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Endomorphism Rings of Split (B, /V)-pairs

Hideki SAWADA

Sophia University

Introduction.

This note concerns a certain property of endomorphism rings of
subgroups of a split (B, N)-pair (G, B, N, R, U) of characteristic p and
rank » containing U. Let .9 be a subgroup of G containing U and K
be an arbitrary field. Let K.& be the group algebra of .& over K
and U=3,.-u. Then we have the following theorem (Theorem 2. 4)
Let E=End;. (K. U), then '

(i) FE is a Frobenius algebra, and

(ii) if ch(K)+#p, E is also a symmetric algebra.

(i) of the above theorem was announced by the author at The Kyoto
Conference on Permutation Groups with a complicated proof when
E=End;(KGU) and K is an algebraically closed field of characteristic P
(see [9]). However the author improved the proof as is done in this
note soon after the conference, and he received letters from Professor
James A. Green, who had already got the same simple proof of (i) of
Theorem 2.4 and proved more successful theorems on these kinds of
Frobenius endomorphism rings with his student Ms. Nalsey Tinberg in
their papers [12] [13]. Hence (i) of Theorem 2.4 may be cons1dered as a
generalization of his result. ‘

In §1 we show the classification of the subgroups .5~ which was
announced by the author at The 23rd Symposium on Algebra (see [8]),
but the classification of those subgroups had been first shown by T.
Yokonuma in case of Chevalley groups (see [11]).

In §2 we construct certain linear maps from F into K by which £
is a Frobenius or symmetric algebra, respectively.

The author is very grateful to Professor Yukiyoshi Kawada for
encouraging him to write this note. '
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§1. Subgroups of a split (B, N)-pair (G, B, N, R, U) containing U.

Let (G, B, N, R, U) be a split (B, N)-pair of characteristic p and
rank n. Let H=BNN and W=N/H, then from the definitions of
(B, N)-pairs and split (B, N)-pairs (see [3, Definitions 2.1 and 3.1]) (W, R)
is a Coxeter system, and H is a p’-abelian group and B=UH[DU re-
spectively. In this section we classify all the subgroups of G containing
U (Theorem 1.6).

Let @ be a root system of (W, R) with the base 4={a, «,, -- -, @,}
which corresponds to R. Let wyp be a unique element of maximal length
in W and R={w,, w,, ---, w,}. We define the subgroups of G as follows.

U;=U,=Un""zU for a, €4, where "z U=w,w,Ulw,wg)™" .
U:=UNn*"'U, U,=UNn"":U for we W.
V="rU '
V,=U_,,="U,, for a;e4.
H,=Hn{U,, V,) for a; € 4, where {(U,, V,> is the subgroup of
G generated by U; and V. '

Let (w;) be an element of U,V U, such that (w,)H=w, for all 1<i<n
(see, for example, [2, Lemma 2.2]).

Let (J, 5#) be a pair such that Jis a subset of R and 5# is a
subgroup of H containing H, for each w,€J. We shall show that there
exists a certain bijective correspondence between the set of all such
pairs Z#={(J, 5#°)} and the set of subgroups of G containing U.

LEMMA 1.1. Let h be an element of H, then there exists h,€ H, for
each w; € R such that (w,)h(w,) " =hh,.

PrOOF. This is a straight consequence from the fact that A*U,hC U,
and h7'V,hCV, for all he H. Q.E.D.

LEMMA 1.2. Let g, be a mapping of @ into {*(U,, Volwe W, e, € 4}
such that
9o: @ — (U, Volwe W, a,ed}.
(O] w

w(a,) — U, V)

Then g, is well-defined and surjective, and g w(a))=vg(x) for all
ace® and we W.

PrOOF. From the proof of Lemma 1.1, “(U, V,)> is well-defined.
Assume w(,)=w'(a;) where a, @;€ 4 and w, w' € W, then “U,=*"U; and
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woiJ,=*"*iJ; from [6, Theorem 3.6]. Hence g, is well-defined. = Q.E.D.

Let N, be the inverse image of W, of the natural mapping
N—-W=N/H. From Lemmas 1.1 and 1.2 and [1, Proposition 5 on p. 16]
we have the following lemma.

