,=(—1)** 727&” +3 AP; ) + 775G (J)

where G,(j) € Z[j], n=6m+2h+8k, h=0, 1, 2, k=0, 1, p runs over all
primes such that p=5, (1/2)(p—1)|» and A, is the coefficient of = of the
“Multiplikator Gleichung”

xp—i—l__Ale_l_ ...... ...Apx—k(—l)(l/z)(p_l)p::o
satisfied by

x’:lz*ld(wl/py wz)/d(wu w,) .
It is known that
A€ Zl7, 7y V5] -

Now let K be a field of the ring of complex multiplications of ¥(z; w,, w,).
Then exact formulas of v. Staudt-Clausen for C, are given individually
for quadratic fields K with class number 1.
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(1) The case K=Q(/ —1).
Put

w1=w(4)=2§1——ﬂ—— w,=w vV —1
oV il-z 2 “ .

In this case, 7=1728, 7,=12, 7,=0, G,=4 and G,=0. Then

C,.€Q, A, eZ and C,,,,=0,
and the theorem of v. Staudt-Clausen is of the form:

4 —1)
A,,"/“'

(2.15) Con=>, 22—+,
» b
with J,, € Z, p=5, p=1 (mod 4) and p—1/4n. Note that C;=0 for A0
(mod 4).
(2) The case K=Q(p), 0*+p0+1=0.
Put
0)1=‘D’(6)=2§0 -l/]jdiv.xﬂ y W= g0 .

Then j=0, ¥,=0, ¥,=241V —3, G.=0 and G,=4. In this case,
VvV =3"C,, eQ, 3V V4 =q,eZ and C,,.,=0.

Then the theorem of v. Staudt-Clausen takes the form
a’:‘ﬁl(?"l)

D

(2.16) V —=3"C=2] + Jon

with J,, € Z, p=5, p=1 (mod 3) and p—1|6n. Also note that
C;=0 for %0 (mod 6) .

(8) The case K=Q(V —2).
Put

w,=1, w,=V—=2.
Then j=8000, 7,=20, 7,=561 2. Hence
vV 2*C,eQ and V 2Wnrv4 —q, e Z.

Now the theorem of v. Staudt-Clausen is
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ai)/(p 1)

(2.17) Vv 2%C, ———+2 +J;

with J;e Z, p=5, p=1, 8 (mod 8) and p—1|2\.
(4) The case K=Q(V —m) with m="1, 11, 19, 43, 67, 163.
Put

0,=1, a)2=—-1-(—3+1/—m) .

Then 7, ¥, and 73V —m arein Z,V —m?*C,e€Q and V' —mV/»* M4, =a,c Z.
The theorem of v. Staudt-Clausen is of the form

22/(p—1)

(2.18) VTmiC= 6+ 5%

+J;

where J, € Z, p=5, ( ) 1, p—1|2n and e;=1/2, (—1)y3 for m="1, 11 and
m

=0 otherwise.
We quote values of 7, 7, for the aforementioned m from Weber

[14].

m 7 11 19 43 67 163

re —15 —-32 —96 —960 —5280 —640320
v L 27 56 216 4536 15624 40133016

—m

§3. Transformation formulas.

3.1. For o= <g’ 3) eI, we define w¥, }, u*, v* as in (1.11). Insert-

ing the series expression (2.8) into the both hands of the formula in (ii)
of Theorem 1 and comparing coefficients of 2*, we have the following.

PROPOSITION 2.

Sm(wi‘, w;; u*; ’0*)=S1+1((Dl, @, U, 'U)
A+1=0,1,2, -

3.2. o, w;y, w*v* being the same as in (1.11) for a——-(g 2) el’, we
put
(O at+b

T*= .
o} ct+d
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THEOREM 4. Assume ¢>0.
(i) O<u*<l.

Y\ pd+
Wi(z*; u*, v*)=@{%cl—i(ur—v)“’

=§i—q< ; ) W,,(T; u, v)(27r1§c)"(uz- —v)(eTt+ d)p+1

a
P,q0

(ii) u*<0 or >1 and u*e:éZ.
(—lu*D*+(@mi)?
A1 +;%;«
_@ri)et™ A : e pt1
=51 (ut—v) +1=Ep;|-q » W (z; w, v)@2mic)(ut —v)¥(ct +d)*+!

P,q20

(;) W (z*; {u*}, v*)(—2mi[u*])?

where [u*] is the largest integer smaller than w* and {w*}=u*—[u*].

PrOOF. The transformation formula (i) is obtained by comparing
coefficients of 2z* of the series expansion of the both hands of Theorem
1 (i). For the case (ii), observe that

G(z; f, 0f; u*, v*)=e Vol G(z; wrwf; u*, v*) .
Then apply the same consideration as in the case ).

