On the Values of Eisenstein Series

Dedicated to Professor Yukiyoshi Kawada on his 60th Birthday

Koji KATAYAMA

Tsuda College

Introduction.

The main purpose of the present paper is to settle the theorem of v. Staudt-Clausen for 'normalized Hurwitz-Herglotz function' $H_s(\tau; u, v)$ in the singular case (i.e. the case τ is imaginary quadratic and $u, v \in \mathbf{Q}$):

$$H_{s}(\tau;\,u,\,v) \!=\! \frac{s!}{12\sqrt{\Delta^{s}}} \sum_{(m,n) \in \mathbb{Z}^{2}}^{\prime} \frac{e^{2\pi i(mu+nv)}}{(m\omega_{1}\!+\!n\omega_{2})^{s}}$$

where $\tau = \omega_2/\omega_1$ and $\Delta = \Delta(\omega_1, \omega_2)$ is the usual discriminant function for Weierstrass' &-function with periods ω_1, ω_2 .

The result is, roughly speaking, that the 'theorem of v. Staudt-Clausen' is of the same type as Herglotz except for an algebraic additive term whose denominator is divisible by at most prime factors of a finite number of integers given in the respective case.

Here note that in $Q(\sqrt{-1})$, for example, $H_s(\sqrt{-1}; u, v)$ does not vanish and has an additive contribution mentioned above to v. Staudt-Clausen even for $s \not\equiv 0 \pmod 4$, while $H_s(\sqrt{-1}; 0, 0)$, the Hurwitz-Herglotz number, vanishes for $s \not\equiv 0 \pmod 4$.

Further it should be noted that as a byproduct of our theory, an interesting identity is obtained from modular transformation formula for function W_{λ} (see 2.2).

In the final part, we add some comment on Ramanujan's formula for series of Lambert type.

$\S 1.$ Kronecker's function K.

1.1. Let w, τ be complex variables and Im τ be positive. We define

(1.1)
$$\vartheta_{1}(w, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i (n+1/2)^{2} \tau + 2\pi i (n+1/2)(w-1/2)}$$

and for ω_1 , $\omega_2 \in C$, $\tau = \omega_2/\omega_1$, $z \in C$ and u, $v \in R$,

(1.2)
$$G(z; \omega_1, \omega_2; u, v) = -i \frac{\eta(\tau)^3 \vartheta_1(u\tau - v + (z/\omega_1); \tau)}{\vartheta_1(z/\omega_1; \tau)\vartheta_1(u\tau - v; \tau)}.$$

Here η is the so-called Dedekind η -function:

$$\eta(\tau) = e^{\pi i \tau / 12} \prod_{m=1}^{\infty} (1 - e^{2\pi i m \tau})$$

Then our starting point is the following function K which is extensively investigated by Kronecker:

(1.3)
$$K(z; \omega_1, \omega_2; u, v) = \frac{2\pi i}{\omega_1} e^{2\pi u i z/\omega_1} G(z; \omega_1, \omega_2; u, v).$$

Kronecker proved the following

THEOREM K (Kronecker). For 0 < u < 1,

(1.4)
$$K(z; \omega_1, \omega_2; u, v) = \lim_{N \to \infty} \sum_{n=-N}^{N} \lim_{M \to \infty} \sum_{m=-M}^{M} \frac{e^{-2\pi i (mu+nv)}}{z + m(v_1 + nv)}.$$

Here the sum on the right is called Eisenstein sum by A. Weil [15]. For short, we write

$$\lim_{N\to\infty}\sum_{n=-N}^{N}\lim_{M\to\infty}\sum_{m=-M}^{M}=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}.$$

1.2. For 1>|y|>|q|, we put

(1.5)
$$F(q, x, y) = \sum_{n=-\infty}^{\infty} \frac{y^n}{q^n x - 1}.$$

Then two main points to get Theorem K are as follows: The first. For 0 < u, v < 1, we have

(1.6)
$$F(q, x, y) = G(z; \omega_1, \omega_2; u, v)$$

with

(1.7)
$$x = e^{2\pi i z/\omega_1}, y = e^{2\pi i (u\tau - v)} \text{ and } q = e^{2\pi i \tau}.$$

Therefore we have

$$K(z; \omega_1, \omega_2; u, v) = \frac{2\pi i}{\omega_1} x^u F(q, x, y)$$
.

The second. For 0 < u < 1, we have

(1.8)
$$\frac{e^{2\pi i u z}}{e^{2\pi i z} - 1} = \frac{1}{2\pi i z} + \frac{1}{2\pi i} \sum_{m=1}^{\infty} \left\{ \frac{e^{-2\pi i m u}}{z + m} + \frac{e^{2\pi i m u}}{z - m} \right\} .$$

This holds for u=0 up to the additive constant -1/2 on the right. As Kronecker put a stress, we represent (1.5) in a symmetric form:

(1.9)
$$F(q, x, y) = 1 - \frac{1}{1-x} - \frac{1}{1-y} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q^{mn} (x^{-m}y^{-n} - x^{m}y^{n}),$$

which is vaild for 1>|x|>|q|. Thus we have

(1.10)
$$F(q, x, y) = \sum_{n=-\infty}^{\infty} \frac{x^n}{q^n y - 1}.$$

REMARK. Kronecker's formula (1.8) is an easy consequence of Dirichlet's formula [3] in the Fourier analysis:

$$\lim_{n \to \infty} \sum_{k=-n}^{n} \int_{\rho}^{\rho+1} F(z) e^{2k(v-z)\pi i} dz$$

$$= \begin{cases} 1/2 \lim(F(v+\delta) + F(v-\delta)) & \text{for } \rho < v < \rho+1, \\ 1/2 \lim(F(\rho+\delta) + F(\rho+1-\delta)) & \text{for } v = \rho \text{ or } \rho+1 \end{cases}$$

where F(v) is a function defined on $[\rho, \rho+1]$ with some conditions.

In fact, take $\rho = 0$, $F(v) = e^{2vw\pi i}$ with arbitrary w. This is the original proof by Kronecker. Another proof of (1.8) can be seen in Siegel [13].

1.3. We can easily derive the transformation formulas for K and G under the full modular group Γ since we know the transformation formulas for η and ϑ_1 .

formulas for
$$\eta$$
 and ϑ_1 .
For $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, we put

$$\omega_1^* = d\omega_1 + c\omega_2, \qquad \omega_2^* = b\omega_1 + a\omega_2$$

$$u^* = du + cv, \qquad v^* = bu + av.$$

Then we have the following

THEOREM 1. Assume c>0.

- (i) $G(z; \omega_1^*, \omega_2^*; u^*, v^*) = (c\tau + d)e^{2\pi i cz(u\tau v)/(c\tau + d)\omega_1}G(z; \omega_1, \omega_2, u, v)$
- (ii) $K(z; \omega_1^*, \omega_2^*: u^*, v^*) = K(z; \omega_1, \omega_2; u, v).$

Now put u=0, $v\neq 0$. Taking $\sigma=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ in (ii) of the above theorem, we have

$$K(z; \omega_1, \omega_2; 0, v) = K(z; \omega_2, -\omega_1; v, 0)$$
.

Thus, in what follows, we use this right hand side for the meaning of Eisenstein sum in Theorem K in the case u=0, $v\neq 0$:

(1.12)
$$K(z; \omega_1, \omega_2; 0, v) = K(z; \omega_2, -\omega_1; v, 0)$$

$$= \lim_{M \to \infty} \sum_{m=-M}^{M} \lim_{N \to \infty} \sum_{n=-N}^{N} \frac{e^{-2\pi i n v}}{z + m \omega_1 + n \omega_2}.$$

This will be a supply of Theorem K. Further we have

$$K(z; \omega_1, \omega_2; 0, v) = K(z; \omega_2, -\omega_1; v, 0) = x_0^v F(q_0, x_0, y_0)$$

where $x_0 = e^{2\pi i z/\omega_2}$, $y_0 = e^{2\pi i (-v/\tau)}$ and $q_0 = e^{2\pi i (-1/\tau)}$. This is a supply to (1.7). (See Weil [15] p. 71, 72.)

§ 2. Normalized Herglotz-Hurwitz function.

2.1. First we recall Bernoulli's case. Denote by $B_s(u)$, $0 \le u < 1$, the Bernoulli polynomial. Its generating function is

$$(2.1) te^{ut}/(e^t-1)$$

and $B_{\bullet}(u)$ is defined by

(2.2)
$$\frac{te^{ut}}{e^t-1} = \sum_{s=0}^{\infty} B_s(u) \frac{t^s}{s!}.$$

On the other hand, from (1.8), we get

(2.3)
$$\frac{te^{ut}}{e^t-1} = 1 + t \sum_{n=1}^{\infty} \left\{ \frac{e^{2\pi i n u}}{t-2\pi i n} + \frac{e^{-2\pi i n u}}{t+2\pi i n} \right\} .$$

Then developing the right hand side with respect to t and comparing it with (2.2), we have

(2.4)
$$B_s(u) = -s! \sum_{n=-\infty}^{\infty} \frac{e^{2\pi i n u}}{(2\pi i n)^s}$$
.

Here \sum' means the sum except for n=0.

The formula (2.4) is fundamental in representing values of Dirichlet L-function at integral arguments in terms of generalized Bernoulli numbers in the sense of Leopoldt.

2.2. Now we want to consider an analogy lying between Herglotz-Hurwitz's case and Bernoulli's. We view (1.12) corresponds to (2.3). In order to get a formula corresponding to (2.4), we expand $G(z; \omega_1, \omega_2; u, v)$,

0 < u, v < 1, in power series with respect to z: we have

$$-\frac{1}{1-x} = \frac{1}{2\pi i z} + \sum_{\lambda=0}^{\infty} B_{\lambda+1} \left(\frac{2\pi i}{\omega_{1}}\right)^{\lambda} \frac{z^{\lambda}}{(\lambda+1)!}.$$

$$(2.5) \qquad \frac{d^{\lambda}}{dz^{\lambda}} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q^{mn} (x^{-m} y^{-n} - x^{m} y^{n})\right)_{z=0} = \left(\frac{2\pi i}{\omega_{1}}\right)^{\lambda} R_{\lambda}(\tau; u, v)$$

where x, y and q are the same as in (1.7) and

(2.6)
$$R_{\lambda}(\tau; u, v) = \sum_{m=1}^{\infty} \left\{ (-1)^{\lambda} \frac{m^{\lambda} q^{m} y^{-1}}{1 - q^{m} y^{-1}} - \frac{m^{\lambda} q^{m} y}{1 - q^{m} y} \right\},$$

$$\lambda = 0, 1, 2, \cdots$$

Inserting this in the formula (1.6) combined with (1.9) and writing G as

(2.7)
$$G(z; \omega_1, \omega_2; u, v) = \frac{\omega_1}{2\pi i z} + \sum_{\lambda=0}^{\infty} \frac{W_{\lambda}(\tau; u, v)}{\omega_1^{\lambda}} \frac{z^{\lambda}}{\lambda!}$$

we get the following

Proposition 1. Assume 0 < u, v < 1. Put

$$R_{\lambda}(\tau; u, v) = \sum_{m=1}^{\infty} \left\{ (-1)^{\lambda} \frac{m^{\lambda} q^{m} y^{-1}}{1 - q^{m} y^{-1}} - \frac{m^{\lambda} q^{m} y}{1 - q^{m} y} \right\}$$

for $\lambda = 0, 1, 2, \dots \text{ with } q = e^{2\pi i \tau}, y = e^{2\pi i (u\tau - v)}, \text{ then }$

$$(i) \quad W_{\scriptscriptstyle 0}\!(\tau;\,u,\,v) \!=\! 1 \!-\! \frac{1}{1 \!-\! e^{2\pi i (u\tau-v)}} \!+\! B_{\scriptscriptstyle 1} \!+\! R_{\scriptscriptstyle 0}\!(\tau;\,u,\,v)$$

(ii)
$$W_{\lambda}(\tau; u, v) = (2\pi i)^{\lambda} \left\{ \frac{B_{\lambda+1}}{\lambda+1} + R_{\lambda}(\tau; u, v) \right\}$$
.