LEMMA 1.8. Let (J, #)e P, and t(w)=(w;)w;,) -+ (w;) where
we W, and w=w;w;,--w;, 1s a reduced expression of w. Then

(i) N,>z7;

(ii) T: W,— N,/57 is a well-defined injective homomorphism;

t

(0] (O]

w —T(w)eF
(iii) A, 22)=Uuwew,7(w)SZ forms a subgroup of N;
(iv) (], 2> and W,=_4"(J, 57)|57 .

PRrOOF.

(i) is clear from Lemma 1.1.

(ii) Let w,, w;eJ and n;; be the order of w,w;.
Assume n,; be even. Then since

W W ;WW 5 + = WW ;= W ;W,W;W,+ = W;W,;,, We have
R 2 "

Nij Ny

wi’w,-' . 'thjW£iji_1w;1' . 'w:‘lw;lw:l:w:" o

~——

~ ~
mj—l mj—l

Let w'=w,w;---w,w;w;, then 7,,;,=7,, where 7, means the reflection of

nij—l
a root ¢c® (see [38,1.1]). Hence w'(a;)==*a;. From Lemma 1.2 we
have

(W) (w;)- - - (w)(w;)(w) H(wy) 7 - - (w) " (wy)™ € H .

—
(27 Wiy

Therefore

(w(wy)- - -(w(w;) = () (W) - - (W) (w)

Nij N1y

Similarly we have Qvi)(w,-)- c o (wy)(w ) (W) = (iw,-)(wi)- -« (w;)5#¥ when

n Nij
n,; is odd. Since (W,, J) is a i@oxeter system, T isi a well-defined
mapping from [1, Proposition 5, p. 16]. It is clear that T is an injective
homomorphism.
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(iii) is clear from (ii).
(iv) Since T(W,)={t(w)>#|w € W,}, (iv) is also clear from (ii). Q.E.D.

LEMMA 1.4. Let W be the Weyl group of a root system @ and
4={a,,---, a,} be a base of ®. Let w,=r,, forall L<i<n, R={w,, wy,---, w,}
and wy be a unique element of maximal length in W where r,, is the
reflection with respect to «,. :

(i) Let w be an element of W, then there exists w' € W such that
ww' =wg and lww")=l(w)+l(w") where l(w)=Min{k|w=w; - -w;,, w; € R}.

(ii) Let w be an element of W, then there exists w' € W such that
ww=wz and l(ww)=1l(w")+l(w).

PrOOF. For any a,€4 and we W,

w(a,)>0 if and only if l(ww,)=I(w)+1 and

w(a)<0 if and only if l(ww,)=I(w)—1 (see [10, Appendix]).
Since w=w; if and only if w(a,)<0 for any a, € 4, (i) and (ii) are clear
from the above fact. Q.E.D.

Let JCR and 9,=®N3,,.; R, where R is the real number field,
then it is clear that @, is a root system with a base 4,={e,|w, € J} and
the Weyl group W,. Let &,={aec®*|w(a)ec ®} where we W, ®* and
@~ are the sets of positive roots and negative roots of @ respectively.

Let € ®, then there exists we W and a,€4 such that a=w(,).
We write U,=*U,, which does not depend on w and «, (see [6, Theorem
3.6)).

LEMMA 1.5. Let J be a subset of R and w; be a unique element of
maximal length in W,. Let ne N; and w,€J, then

(w)Us nc U, (w)nU,, U( L!”U wth(u)nU;))
ne i

where Uf=U,—{1} and h, is the same mapping defined in [8, Lemma
4.4]. '

PROOF. Let w=nH. Suppose l(w,w)>l(w) i.e. l(w™'w,)>l(w™). Since
U,,=U."(Us,,.,,) from [2, Lemma 2.3],

(wYUs,n=(wIUL Uz, )n=(w)"(Us,u ) U n= Uy (wn*"' Uy, .

Since (?,),=9, for all we W,, @, is the set of all positive roots in @,.
Hence Us,,,cU;, and “'U;,CU;, from [4, Proposition 1.4], because U,
is generated by the subgroups U, where S @, ;» Therefore (w,)U,,nC
U, (w)nU; S
Assume l(ww)<l(w). Let n'eN, such that n=(w,)n’. Since
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Us,="(Us,.,)Us,, We have

(W)U, m=w) U (wn' = (w)*"(Us,.) Uy (w)n'

| =Us,u, (W) Us (w)n' c Uy (w,) U wn' .