3.3. As an application of Theorem 4, we can derive an interesting
identity.

Take a=d=0, c=—b=1, u=v=1/2,7=1"—1. Then w*=v*=1/2 and
t*=1"—1. Namely

0 —1 1 1 . .
0-(1 0> leaves <l/——1 P o ?) Invariant .

Hence we can compute the first three W,’s by Theorem 4. In fact, we
have

w13 -1,
3.1 w(v=is 5, 3)=2mi,
(3.2) w.(v=is 5, )=m6.
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Then using (3.1) and Proposition 1, we can easily derive the following

PROPOSITION 3.

S 2m—1 1
%1 TS| - 24 y

This identity also follows from (3.2). Further we have

6—27:{((1/2)m+(1/2)u)
’

D e TR =0 for A%0 (mod 4)

by Proposition 2.

§ 4. Theorem of v. Staudt-Clausen.

4.1. Let f be a positive integer. Let g, v be integers with 0=, v<f
and u, v rational numbers whose reduced common denominator is f.
For every pair (g, v), we define

( , ( ) e-—z::i(mu+m))
V) — , . —
gk‘ - gkﬂ Y (u, v; Wy, wz) -

m=p(mod §; (ma)l + nwz)k

n=y(mod

We note that the formula (7) of p.18 of Weil [15] depends on (5) of
p.17. In our case, extra term of (5) of p.17 disappears by p.71 of
Weil [15]. Thus we have

(4.1) Si(u, v; @, @)=k!(=1)*" 3, g,  k=l.

osp,v<f

For Weierstrass’ g-function,
Pr=A9’— G —G,
holds with

G,= 60 S 9% (uy v; @, ;)
G,=140 f~°9>"(u, v; @, ®,) .

From this, it follows
(4.2) : 20" =12¢*—G, .- e
Then putting -

C,u,v = C.u,»(wu 0)2) = @((}uah + ”(’)z)/f; w,, @,)
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for (g, v)+(0, 0), we have the following

THEOREM 5.*

(I) The case (g, v)(0, 0). Put g,,=e 2wt
(1) 12f%,,.g9{""=12C},—G,
(ii) f*gy=2C,,.gi
(iili) For k=4,

(k-+1k(k—1)gis;’ =6e,, 2 (P +Degly

P21,q2x1

+12£72C, (b—L)gi™ .

(II) The case (y, v)=(0, 0).
(1) g”=0 for odd k.
(ii) For k=4,

k—2
(2k+1)(2k—1)(k—3)gi " =3 2, (2p—1)(2k—2p —1)gi3 950025,

2p
The part (II) is well known. In the case (I), we note that

g;["y) = _2f—38[l,v-D[1,v
with

D,.=D, (@, @,)=¢" (1w, +v0,)/f; »,, @,) .

PROOF FOR THE CASE (I).
Put

R =@, (25 U, V; @, @,)=

{ ezm’(mu+nv) ezxi(m,‘_;.,,,,) }
r=@oua N ((2—mw,— 1w, (MO, +nw,)
Futher put

z#ﬂ‘:f_l(z_#wl_”wz) .
Then we have

— 2T (pu+yy)
Qu =€

1 1
meo(mod ) { (z— pw, —vw,— mw, — nw,)* B (o, +yw, — mw, — nw,)* }
— 2zi(pu+vv)2’ { 1 . 1
(2—(pw, +v@,) — (mf@, +nfw,)) (mfow,+nfw,)
_ 1 4 1 }
(([1(01 + DG),) - (mfwl + ""'fa)z))2 (mfw1 + nfwz)z
=f—2621ti(pu+m;)(@(z”’y; wl’ a)z) — Cp,y) .

* This theorem was announced in the preconference in 1975 for “International Symposium
on Algebraic Number Theory, 1976, at Kyoto.”
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Then applying of (4.2) to ¢(z.,) yields
(4.3)  2f%,.¥.(% U, v; @), @;)=12(f%€,,,9.,.(2; U, V; ®, ©)+C.,, ) —G, .

Taking into account the series expansion

Qu =2, (k+1)gied (u, v; 0,, ®,)2*

k=1
and inserting this to (4.8), we get
2f ‘Sﬁ,ykZ k(k+1)(k—1)gity (u, v; @, @,)z**
=2
=12(f%,,, 2 (B+1gii?(w, v; @, @)2" +C,.) -G,

Finally compare the coefficients of 2* of both hands to get (I) of the
Theorem 5.

