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Introduction.

For a compact set L in the complex number plane C, we denote by
(L) the space of germs of holomorphic functions on L. It is well
known that the space ~”(L) can be equipped with the topology of DFS
space. The dual space ~'(L) of (L) is called the space of analytic
functionals with carrier in L and was studied extensively by many
authors. The aim of this paper is to extend the theory of analytic
functionals to the case where L is not compact. For the simplicity, we
suppose in this paper L is a closed strip of finite width.

In §1 we introduce the fundamental space Q(L; K’) of germs of
holomorphic functions. We define in §2 a new series of spaces of
holomorphic functions, which will be used to describe the complex re-
presentations of the space Q'(L; K’) of analytic functionals with carrier
in L and of exponential type in K’'. §3 treats the Cauchy transforma-
tion and we obtain a complex representation of @' (L; K’). In §§4 and
5, we will study the case where L is a closed right strip and that find
the situation is very similar to the classical theory of analytic functionals.
We will show, among others, the image of the Fourier transformation
of Q(L; K') is the space Exp(R+%(— c, —k;); L) of holomorphic func-
tions of exponential type L defined on the open half plane R+i(— ~, —k,).

In the final section, we will treat the case where L is an entire
strip L=R+1K. Our space of analytic functionals Q'(L; K') is a sub-
space of the space of Fourier ultra-hyperfunctions (Park-Morimoto [6]),
which were first introduced by Sebastiac e Silva [8] under the name of
ultra-distributions of exponential growth. If L=R and K’'={0}, then
our space reduces to the space of Fourier hyperfunctions introduced by
M. Sato [7] and studied by T. Kawai [2]. Using the results obtained in
§§ 4 and 5, we will study the relation of two definitions of the Fourier
transformation of Q'(L; K'), one is by the duality and other is by the
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complex method. We will find several forms of complex representation
of the space Q' (R+1K; K').

The ideas of this paper were announced in [4] but the details have
been improved (see also [5]). ‘

§1. The fundamental space Q(L; K’).

Let L be a closed strip of finite width in the complex number plane C:
(1.1) L=A+iK, i=v—1,

A being a closed interval and K a compact interval. Let K’ be a com-
pact interval. We denote by @Q,(L; K’) the space of all continuous
functions f on L holomorphic in the interior int L which satisfy the
following condition:

(1.2) | sup |f(2)| exp(Hx /(%)) < oo,
where we denote z=x+1y and Hg.(x) is the supporting function of K':

(1.3) Hy.(x)= ”sg? x”n .

It is clear that the space Q,(L; K’) endowed with the norm (1.2) is a
Banach space. If L,DL, and K/DK,, the restriction mapping

(1.4) Qu(Ly; K)) — Qu(Ly; K3)

is a continuous linear injection. :
We define, taking the inductive limit following mappings (1.4) as
€|0 and ¢']0,

(1.5) Q(L; K')=limind Q,(L; K'(e"),

el0, ¢'}0

where we put
(1.6) L.=L+[—¢, e]+1i[—¢, €], K'(¢)=K'+[—¢, €] .

If L is a compact set, the space Q(L; K') coincides with the space ~(L)
of germs of holomorphic functions on L. The space Q(L; K’) is a DFS
space, being the inductive limit of the compact increasing sequence of
Banach spaces:

(1.7) Qi(Li; K'(€") — Qi(L.; K'(e])), &>&>0.
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A continuous linear functional S on the space Q(L; K') is, by de-
finition, an analytic functional with carrier in L and of exponential
type in K’. We denote by Q'(L; K’) the dual space of Q(L; K’).
Q'(L; K') is an FS space. The value of an analytic functional Se Q'(L; K')
at a testing function feQ(L; K’) will be denoted by ¢S, f> or by
(S, f(2)).

By the definition of the locally convex inductive limit topology, we
have

LemMA 1.1. A linear functional S on Q(L; K') is continuous if
and only tf, for any €>0 and & >0, there exists a non-negative constant
C such that

18 K8, /)| =Csup |f@)] exp(H (@) +¢ |a))

for any feQyL.; K'e)).