Next, put

(2.8)
$$K(z; \omega_1, \omega_2; u, v) = \frac{1}{z} + \sum_{\lambda=0}^{\infty} \frac{S_{\lambda+1}(\omega_1, \omega_2; u, v)}{\lambda + 1} \frac{z^{\lambda}}{\lambda!}.$$

Then using (2.7) and Proposition 1, the series expansion of $e^{2\pi i uz/\omega_1}$ with respect to z, we have

THEOREM 2.

$$S_{\lambda+1}(\omega_1, \ \omega_2; \ u, \ v) = \left(\frac{2\pi i u}{\omega_1}\right)^{\lambda+1} + \frac{2\pi i (\lambda+1)}{\omega_1^{\lambda+1}} \sum_{\substack{\lambda=p+q \\ p, \, q \geq 0}} \binom{\lambda}{p} (2\pi i u)^q W_p(\tau; \ u, \ v)$$

$$= \left(\frac{2\pi i}{\omega_1}\right)^{\lambda+1} \left\{ (\lambda+1)u^{\lambda} \left(1 - \frac{1}{1 - e^{2\pi i(u\tau - v)}}\right) + B_{\lambda+1}(u) \right. \\ \left. + (\lambda+1) \sum_{\substack{\lambda = p+q \\ p, g \geq 0}} \left(\frac{\lambda}{p}\right) u^q R_p(\tau; u, v) \right\}.$$

Further using the series expansion of the right hand side of the formula in Theorem K, we get the following

THEOREM 3.

$$(-1)^{\lambda}(\lambda+1)! \sum_{(m,n)\in \mathbb{Z}^2} \frac{e^{-2\pi i(mu+nv)}}{(m\omega_1+n\omega_2)^{\lambda+1}} = S_{\lambda+1}(\omega_1, \omega_2; u, v).$$

The left hand side is a sort of Eisenstein sum. When u=0, the sum means

$$\lim_{M\to\infty}\sum_{m=-M}^{M}\lim_{N\to\infty}\sum_{n=-N}^{N}.$$

This theorem is an analogy to (2.4).

We define

$$G_4 = G_4(\omega_1, \omega_2) = \sum_{(m,n) \in \mathbb{Z}^2} \frac{1}{(m\omega_1 + n\omega_2)^4} 60$$
,
 $G_6 = G_6(\omega_1, \omega_2) = \sum_{(m,n) \in \mathbb{Z}^2} \frac{1}{(m\omega_1 + n\omega_2)^6} 120$

and

(2.9)
$$\Delta = \Delta(\omega_1, \omega_2) = G_4^3 - 27G_6^2.$$

In accordance with Herglotz [7], we call the following the "normalized Herglotz-Hurwitz function":

(2.10)
$$H_{\lambda+1}(\tau; u, v) = \frac{(-1)^{\lambda}}{\sqrt[12]{\lambda^{\lambda+1}}} S_{\lambda+1}(\omega_1, \omega_2; u, v).$$

This is an analogy to Bernoulli polynomial (2.4).

REMARK. In (2.10), put formally u=v=0. Then $H_{\lambda+1}$ becomes $C_{(\lambda+1)/2}$ in the notation of Herglotz [7], which is called the normalized coefficient of φ -function by successors (see below).

2.3. Theory of Herglotz. We shall quote here some results of Herglotz [7], in the range of later necessity.

As usual, $g(z; \omega_1, \omega_2)$ is Weierstrass' elliptic function with ω_1, ω_2 as periods. Its series expansion is

$$g(z; \omega_1, \omega_2) = z^{-2} + 3s_2z^2 + 5s_4z^4 + \cdots$$

where

$$s_{2\lambda} = S_{2\lambda}(\omega_1, \omega_2; 0, 0)/(2\lambda)!$$

Herglotz defined

$$C_{\lambda} = \frac{(2\lambda)!}{\sqrt[6]{\Delta^{\lambda}}} s_{2\lambda}$$

and derived the theorem of v. Staudt-Clausen for C_{λ} . This is a generalization of Hurwitz [8] on the theorem of v. Staudt-Clausen for coefficients of series expansion of the lemniscate function.

Let j, γ_2 , γ_3 be functions as in Weber [14]; namely

$$(2.11) j = 2^6 3^3 G_4^3 / \Delta$$

$$\gamma_2 = \sqrt[3]{j} = 2^2 3G_4 / \sqrt[3]{\Delta}$$

(2.13)
$$\gamma_{3} = \sqrt{j - 1728} = 2^{3}3^{3}G_{6}/\sqrt{\Delta}.$$

Then Herglotz showed

$$(2.14) C_{\lambda} = (-1)^{\lambda+1} \frac{\gamma_{2}^{h} \gamma_{3}^{h} j^{m}}{6} + \sum_{p} \frac{A_{p}^{2\lambda/(p-1)}}{p} + \gamma_{2}^{h} \gamma_{3}^{k} G_{\lambda}(j)$$

where $G_{\lambda}(j) \in \mathbb{Z}[j]$, $\lambda = 6m + 2h + 3k$, h = 0, 1, 2, k = 0, 1, p runs over all primes such that $p \ge 5$, $(1/2)(p-1)|\lambda$ and A_p is the coefficient of x of the "Multiplikator Gleichung"

$$x^{p+1}-A_1x^p+\cdots-A_px+(-1)^{(1/2)(p-1)}p=0$$

satisfied by

$$x = \sqrt[12]{\Delta(\boldsymbol{\omega}_1/\boldsymbol{p}, \boldsymbol{\omega}_2)/\Delta(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2)}$$
.

It is known that

$$A_{\scriptscriptstyle k}\in Z\!\!\left[j,\,\gamma_{\scriptscriptstyle 2},\,\gamma_{\scriptscriptstyle 3}
ight]$$
 .

Now let K be a field of the ring of complex multiplications of $g(z; \omega_1, \omega_2)$. Then exact formulas of v. Staudt-Clausen for C_{λ} are given individually for quadratic fields K with class number 1.

(1) The case $K = Q(\sqrt{-1})$. Put

$$\omega_{1} = \varpi_{(4)} = 2 \int_{0}^{1} \frac{dx}{\sqrt{1-x^{4}}}, \quad \omega_{2} = \varpi_{(4)} \sqrt{-1}.$$

In this case, j=1728, $\gamma_2=12$, $\gamma_3=0$, $G_4=4$ and $G_6=0$. Then

$$C_{2n} \in Q$$
, $A_p \in Z$ and $C_{2n+1} = 0$,

and the theorem of v. Staudt-Clausen is of the form:

(2.15)
$$C_{2n} = \sum_{p} \frac{A_{p}^{4n/(p-1)}}{p} + J_{2n}$$

with $J_{2n} \in \mathbb{Z}$, $p \ge 5$, $p \equiv 1 \pmod{4}$ and p-1|4n. Note that $C_{\lambda} = 0$ for $\lambda \not\equiv 0 \pmod{4}$.

(2) The case $K=Q(\rho)$, $\rho^2+\rho+1=0$. Put

$$\omega_{1} = w_{(6)} = 2 \int_{0}^{1} \frac{dx}{\sqrt{1-x^{6}}}$$
, $\omega_{2} = w_{(6)}\rho$.

Then j=0, $\gamma_2=0$, $\gamma_3=24\sqrt{-3}$, $G_4=0$ and $G_6=4$. In this case,

$$\sqrt{-3}^{_{3n}}C_{_{3n}}\in Q$$
 , $3^{_{(1/2)(p-1)}}A_{_p}=a_{_p}\in Z$ and $C_{_{3n\pm 1}}=0$.

Then the theorem of v. Staudt-Clausen takes the form

(2.16)
$$\sqrt{-3}^{3n}C_{3n} = \sum_{p} \frac{a_{p}^{6n/(p-1)}}{p} + J_{3n}$$

with $J_{3n} \in \mathbb{Z}$, $p \ge 5$, $p \equiv 1 \pmod{3}$ and $p-1 \mid 6n$. Also note that

$$C_2=0$$
 for $\lambda \not\equiv 0 \pmod{6}$.

(3) The case $K=Q(\sqrt{-2})$. Put

$$\omega_1=1$$
, $\omega_2=\sqrt{-2}$.

Then j=8000, $\gamma_2=20$, $\gamma_3=56\sqrt{2}$. Hence

$$\sqrt{2}^{1}C_{1} \in Q$$
 and $\sqrt{2}^{(1/2)(p-1)}A_{p} = a_{p} \in Z$.

Now the theorem of v. Staudt-Clausen is

(2.17)
$$\sqrt{2}^{\lambda}C_{\lambda} = \frac{1}{3} + \sum_{p} \frac{a_{p}^{2\lambda/(p-1)}}{p} + J_{\lambda}$$

with $J_{\lambda} \in \mathbb{Z}$, $p \ge 5$, $p \equiv 1$, $3 \pmod{8}$ and $p-1 \mid 2\lambda$. (4) The case $K = \mathbb{Q}(\sqrt{-m})$ with m = 7, 11, 19, 43, 67, 163. Put

$$\omega_1 = 1, \ \omega_2 = \frac{1}{2} (-3 + \sqrt{-m})$$
.

Then j, γ_2 and $\gamma_3\sqrt{-m}$ are in \mathbb{Z} , $\sqrt{-m}^{\lambda}C_{\lambda}\in \mathbb{Q}$ and $\sqrt{-m}^{(1/2)(p-1)}A_p=a_p\in \mathbb{Z}$. The theorem of v. Staudt-Clausen is of the form

$$(2.18) \qquad \sqrt{-m}^{\lambda} C_{\lambda} = c_{\lambda} + \sum_{p} \frac{a_{p}^{2\lambda/(p-1)}}{p} + J_{\lambda}$$

where $J_{\lambda} \in \mathbb{Z}$, $p \ge 5$, $\left(\frac{p}{m}\right) = 1$, $p-1 \mid 2\lambda$ and $c_{\lambda} = 1/2$, $(-1)^{\lambda}/3$ for m=7, 11 and = 0 otherwise.

We quote values of γ_2 , γ_3 for the aforementioned m from Weber [14].

m	7	11	19	43	67	163
72	-15	-32	-96	-960	-5280	-640320
$\frac{\gamma_3}{\sqrt{-m}}$	27	56	216	4536	15624	40133016

§ 3. Transformation formulas.

3.1. For $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, we define ω_1^* , ω_2^* , u^* , v^* as in (1.11). Inserting the series expression (2.8) into the both hands of the formula in (ii) of Theorem 1 and comparing coefficients of z^{λ} , we have the following.

Proposition 2.

$$S_{\lambda+1}(\omega_1^*, \omega_2^*; u^*, v^*) = S_{\lambda+1}(\omega_1, \omega_2; u, v)$$

 $\lambda+1=0, 1, 2, \cdots$

3.2. ω_1^* , ω_2^* , u^*v^* being the same as in (1.11) for $\sigma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \Gamma$, we put

$$\tau^* = \frac{\omega_2^*}{\omega_1^*} = \frac{a\tau + b}{c\tau + d}$$
.

THEOREM 4. Assume c>0.