THEOREM 6. Assume (Y, v)#(0, 0). Then we have

Fs=D)! 0w, v; 0, @)= 3| Al3.CiDLG:
=2a ¢
,b,e20

with AL =A8% v viupey M QQy), the field of f-th roots of wumnity.
More precisely, the numerator of A is an integer in Q,) and the
denominator of A 1is most powers of 2. In particular, for K=

Q(V'—1), Q(p), A is an integer in Q).

PrROOF. From Theorem 5, (I), (i),
£481 g1 =81 €3Gl — 3 Gzl

Hence our theorem holds for s=4. We observe that in particular, for
K=Q(V —1), Q(p), 2 of the denominator disappears because of G,=4 for
K=Q(1/—1) and G,=0 for K=Q(p).

From (1), (ii), we have

fo 41 v = —2:4) C,,, D, 7
and so the theorem holds for s=>5.

Now assume that the theorem holds for s<k+1. Then by (iii), we
have ‘

. . (@ +DE+D eny s
i+ D1 gl =65+, SELILLRII gogisy

(ot ) (h=1)
R e D= D) "

(#,v)
g .
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The general term inside ) is

2 fro+ D1 RS @+ D1 g

and the last term is equal to
fHl—1)1 g .
Hence by induction we get the theorem.

4.2. Let K be an imaginary quadratic field and w the number of
roots of 1 in K. Hence w=4, 6, 2 for K=Q(1/—1), Q) and otherwise,
respectively.

After Weber, we define 7-functions as follows:

7(2; @y, 0,)=(—1)"*(9(2; @,, ®,))"*"G™
with :
G®=G*(w,, 0,)=2"3"G,G¢/4 ,
GO=GY (@, ®)=2'3Gy/4,
GO =G"w,, w,)=2°3%G,/4 .

Let | be an integral ideal in K and f be the smallest integer divi-
sible by f. Let w,, @, be a basis of an ideal in K with Im w,/®,>0.
Thus K=Q(7), T=w,/w,. j is algebraic.

We put

T =T, (@, @) =T((H®,+YW,)[[; ,, @) .

Then it is known that these f-division values of z are algebraic numbers
whose denominators are at most divisible by prime factors of f (cf.
Hasse [6]).

4.3. L-functions.

Let K be an imaginary quadratic field and | an integral ideal of K.
Let ¥ be a primitive ray-class character modji. Denote by » a Gros-
sen character of the type

M@B)Y=B/IBN™, B H=L1.
Then ¢=0 (mod w). -
We consider L-function

= s M)
L(s, x+N) (ng.:l (Nay
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where a runs over all non-zero integral ideals coprime to f. Since K is
imaginary quadratic, the Vorzeichen character attached to y is identical:
namely we have

xB=xB, B H=1

where ) on the right is the character of residue classes mod f attached
to ¥ on the left. We extend x so that

xB)=0  for (8 H+=1.

Let d be the different of K. Let q be an ideal such that (q, )=1,
belonging to the inverse class of {'d"'. Then there exists an element
v of K such that

(M =qf 7.
We fix 7 once for all. The Gaussian sum is defined by

T,= 3, Y@@~
where « runs over the complete set of representatives modf and S
denotes the trace from K to Q.
Let by, be an ideal from a ray class B mod f and ®,(B), w,(B) a
fixed basis of by such that Im(w,(B)/w,(B))>0.
We put, for Beb,,

S(B)=muz+nvy
with
uz=S(Yw,(B)), vy =S(Yw,(B)) .
The rational numbers wu, v; have the reduced common denominator f.

Then following Siegel’s computation ([13]), we have, for s>1, s=1/2e,

L(s, -0 =Tyw 3 3ue,) (2LDB) N5, 0, 0,5 0,(B), 0(B)
B V' |d|
where w; is the number of roots of 1 congruent to 1 mod f, B runs over
all ray-classes mod f, ¥, is the imaginary part of w,(B)/w,(B) and d is
the discriminant of K.
Thus “the theorem of v. Staudt-Clausen for L” is reduced to that
for H,,(w.(B)/®.(B), ws, v5)-

4.4. We shall establish the theorem of v. Staudt-Clausen for
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SAH (75 u, v)
according to what is K.

(1) K=Q1/ =1). In this case w=4, and we take t=17V"—1, w,=1,
®w,=V"—1. Then

G4= 4w (,, Ge= 0

with
! dx
W= 280 —_‘1 — .
Put
C;:,vwz(l) = C[l,y
to get

Ct=1,,/2°3" .

Let &, be the field generated by {z,.} over K(j). Denoting by &k the
denominator of z,,, we have

(2°3*hC.,. ) =h'T,, .

Thus 2°3*hC,, is an integer belonging to a quadratic extension &%, ,, of
K,. Further, since % is divisible by at most prime factors of f, we
see that the denominator of C;, is divisible by prime factors of, at most
2,3, f.