PROPOSITION 1.1. Let‘,‘L0 be a compact set such that L,CL. Then
the natural mapping
(1.9) 7'(Ly,) — Q' (L; K")

18 injectz've.

Proor. By the Hahn-Banach theorem, we have only to show the
image of the restriction Q(L: K’)— #?(L,) is dense in #*(L,). By the
Runge theorem, we can find, for any fe (L), asequence of polynomials
f. which converges uniformly to f on L,, for some &>0. Then the
functions exp(—(1/n)z*)f.(2) € Q(L; K’) converge to f uniformly on L.,
hence in the topology of ~(L,), as n— oo. Q.E.D.

'~ By the mapping (1.9) we may consider the space ~’(L,) of analytic

functionals with carrier in the compact set L, as a subspace of our
space Q'(L; K') of analytic functionals.

PROPOSITION 1.2. Let L be the closed strip (1.1). Suppose compact
intervals K, and K, satisfy K/CK,. Then the natural mapping

(1.10) , Q(L; K|)— Q'(L; K;)

18 injective.
Proof is similar to the preceding one and is omitted.
§2. Spaces R*(C\L; K’), R(C; K’) and H;(C; R*(K")).

In this section we use constantly the following version of Phragmén-
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Lindelof theorem:

THEOREM 2.1. Suppose L 1is a closed strip of the form (1.1). Sup-
pose 0<e<r. Let f be a continuous function on the closed set L, which
is holomorphic in int L, and of expomential order im the following
sense:

There exist non-negative numbers C and n such that

2.1
@1 lexp(—C|w|™)f(w)| ts bounded on the strip L, .

Then suDyezaz, |f(W) =M implies sup,.., |f(w) =M.

For the proof we refer the reader to Hille [1], vol. 2, p.393.

In order to describe the image of the Cauchy transformation of
Q'(L; K’), we introduce a new series of function spaces. For positive
numbers ¢, » and ¢ such that ¢é<r, we denote by R,(L\L.; K'(¢')) the

space of all continuous functions F on the closed set L,\L, which are
holomorphic in (int L,)\L, and satisfy the growth condition:

(2.2) sup |F(w)| exp(— Hg (w)—¢" [u)< e,

where w=u+1v, i=1"—1. For positive numbers » and &’ we denote by
R,(L,; K'(¢")) the space of all continuous functions on L, which are
holomorphic in int L, and satisfy the growth condition:

(2.27) ggplF(w)lexp( Hy(uw)—¢" ju))<oo .

Equipped with the norms (2.2) and (2.2) respectively, the spaces
Ry(L,\L.; K'(¢")) and R,(L,; K'(¢')) are Banach spaces. By the restriction
mapping, we consider the space R,(L,; K’'(¢’)) is a subspace of the space
R(L\L.; K'(¢")). By Theorem 2.1, R,(L,; K'(¢’)) is closed in R,(L\L,;
K'(€")).

If 0<e,<e<r<r, and 0<¢/<¢’, we can define the following com-
mutative diagram of restriction mappings:

(2.3) 'Rb(Lq\Lel; K'(e})) — Ry(L\L.; K'(¢"))
(2.4) Ry(L,; K'(e])) — Ry(L,; K'()) -

The mappings (2.3) and (2.4) are compact operators.
For every fixed ¢'>0, we form the projective limits of the spaces
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R,(L\L.; K'(¢")) and R,(L,; K'(¢')) letting 71 « and ¢ |0 following the
mappings (2.3) and (2.4) respectively:

(2.5) RYC\L; K'(¢)=lim proj Ry(L\L; K'(¢) ,
(2.6) Ry(C; K'(¢"))=lim proj Ry(L,; K'(¢) .