Hence | |

(w)Us,mc Uy (w,)'n’ U (U Uz, fwh(u)(w)g(w)n’)
cUs,(w)nUs, U (MLSJU‘%] o h (W) (W)U, m') ,

because fi(u), g (u) e U,cU;, (see [3, Lemma 4.4]). Since w,w")>l(w")
where w'=n'H, we have (wi)U‘ n'cU, (w,-)n’U;J. Therefore

(w)Us,mc U, (w)nUs;,, U( U Uz h(w)Ug,mUs )
= U, (w)nUs, U( u U ‘(u)nU;J) . Q.E.D.

THEOREM 1.6. (See[8, Theorem 2.6].) Let .7 (J, 22)=U_4"(J, 57U
where (J, 5£2)e . Then,

(i) 7 (J, 2£) is a subgroup of G containing U and &7 (J, 5#°)D
(S, 227 of and only iof (J, S2)D(J', SF) ie. JOJ' and F DS,
where (J', #') e &,

(ii) +f &7 18 a subgroup of G containing U, then there exists a
pair (J, 7)€ & such that 7 =.%(J, S7).

PROOF. (i) Since .97 (J, S2)=Uyew, Ut(w)SZ U, t(w).7(J, 5£)=
Z(J, 57) for any we W, from Lemma 1.5. Further from (iii) of
Lemma 1.3 x7'e 7 (J, &) for each ze .97 (J, 5#). Hence ¥ (J, 5%) is
a subgroup of G containing U.

Assume 7 (J, S7)D .57 (J' 2#”), then we have _+(J, GENVD N (S, "),
because UnU=Un'U if and only if m=n’ for all n, n’ € N. Hence we
have U,ew,7 (W) DU ew, T(W') 57", Since t(w)c# NH=@ for each

we WJ——{l}, we have 57 D57 and JOJ'.

\ (ii) Since . DOU, there exists a subset N of N such that
' =Uner, UnU. It is clear that +#;=.9NN. Since & H=H.>, v H
is a parabolic subgroup of G and there exists J—R such shat
" H=BW,;B. Since .%H has a (B, N)-pair (' H, B, +,H, J), +4;H|
H=_4;/ ;0N H=W,. Let 5~ =_+;nH. Since UD U, and DV, for
all w.eJ, .o72<U, V) and #NHDH, Further A5=U,ew,7(w)SZ,
because

(w)h Uh”‘(wi)”.lc UU( U Uhu)(w)™U) .
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Hence (J, &#°) € & and &7 =.97(J, 5£). Q.E.D.

THEOREM 1.7. Let (J, 2£)e P and < (J, 2 )=U,, (], )U,,.
Let =2, 2¢), B=U,,5, V' =4, ) and ZZ=U,,. Then

(i) & 1is a subgroup of G with a split (B, N)-pair (¥, &, 1,
J, @),

(i) 2, )=Uuwew, Us,r(w)£US;

(i) o7, )=, 2)UL, and £ (J, 5£)N UL, =({1}.

ProoF. (i) Since _#7(J, &) is a subgroup of N and (w,)&(J, &£°)C
z(J, 57) for any w,eJ from Lemma 1.5, & is a subgroup of G. It
can be easily checked according to the definition that ¥ has a split
(By N)-pair (gr '—@r A7, J’ &Z/)'

(ii) Let we W,, then from Lemma 1.4 and [2, Lemma 2.3] there
exists w'e W, such that w,=w'w, (w,)=l(w)+lw) and U,,=
U (U )y =U,)*U, where (Up ) =t(w)*U, t(w). Hence

U,,t(w)sz U,,=U, t(w)Z&t(w) Uy t(w) U,
=U,, Ust(w)sZU,=U, t(w)Z U, .

(iii) Since ¥ (J, Z)=Uuwew, Ut(w)SEU=Uyew,Us, Uy, c(w)22 U,
we have

7 (J, 2)Y=U%, 2, 5)=2(J, ) )US, from (ii). It is clear that
e, 2)NU;, ={1}. Q.E.D.

§ 2. Endomorphism rings of split (B, N)-pairs.