Now put

DP.VZDI",UW?D .
Then we have
D;g,=4 oy —4 Cl:,v .

From this it follows that 2%8°h®D, ., is an integer in a quadratic extension
of K., of K%, and the denominator of D, is divisible by at most
prime factors of 2, 3, f.

Observe that

¢V —12)=9(z) .

Then taking into account the addition formula for g@-function, we see
that every C.,,, (¢, v)#(0, 0) can be written rationally (over K) by
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§w=0(W w/f; Tw, TwV =1
and
Nw=8" (T w/f; w, WV =1).
Therefore, for every (x, v)+(0, 0), we have

% =Rw(Ew)s (tfy,uZR(;)(f(;); Nw)

We denote by ¢, a primitive f-th root of 1. Then combining the above
result with Theorem 6, we have, by (4.1), the following

PROPOSITION 4. For K=Q(V —1), w,=1, w,=v" —1,
fs=D1 37 gir(u, v; 1, V' =1)

8
(4)

€ Ru(Ewr Vs &)

and the demominator of this algebraic number is divisible by, at most
prime factors of 2,3, f.

Here > means the sum except for (g, v)=(0, 0).

Now we can derive the theorem of v. Staudt-Clausen for f°*H, in
the present case, using Proposition 4 and Herglotz’s result.

We have

f’Hs=Jﬁ%—3::S,(u, v; 1,V —1)

°s! —_— 8! < _
=2 g0, v L, VDS g v 1,V ED)

In this case, ¢g"”=0 for s#0 (mod 4). For s=0 (mod 4), put s=4n\.
Then

ss!
£2b g,

in Herglotz notation. Further we know
VT=v2w,,

(note that we employ here inhomogeneous notation). Summing up, we
have the following, as an analogy to v. Staudt-Clausen,

THEOREM 7. Assume K=Q(V' —1), w,=1 and w,=v"—1.
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(i) For s#0 (mod 4),
e H.(V:T-; u, V) € 84 (& Ny &5)

and the denominator of f*V'2' H, 18 divisible by at most prime factors
of 2,38, f.
(ii) For s=0 (mod 4),

AGI(P—I)
P+ T

[ HV =14, v)=3,

where T 18 a number in K.,,(5u) D, &) with the denominator divisible
by at most prime factors of 2,3, f and p s prime such that

p=5, p=1 (mod 4), p—1js.
A, is the same as in 2.3. |

In particular, we consider the case u=wv=1/2. In this case, every
D,,,=0. Hence in Theorem 6, only terms with b=0 appear. Since G,=4,
we see that f*(s—1)! g, is a linear combination of C, (=0, 1, or —1) with
integral coefficients in Q({;). Thus the theorem of v, Staudt-Clausen is
of the same type as Herglotz, up to an additive constant in Q' —1, ).

(2) K:Q(p)’ w,=1, ®,= P, w=86.
Put

1

v v dx .

m’(a)=2s

Then G,=0, G,=4w9,. Putting C; w},=C,,, we have
Ci.=7,,/2'8° .

Let R, be the field generated by {z,.} over K(j). Then as in the case
of K=Q(/—1), we see that C... belongs to a cubic extension K%,,, of
e and the denominator of C;, is divisible by at most prime factors of
2,3, f.
If we put
Dl:.vw?s)‘::

2,y 2
then
D,Z?v=4C,f, —4 .

From this we see that D;, is a number of a quadratic extension f%*



VALUES OF EISENSTEIN SERIES 175

of 8, and its denominator is divisible by, at most prime factors of
2,8, f. Also as in the case of K=Q(1/—1), we see that

o, Rl = Ko (orr Vi)
for every (g, v)+(0, 0) with
§0r=Clo=9(W @/f; @) wPO)
and
N =D1,=¢"( 6/ Te T0P) .
Then by (4.1), Theorem 6, we have
PROPOSITION 5. Assume K=Q(p), w,=1, w,=p. Then

f(s—1)1 3 9. (u, v; 1, 0)
"y

o, K6 Ewr Mo &r)

and the demominator of this algebraic number s divisible by at most
prime factors of 2,38, f.