These spaces R{(C\L; K'(¢')) and RI(C; K'(¢’)) are FS spaces, being the
projective limits of compact decreasing sequences of Banach spaces. The
space Rj(C; K'(¢')) is considered as a closed subspace of the space
RI(C\L; K'(¢")) by restriction.

Suppose 0<¢e;<e’. We have the following commutative diagram of
continuous linear injections as the projective limit of the diagram (2.3)-
(2.4):

(2.7) Ri(C\L; K'(e})) — R{(C\L; K'(¢))
(2.8) R{(C; K'(e)) — Ri(C; K'(€)) .

Passing to the quotient, we can define canonically the continuous linear
mapping:
(2.9) §(C\L; K'(e1))/Ri(C; K'(e))) — R{(C\L; K'(¢"))/Ri(C; K'(€)) -
The mapping (2.9) is injective because of the Phragmén-Lindelof theorem
(Theorem 2.1).

We form further the projective limits of the spaces R,(L,\L.; K'(¢"))
and R,(L,; K'(¢')) letting 71 «,e |0 and ¢ |0, following the mappings
(2.3) and (2.4):

(2.10) RY(C\L; K')=li1m {’rq-joRb(Lr\Le; K'(e")
=1im’lproj Ri(C\L; K'(¢")),
(2.11) RX(C; K')=lim proj R,(L,; K'(e"))

rfoo, e']0

=lim proj R{(C; K'(¢)) .
e’ j0

The spaces RX(C\L; K’) and R%(C; K') are FS spaces. By the Phragmén-
Lindelof theorem, the space R*(C; K’) is a closed subspace of the space
R*(C\L; K').

DEFINITION 2.1. (i) We define the space H;(C; R*K')) of the
cohomology classes with carrier in L and of exponential type in K' to
be the quotient space of R*(C\L; K’) by its subspace RY(C; K'):
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(2.12) H(C; RXK"))=R*C\L; K")/R*C; K').
(ii) We define further
(2.13) +(C; RL(K’))=lim'Rr0j R;(C\L; K'(¢"))/RKC; K'(¢)),

where the projective limit is taken following the mappings (2.9).

As a quotient space of an FS space by its closed subspace, the
space H;(C; R K')) is an FS space. For a function Fe RYC\L; K’),
we will denote by [F'] the cohomology class represented by F. Extend-
ing the canonical mapping

(2.14) RY(C\L; K')—> RKC\L; K'(e"),
we can define canonically the continuous linear mapping
(2.15) k: HY(C; RYK") — HLC; RYK")),

which is injective because of the Phragmén-Lindelof theorem.

Suppose now fe@Q(L; K') and Fe RYC\L; K') are given. We can
find positive numbers ¢, and ¢; such that fe@Q,(L.,; K'(c;)). For a posi-
tive number ¢ with e¢<¢,, consider the integral

(2.16) Sn flw)Flw)dw .

The integral (2.16) converges absolutely, as we can choose, for every
positive number ¢ with &' <e;,, a non-negative number C such that

|f(w)F(w)| = C exp(— Hx.(u)—¢&; |u|) exp(Hy.(u)+¢€ |ul)
=Cexp(—(e—¢') |ul)

for w=u+1weoL,.. For every fixed & with 0<e,<¢, the constant C
can be taken uniformly in ¢ with ¢, <e<e,. Therefore by the Cauchy
integral theorem, the integral (2.16) does not depend on the positive
number ¢. For the brevity, we will write the integral (2.16) as follows:

(2.16" S fw)Fw)dw .
9Lyo
We have clearly the following lemmas:

LEMMA 2.1. For FeR¥C\L; K') we define a linear functional
Int(F') on the space Q(L; K') by
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(2.17) Int(F): fr— —S fw)F(w)dw .
3Lt
Then Int(F') belongs to Q' (L; K'). If F 4s in the space RY(C; K’), we
have Int(F)=0.

Thanks to Lemma 2.1, passing to the quotient we can define a con-
tinuous linear mapping

(2.18) Int: H}(C; RXK")) — Q' (L; K') .