(i) $0 < u^* < 1$.

$$egin{align*} W_{eta}(au^*;\,u^*,\,v^*) = & rac{(2\pi i)c^{\lambda+1}}{\lambda+1}(u au-v)^{\lambda+1} \ & + \sum\limits_{\substack{\lambda=p+q \ p,q \geq 0}} inom{\lambda}{p} W_p(au;\,u,\,v) (2\pi ic)^q (u au-v)^q (c au+d)^{p+1} \end{split}$$

(ii) $u^* < 0$ or > 1 and $u^* \notin \mathbb{Z}$.

$$\begin{split} &\frac{(-[u^*])^{\lambda+1}(2\pi i)^{\lambda}}{\lambda+1} + \sum_{\stackrel{\lambda=p+q}{p,q\geq 0}} \binom{\lambda}{p} W_p(\tau^*;\{u^*\},\,v^*)(-2\pi i[u^*])^q \\ &= &\frac{(2\pi i)^{\lambda}c^{\lambda+1}}{\lambda+1}(u\tau-v)^{\lambda+1} + \sum_{\stackrel{\lambda=p+q}{p,q\geq 0}} \binom{\lambda}{p} W_p(\tau;\,u,\,v)(2\pi ic)^q(u\tau-v)^q(c\tau+d)^{p+1} \;, \end{split}$$

where $[u^*]$ is the largest integer smaller than u^* and $\{u^*\}=u^*-[u^*]$.

PROOF. The transformation formula (i) is obtained by comparing coefficients of z^{λ} of the series expansion of the both hands of Theorem 1 (i). For the case (ii), observe that

$$G(z; \omega_1^*, \omega_2^*; u^*, v^*) = e^{-2\pi i z [u^*]/\omega_1^*} G(z; \omega_1^* \omega_2^*; u^*, v^*)$$
.

Then apply the same consideration as in the case (i).

3.3. As an application of Theorem 4, we can derive an interesting identity.

Take a=d=0, c=-b=1, u=v=1/2, $\tau=\sqrt{-1}$. Then $u^*=v^*=1/2$ and $\tau^*=\sqrt{-1}$. Namely

$$\sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 leaves $\left(\sqrt{-1}, \frac{1}{2}, \frac{1}{2}\right)$ invariant.

Hence we can compute the first three W_{λ} 's by Theorem 4. In fact, we have

$$W_{\scriptscriptstyle 0}\!\left(\!\sqrt{-1}\;;\,rac{1}{2}\;,\,rac{1}{2}\!
ight)\!=\!-rac{1}{2}\;,$$

(3.1)
$$W_{\scriptscriptstyle 1}\!\left(\!\sqrt{-1}\;;\,\frac{1}{2}\;,\,\frac{1}{2}\!\right)\!\!=\!\!\frac{1}{2}\,\pi i\;,$$

(3.2)
$$W_2\left(\sqrt{-1}; \frac{1}{2}, \frac{1}{2}\right) = \pi^2/6$$
.

Then using (3.1) and Proposition 1, we can easily derive the following Proposition 3.

$$\sum_{m=1}^{\infty} \frac{2m-1}{e^{(2m-1)\pi}+1} = \frac{1}{24}.$$

This identity also follows from (3.2). Further we have

$$\sum_{(m,n)\in z'} \frac{e^{-2\pi i((1/2)m+(1/2)n)}}{(m+ni)^{\lambda}} = 0 \quad \text{for } \lambda \not\equiv 0 \pmod{4}$$

by Proposition 2.

- § 4. Theorem of v. Staudt-Clausen.
- 4.1. Let f be a positive integer. Let μ , ν be integers with $0 \le \mu$, $\nu < f$ and u, v rational numbers whose reduced common denominator is f. For every pair (μ, ν) , we define

$$g_k^{(\mu,\nu)} = g_k^{(\mu,\nu)}(u, v; \omega_1, \omega_2) = \sum_{\substack{m \equiv \mu \pmod{f} \\ m \equiv \nu \pmod{f}}} \frac{e^{-2\pi i (mu+nv)}}{(m\omega_1 + n\omega_2)^k} .$$

We note that the formula (7) of p. 18 of Weil [15] depends on (5) of p. 17. In our case, extra term of (5) of p. 17 disappears by p. 71 of Weil [15]. Thus we have

(4.1)
$$S_k(u, v; \omega_1, \omega_2) = k! (-1)^{k-1} \sum_{0 \le \mu, \nu \le f} g_k^{(\mu, \nu)}, \quad k \ge 1.$$

For Weierstrass' &-function,

$$\wp'^2 = 4\wp^3 - G_4\wp - G_6$$
 ,

holds with

$$G_4 = 60 f^{-4} g_4^{(0,0)}(u, v; \omega_1, \omega_2)$$

 $G_6 = 140 f^{-6} g_6^{(0,0)}(u, v; \omega_1, \omega_2)$.

From this, it follows

$$2\wp^{\prime\prime} = 12\wp^2 - G_4.$$

Then putting

$$C_{\mu,\nu} = C_{\mu,\nu}(\omega_1, \omega_2) = \wp((\mu\omega_1 + \nu\omega_2)/f; \omega_1, \omega_2)$$

for $(\mu, \nu) \neq (0, 0)$, we have the following

THEOREM 5.*

(I) The case
$$(\mu, \nu) \neq (0, 0)$$
. Put $\varepsilon_{\mu,\nu} = e^{-2\pi i(\mu u + \nu v)}$.

- (i) $12f^4 \varepsilon_{\mu,\nu} g_4^{(\mu,\nu)} = 12C_{\mu,\nu}^2 G_4$
- (ii) $f^2g_5^{(\mu,\nu)}=2C_{\mu,\nu}g_3^{(\mu,\nu)}$
- (iii) For $k \ge 4$.

$$(k+1)k(k-1)g_{k+2}^{(\mu,\nu)} = 6arepsilon_{\mu,
u} \sum_{\substack{p+q=k-2\ p\geq 1,\, q\geq 1}} (p+1)(q+1)g_{p+2}^{(\mu,
u)}g_{q+2}^{(\mu,
u)} + 12f^{-2}C_{u,
u}(k-1)g_{k}^{(\mu,
u)} \; .$$

- (II) The case $(\mu, \nu) = (0, 0)$.
 - (i) $g_k^{(0,0)} = 0$ for odd k.
 - (ii) For $k \geq 4$,

$$(2k+1)(2k-1)(k-3)g_{2k}^{(0,0)} = 3\sum_{p=2}^{k-2}(2p-1)(2k-2p-1)g_{2p}^{(0,0)}g_{2(k-p)}^{(0,0)}.$$

The part (II) is well known. In the case (I), we note that

$$g_{\scriptscriptstyle 3}^{\scriptscriptstyle (\mu,
u)}\!=\!-2f^{\scriptscriptstyle -3}arepsilon_{\scriptscriptstyle \mu,
u}D_{\scriptscriptstyle \mu,
u}$$

with

$$D_{\mu,
u} = D_{\mu,
u}(\omega_{\scriptscriptstyle 1},\;\omega_{\scriptscriptstyle 2}) = \mathscr{C}'((\mu\omega_{\scriptscriptstyle 1} + \nu\omega_{\scriptscriptstyle 2})/f;\;\omega_{\scriptscriptstyle 1},\;\omega_{\scriptscriptstyle 2})$$
 .

PROOF FOR THE CASE (I).

Put

$$\varphi_{\mu,\nu} = \varphi_{\mu,\nu}(z; u, v; \omega_1, \omega_2) = \sum_{\substack{m \equiv \mu \pmod f \\ n \equiv \nu \pmod f}} \left\{ \frac{e^{2\pi i (mu+nv)}}{(z-m\omega_1-n\omega_2)^2} - \frac{e^{2\pi i (mu+nv)}}{(m\omega_1+n\omega_2)^2} \right\}.$$

Futher put

$$z_{\mu,\nu} = f^{-1}(z - \mu \omega_1 - \nu \omega_2)$$
.

Then we have

$$\begin{split} & \mathscr{D}_{\mu,\nu} = e^{2\pi i (\mu u + \nu v)} \sum_{\substack{m \equiv 0 \; (\bmod{f}) \\ n \equiv 0 \; (\bmod{f})}} \left\{ \frac{1}{(z - \mu \omega_1 - \nu \omega_2 - m \omega_1 - n \omega_2)^2} - \frac{1}{(\mu \omega_1 + \nu \omega_2 - m \omega_1 - n \omega_2)^2} \right\} \\ & = e^{2\pi i (\mu u + \nu v)} \sum_{\substack{i = 0 \; (\bmod{f}) \\ i \equiv 0 \; (\bmod{f})}} \left\{ \frac{1}{(z - (\mu \omega_1 + \nu \omega_2) - (m f \omega_1 + n f \omega_2))^2} - \frac{1}{(m f \omega_1 + n f \omega_2)^2} \right. \\ & \left. - \frac{1}{((\mu \omega_1 + \nu \omega_2) - (m f \omega_1 + n f \omega_2))^2} + \frac{1}{(m f \omega_1 + n f \omega_2)^2} \right\} \\ & = f^{-2} e^{2\pi i (\mu u + \nu v)} (\mathscr{D}_{i}(z_{\mu,\nu}; \omega_1, \omega_2) - C_{\mu,\nu}) \; . \end{split}$$

^{*} This theorem was announced in the preconference in 1975 for "International Symposium on Algebraic Number Theory, 1976, at Kyoto."

Then applying of (4.2) to $\wp(z_{u,\nu})$ yields

$$(4.3) \qquad 2f^4\varepsilon_{\mu,\nu} \mathcal{G}_{\mu,\nu}^{\prime\prime}(z;\,u,\,v;\,\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2}) = 12(f^2\varepsilon_{\mu,\nu} \mathcal{G}_{\mu,\nu}(z;\,u,\,v;\,\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2}) + C_{u,\nu})^2 - G_4 \ .$$

Taking into account the series expansion

$$\wp_{\mu,\nu} = \sum_{k=1} (k+1) g_{k+2}^{(\mu,\nu)}(u, v; \omega_1, \omega_2) z^k$$

and inserting this to (4.3), we get

$$egin{aligned} &2f^4arepsilon_{\mu,
u}\sum_{k=2}k(k+1)(k-1)g_{k+2}^{(\mu,
u)}(u,\,v;\,\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})z^{k-2}\ &=12(f^2arepsilon_{\mu,
u}\sum_{k=1}(k+1)g_{k+2}^{(\mu,
u)}(u,\,v;\,\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})z^k+C_{\mu,
u})^2-G_4 \;. \end{aligned}$$

Finally compare the coefficients of z^k of both hands to get (I) of the Theorem 5.

THEOREM 6. Assume $(\mu, \nu) \neq (0, 0)$. Then we have

$$f^s(s-1)! \ g_s^{\scriptscriptstyle(\mu,\nu)}(u,\,v;\,\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})\!=\!\sum_{{s=2a+3b+4c}top a,\,b,\,c\geq 0} A_{\scriptscriptstyle (a,\,b,\,c)}^{\scriptscriptstyle(\mu,\nu)} C_{\scriptscriptstyle \mu,
u}^a D_{\scriptscriptstyle \mu,
u}^b G_{\scriptscriptstyle 4}^c$$

with $A_{(a,b,c)}^{(\mu,\nu)} = A_{(a,b,c)}^{(\mu,\nu)} = A_{(a,b,c)}^{(\mu,\nu)}$ in $Q(\zeta_f)$, the field of f-th roots of unity. More precisely, the numerator of A is an integer in $Q(\zeta_f)$ and the denominator of A is most powers of 2. In particular, for $K = Q(\sqrt{-1})$, $Q(\rho)$, A is an integer in $Q(\zeta_f)$.