Now we shall derive the theorem of v. Staudt-Clausen for f°H, in
the present case.
We have

FH,=LCD TS 4 01, p)
V4

:ﬁiwwmmLm+f32'“Wwﬂm%

VT VT

Here it is known that ¢! °’-O for s£0 (mod 6). For s=0 (mod 6) put
s=6x. Then

Cs!
Lelgeoc,

in Herglotz notation.
Observing that

Y —e /2 Yo 2/—3—17(6)

in the inhomogeneous notation, we have the following Theorem 8 as an
analogy to v. Staudt-Clausen.
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THEOREM 8. Assume K=Q(p), w,=1, w,=p.
(1) For s#0 (mod 6),

Si(e™™2 Ve ﬁ)' (05 %, V) € K (&6 Nier &)

and the demominator of this mumber is divisible by at most prime
factors of 2, 3, f.
(ii) For s=0 (mod 6),

8/(p—1)
a,

FA=8) " HL(05 w, )= 3 B T
R »

where p>5, p=1 (mod 3), p—1|s and T.® € &(&w) Ve &) and the deno-
minator of the above number is divisible by at most prime factors of
2,3,f. For a,, see 2.3, case (2).

In particular, put u=v=1/2. Then every D,,=0. Since G,=0, only
terms for b=c=0 appear in the formula of Theorem 6. Thus

2(s— 1)1 3 gi"
’%%

is a linear combination of C,.,=1, o, p* with integral coefficients in Q(,).
Hence in this case, the theorem of v. Staudt-Clausen is of the same
type as Herglotz up to an integral additive constant belonging to
Q(cf ’ lo)' —

Now let K be a quadratic field other than Q(V'—1), Q(0). Let w, w,
be a basis of an integral ideal in K. Put 7=w,/®,. Hence K=Q(z). In
Theorem 6, further assume s is even. Then b is even and we put
b=2b'. We have

FHT w0 =0T 5 4, v @, o)

12
8

*g! g
=—1];3—‘g£°'°’(u, v; @y, ®,)+ lj; 823V g (u, v; @, @)
'\/A’ .\/Aa v

s , b
=C(1/z).+75/t_78_2§3b+‘ A*(a, b, )Ci Dy G
A a,—b,czo ¢

hrsk s m 8/(p—1) .
= (= BRI L S AT i@, (G)
»
LS ’ Aw(q, b c)(——1)“23"'”"3”‘1';‘,,,(—-f';‘,,,,-i—3’7’2’7§z'p,,,——2'7'§’7g)"'
lf/Z;‘ v (1/2)8=a+3b’+2¢ *e ry{1/21e—Sery(1/2)s 3¢
a,b’,e20

where
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Gu/:(7) € Z15], —%—s=6m+2h+3k, h=0, 1, 2, k=0, 1, p is a prime, p=5,

p—1ls, and A is in Q(,;) and the denominator of A is at most powers
of 2.. Here the last equality is obtained by a straight forward calcula-
tion under the use of (2.11, 12, 13) and the definition of 7,,. The above
formula can be viewed as v. Staudt-Clausen for K=Q(z). We shall
give more precise form of v. Staudt-Clausen for K with class number 1.

(3) K=Q(V=2), w,=1, w,=V —2, w=2.
Let R, be the field generated by {r..} over K(j). Put
, AI/B _ , _A— 1/4 _
Cﬂ,v W—Cy,u, Dﬂ.v( 2 ) _'D!‘:V *

Then C., €&, and D, €8, (N,) for every (g, v)#(0, 0), where 7, is a
value of ¢’ at f-division point of one fundamental period. 7, is quadratic
over R(z)_._ We note that ¢g>*=0 for s$#0 (mod 2), 1=8000, 7,=20 and
v,=561"2.

THEOREM 9. Assume K=Q(V' =2), w,=1, w,=1V —2.
(i) For s#*0 (mod 2), (s=2a-+3b+4c, a, b, c=0)

f32(1/4)(a—b)H8('|/-—_2; w, 'v) € R(z)(n(z); Cf)

and the denominator of this nmumber 1is divisible by at most prime
Sactors of 2,38, 5,1, f.
(ii) For s=0 (mod 2)

1
3

where p=5,p=1,3 (mod 8), p—1lls and T €8N, Cs). The deno-
minator of T is divisible by at most prime factors of 2,8,5,17, f.

y — 8/(p—1)
fr2u H (V' =2; u, v)= +Z%—~+ >
P

For a,, see case (3) of 2.3.

(4) K=Q(V —m), m="1, 11, 19, 43, 67, 163.
Let &, be the field generated by {z,,} over K(j). Put

AI/Z )1/2

Ni=V —m7,,  Cl,=—7u./28 7,7}, DF:"’(‘[/ —m =D -

Then C;, €&, and D,, €., (W) for every (x, v)+(0, 0) where 7, is
a value of ¢’ at f-division point of one fundamental period. %, is quad-
ratic over &..,.
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THEOREM 10. Assume K=Q(V —m), ,=1, w,=1/2)1+V —m), m=1T,
11, 19, 43, 67, 163.
(i) For 8#0 (mod 2), (3=2a+3b+4ec, a, b, c=0)

F=my oV H( (141 ") i Uy ©) € Ko @oms &)

and the denominator of this nmumber i8 divisible by at most prime
factors of 2,38, 7, Y, m, f.