A series of functions F(w; &) € R{(C\L; K'(¢")), ¢€>0, such that for
any ¢, <¢’,
F(w; &)—F(w; ¢')e R{(C; ¢'),
gives an element of H}(C; RY(K')), which we denote by [F(w; +0)].
Suppose fe Q(L; K’) and [F(w; +0)]e Hi(C; RXK")) be given. We can

find positive numbers ¢, and ¢, such that fe Qy(L.,;; K'(g)). For any e
and ¢’ such that 0<e<e, and 0<e’ <¢, we can define the integral

(2.19) SaL Fow)F(w; e)dw .

By the Cauchy integral theorem, the integral (2.19) is independent of
the numbers ¢, ¢’ and the choise of the representative F(w; ¢') of the
cohomology class [F(w; +0)]. Therefore we will write (2.19) as follows:

(2.19) gaL Fw)[Fw; +0)]dw .
For [F(w; +0)]e HXC; RYK")), we define a linear functional fEE[F] by
(2.20) Int[F]: f'__’"LL Fw)[Fw; +0)]dw

on the space Q(L; K’). As Int [F'] is clearly continuous on every space
Q(L.; K'(¢"), it is continuous on the space Q(L; K’). —

It is clear by the definition of the mappings Int and Int that we
have the following proposition:

PROPOSITION 2.1. The following diagram is commutative:
H(C; RYK')) — HL(C; RYK"))

N /
Int\ Tt
Q'(L; K')

(2.21)
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that s,
(2.21") Int=Intox.

It will be proved in Theorem 3.4 that all mappings in the diagram
(2.21) are isomorphisms. Especially the spaces H(C; RX(K')) and
Hi(C; RYK') are canonically isomorphic.

§3. The Cauchy transformation.

In this section we study the Cauchy transformation of the space
Q' (L; K') using the kernel [exp(—(w—2z)*)]/(w—=z). By the simple calcu-
lation, we have

LEMMA 3.1. For w=u-+1v € C\L, the function of z, [exp(—(w—2)")]/
(w—2z) belongs to the space Q(L; K'). For any positive numbers &, r
and & with 0<e<r, there exists a mon-negative constant C such that

8.1) sup exp(—(w—2)) exp(Hg (x)+¢ |x|)

z€ L, w—z

<Cexp(Hx (u)+e |ul) for welL\L,.

THEOREM 3.1. (The Cauchy integral formula) Choose arbitrarily a
testing function feQ(L; K') and find positive numbers &, and &, such
that feQy(L.; K'(e)). For any e and & with 0<e<e¢, and 0<e' <&, we
have the following Cauchy integral formula:

(3.2) f(z)=%g Flw) SR @ =2)) gy,

v JILg w—2z

for zeint L,. The integral converges in the topology of the space
Q(L; K").

Proor. Fix zeint L.. We put
Le(uo)z{w €L, lRe W= U} -

If u,>0 is so large that |Rez|<u, we have, by the ordinary Cauchy
integral formula,

f(z)=51—.—s Fw) EXP(—W—=2)) 4.,
T w—2z

dLglug)

The integral over the segments

{w € oL (u,); Re w= Fu,}
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being convergent to 0 as u,— -+ oo, we have the formula (3.2).
In order to show the convergence of the integral (8.2) in the
topology of the space Q(L; K'), it is sufficient to show that

I(u,)=sup exp(Hx. (x)+5 1)) S Flw) exp(—(w—2)") j,,| .

I2 w—z
Le AL ug

tends to 0 as u, —+ o, where
oL,,,={wecoL.; |Rew|zu} .
We can find, by Lemma 2.1, a constant C,=0 such that

)= G 1fw) exp(H(w)+¢ ful)duw -

Le,ug
Because fe@Q,(L.; K'(e), 0<e<e, and 0<e'<eg, the right hand side

converges to 0 as u,—+ co. Q.E.D.