PROOF. From Theorem 5, (I), (i),

$$f^4 3! \ g_4^{(\mu,\nu)} = 3! \ \varepsilon_{\mu,\nu}^{-1} C_{\mu,\nu}^2 - \frac{1}{2} G_4 \varepsilon_{\mu,\nu}^{-1} \ .$$

Hence our theorem holds for s=4. We observe that in particular, for $K=Q(\sqrt{-1})$, $Q(\rho)$, 2 of the denominator disappears because of $G_4=4$ for $K=Q(\sqrt{-1})$ and $G_4=0$ for $K=Q(\rho)$.

From (I), (ii), we have

$$f^{5}4! g_{5}^{(\mu,\nu)} = -2^{2}4! C_{\mu,\nu}D_{\mu,\nu}\varepsilon_{\mu,\nu}^{-1}$$

and so the theorem holds for s=5.

Now assume that the theorem holds for $s \le k+1$. Then by (iii), we have

$$\begin{split} f^{_{k+2}}(k+1)! \ g_{_{k+2}}^{_{(\mu,\nu)}} \!=\! 6 f^{_{k+2}} & \!\!\!\! \varepsilon_{_{\mu,\nu}} \ \sum \!\!\! \frac{(p+1)(q+1)(k+1)!}{(k+1)k(k-1)} \, g_{_{p+2}}^{_{(\mu,\nu)}} g_{_{q+2}}^{_{(\mu,\nu)}} \\ & + 12 f^{_{k}} \!\!\! \frac{(k+1)! \ (k-1)}{(k+1)k(k-1)} C_{_{\mu,\nu}} g_{_{k}}^{_{(\mu,\nu)}} \; . \end{split}$$

The general term inside \sum is

$$\frac{(k-2)!}{p! \ q!} f^{p+2}(p+1)! \ g_{p+2}^{(\mu,\nu)} f^{q+2}(q+1)! \ g_{q+2}^{(\mu,\nu)}$$

and the last term is equal to

$$f^{k}(k-1)! g_{k}^{(\mu,\nu)}$$
.

Hence by induction we get the theorem.

4.2. Let K be an imaginary quadratic field and w the number of roots of 1 in K. Hence w=4, 6, 2 for $K=Q(\sqrt{-1})$, $Q(\rho)$ and otherwise, respectively.

After Weber, we define τ -functions as follows:

$$\tau(z; \omega_1, \omega_2) = (-1)^{1/2w} (\wp(z; \omega_1, \omega_2))^{1/2w} G^{(w)}$$

with

$$G^{(2)}\!=\!G^{(2)}(\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})\!=\!2^73^5G_{\scriptscriptstyle 4}G_{\scriptscriptstyle 6}/arDelta$$
 , $G^{(4)}\!=\!G^{(4)}(\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})\!=\!2^83^4G_{\scriptscriptstyle 4}^2/arDelta$, $G^{(6)}\!=\!G^{(6)}(\omega_{\scriptscriptstyle 1},\,\omega_{\scriptscriptstyle 2})\!=\!2^93^6G_{\scriptscriptstyle 6}/arDelta$.

Let f be an integral ideal in K and f be the smallest integer divisible by f. Let ω_1 , ω_2 be a basis of an ideal in K with Im $\omega_2/\omega_1 > 0$. Thus $K = Q(\tau)$, $\tau = \omega_2/\omega_1$. j is algebraic.

We put

$$\tau_{\mu,\nu} = \tau_{\mu,\nu}(\omega_1, \omega_2) = \tau((\mu\omega_1 + \nu\omega_2)/f; \omega_1, \omega_2)$$
.

Then it is known that these f-division values of τ are algebraic numbers whose denominators are at most divisible by prime factors of f (cf. Hasse [6]).

4.3. L-functions.

Let K be an imaginary quadratic field and f an integral ideal of K. Let χ be a primitive ray-class character mod f. Denote by λ a Grössen character of the type

$$\lambda((\beta)) = (\beta/|\beta|)^{-\epsilon}$$
, $(\beta, \mathfrak{f}) = 1$.

Then $e \equiv 0 \pmod{w}$.

We consider L-function

$$L(s, \chi \cdot \lambda) = \sum_{(a,f)=1} \frac{\chi \cdot \lambda(a)}{(Na)^s}$$

where α runs over all non-zero integral ideals coprime to f. Since K is imaginary quadratic, the Vorzeichen character attached to χ is identical: namely we have

$$\chi((\beta)) = \chi(\beta)$$
, $(\beta, \mathfrak{f}) = 1$

where χ on the right is the character of residue classes mod f attached to χ on the left. We extend χ so that

$$\chi(\beta) = 0$$
 for $(\beta, \mathfrak{f}) \neq 1$.

Let b be the different of K. Let q be an ideal such that (q, f)=1, belonging to the inverse class of $f^{-1}b^{-1}$. Then there exists an element γ of K such that

$$(\gamma) = \mathfrak{q} \mathfrak{f}^{-1} \mathfrak{d}^{-1}$$
.

We fix γ once for all. The Gaussian sum is defined by

$$T_{\chi} = \sum_{lpha mod f} \overline{\chi}(lpha) e^{2\pi \sqrt{-1} S(lpha \gamma)}$$
 .

where α runs over the complete set of representatives mod f and S denotes the trace from K to Q.

Let \mathfrak{b}_B be an ideal from a ray class B mod \mathfrak{f} and $\omega_1(B)$, $\omega_2(B)$ a fixed basis of \mathfrak{b}_B such that $\text{Im}(\omega_2(B)/\omega_1(B)) > 0$.

We put, for $\beta \in \mathfrak{b}_{\scriptscriptstyle B}$,

$$S(\beta) = mu_B + nv_B$$

with

$$u_B = S(\gamma \omega_1(B))$$
, $v_B = S(\gamma \omega_2(B))$.

The rational numbers u_B , v_B have the reduced common denominator f. Then following Siegel's computation ([13]), we have, for s>1, s=1/2e,

$$L(s,\,\chi\cdot\lambda) = T_{\chi}^{-1}w_{\mathrm{f}}^{-1} \sum_{B} \overline{\chi\cdot\lambda}(\mathfrak{b}_{B}) \left(\frac{2y_{B}N(\omega_{\mathrm{l}}(B))}{\sqrt{|d|}}\right)^{s} S_{\mathrm{l}s}(u_{B},\,v_{B};\,\omega_{\mathrm{l}}(B),\,\omega_{\mathrm{l}}(B))$$

where $w_{\rm f}$ is the number of roots of 1 congruent to 1 mod f, B runs over all ray-classes mod f, $y_{\rm B}$ is the imaginary part of $\omega_{\rm 2}(B)/\omega_{\rm 1}(B)$ and d is the discriminant of K.

Thus "the theorem of v. Staudt-Clausen for L" is reduced to that for $H_{2s}(\omega_2(B)/\omega_1(B), u_B, v_B)$.

4.4. We shall establish the theorem of v. Staudt-Clausen for

$$f^{\lambda}H_{\lambda}(\tau; u, v)$$

according to what is K.

(1) $K=Q(\sqrt{-1})$. In this case w=4, and we take $\tau=\sqrt{-1}$, $\omega_1=1$, $\omega_2=\sqrt{-1}$. Then

$$G_4 = 4 \varpi_{(4)}, G_6 = 0$$

with

$$w_{(4)} = 2 \int_0^1 \frac{dx}{\sqrt{1-x^4}}$$
.

Put

$$C'_{\mu,\nu} \mathbf{w}^{2}_{(4)} = C_{\mu,\nu}$$

to get

$$C_{\mu,\nu}^{\prime 2} = \tau_{\mu,\nu}/2^6 3^4$$
.

Let $\Re_{(4)}$ be the field generated by $\{\tau_{\mu,\nu}\}$ over K(j). Denoting by h the denominator of $\tau_{\mu,\nu}$, we have

$$(2^33^2hC'_{\mu,\nu})^2 = h^2 au_{\mu,\nu}$$
 .

Thus $2^{s}3^{2}hC'_{\mu,\nu}$ is an integer belonging to a quadratic extension $\Re^*_{(4),\mu,\nu}$ of $\Re_{(4)}$. Further, since h is divisible by at most prime factors of f, we see that the denominator of $C'_{\mu,\nu}$ is divisible by prime factors of, at most 2,3,f.

Now put

$$D_{\mu,
u} \! = \! D_{\mu,
u}' \! m{w}_{(4)}^3$$
 .

Then we have

$$D_{\mu,\nu}^{\prime 2} = 4 C_{\mu,\nu}^{\prime 3} - 4 C_{\mu,\nu}^{\prime}$$
.

From this it follows that $2^{\circ}3^{\circ}h^{3}D'_{\mu,\nu}$ is an integer in a quadratic extension of $\Re^{**}_{(4),\mu,\nu}$ of $\Re^{*}_{(4),\mu,\nu}$ and the denominator of $D'_{\mu,\nu}$ is divisible by at most prime factors of 2, 3, f.

Observe that

$$\varphi'(\sqrt{-1}z) = \varphi(z)$$
.

Then taking into account the addition formula for φ -function, we see that every $C_{\mu,\nu}$, $(\mu,\nu)\neq(0,0)$ can be written rationally (over K) by

$$\xi_{(4)} = g(\mathbf{w}_{(4)}/f; \mathbf{w}_{(4)}, \mathbf{w}_{(4)}\sqrt{-1})$$

and

$$\eta_{(4)} = \wp'(\mathfrak{W}_{(4)}/f; \mathfrak{W}_{(4)}, \mathfrak{W}_{(4)}\sqrt{-1})$$

Therefore, for every $(\mu, \nu) \neq (0, 0)$, we have

$$\Re_{(4),\mu,\nu}^* = \Re_{(4)}(\xi_{(4)}), \Re_{(4),\mu,\nu}^{**} = \Re_{(4)}(\xi_{(4)}, \eta_{(4)})$$
.

We denote by ζ_f a primitive f-th root of 1. Then combining the above result with Theorem 6, we have, by (4.1), the following

PROPOSITION 4. For
$$K=Q(\sqrt{-1})$$
, $\omega_1=1$, $\omega_2=\sqrt{-1}$,

$$\frac{f^{s}(s-1)! \sum_{\mu,\nu}' g_{s}^{(\mu,\nu)}(u, v; 1, \sqrt{-1})}{\mathfrak{V}_{(4)}^{s}} \in \Re_{(4)}(\xi_{(4)}, \eta_{(4)}, \zeta_{f})$$

and the denominator of this algebraic number is divisible by, at most prime factors of 2, 3, f.

Here \sum' means the sum except for $(\mu, \nu) = (0, 0)$.

Now we can derive the theorem of v. Staudt-Clausen for f^*H_s in the present case, using Proposition 4 and Herglotz's result.

We have

$$\begin{split} f^s H_s &= \frac{f^s (-1)^{s-1}}{\sqrt[12]{\varDelta^s}} S_s(u, \, v; \, 1, \, \sqrt{-1}) \\ &= \frac{f^s s\, !}{\sqrt[12]{\varDelta^s}} \, g_s^{\scriptscriptstyle (0,0)}(u, \, v; \, 1, \, \sqrt{-1}) + \frac{f^s s\, !}{\sqrt[12]{\varDelta^s}} {\textstyle \sum_{\mu,\nu}}' \, g_s^{\scriptscriptstyle (\mu,\nu)}(u, \, v; \, 1, \, \sqrt{-1}) \; . \end{split}$$

In this case, $g_s^{(0,0)} = 0$ for $s \not\equiv 0 \pmod{4}$. For $s \equiv 0 \pmod{4}$, put $s = 4\lambda$. Then

$$\frac{f^s s!}{\sqrt[12]{f^s}} g_s^{(0,0)} = C_{2\lambda}$$

in Herglotz notation. Further we know

$$\sqrt[12]{\Delta} = \sqrt{2} \boldsymbol{\omega}_{(4)}$$

(note that we employ here inhomogeneous notation). Summing up, we have the following, as an analogy to v. Staudt-Clausen,

THEOREM 7. Assume $K=Q(\sqrt{-1})$, $\omega_1=1$ and $\omega_2=\sqrt{-1}$.