(ii) For 8=0 (mod 2),
a;’(p'—l)

p

Femy (S (100 7)) s SET  pym

2
where p=5, (;%)_—_1, p—1|8, h,=1/2, (—1)*/3 for m="T, 11 and =0 other-

wise and
Ti™ € &m)(Pimy &)

The demominator of Tﬁ""’ 18 divisible by at most prime factors of 2, 3,
'72’ 7;’ m’ f‘
For a,, see the case (4) of 2.3.

By the table given in 2,3, we can make the following table of
prime factors of 7,7; in Q.

m 7 11 19 43 67 163
lrers 3,5 2,7 2,3 2,857 |235711,31 2'2§: 2971%.17 19,

§ 5. Numerical computations. Examples.

5.1. (10) Take u=’l)==1/2, w1=W(4), a)2= W(‘)V—'_'—]... Then f=2, G‘:4,
G,=0, 4=4* and by Proposition 2.

S;=0 for x#£0 (mod 4) .
In general, we have

83,2 = 4(8’ - 31)(8" - ez)(ga - es)
with 2-division values

61'—'-‘?(—;—(01; @, wz)r col—l-a),+a)3=0 .
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In our case,
G.=1, GC,=-1, C,=0, D,,=D,,=D,,=0.
Now the values of ¢,, are given as
&,o=—1, ¢&,=-—1, ¢,=1.

Therefore by Theorem 5,

gin=gpr=——, gio=—L
Further we have
24
(0,0 — &2
(/X 15 ’
which is given by Hurwitz formula
4k
(5.0) | sV 1 _QCuy) g

mmezz (m+ny —1)%* (k)] *
with the so-called Hurwitz number E,,€ Q. Thus we get

16 5 1 1 16 5
S=—41(18_5 HO/ =T L, L)=2(28_5),
‘ <15 4s)a"d ZHV -1 5 2> (5 16)
In 3.3, we cannot compute W,(v'—1; 1/2, 1/2) from Theorem 4. This
value is given in the present context, by Theorem 5. In fact

G s o

From this we have, for example,

i m+(m—17° _ 1 n l wi,/16 5 )
msioemTUT+1 64 120 8x*\5 16/ °

(2°) @, and w, being the same as above, we take u=v=(1/3). Then
f=38. Put

Cx,o:'s” C’1,1=$z, Dx.o=7]1y D1,1:772°
Then
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and the addition theorem gives

§=—V _1773/86“1’ .

Now
€1.0=601 =6 =0 &1,1=6,0=8,:=p0, £,,=6&,=1,
C =""Co1 Czo Co.a':su 01,1':_‘0 —"‘021 sz—sz,
1 o= _1/_1Do,1= —-Dz,o=1/_’“_1Do,z=7]1 ’
D,,=V—1D,,=—V —1D,,=—D,,=7, .
Thus we get
— 1 1 2 7
3H,(v=1: L, L)=2481(—28+a+1)=2 s T
(v=1;3 3) 2 +81(— 281+ &+ D) 5+3( 2 451+1)
. — 1 1 .
2H,(V=1; 5 5)=310— o)~ 7.1 +V=1)

=3!(p’—p)(‘/2,;’71 +¥ -1 el 01+ =) .

In this case, 7=2°3® and 7,,€@Q(C,,). Hence
K(5)=K and &f,=K().
Since we have
§1=71,0/2°3",

the number 3!(—22:+£:4+1) on the right of 3‘H, belongs to &, and its
denominator is divisible by at most prime factors of 2, 3. Further we
see that

3 H, (V=1 ; % : %)

belongs to £,/(7,), a quadratic extension of &,.

5.2. (1°) Take w,=w, @,=W a0, u=v=1/3. Then f=3. Since
a=(_i %) fixes (o, 1/8, 1/3), we see that
(5.1) S1(1/3, 1/3; @ (6)) W(s)p)=0 if NE’:‘O (mOd 3)

by Proposition 2.
Put
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C..=¢&, D,=mn, GC,.,=6&, D, =7,.
Then
(5.2) ni=46i—4, 1=1,2
and by the addition theorem,

(5.3) —&=(£§1—4)/3pé1 .

Further we have

,51,0’—“-50,1:52,2:()2, €1,1=8,0=8&,2= 0, s2,‘1:5:1,2':'1 ’
Cl,z==.0200,1=.0C1,1=Cz,o=cho,2=PCz,o=El, C..=C=8&,
D,,=D,,=—D,,=—D,,=—D,,=D,,=7, D,,=D,,=7,,
g =0, g =gl = gt = — 23,

gs"" =g*" = g% = (2/3)o7,, gV =95 = —(2/3):

gl =0, gi9 =gl =(p[3)&}, gl =gV =y/3",

g =gl = (0308, g =gt =gy/3 .