DEFINITION 3.1. We define the Cauchy transformation S(w) of an
analytic functional Se@Q'(L; K') by the following formula:

Gy — 1/ exp( (w 2)")
(3.3) Swy=—=(., >

THEOREM 3.2. The Cauchy transformation S’('w) of Se@Q'(L; K') 1is
a holomorphic function on C\L and, for any positive numbers &, r and
e with 0<e<r, we have

3.4) sup {S(W)Iexp( Hy(u)—¢ |u)<e,

we Ly \Lg

that s, S belongs to the space R*(C\L; K') defined in § 2.

Proof is easy and left to the readers.

To S e Q'(L; K’) we associate the cohomology class [S’ Jof Se RY(C\L; K')
in the quotient space HX(C; RXK’)). This mapping is also called the
Cauchy tramsformation and will be denoted by < :

(3.5) % Q'(L; K')— H(C; R*K')) .

The following theorem claims that the Cauchy transformation =
(3.5) and the mapping Int (2.18) are inverse to each other.

THEOREM 3.3. (i) Let Se@Q(L; K') and feQ(L; K') be given.
Then we have the following inversion formula:
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(3.6) S, fy==\, FfanSadw=(nts), £,
that s,
3.7 . Inte & =id .
(ii) We have also
(3.8) _ & oInt=id ,

where the mappings Int and &~ are defined by (2.18) and (3.5) respectively.

PROOF. (i) can be concluded from the Cauchy integral formula
(Theorem 3.1). :

(ii) Let FeRYC\L; K’') and put S=Int(F)eQ'(L; K’). If
fe@y(L.; K'(s), we have by (i)

(3.9) S Fw)(F(w)— S(w))dw=0

for 0<e<e,. Put
Y(w)=F(w)—S(w) .
Define

G(z)=—2—715—1,_-§ W(w) SXR=(W—=2)) 4,

oreg w—2z

for zeint L,. The function G(2) is clearly of exponential order in int L.,
and by (3.9) we have

G(w)=r(w) for we(int L, )\L. .
Therefore, if we put

Jr(w) for we C\L

v(w)= {G(w) for weintL, ,

the function ¢ gives an analytic continuation of the function ¥ to the
whole complex plane C. From the Phragmén-Lindelof theorem (Theorem
2.1), we conclude

¥(w)=F(w)—S(w) € RXC; K'),
that is, [F]=[S]. This proves (ii). | Q.E.D.
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THEOREM 3.4. The following diagram s commutative:
H}(C; RYK'")) —— HXC; RYK"))

\\#& £
Int\\ / Int
Q'(L; K')
Every mappings appeared in the diagram s a limear topological iso-
morphism.

(3.10)

PROOF. The commutativity is clear by Proposition 2.1 and Theorem
3.3. From the formula

(3.11) Intox=Int,
(3.12) Koz olnt=id ,
we can conclude the mapping fr;'t/ and k£ are linear topological iso-
morphisms. Q.E.D.

We will prove a density theorem.

THEOREM 3.5. Suppose the closed strips L, and L, of the form
(1.1) satisfy L,C L, and the compact intervals K. and K, satisfy K!CK..
Then the matural mapping

(3.13) Q'(L,;; K))— Q'(Ly; K.)
18 injective.
ProoF. Thanks to Proposition 1.2, we may suppose K/=K,=K'.
By Theorem 3.4, we have only to show the natural mapping
(3.14) H:(C; R*(K')) — H.,(C; R*(K"))
is injective. By the Phragmén-Lindelof theorem, we have
(3.15) R®(C\L,; K'")NR™*(C; K")=R"(C; K'),
from which concludes the injectivity of the mapping (8.14). Q.E.D.
§4. The ¢'-cauchy transformation. \
We suppose in this section L is a right half strip:
(4.1) L=A+iK, A=[a, + ), K=[k, k] .

K'=[ki, k;] is a compact interval. The following lemmas are easy to
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prove.