(i) For $s \not\equiv 0 \pmod{4}$,

$$f^{s}\sqrt{2^{s}}H_{s}(\sqrt{-1}; u, v) \in \Re_{(s)}(\xi_{(s)}, \eta_{(s)}, \zeta_{f})$$

and the denominator of $f^*\sqrt{2^*}H_*$ is divisible by at most prime factors of 2, 3, f_*

(ii) For $s \equiv 0 \pmod{4}$,

$$f^s H_s(\sqrt{-1}; u, v) = \sum_p \frac{A_p^{s/(p-1)}}{p} + T_s^{(4)}$$

where $T_{\bullet}^{(4)}$ is a number in $\Re_{(4)}(\xi_{(4)}, \eta_{(4)}, \zeta_f)$ with the denominator divisible by at most prime factors of 2, 3, f and p is prime such that

$$p \ge 5$$
, $p \equiv 1 \pmod{4}$, $p-1|s$.

 A_p is the same as in 2.3.

In particular, we consider the case u=v=1/2. In this case, every $D_{\mu,\nu}=0$. Hence in Theorem 6, only terms with b=0 appear. Since $G_4=4$, we see that $f^s(s-1)!$ g_s is a linear combination of $C_{\mu,\nu}(=0, 1, \text{ or } -1)$ with integral coefficients in $Q(\zeta_f)$. Thus the theorem of v. Staudt-Clausen is of the same type as Herglotz, up to an additive constant in $Q(\sqrt{-1}, \zeta_f)$.

(2) $K=Q(\rho)$, $\omega_1=1$, $\omega_2=\rho$, w=6. Put

$$w_{(6)} = 2 \int_0^1 \frac{1}{\sqrt{1-x^6}} dx$$
.

Then $G_4 = 0$, $G_6 = 4\varpi_{(6)}^6$. Putting $C'_{\mu,\nu}\varpi_{(6)}^2 = C_{\mu,\nu}$, we have

$$C_{\mu,\nu}^{\prime 3} = \tau_{\mu,\nu}/2^7 3^3$$
.

Let $\Re_{(6)}$ be the field generated by $\{\tau_{\mu,\nu}\}$ over K(j). Then as in the case of $K=Q(\sqrt{-1})$, we see that $C'_{\mu,\nu}$ belongs to a cubic extension $\Re^*_{(6),\mu,\nu}$ of $\Re_{(6)}$ and the denominator of $C'_{\mu,\nu}$ is divisible by at most prime factors of 2, 3, f.

If we put

$$D_{\mu,\nu}' \sigma_{(6)}^3 = D_{\mu,\nu}$$
 ,

then

$$D_{\mu,\nu}^{\prime 2} = 4C_{\mu,\nu}^{\prime 3} - 4$$
 .

From this we see that $D'_{\mu,\nu}$ is a number of a quadratic extension $\mathfrak{R}^{**}_{(6)}$

of $\Re_{(6)}$ and its denominator is divisible by, at most prime factors of 2, 3, f. Also as in the case of $K = Q(\sqrt{-1})$, we see that

$$\mathfrak{R}_{\scriptscriptstyle{(6)},\mu,\nu}^{*} \! \cdot \! \mathfrak{R}_{\scriptscriptstyle{(6)},\mu,\nu}^{**} \! = \! \mathfrak{R}_{\scriptscriptstyle{(6)}}(\xi_{\scriptscriptstyle{(6)}},\, \eta_{\scriptscriptstyle{(6)}})$$

for every $(\mu, \nu) \neq (0, 0)$ with

$$\xi_{(6)} = C'_{1,0} = \wp(\mathbf{w}_{(6)}/f; \mathbf{w}_{(6)}, \mathbf{w}_{(6)}\rho)$$

and

$$\eta_{(6)} = D'_{1,0} = \wp'(\varpi_{(6)}/f; \varpi_{(6)}, \varpi_{(6)}\rho)$$
.

Then by (4.1), Theorem 6, we have

Proposition 5. Assume $K=Q(\rho)$, $\omega_1=1$, $\omega_2=\rho$. Then

$$\frac{f^{s}(s-1)! \sum_{\mu,\nu}' g_{s}^{(\mu,\nu)}(u, v; 1, \rho)}{\mathbf{w}_{(6)}^{s}} \in \Re_{(6)}(\xi_{(6)}, \eta_{(6)}, \zeta_{f})$$

and the denominator of this algebraic number is divisible by at most prime factors of 2, 3, f.

Now we shall derive the theorem of v. Staudt-Clausen for f^sH_s in the present case.

We have

$$egin{aligned} f^s H_s = & rac{f^s (-1)^{s-1}}{\sqrt[12]{{\cal J}^s}} S_s(u,\,v;\,1,\,
ho) \ = & rac{f^s s\,!}{\sqrt[12]{{\cal J}^s}} g_s^{\scriptscriptstyle (0,\,0)}(u,\,v;\,1,\,
ho) + rac{f^s s\,!}{\sqrt[12]{{\cal J}^s}} \sum_{\mu,
u} ' g_s^{\scriptscriptstyle (\mu,
u)}(u,\,v;\,1,\,
ho) \;. \end{aligned}$$

Here it is known that $g_s^{(0,0)} = 0$ for $s \not\equiv 0 \pmod{6}$. For $s \equiv 0 \pmod{6}$ put $s = 6\lambda$. Then

$$\frac{f^s s!}{\sqrt[12]{A^s}} g_s^{(0,0)} = C_{3\lambda}$$

in Herglotz notation.

Observing that

$$\sqrt[12]{\Delta} = e^{-\pi i/12} \sqrt[3]{2} \sqrt[3]{3} \sqrt[3]{6}$$

in the inhomogeneous notation, we have the following Theorem 8 as an analogy to v. Staudt-Clausen.

THEOREM 8. Assume $K=Q(\rho)$, $\omega_1=1$, $\omega_2=\rho$.

(1) For $s \not\equiv 0 \pmod{6}$,

$$f^{s}(e^{-\pi i/12}\sqrt[3]{2}\sqrt[4]{3})^{s}H_{s}(\rho;\,u,\,v)\in\Re_{(6)}(\xi_{(6)},\,\gamma_{(6)},\,\zeta_{f})$$

and the denominator of this number is divisible by at most prime factors of 2, 3, f.

(ii) $For s \equiv 0 \pmod{6}$,

$$f^s(-3)^{(1/4)s}H_s(\rho;u,v)\!=\!\sum_{p}rac{a_p^{s/(p-1)}}{p}\!+\!T_s^{(6)}$$

where p>5, $p\equiv 1\pmod 3$, p-1|s and $T_s^{(6)}\in\Re_{(6)}(\xi_{(6)},\eta_{(6)},\zeta_f)$ and the denominator of the above number is divisible by at most prime factors of 2, 3, f. For a_p , see 2.3, case (2).

In particular, put u=v=1/2. Then every $D_{\mu,\nu}=0$. Since $G_4=0$, only terms for b=c=0 appear in the formula of Theorem 6. Thus

$$2^{s}(s-1)! \sum_{\mu,\nu} g_{s}^{(\mu,\nu)}$$

is a linear combination of $C_{\mu,\nu}=1$, ρ , ρ^2 with integral coefficients in $Q(\zeta_f)$. Hence in this case, the theorem of v. Staudt-Clausen is of the same type as Herglotz up to an integral additive constant belonging to $Q(\zeta_f, \rho)$.

Now let K be a quadratic field other than $Q(\sqrt{-1})$, $Q(\rho)$. Let ω_1 , ω_2 be a basis of an integral ideal in K. Put $\tau = \omega_2/\omega_1$. Hence $K = Q(\tau)$. In Theorem 6, further assume s is even. Then b is even and we put b = 2b'. We have

$$\begin{split} f^s H_s(\tau; u, v) = & \frac{f^s(-1)^{s-1}}{\sqrt[12]{\sqrt{s}}} S_s(u, v; \omega_1, \omega_2) \\ = & \frac{f^s s!}{\sqrt[12]{\sqrt{s}}} g_s^{(0,0)}(u, v; \omega_1, \omega_2) + \frac{f^s s!}{\sqrt[12]{\sqrt{s}}} \sum_{\mu,\nu} g_s^{(\mu,\nu)}(u, v; \omega_1, \omega_2) \\ = & C_{(1/2)s} + \frac{s}{\sqrt[12]{\sqrt{s}}} \sum_{\substack{s=2a+3b+4c \\ s=b,c\geq 0}} A^{(\mu,\nu)}(a, b, c) C_{\mu,\nu}^a D_{\mu,\nu}^b G_s^c \\ = & (-1)^{(1/2)s+1} \frac{\gamma_2^h \gamma_3^k j^m}{6} + \sum_p \frac{A_p^{s/(p-1)}}{p} + \gamma_2^h \gamma_3^k G_{(1/2)s}(j) \\ + & \frac{s}{\sqrt[12]{\sqrt{s}}} \sum_{\mu,\nu} \sum_{(1/2)s=a+3b'+2c} A^{(\mu,\nu)}(a, b', c) \frac{(-1)^a 2^{3b'+2c} 3^{s+c} \tau_{\mu,\nu}^a(-\tau_{\mu,\nu}^3 + 3\gamma_2^3 \gamma_3^2 \tau_{\mu,\nu} - 2\gamma_2^3 \gamma_3^4)^{b'}}{\gamma_2^{(1/2)s-3c} \gamma_3^{(1/2)s-2c}} \end{split}$$

where

$$G_{\scriptscriptstyle(1/2)s}(j)\in Z\!\!\left[j
ight]\!,\,rac{1}{2}s\!=\!6m\!+\!2h\!+\!3k,\,h\!=\!0,\,1,\,2,\,k\!=\!0,\,1,\,p\,\,\, ext{is a prime,}\,\,\,p\!\geqq\!5$$
 ,

p-1|s, and A is in $Q(\zeta_f)$ and the denominator of A is at most powers of 2. Here the last equality is obtained by a straight forward calculation under the use of (2.11, 12, 13) and the definition of $\tau_{\mu,\nu}$. The above formula can be viewed as v. Staudt-Clausen for $K=Q(\tau)$. We shall give more precise form of v. Staudt-Clausen for K with class number 1.

(3)
$$K=Q(\sqrt{-2}), \omega_1=1, \omega_2=\sqrt{-2}, w=2.$$

Let $\Re_{(2)}$ be the field generated by $\{\tau_{\mu,\nu}\}$ over $K(j)$. Put

$$C_{\mu,
u}' rac{{\it \Delta}^{1/6}}{\sqrt{2}} \! = \! C_{\mu,
u} \,, ~~ D_{\mu,
u}' \! \left(rac{\it \Delta}{2}
ight)^{\!1/4} \! = \! D_{\mu,
u} \;.$$

Then $C'_{\mu,\nu} \in \Re_{(2)}$ and $D'_{\mu,\nu} \in \Re_{(2)}(\eta_{(2)})$ for every $(\mu,\nu) \neq (0,0)$, where $\eta_{(2)}$ is a value of \mathscr{G}' at f-division point of one fundamental period. $\eta_{(2)}$ is quadratic over $\Re_{(2)}$. We note that $g_s^{(0,0)} = 0$ for $s \not\equiv 0 \pmod{2}$, j = 8000, $\gamma_2 = 20$ and $\gamma_3 = 56\sqrt{2}$.