From this, we have
0=S,=(2/34 and ¢&=0.
Namely
(5.4) (2T + TwO)/3; Wiy W)=V @+2760)/3; Te) @eo)=0."
Further from (5.2), (5.3), we have

(5.5) 7i=¢"(2W 0+ ©e0)/3; ¥e ¥eP)
=¢' (') + 2% 00)/3; ¥, @e0)=—4,
(5.6) S=9(Vw/3; T Ta0)=4,
(5.7) N=¢" (W 6/3; T, TeP))=12.
Thus we get
(5.8) 2(—3°)*Hy(p; 1/3, 1/3)=2-3![3(0— 0*)9, — 27,]

and this is an integer in Q(po, V' —1).
Moreover, computation of the values g¢*” by Theorem 5, shows

* This also follows from the general relation ., ¥ <‘%29—2, w1, w2)=0. (fsh
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22314

3°31 —8H,(p; 1/3, 1/3)==F——2'8"— 23+ 23} .
Hence by (5.6), (5.7), we get
. — 22314
3°3V —38 Hy(p; 1/3, 1/3)————+2' 3.7.17.

By the way, the ‘Teilungsgleichung’ for z,, in our case, becomes
X3 (X3—23%)
oy Qs 0 —1
(2°) Since o= (1 1> leaves (—p?*; 1/8, 2/8) 1nvar1ant we can compute
some of W; by Theorem 4 and in fact

Wi(—0%1/3,2/3)=—1/3, W,(—p*1/3,2/3)=mV/—1/3 .

-

Y= .

1 O

Y sends (—p% 1/3, 2/3) to (—p* 2/3, 1/3). Then by Theorem 4, we have
W(—p% 2/8,1/3)=—2/3, W,(—p* 2/3, 1/3)=2'm"—1/3".

We view 7:7—7* u—u*, v—v* in Theorem 4 to get

(5.9) W.(—0% 2/3, 1/3)+ Wy(— 0% 1/8, 2/3)=2'n*/3* .

On the other hand, we can compute W,(—p?* 1/3, 2/3) by (5.8) and
Theorem 2. In fact we have

Put

27: 21/1

Wi(—p% 1/3, 2/3)= [3(0 — 0%, —27,] ‘”“”.

We transform (5.9) to R, by Proposition 1 to get

2"'74:2
7 = @2rV —1)[R.(— 0% 1/3, 2/3)+ Ry(— 0% 2/3, 1/3)]
S— 2m—1 2m—1
= ——'(211"1/—1)2”2:1{ ezru'p2(m—-l/3)—1n'/5+1 + ezzipz(m—2/3)+n‘i/8+1 } *
Therefore
el 2m—1 2m—1 1
2 { ezntpz(m~1/3)—zt/3+1 zmpi(m—z/a)+m'/3_|_1 }-:? *
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In the same way, we get
”'=1{(—1)"+16‘ Tm=2/nr ] (—)meYsimmuaE ] }—'é" ’

from the value of W (—p?% 1/3, 2/3).

§6. Comments on Ramanujan’s formula.

6.1. Ramanujan obtained

.. oo 138 1
6.1 LA S
(6.1) , ngfe“"——l 24

Compare this with our Proposition 3. The identity (6.1) is an easy
consequence of the following formula:

(6.2) (3 ca-20+3 )

=(—B)( - 2k)+2 2,,:k 11)

where aB=n? k>1 (k€ Z). (Ramanujan [12], Berndt [1]).
From (6.2) we obtain values of

oo 1
6.3 _n
( ) pryung} ezmr____l

for /=1 (mod 4). In fact

(6 4) i 4k+1 _ B4k+z
) et —1 8k+4

But we cannot derive values of (6.3) for I=—1 (mod 4).

The formula (6.1) is regained by Watson. Hardy, in [5], gave two
proofs (essentially the same) of (6.2) without mentioning the following
expression of Eisenstein series by Lambert series (k=2):

, 1 ( 1)k2(2 T)zk 2k oo m 2k—1
6.5 —+ E. - .
6-5) “"g;”z (mw, +nw,)* (Zk 1! w¥ { 4k  w=1 eTFimey/ "‘1—]' }

This can be obtained by considering the expression of E(z; w, ®,) in a
line of Eisenstein (Weil [15]) and also by Lipschitz’s formula.
From (6.5), we easily get
) 2k—1 2k—1
1 {—Bz"+§=;1 e 1} Lf By, _m }

e—zmmwz[wl — 2k l 4k me=1 e—2mmm2/w1__ 1
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and (6.2) is a consequence of this.