LEMMA 4.1. If L s a right half strip (4.1), then the space
Qy(L.; K'(¢")) coincides with the space of all contimuous functions f on
L, which are holomorphic in int L, and satisfy

(4.2) sup |f(2) exp((k:+¢&')2)] < e .

LEMMA 4.2. (i) Choose arbitrarily weC\L and &>0. Then the
Sunction [exp((k;+e')(w—=z))]/(w—z) belongs to the space Q(L; K').

(ii) The function which associates with we C\L the function of z,
[exp((k;+ &) w—2))]/(w—2) is a Q(L; K')-valued holomorphic function on
C\L.

Similarly to Theorem 3.1, we have the following Cauchy integral
formula:

THEOREM 4.1. Choose arbitrarily feQ(L; K') and find positive
numbers &, and ¢, such that fe Qi(L.,; K'(e;)). For any & and & with
0<e<e, and 0<e'<eg;,, we have the Cauchy integral formula:

for zeint L,. The integral (4.3) converges in the topology of the space
Q(L; K').

DEFINITION 4.1. For SeQ'(L; K’) and ¢'>0, we put

S(w; &)= ;1< g, , exp((k+eNw—2)\

T w—2z

We call S(w; ¢') the ¢’-Cauchy transformation of a functional S e Q'(L; K’).
From Lemma 4.2, we can conclude

PROPOSITION 4.1. The &'-Cauchy transformation S’('w; e') of a func-
tional SeQ'(L; K') is a holomorphic function on C\L and satisfies, for
any >0,

(4.4) sup 1S(w; gexp(— (k. +eHw)| < oo .

PROOF. By the continuity of the functional S, for any positive
numbers ¢ and &, we can find a non-negative number C such that
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(4.5) i8S, fH1=C sup |f(z)exp((k;+¢€")z)|

for any feQ,(L.; K'(¢')). If we fix weC\L,,

sup

ze L,

exp(— (k;+ €)2) exp((k,+£")2) ‘ <1,
w— 15

Therefore we have by (4.5)

sup {S(w gexp(— (ky+ €& )w)|

w ¢ Log

—sup L |<S exp(— (k2+e’)z)>‘ < 1 C—l- .
we Ly AT 2r ¢
As €>0 is arbitrary, we have shown (4.4). Q.E.D.

PROPOSITION 4.2. Suppose Se€Q'(L; K') and &'>¢">0. Then the
Sunction

(4.6) F(w)=S’(w; s')—g(w; )

can be analytically continued to an entire function of w. Further we
hawve

(4.7) sup |F(w)| exp(—k:u—eu,—e"u_)< oo,
welC

where we put

(4.8) w for wu=0 {O Jor wu=0
U, = U_ =
0 for wu<o0, w for wu<O0.

REMARK. 4
Hiy o igren(w)=sup{yu; y €k.+¢", k:+¢']}
=(ky+€)u,+ (ks +e")u_
=ku+eu, +e"u_.

ProoF. It is clear by Proposition 4.1 that the function F(w) is
holomorphic in C\L and

(4.9) sup | F(w)| exp(—ku—eu,—e"u_)< o
we Lg

for any €>0. Now fix we L, arbitrarily. The function of z

G(w —2z)=(w—2z) {exp((k;+&")(w—2)) —exp((k;+&")(w —2))}
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is entire. Further, G(w—z) belongs to the space Q(L; K’). In fact,
for z€ L,,, |lw—2z|=¢, we have

|G(w — 2)exp((k:+¢€")z)]
g—}:—{eXD((kHe')u>eXD((s”——6’)(a—-2s))+exp((k;+e”)u)} .

By the maximum modulus principle, we have, for we L,,

sup |G(w—z)exp((k:.+¢"")z)|

z€ Log

= —él-{exp((k; +e"u)exp((e” —e")(a —2¢)) +exp((k;+¢&")u)} ,

that is, the function of 2z, G(w—2z) belongs to the space Q,(L,; K'(¢")).
Therefore the function
-1

Fo=5m

<Sn G(w - Z)>

is defined for we L, and we have, by the continuity of S,

sup | F(w)| < Cexp((s-+&")u) + Cexp((;+&”)u)

we Lg

for some non-negative constants C, and C,. This proves the inequality
4.7). Q.E.D.