THEOREM 9. Assume $K=Q(\sqrt{-2})$, $\omega_1=1$, $\omega_2=\sqrt{-2}$. (i) For $s \not\equiv 0 \pmod{2}$, $(s=2a+3b+4c, a, b, c \geq 0)$

$$f^*2^{(1/4)(s-b)}H_s(\sqrt{-2}; u, v) \in \Re_{(2)}(\eta_{(2)}, \zeta_f)$$

and the denominator of this number is divisible by at most prime factors of 2, 3, 5, 7, f.

(ii) $For s \equiv 0 \pmod{2}$

$$f^s 2^{(1/4)s} H_s(\sqrt{-2}; u, v) = \frac{1}{3} + \sum_{p} \frac{a_p^{s/(p-1)}}{p} + T_s^{(2)}$$

where $p \ge 5$, $p \equiv 1$, 3 (mod 8), p-1|s and $T_s^{(2)} \in \Re_{(2)}(\eta_{(2)}, \zeta_f)$. The denominator of $T_s^{(2)}$ is divisible by at most prime factors of 2, 3, 5, 7, f.

For a_p , see case (3) of 2.3.

(4) $K=Q(\sqrt{-m}), m=7, 11, 19, 43, 67, 163.$ Let $\Re_{(m)}$ be the field generated by $\{\tau_{\mu,\nu}\}$ over K(j). Put

$$\gamma_3' = \sqrt{-m} \gamma_3, \quad C_{\mu,
u}' = - au_{\mu,
u} / 2^2 3 \; \gamma_2 \gamma_3', \quad D_{\mu,
u}' \Big(rac{arDelta^{1/2}}{\sqrt{-m}} \Big)^{1/2} = D_{\mu,
u} \; .$$

Then $C'_{\mu,\nu} \in \Re_{(m)}$ and $D'_{\mu,\nu} \in \Re_{(m)}(\eta_{(m)})$ for every $(\mu,\nu) \neq (0,0)$ where $\eta_{(m)}$ is a value of \mathscr{C}' at f-division point of one fundamental period. $\eta_{(m)}$ is quadratic over $\Re_{(m)}$.

THEOREM 10. Assume $K=Q(\sqrt{-m})$, $\omega_1=1$, $\omega_2=(1/2)(1+\sqrt{-m})$, m=7, 11, 19, 43, 67, 163.

(i) For $s \not\equiv 0 \pmod{2}$, $(s=2a+3b+4c, a, b, c \geq 0)$

$$f^{s}(-m)^{(1/4)(s-b)}H_{s}\!\!\left(\frac{1}{2}\!\!\left(1+\sqrt{-m}\right);\,u,\,v\right)\!\in\!\Re_{(m)}(\eta_{(m)},\,\zeta_{f})$$

and the denominator of this number is divisible by at most prime factors of 2, 3, γ_2 , γ_3' , m, f.

(ii) For $s \equiv 0 \pmod{2}$,

$$f^{s}(-m)^{(1/4)s}H_{s}(\frac{1}{2}(1+\sqrt{-m});u,v)=h_{s}+\sum_{p}\frac{a_{p}^{s!(p-1)}}{p}+T_{s}^{(m)}$$

where $p \ge 5$, $\left(\frac{p}{m}\right) = 1$, p-1|s, $h_s = 1/2$, $(-1)^{(1/2)s}/3$ for m = 7, 11 and = 0 otherwise and

$$T_s^{(m)} \in \mathfrak{R}_{(m)}(\eta_{(m)}, \zeta_f)$$

The denominator of $T_{*}^{(m)}$ is divisible by at most prime factors of 2, 3, γ_{2} , γ'_{3} , m, f.

For a_p , see the case (4) of 2.3.

By the table given in 2, 3, we can make the following table of prime factors of $\gamma_2 \gamma_3'$ in Q.

m	7	11	19	43	67	163
$p \gamma_2\gamma_3'$	3, 5	2, 7	2, 3	2, 3, 5, 7	2, 3, 5, 7, 11, 31	2, 3, 5, 7, 11, 19, 23, 29, 127

§ 5. Numerical computations. Examples.

5.1. (1°) Take u=v=1/2, $\omega_1=\varpi_{(4)}$, $\omega_2=\varpi_{(4)}\sqrt{-1}$. Then f=2, $G_4=4$, $G_6=0$, $\Delta=4^3$ and by Proposition 2.

$$S_2=0$$
 for $\lambda \not\equiv 0 \pmod{4}$.

In general, we have

$$\wp'^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$$

with 2-division values

$$e_1 = \wp\left(\frac{1}{2}\omega_1; \omega_1, \omega_2\right), \quad \omega_1 + \omega_2 + \omega_3 = 0.$$

In our case,

$$C_{\scriptscriptstyle 1,0}\!=\!1$$
, $C_{\scriptscriptstyle 0,1}\!=\!-1$, $C_{\scriptscriptstyle 1,1}\!=\!0$, $D_{\scriptscriptstyle 1,0}\!=\!D_{\scriptscriptstyle 0,1}\!=\!D_{\scriptscriptstyle 1,1}\!=\!0$.

Now the values of $\varepsilon_{\mu,\nu}$ are given as

$$\varepsilon_{1,0} = -1$$
, $\varepsilon_{0,1} = -1$, $\varepsilon_{1,1} = 1$.

Therefore by Theorem 5,

$$g_4^{(1,0)} = g_4^{(0,1)} = -\frac{1}{24}$$
 , $g_4^{(1,1)} = -\frac{1}{48}$.

Further we have

$$g_4^{(0,0)} = \frac{24}{15}$$
,

which is given by Hurwitz formula

(5.0)
$$\sum_{(m,n)\in\mathbb{Z}^2}' \frac{1}{(m+n\sqrt{-1})^{4k}} = \frac{(2\varpi_{(4)})^{4k}}{(4k)!} E_{4k}$$

with the so-called Hurwitz number $E_{4k} \in Q$. Thus we get

$$S_4 = -4! \left(\frac{16}{15} - \frac{5}{48} \right) \text{ and } 2^4 H_4(\sqrt{-1}; \frac{1}{2}, \frac{1}{2}) = 2^5 \left(\frac{16}{5} - \frac{5}{16} \right).$$

In 3.3, we cannot compute $W_3(\sqrt{-1}; 1/2, 1/2)$ from Theorem 4. This value is given in the present context, by Theorem 5. In fact

$$W_{\rm s}\left(\sqrt{-1}; \frac{1}{2}, \frac{1}{2}\right) = \left(\frac{16}{5} - \frac{5}{16}\right) \frac{w_{(4)}^4}{\pi} \sqrt{-1} - \frac{\pi^{\rm s}}{8} \sqrt{-1}$$
.

From this we have, for example,

$$\sum_{m=1}^{\infty} \frac{m^3 + (m-1)^3}{e^{(2m-1)\pi} + 1} = \frac{1}{64} + \frac{1}{120} - \frac{\varpi_{(4)}^4}{8\pi^4} \left(\frac{16}{5} - \frac{5}{16}\right).$$

 (2°) ω_1 and ω_2 being the same as above, we take u=v=(1/3). Then f=3. Put

$$C_{\scriptscriptstyle 1,0} \! = \! \xi_{\scriptscriptstyle 1}, \quad C_{\scriptscriptstyle 1,1} \! = \! \xi_{\scriptscriptstyle 2}, \quad D_{\scriptscriptstyle 1,0} \! = \! \eta_{\scriptscriptstyle 1}, \quad D_{\scriptscriptstyle 1,1} \! = \! \eta_{\scriptscriptstyle 2}$$
 .

Then

$$\eta_i^2 = 4\xi_i^3 - 4\xi_i$$
, $i = 1, 2$

and the addition theorem gives

$$\xi_2 = -\sqrt{-1}\eta_1^2/8\xi_1^2$$
 .

Now

$$egin{aligned} arepsilon_{1,0} = & arepsilon_{0,1} = arepsilon_{2,2} =
ho^2, & arepsilon_{1,1} = arepsilon_{2,0} = arepsilon_{0,2} = arrho, & arepsilon_{1,2} = arepsilon_{2,1} = 1, \ C_{1,0} = & -C_{0,1} = C_{2,0} = -C_{0,2} = arxi_1, & C_{1,1} = & -C_{1,2} = & -C_{2,1} = C_{2,2} = arxi_2, \ D_{1,0} = & -\sqrt{-1}D_{0,1} = & -D_{2,0} = \sqrt{-1}D_{0,2} = \eta_1, \ D_{1,1} = & \sqrt{-1}D_{1,2} = & -\sqrt{-1}D_{2,1} = & -D_{2,2} = \eta_2. \end{aligned}$$

Thus we get

$$\begin{split} 3^4H_4\Big(\sqrt{-1}\ ; \frac{1}{3}\ , \frac{1}{3}\Big) &= \frac{2}{5} + 3!(-2\xi_1^2 + \xi_2^2 + 1) = \frac{2}{5} + 3!\Big(-2\xi_1^2 - \frac{\eta_1^4}{64\xi_1^4} + 1\Big) \\ 3^3H_3\Big(\sqrt{-1}\ ; \frac{1}{3}\ , \frac{1}{3}\Big) &= 3!(\rho^2 - \rho)(\eta_2 - \eta_1(1 + \sqrt{-1})) \\ &= 3!(\rho^2 - \rho)\Big(\frac{\sqrt{-1}\eta_1^6}{2^7\xi_1^6} + \frac{\sqrt{-1}\eta_1^2}{2\xi_1^2} + \eta_1(1 + \sqrt{-1}))\ . \end{split}$$

In this case, $j=2^63^3$ and $\tau_{\mu,\nu}\in Q(C_{\mu,\nu})$. Hence

$$K(j) = K$$
 and $\Re_{(4)} = K(\xi_1)$.

Since we have

$$\xi_1^2 = au_{1,0}/2^6 3^4$$
 ,

the number $3!(-2\xi_1^2+\xi_2^2+1)$ on the right of 3^4H_4 belongs to $\Re_{(4)}$ and its denominator is divisible by at most prime factors of 2, 3. Further we see that

$$3^{3}H_{3}\left(\sqrt{-1}\;;rac{1}{3}\;,rac{1}{3}
ight)$$

belongs to $\Re_{(4)}(\eta_1)$, a quadratic extension of $\Re_{(4)}$.

5.2. (1°) Take $\omega_1 = \omega_{(6)}$, $\omega_2 = \omega_{(6)}\rho$, u = v = 1/3. Then f = 3. Since $\sigma = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$ fixes $(\rho, 1/3, 1/3)$, we see that

(5.1)
$$S_{\lambda}(1/3, 1/3; w_{(6)}, w_{(6)}\rho) = 0$$
 if $\lambda \not\equiv 0 \pmod{3}$

by Proposition 2.

Put

$$C_{1,0} = \xi_1, \quad D_{1,0} = \eta_1, \quad C_{2,1} = \xi_2, \quad D_{2,1} = \eta_2$$
.