Further, (6.5) is better than (6.2) because we can compute values
of (6.3) even for l=—1 (mod 4): in fact we have, by combining Hurwitz
formula (5.0) with (6.4),

(6.6) somt 1 {("“>)ME4,,+B4,,}.

n=m1e¥—1 8k T

In the same way, we also get

Ok

2‘ e _ : 1 12k {( 1 (m;t(.,)>°" M"+B""}

and

oo 8kt2—1
n — By,

Sietile 1 12k+4
where M, is rational and is defined by

ZI 1 — (2w(0))0k
(m,m) € Z2 (m—|-/n‘0)°" (6’0)'

The last formula is obtained from the power series expansion of
©(2; W6, T@P)
with respect to z.

6.2. As for Proposition 8, Professor Bruce C. Berndt has kindly
informed me* that the more general formula holds:

= (2m—1)t 1
6.7 ( —1 @11y Burss N=0,
(6.7) mz'x e™ VT 1 ] 4 ( )2N+1 -
which first appeared in Glaisher (Mess. Math. 18, (1889), 1-84) and he
recently found some new reciprocity theorems and several identities
which contains (6.7).
Now as in (56.0), Hurwitz number E,, is defined by

2’ 1 — (2w(4))2k P
mavez2 (m+ny —1)* 2k)1 "

Then

E,,=0 for odd k.
* A letter dated on November 23, 1977.
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(Hurwitz used the notation K, for our E,;.)
Consider

1
W= g0 0; 1,1V —1)=
g g:(0 b ’:Z}%md a(m+ ny — 1)*

Every term of the right hand side of g¢g{»* in Theorem 6 contains D,,
for odd ¥ and D,,=0. Hence

gb?=0 for odd k.
Also we can easily show
gx¥=0 for odd k.

Since C,,=0, We have, by Theorem 5, (I),

gl = (22(4))(_%)

and inductively

g
pory €q.
(4)

We define rational numbers E&Y by

an— 2 0) paa
(6.8) R CYSTIN ExY .

E3Y is to be called as “2-division Hurwitz number” and we have

ERY=0 for odd k.

For example,

2 ‘.
E4('1,1)= ___;_5_ , él’l)z% ’ E{;’l)z - 321?:7 *

We shall generalize (6.7) to and prove the following

THEOREM 11.

oo (zm_1)2k—1: 3.22k—3E2k__4.22k—-3E2("1‘,1) m/(“ 2k —1_ 2k—1___ ﬁ 2
m=1 g¥m~l7 1 ] k ( T > +4(2 D k'’ kzl.

Proor. For short, put
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()= (@K1 *Su(1, 7; 0, 0)= 5V L .
(m,moz2 (M~+nNT)

Put

Ai(m)= i L

=1 e—z::/:‘inr — 1
and

Fio=3 &1

= e—zw'_—l(su—z)r_}_l *

Then by (6.5), we have

(7) = — (2k—1)!
(6.9) A (7)) =(Guu(r) —28(2K)) 2@r —1)"
with j=2k—1 and we can easily show
(6.10) Fi(t)=A;(t)—2(2"'+1)A;(27) + 27" A ,;(47) .

Since
1
Gu (3 =T)=(~ G2V =)

holds, we can derive, by (6.9) and (6.10),

(2k—1)!
2ny —1)*

—2(22 2+ 1)Gy(V — 1) +(2—2°)((2k)} «

{(=D*+1)2"G, (2 —1)

(6.11) F (_;_1/:3> -5

Note that
G, (V —1)=0 for odd k.

Hence for k=2N+1, N>0, follows

1 ,—\__ @NAD!U o puwes
Fuvn (5v/=1) S P (= 2T AN +2)
from (6.11). This, together with Proposition 3, shows Theorem 11 for
k=2N+1, N=0.

Now consider the case k=2N. Then (6.11) becomes
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| —)=__@N—-D! AN+1 —_1
(6.12) .N_( =V - ) smy 1) 2 G (2V—1)

—2(2 7+ )G (V = 1)+ (2—2")((4N)} .

Hence the problem is to compute G,y(2V —1).
We can represent G,y(21/—1) as

Gu(2V —D)=2""G (V' =1)+g%"(0, 0; 1, V' —1) .
Observing that g%”=g%" holds, we have
Giy(V —1)=2""G (V' —1)+ 295" + 95" .

Then it follows from (6.8),

Gty =D="2rd (14 2 ) B~ B

187

Insert this to (6.12). Then a straightforward calculation gives our

Theorem 11, for k=2N, N>1.

&
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