LEMMA 4.8. If L s the right half strip (4.1), we have

(4.10) RI(C\L; K'(¢"))
={F e &(C\L); sup |F(w)lexp(—(k.+&"u)< oo foranyr>e>0},

we Ly\Le
(4.11) Ri(C; K'(¢")
={Fe o7 (C); sup |F(w)| exp(— (b +e&Nu)<< oo for any r>0}.

ProoF. The lemma results from the left boundedness of the strip
L. Q.E.D.

DEFINITION 4.2. Thanks to Propositions 4.1 and 4.2 and Lemma 4.3,
the ¢&’-Cauchy transformations S’(w; ¢’) of the functional SeQ'(L; K')
define a cohomology -class [S’(w; +0)] in HXC; RXK’)). We will write
the mapping Sn—»[é(w; +0)] as follows:

(4.12) | & Q(L; K')—> HXC; R¥K")
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and call it also the ¢’-Cauchy transformation.
From the Cauchy integral formula (Theorem 4.1), we can conclude

PROPOSITION 4.3. Suppose L 1is the right half strip (4.1). Let
SeQ(L; K') and feQ(L; K’') be given. [g(w; +O)]eﬁ,§(C; K') denotes
the ¢-Cauchy transformation of S. Then we have the following in-
version formula:

(4.13) 8, ==\ fwisew; +0ldw=miSw; +0), 5> .

THEOREM 4.2. Suppose L s the right half strip (4.1). Then the
¢’-Cauchy tramsformation Z and the operator Int are inverse to each
other, that 1s,

(i) Intez=id, (ii) ZoInt=id.

PrOOF. (i) is nothing but the preceding proposition. By (i), we
have

fg{o%of;{:mt .

By Theorem 3.4, ’1?11: is a linear topological isomorphism. Therefore we
have (ii). _ Q.E.D.

§ 5. The Fourier transformation of Q'(L; K’).

We assume in this section as in § 4 that the strip L is a right half
strip (4.1).

LEMMA 5.1. The function exp(—iz{) of z belongs to the space
Q(L; K') if and only if n=Im{< —k,.

. PROOF. As we have
lexp(—120)|=exp(an+yE&), z=x+1iy, {=&+17,
the lemma results from Lemma 4.1. Q.E.D.

DEFINITION 5.1. For Se@'(L; K') we define the Fourier transfor-
mation S(£) of S as follows:

(6.1) S©)=<8., exp(—1zl)) .
S(¢) is a function on the open half plane

R+i(—co, —k)={C=2+ineC; n<—k)} .
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DEFINITION 5.2. We define the space Exp(R+4(— o, —k;); L) to be
the space of the holomorphic functions F' on the open half plane
R+1i(— o, —k,) which are of exponential type in L in the following
sense: For any positive numbers ¢ and ¢’ there exists a non-negative
number C such that

(5.2) IFQ)|=Cexph(0)+e ),
where h (Q)=Hx(&)+an, {=E+17. '

PROPOSITION 5.1. The Fourier transformation # :S+— S maps the
space Q' (L; K') into the space Exp(R-+1%(— o, —k;); L):

(5.3) F :Q(L; K'Y — Exp(R+1(— o, —k3); L) .

ProOF. Let SeQ'(L; K'). By the continuity of S, we can find,
for any positive numbers ¢ and ¢, a non-negative number C such that

1S©)1=1(8., exp(—1izL))]|
= Csup |exp(—128)| exp((k:+¢")x)

ze L,

=C exp((a —&)( +k:+¢€"))exp(Hx (&) +¢ |&])
for n+k,+e'<0, from which results (5.2). Q.E.D.