Then

(5.2)
$$\eta_i^2 = 4\xi_i^3 - 4, \quad i = 1, 2$$

and by the addition theorem,

$$-\xi_2 = (\xi_1^3 - 4)/3\rho \xi_1^2.$$

Further we have

$$\begin{split} &\varepsilon_{\scriptscriptstyle 1,0}\!=\!\varepsilon_{\scriptscriptstyle 0,1}\!=\!\varepsilon_{\scriptscriptstyle 2,2}\!=\!\rho^{\scriptscriptstyle 2},\quad \varepsilon_{\scriptscriptstyle 1,1}\!=\!\varepsilon_{\scriptscriptstyle 2,0}\!=\!\varepsilon_{\scriptscriptstyle 0,2}\!=\!\rho,\quad \varepsilon_{\scriptscriptstyle 2,1}\!=\!\varepsilon_{\scriptscriptstyle 1,2}\!=\!1\ ,\\ &C_{\scriptscriptstyle 1,2}\!=\!\rho^{\scriptscriptstyle 2}C_{\scriptscriptstyle 0,1}\!=\!\rho C_{\scriptscriptstyle 1,1}\!=\!C_{\scriptscriptstyle 2,0}\!=\!\rho^{\scriptscriptstyle 2}C_{\scriptscriptstyle 0,2}\!=\!\rho C_{\scriptscriptstyle 2,0}\!=\!\xi_{\scriptscriptstyle 1},\quad C_{\scriptscriptstyle 2,1}\!=\!C_{\scriptscriptstyle 1,2}\!=\!\xi_{\scriptscriptstyle 2}\ ,\\ &D_{\scriptscriptstyle 1,0}\!=\!D_{\scriptscriptstyle 0,1}\!=\!-D_{\scriptscriptstyle 1,1}\!=\!-D_{\scriptscriptstyle 2,0}\!=\!-D_{\scriptscriptstyle 0,2}\!=\!D_{\scriptscriptstyle 2,2}\!=\!\eta_{\scriptscriptstyle 1},\quad D_{\scriptscriptstyle 2,1}\!=\!D_{\scriptscriptstyle 1,2}\!=\!\eta_{\scriptscriptstyle 2}\ ,\\ &g_{\scriptscriptstyle 3}^{\scriptscriptstyle (0,0)}\!=\!0,\;g_{\scriptscriptstyle 3}^{\scriptscriptstyle (1,0)}\!=\!g_{\scriptscriptstyle 3}^{\scriptscriptstyle (0,1)}\!=\!g_{\scriptscriptstyle 3}^{\scriptscriptstyle (2,2)}\!=\!-(2/3^{\scriptscriptstyle 3})\rho^{\scriptscriptstyle 2}\eta_{\scriptscriptstyle 1}\ ,\\ &g_{\scriptscriptstyle 3}^{\scriptscriptstyle (1,1)}\!=\!g_{\scriptscriptstyle 3}^{\scriptscriptstyle (2,0)}\!=\!g_{\scriptscriptstyle 3}^{\scriptscriptstyle (0,2)}\!=\!(2/3^{\scriptscriptstyle 3})\rho\eta_{\scriptscriptstyle 1},\;g_{\scriptscriptstyle 3}^{\scriptscriptstyle (2,1)}\!=\!g_{\scriptscriptstyle 3}^{\scriptscriptstyle (1,2)}\!=\!-(2/3^{\scriptscriptstyle 3})\eta_{\scriptscriptstyle 2}\ ,\\ &g_{\scriptscriptstyle 4}^{\scriptscriptstyle (0,0)}\!=\!0,\;g_{\scriptscriptstyle 4}^{\scriptscriptstyle (1,0)}\!=\!g_{\scriptscriptstyle 4}^{\scriptscriptstyle (0,2)}\!=\!(\rho/3^{\scriptscriptstyle 4})\xi_{\scriptscriptstyle 1}^{\scriptscriptstyle 2},\;g_{\scriptscriptstyle 4}^{\scriptscriptstyle (0,1)}\!=\!g_{\scriptscriptstyle 4}^{\scriptscriptstyle (1,1)}\!=\!\xi_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}/3^{\scriptscriptstyle 4}\ ,\\ &g_{\scriptscriptstyle 4}^{\scriptscriptstyle (2,0)}\!=\!g_{\scriptscriptstyle 4}^{\scriptscriptstyle (2,2)}\!=\!(\rho^{\scriptscriptstyle 2}/3^{\scriptscriptstyle 4})\xi_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}\ ,\;g_{\scriptscriptstyle 4}^{\scriptscriptstyle (1,2)}\!=\!g_{\scriptscriptstyle 4}^{\scriptscriptstyle (2,1)}\!=\!\xi_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}/3^{\scriptscriptstyle 4}\ .\end{split}$$

From this, we have

$$0 = S_4 = (2/3^4)\xi_2^2$$
 and $\xi_2 = 0$.

Namely

(5.4)
$$\varphi((2\varpi_{(6)} + \varpi_{(6)}\rho)/3; \varpi_{(6)}, \varpi_{(6)}\rho) = \varphi((\varpi_{(6)} + 2\varpi_{(6)}\rho)/3; \varpi_{(6)}, \varpi_{(6)}\rho) = 0$$
.*
Further from (5.2), (5.3), we have

$$\begin{aligned} \eta_2^2 = \wp'((2\varpi_{(6)} + \varpi_{(6)}\rho)/3; \; \varpi_{(6)}, \; \varpi_{(6)}\rho)^2 \\ = \wp'((\varpi_{(6)} + 2\varpi_{(6)}\rho)/3; \; \varpi_{(6)}, \; \varpi_{(6)}\rho)^2 = -4 \; , \end{aligned}$$

(5.6)
$$\xi_1^3 = \wp(\varpi_{(6)}/3; \varpi_{(6)}, \varpi_{(6)}\rho)^3 = 4$$
,

(5.7)
$$\eta_1^2 = \wp'(\varpi_{(6)}/3; \varpi_{(6)}, \varpi_{(6)}\rho)^2 = 12$$
.

Thus we get

(5.8)
$$2(-3^3)^{1/4}H_3(\rho; 1/3, 1/3) = 2 \cdot 3![3(\rho - \rho^2)\eta_1 - 2\eta_2]$$

and this is an integer in $Q(\rho, \sqrt{-1})$.

Moreover, computation of the values $g_6^{(\mu,\nu)}$ by Theorem 5, shows

^{*} This also follows from the general relation $\sum_{\mu,\nu} \mathcal{C}\left(\frac{\mu\omega_1 + \nu\omega_2}{f}; \omega_1, \omega_2\right) = 0.$ ([9])

$$3^63\sqrt{-3}H_6(\rho;\ 1/3,\ 1/3)\!=\!rac{2^23^{14}}{7}\!-\!2^83^2\!-\!2^23^4\xi_1^3\!+\!2^63^3\eta_1^2\;.$$

Hence by (5.6), (5.7), we get

$$3^{3}3\sqrt{-3} H_{6}(\rho; 1/3, 1/3) = \frac{2^{2}3^{14}}{7} + 2^{4} \cdot 3^{2} \cdot 7 \cdot 17$$
.

By the way, the 'Teilungsgleichung' for $\tau_{\mu,\nu}$ in our case, becomes

$$X^2(X^3-2^93^3)^2$$
.

(2°) Since $\sigma = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ leaves $(-\rho^2; 1/3, 2/3)$ invariant, we can compute some of W_2 by Theorem 4 and in fact

$$W_0(-\rho^2; 1/3, 2/3) = -1/3, \quad W_1(-\rho^2; 1/3, 2/3) = \pi \sqrt{-1/3^2}.$$

Put

$$\gamma = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} .$$

 γ sends $(-\rho^2, 1/3, 2/3)$ to $(-\rho^2; 2/3, 1/3)$. Then by Theorem 4, we have

$$W_{\scriptscriptstyle 0}(-
ho^{\scriptscriptstyle 2};\,2/3,\,1/3)\!=\!-2/3$$
 , $W_{\scriptscriptstyle 1}(-
ho^{\scriptscriptstyle 2},\,2/3,\,1/3)\!=\!2^{\scriptscriptstyle 2}\pi\sqrt{-1}/3^{\scriptscriptstyle 2}$.

We view $\gamma: \tau \to \tau^*$, $u \to u^*$, $v \to v^*$ in Theorem 4 to get

(5.9)
$$W_2(-\rho^2; 2/3, 1/3) + W_2(-\rho^2; 1/3, 2/3) = 2^2\pi^2/3^2$$
.

On the other hand, we can compute $W_2(-\rho^2; 1/3, 2/3)$ by (5.8) and Theorem 2. In fact we have

$$W_2(-
ho^2;\,1/3,\,2/3)\!=\!rac{2^2\pi^2}{3^3}\!-\!rac{2\sqrt{-1}}{3^2}\left[3(
ho\!-\!
ho^2)\eta_1\!-\!2\eta_2
ight]rac{oldsymbol{\sigma}_{(6)}^3}{\pi}\;.$$

We transform (5.9) to R_2 by Proposition 1 to get

$$egin{aligned} rac{2^2\pi^2}{3^3} &= (2\pi \sqrt{-1})^2 [R_2(-
ho^2;\,1/3,\,2/3) + R_2(-
ho^2;\,2/3,\,\,1/3)] \ &= -(2\pi \sqrt{-1})^2 \sum\limits_{m=1}^\infty \left\{ rac{2m-1}{e^{2\pi i
ho^2 (m-1/3) - \pi i/3} + 1} + rac{2m-1}{e^{2\pi i
ho^2 (m-2/3) + \pi i/3} + 1}
ight\} \;. \end{aligned}$$

Therefore

$$\sum_{m=1}^{\infty} \left\{ \frac{2m-1}{e^{2\pi i \rho^2 (m-1/3)-\pi i/3}+1} + \frac{2m-1}{e^{2\pi i \rho^2 (m-2/3)+\pi i/3}+1} \right\} = \frac{1}{9}.$$

In the same way, we get

$$\sum_{m=1}^{\infty} \left\{ \frac{1}{(-1)^{m+1} e^{\sqrt{3}(m-2/3)\pi} + 1} - \frac{1}{(-1)^m e^{\sqrt{3}(m-1/3)\pi} + 1} \right\} = \frac{1}{6} ,$$

from the value of $W_0(-\rho^2; 1/3, 2/3)$.

- §6. Comments on Ramanujan's formula.
- 6.1. Ramanujan obtained

(6.1)
$$\sum_{n=1}^{\infty} \frac{n^{18}}{e^{2n\pi}-1} = \frac{1}{24}.$$

Compare this with our Proposition 3. The identity (6.1) is an easy consequence of the following formula:

(6.2)
$$\alpha^{k} \left(\frac{1}{2} \zeta(1-2k) + \sum_{n=1}^{\infty} \frac{n^{2k-1}}{e^{2n\alpha} - 1} \right) = (-\beta)^{k} \left(\frac{1}{2} \zeta(1-2k) + \sum_{n=1}^{\infty} \frac{n^{2k-1}}{e^{2n\beta} - 1} \right)$$

where $\alpha\beta = \pi^2$, k>1 $(k \in \mathbb{Z})$. (Ramanujan [12], Berndt [1]). From (6.2) we obtain values of

(6.3)
$$\sum_{n=1}^{\infty} \frac{n^{l}}{e^{2n\pi} - 1}$$

for $l \equiv 1 \pmod{4}$. In fact

(6.4)
$$\sum_{n=1}^{\infty} \frac{n^{4k+1}}{e^{2n\pi}-1} = \frac{B_{4k+2}}{8k+4}.$$

But we cannot derive values of (6.3) for $l \equiv -1 \pmod{4}$.