Let (G, B, N, R, U) be a split (B, N)-pair of characteristic p and
rank n. Let K be an arbitrary field and KG be the group algebra of
G over K. If T is a subset of G, we write T=3,.rt in KG. Let &
be a subgroup of G containing U, then there exists a unique pair
(J, 7)€ & such that & =.%(J, &) from Theorem 1.6. In this section
we show that the endomorphism ring E(J, 5#)=End;. (K. U) is a
Frobenius algebra and further E(J, 5#) is a symmetric algebra when
the characteristic of K is not equal to p. '

Let ne 4+ (J, 57) and w=n5%, then we W, from (iv) of Lemma
1.3 and the mapping A, also belongs to E(J, 2#°) from [7, §§1, 2] where
A (x)=2nU; for any xe Ko7 U. It is also clear from [7, §§1, 2] that
{A.ln e (J, 7)) forms a basis for E(J, 7). We write _4"=_47(J, 52).

The next proposition is a straight consequence of [7, Proposition 2.6].

PROPOSITION 2.1. Let E(J, 57) and {A,|n € .47} be as above. Assume
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nF =we W,, then E
(i) A,A,=A,, and A A,=A,,, for all he 22 and ne _47;
(11) A wi)An An(w-) 'l'f l(wwi)>l(w) and )

| A A g =Acuyn if Uwa0)> 1) ;
(iii) A(@)A =|U; [An(w )+(ZuEU* A p=1h0w ))A ’l'f l(ww, )<l(w) a'nd
A A(w y=U,; lA(w,m'i“An( Z Ah w) W N waw)<l(w) .

Let w, be a unique element in W, of maximal length and w, be a
fixed element in .4~ such that 0,57 =w,.

LEMMA 2.2. Let v be a linear mapping of E(J, 2£) into K such
that \

v: E(J, 7)) — K, then
w w ~

2 ann B ca)J
ne .y

v is well-defined and the kernel of v contains mno left or right ideals
different from zero.

Proor. It is clear that v is a well-defined non-trivial linear mapping.
When 3..., c,A, is a non-zero element of E(J, 2¢), let H(Xlnc. ¢, A,)
denote the maximal length of n5# ¢ W, with non-zero c¢,, i.e.,

B( %c%An)zMax{l(nH)ln e, c,#0}.

Assume that there exists a non-zero left ideal L of E(J, 2#) in
Kery. Let x,=3,,., c,A, be a non-zero element in L.
If H(x,)=1l(w;), then there exists h, € 57 such that ¢c,,,, 0. However
Ah—m;o Aho 1(cmh0 wshet > cﬂAn)=cmhoAa,J+ >y an,,ho—leL .

‘n.—;:tho 'nqﬁa)Jhg

Hence u(Ah_lxo) Cu,m, 70, contrary to our assumption.

If 1<%9(x,)<l(w,), then there exists we._#" such that cw¢0 and
w27)=%=,). However there exists an element w'e W; such that
ww' =w, and l(ww")=1l(w)+1l(w") from Lemma 1.4, where w=w># . Hence
there exists h’e 5 such that w(w;):--(w;)h'=w, where w'=w;---w;,
is a reduced expression of w’, and we have

A(w,1 oo twj Lo = Ah’A(w_,t)A(w“ ) A(w, (Colo+ X Ca A)

n+w

=C,4,,+ ZCnAhIA(w,-t)ijt__l)‘ A(‘le)Aﬂ .
. nFEw
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Hence v(A(,,,J.I)...(w,.‘,,,,xo)=c.,,;é0 from Proposition 2.1, and this contradicts
to our assumption.
If B(z,)=0 i.e. .=, ciA;, similarly we have W(A,,A\-12,)#0 for
some h,€ 52 contrary to the assumption.
Hence there is no non-zero left ideal of E(J, 5#) in Kery. Similarly
we can prove that there is no non-zero right ideal of E(J, 5#) in Ker v.
Q.E.D.

LEMMA 2.3. Assume that the characteristic of K 18 mot equal to
p. Let o be a linear mapping of E(J, 57) into K such that

o:E(J,5#¥)— K, then
w w ‘

2 c A, ——c

ne.
o 18 a well-defined and the kernel of o contains no left or right ideals
different from zero. Further o(xy—yx)=0 for all z, y c E(J, 7).