The formula (6.1) is regained by Watson. Hardy, in [5], gave two proofs (essentially the same) of (6.2) without mentioning the following expression of Eisenstein series by Lambert series $(k \ge 2)$:

(6.5)
$$\sum_{(m,n)\in\mathbb{Z}^2} \frac{1}{(m(n)+m(n))^{2k}} = \frac{(-1)^k 2(2\pi)^{2k}}{(2k-1)!} \left\{ -\frac{B_{2k}}{4k} + \sum_{m=1}^{\infty} \frac{m^{2k-1}}{e^{-2\pi i m \omega_2/\omega_1} - 1} \right\} .$$

This can be obtained by considering the expression of $E(z; \omega_1, \omega_2)$ in a line of Eisenstein (Weil [15]) and also by Lipschitz's formula.

From (6.5), we easily get

$$\frac{1}{\omega_1^{*2k}} \Big\{ -\frac{B_{2k}}{4k} + \sum_{m=1}^{\infty} \frac{m^{2k-1}}{e^{-2\pi i m \omega_2^2/\omega_1^2} - 1} \Big\} = \frac{1}{\omega_1^{2k}} \Big\{ -\frac{B_{2k}}{4k} + \sum_{m=1}^{\infty} \frac{m^{2k-1}}{e^{-2\pi i m \omega_2/\omega_1} - 1} \Big\}$$

and (6.2) is a consequence of this.

Further, (6.5) is better than (6.2) because we can compute values of (6.3) even for $l \equiv -1 \pmod{4}$: in fact we have, by combining Hurwitz formula (5.0) with (6.4),

(6.6)
$$\sum_{m=1}^{\infty} \frac{m^{4k-1}}{e^{2\pi m}-1} = \frac{1}{8k} \left\{ \left(\frac{\mathbf{v}_{(4)}}{\pi} \right)^{4k} E_{4k} + B_{4k} \right\}.$$

In the same way, we also get

$$\sum_{n=1}^{\infty} \frac{n^{6k-1}}{e^{2n\pi i/\rho} - 1} = \frac{1}{12k} \left\{ (-1)^{3k} \left(\frac{\mathbf{w}_{(6)}}{\pi} \right)^{6k} M_k + B_{6k} \right\}$$

and

$$\sum_{n=1}^{\infty} \frac{n^{6k\pm 2-1}}{e^{2n\pi i/\rho}-1} = \frac{B_{6k\pm 2}}{12k\pm 4},$$

where M_k is rational and is defined by

$$\sum_{(m,n)\in Z^2} \frac{1}{(m+n\rho)^{6k}} = \frac{(2\varpi_{(6)})^{6k}}{(6k)!} M_k.$$

The last formula is obtained from the power series expansion of

$$\wp(z; \varpi_{(6)}, \varpi_{(6)}\rho)$$

with respect to z.

6.2. As for Proposition 3, Professor Bruce C. Berndt has kindly informed me* that the more general formula holds:

(6.7)
$$\sum_{m=1}^{\infty} \frac{(2m-1)^{4N+1}}{e^{(2m-1)\pi}+1} = \frac{1}{4} (2^{4N+1}-1) \frac{B_{4N+2}}{2N+1}, \qquad N \ge 0,$$

which first appeared in Glaisher (Mess. Math. 18, (1889), 1-84) and he recently found some new reciprocity theorems and several identities which contains (6.7).

Now as in (5.0), Hurwitz number E_{2k} is defined by

$$\sum_{(m,n)\in \mathbb{Z}^2}' \frac{1}{(m+n\sqrt{-1})^{2k}} = \frac{(2\varpi_{(4)})^{2k}}{(2k)!} E_{2k} \ .$$

Then

$$E_{2k}=0$$
 for odd k .

^{*} A letter dated on November 23, 1977.

(Hurwitz used the notation E_k for our E_{4k} .)
Consider

$$g_k^{(1,1)} = g_k^{(1,1)}(0, 0; 1, \sqrt{-1}) = \sum_{\substack{m \equiv 1 \pmod{2} \\ n \equiv 1 \pmod{2}}} \frac{1}{(m+n\sqrt{-1})^k}$$

Every term of the right hand side of $g_k^{(1,1)}$ in Theorem 6 contains $D_{1,1}$ for odd k and $D_{1,1}=0$. Hence

$$g_k^{(1,1)} = 0$$
 for odd k .

Also we can easily show

$$g_{2k}^{(1,1)} = 0$$
 for odd k .

Since $C_{1,1}=0$, we have, by Theorem 5, (I),

$$g_{4}^{(1,1)} = \frac{(2\varpi_{(4)})^{4}}{4!} \left(-\frac{1}{2^{5}}\right)$$

and inductively

$$rac{g_{4k}^{(1,1)}}{oldsymbol{\overline{w}}_{(4)}^{4k}} \in oldsymbol{Q}$$
 .

We define rational numbers $E_{2k}^{(1,1)}$ by

(6.8)
$$g_{2k}^{(1,1)} = \frac{(2 w_{(4)})^{2k}}{(2k)!} E_{2k}^{(1,1)}.$$

 $E_{2k}^{(1,1)}$ is to be called as "2-division Hurwitz number" and we have

$$E_{2k}^{(1,1)} = 0$$
 for odd k .

For example,

$$E_{\scriptscriptstyle 4}^{\scriptscriptstyle (1,1)}\!=\!-rac{1}{2^5}$$
 , $E_{\scriptscriptstyle 8}^{\scriptscriptstyle (1,1)}\!=\!rac{3^2}{2^9}$, $E_{\scriptscriptstyle 12}^{\scriptscriptstyle (1,1)}\!=\!-rac{3^4\!\cdot\!7}{2^{13}}$.

We shall generalize (6.7) to and prove the following

THEOREM 11.

$$\sum_{m=1}^{\infty} \frac{(2m-1)^{2k-1}}{e^{(2m-1)\pi}+1} = \frac{3 \cdot 2^{2k-3} E_{2k} - 4 \cdot 2^{2k-3} E_{2k}^{(1,1)}}{k} \left(\frac{\varpi_{(4)}}{\pi}\right)^{2k} + \frac{1}{4} (2^{2k-1}-1) \frac{B_{2k}}{k} \; , \quad k \geq 1 \; .$$

PROOF. For short, put

$$G_{2k}(\tau) = (2k)!^{-1}S_{2k}(1, \tau; 0, 0) = \sum_{(m,n) \cap Z^2} \frac{1}{(m+n\tau)^{2k}}$$
.

Put

$$A_j(\tau) = \sum_{n=1}^{\infty} \frac{n^j}{e^{-2\pi\sqrt{-1}n\tau} - 1}$$

and

$$F_{j}(\tau) = \sum_{n=1}^{\infty} \frac{(2n-1)^{j}}{e^{-2\pi\sqrt{-1}(2n-1)\tau}+1}$$
.

Then by (6.5), we have

(6.9)
$$A_{j}(\tau) = (G_{2k}(\tau) - 2\zeta(2k)) \frac{(2k-1)!}{2(2\pi\sqrt{-1})^{2k}}$$

with j=2k-1 and we can easily show

(6.10)
$$F_{j}(\tau) = A_{j}(\tau) - 2(2^{j-1}+1)A_{j}(2\tau) + 2^{j+1}A_{j}(4\tau).$$

Since

$$G_{2k}\left(\frac{1}{2}\sqrt{-1}\right) = (-4)^k G_{2k}(2\sqrt{-1})$$

holds, we can derive, by (6.9) and (6.10),

$$(6.11) \qquad F_{2k-1}\Big(\frac{1}{2}\sqrt{-1}\Big) = \frac{(2k-1)!}{2(2\pi\sqrt{-1})^{2k}} \left\{ ((-1)^k + 1)2^{2k}G_{2k}(2\sqrt{-1}) - 2(2^{2k-2} + 1)G_{2k}(\sqrt{-1}) + (2-2^{2k})\zeta(2k) \right\} \,.$$

Note that

$$G_{2k}(\sqrt{-1})=0$$
 for odd k .

Hence for k=2N+1, N>0, follows

$$F_{\scriptscriptstyle 4N+1}\left(\frac{1}{2}\sqrt{-1}\right) = \frac{(4N+1)\,!}{2(2\pi\sqrt{-1})^{4N+2}} (2-2^{4N+2})\zeta(4N+2)$$

from (6.11). This, together with Proposition 3, shows Theorem 11 for k=2N+1, $N\geq 0$.

Now consider the case k=2N. Then (6.11) becomes

$$(6.12) \qquad F_{4^{N-1}}\Big(\frac{1}{2}\sqrt{-1}\Big) = \frac{(4N-1)!}{2(2\pi\sqrt{-1})^{4N}} \{2^{4^{N+1}}G_{4N}(2\sqrt{-1}) - 2(2^{4^{N-2}}+1)G_{4N}(\sqrt{-1}) + (2-2^{4^{N}})\zeta(4N)\}.$$

Hence the problem is to compute $G_{4N}(2\sqrt{-1})$. We can represent $G_{4N}(2\sqrt{-1})$ as

$$G_{4N}(2\sqrt{-1}) = 2^{-4N}G_{4N}(\sqrt{-1}) + g_{4N}^{(1,0)}(0, 0; 1, \sqrt{-1})$$
.

Observing that $g_{4N}^{(1,0)} = g_{4N}^{(0,1)}$ holds, we have

$$G_{4N}(\sqrt{-1}) = 2^{-4N}G_{4N}(\sqrt{-1}) + 2g_{4N}^{(1,0)} + g_{4N}^{(1,1)}$$
.

Then it follows from (6.8),

$$G_{4N}(2\sqrt{-1})\!=\!rac{(2\varpi_{(4)})^{4N}}{2(4N)!}((1\!+\!2^{-4N})E_{4N}\!-\!E_{4N}^{(1,1)})$$
 .

Insert this to (6.12). Then a straightforward calculation gives our Theorem 11, for k=2N, N>1.

References

- [1] B. C. Berndt, Modular transformations and generalizations of several formulas of Ramanujan, The Rocky Mountain J. of Math., 7 (1977), 147-189.
- [2] R. M. DAMERELL, L-functions of elliptic curves with complex multiplication I, Acta Arith., (1970) 287-301.
- [3] L. DIRICHLET, Sur la covergence des séries trigonometriques qui servent a représenter une fonction arbitraire entre des limites donnees, Werke, 117-132.
- [4] G. EISENSTEIN, Beiträge zur Theorie der elliptischen Functionen, Werke I. 299-478.
- [5] G. H. HARDY, A formula of Ramanujan, J. London Math. Soc., 3 (1928), 238-240.
- [6] H. HASSE, Neue Bergründung der komplexen Multiplikation I, Crelle, 157 (1927), 115-139.
- [7] G. HERGLOTZ, Über die Entwicklungskoeffizienten der Weierstrassschen & Funktion, Sitzung. Berichte, Leipzig, (1922), 269-289.
- [8] A. Hurwitz, Über die Entwicklungskoeffizienten der lemiskatischen Funktionen, M.A., 51 (1899), 342-373.
- [9] C. JORDAN, Cours d'Analyse II, Chapt. VII.
- [10] L. KRONECKER, Zur Theorie der elliptischen Funktionen, Werke IV, 311-318, 347-495, V, 3-184.
- [11] L. Kronecker, Bemerkungen über die Darstellung von Reihen durch Integrale, Werke V, 329-342.
- [12] S. RAMANUJAN, Notebooks of Srinivasa Ramanujan, Tata, Bombay, 1957.
- [13] C. L. SIEGEL, Lectures on advanced analytic number theory, Tata, Bombay, 1964.
- [14] H. WEBER, Lehrbuch der Algebra III, Chelsea (Originally 1908).

[15] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer, Ergebnisse, 1976.

Present Address:
DEPARTMENT OF MATHEMATICS
TSUDA COLLEGE
KODAIRA-SHI, TOKYO 187