PRrOOF. It is clear that o is a well-defined non-trivial linear mapping.
When ..., c,A, is a non-zero element in E(J, 572), let §'(Sine. C.A,)
denote the minimal length of n5# € W, with non-zero ¢, i.e.,

§( S, erds) =Min{i(nz) | e, ¢, 0} .

Let ©,=>,.., ¢, A, € E(J, 5#)—{0}, then we can prove that there
exists a € E(J, 5#°) such that og(az,)#0 from the induction of ¥(x,) as
follows.

If %'(x,)#0, then there exists h, e 57 such that ¢y, 70. Hence

O(A-120) = 0(As-1(CrgAn, + ;‘: C.AL))=0(ch A+ 2, Cadu) =04, #0 .
n¥ho n*ho

Assume that there exists a € E(J, 5#°) such that o(ax})+0 when §'(z))<k,
where =z)ec E(J, 5#)—{0} and k is a natural number. Let us take
x, € E(J, 2#°)—{0} such that %' (x,)=k. Then there exists w € _#" such that
c.#0 and (w£)=Y'(x,). Let wSF =w;w,, - w;, be a reduced expres-
sion of w=#, then O=h(w;)(w;,)--(w;,) for some he 5. Now, since

A(w,'k)_lAm: | UjhlAh(wil)(sz)"'(ij___l) + (ueE:‘U‘! A(wjk)hjk(u)(w_,'k)"l)Aw
Tk

and |U;|+0, we have Y(A;—x)<k—1 and there exists ac E(J, 5#)
such that g(aA4,, ip—%)7#0 from the induction. Hence Ker o contains no
left ideals different from zero.

Next we will show that 0(A, A,)=0(A,A,,) for any w,eJ and
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ne._ 4. In case l(no#")=1 we have n=(w;)h for some w;eJ and h € 5~.
If <7, then o(A,,A,)=0=0(4,4,,). If i=j, then

U(A(wi)A(wi)h)
=a(] UilA(wi)h(wi) +( 20'« A(wi)’“lhi(u)(wt))A(wi)h) =] Ui]U(A(w,;)h(wi))
ue 1

and

O'(Ami)hA(w,-)) =0(ArdpAw,)
=0(A(|U,| A p2+( Ei“/' A p—1nwwpliw)) = U0 (A o) -
ue€ i

Since the relation (w,)h(w,)=1 is equivalent to (w,)’h=1, we have
0(AwpA)=0(A4,A.,). If (nF)>1, then (A, 4,)=0=0(4,A.,).

It is clear that 0(A. A)=0=0(A,A.,,) for any he 5#. Hence we
have o(A.,,r)=0(xA,) for any w,eJ and xe E(J, 5#). We can easily
show that o(A,x)=0(xA,) for any he 57 and xec E(J, 5#). Therefore
we have o(4,r)=0(xA,) for all ne_+ and xzeE(J, 5#). Hence
o(xy—yx)=0 for any =z, y € E(J, 5#), and Ker ¢ contains no right ideals
different from zero either. Q.E.D.

THEOREM 2.4. Let K be an arbitrary field and (G, B, N, R, U) be a
split (B, N)-pair of characteristic p and rank n. Let .7 be a subgroup
of G containing U and E=End.. (K. U). Then

(i) FE is a Frobenius algebra, and

(ii) 2f ch(K)+#p, E 18 also a symmetric algebra.

PROOF.‘ (1) and (ii) are clear from Lemmas 2.2 and 2.3 and from
the definitions of those algebras (see [5, Chapter IX]). Q.E.D.

ADDENDUM TO THEOREM 2.4. If K s an algebratically closed field of
characteristic p, then E=End.,(KGU) is mot a symmetric algebra in
general.

PROOF. Assume that E is a symmetric algebra, then from [5, Exer-
cise 83.1] Ex,/(rad E)r;=I(rad E)x, for any primitive idempotent =, in [7,
Theorem 2.11], where l(rad E)={xc E|xrad E=0}. Let (J, %) be a pair
in P such that A(J, y)7.=A(J, %) i.e. l(rad E)xr,=EA(J, ¥), then we have
Er,/(rad E)r,=EA(*J, »o) from [7, Theorem 3.10]. However it is very
easy to give an example of pairs (J, ) such that (J, )= ("], “ox) i.e.
EA(J, Y)2FEA(*J, *y). Hence E is not a symmetric algebra in general.

Q.E.D.
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