Suppose now F e Exp(R+1i(— o, —k,;); L) be given. Fix (=& +17,
and {'=¢& 417’ such that

770=Im Co<"‘k;, lC’|=19 77,=Im =o0.
Consider the following integral:

(5.4) F(w, ¢, )
1

21 §c0+u+c'

:Lg“p@ﬁtc'>exp<iw(co+tc'>>c'dt ,
. 2w Jo

F(z)exp(twz)dt

where R*=[0, ). By (5.2) we have for any {=0

| F(&,+ 2]
< Cexp((a—e)n,)exp(t(Hx(&") +¢ &' +(a—e)7)) .

Therefore the integral F‘(w, Ly ) is absolutely convergent for w e W),
where ‘
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WC)={weC; —Im wl’+He(@)+¢ || +(@a—e)y <0}
We put also
| W) ={weC; —Im wl’'+ Hx(f)+an’ <0} .
W.(&') and W() are open half planes and we have
W=y W) .

For example, we have

W.)={w; —v+k,+e<0}, W) ={w; v>k,},
W(—i)={w; u—(a—e)<0}, W(—9)={w; u<a},
W(—-1)={w; v—k,+e<0}, W(—1D={w; v<k},

where we put w=wu-+1v. By the definition, We have
U{W.(); [€1=1, Im{’=0}=C\L.,
® UMW) IU1=1, Im'<0}=C\L .

In particular, {W.({); >0, |{'|=1, Im {’<0} is an open covering of C\L
by open half planes.

LEMMA 5.2. The function of w, F(w, ¢, ') is holomorphic on the
half plane W(').

PrOOF. In fact, F(w, {, &’) is absolutely convergent on W.({') and
is holomorphic there. Q.E.D.

LEMMA 5.3. Suppose |{'|=|¢"|=1, Im{' <0 and Im{"=<0. Then we
have

(5.5) Fw, &, )=Fw, £, ")  for we W(Z)NW(EK") .

PrOOF. It is sufficient to show (5.5) for we W ()N W), for
every €>0. The function of 7, F(z)exp(twz) is a holomorphic function
of exponential type on the sector spanned by {,+R*{’ and {,+R*{" and
decreases exponentially at the infinity on the boundaries {,+R*{ and
¢+ R*¢”. Therefore by the Phragmén-Lindelof theorem, F(z)exp(iwr)
decreases exponentially at the infinity uniformly in the sector. There-
fore by the Cauchy integral theorem,

jlgcoﬂﬂ“c' B Sco+n+cu } F(c)exp(iwr)dr =0,

from which results the lemma. Q.E.D.
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LEMMA 5.4. Suppose ;= —(k;+¢')i. We define a holomorphic func-
tion F(w, {,) on C\L by

(5.6) Fw,t)=Fw, ., ) for we W({).
Then for any €>0 we have
(5.7) sup | F(w, Lp)lexp(— (ks +¢€u) <o .

In particular,
(5.8) F(w, £,) € RXC\L; K'(¢")) .

PROOF. We have, for we W('),

(5.9)  Fw, G O)=exp(Ui+emw) | F(G-+ ) exp(itwl)C'dt .
We have, by the definition of W.({"),
- °
sup || PG+t lexpitwt)lat| <o .
weWe(r) 0

Therefore by (5.9) the function [exp(— (ki+¢&)w)]F(w, &,) is bounded on
W), hence on C\L,. From Lemma 4.3, we can conclude (5.8). Q.E.D.

LEMMA 5.5. Suppose ¢ >e"">0. Then the function
G(w)=F(w, — (K, +¢€"Y0)— F(w, —(ki+¢")i)
18 an entire function and satisfies
IG(w)|=C exp(k;u+eu,+¢&"u_),

where u, and u_ are defined by (4.8). In particular,

(5.10) G(w) e RKC; K'(e") .
ProOF. The lemma results from the following formula:
1 (ke .
G(w)=——§ F(t)exp(iwr)de Q.E.D.
AT J—kgrent

DEFINITION 5.3. For F e Exp(R+1i(— o, —k;); L), we denote
Fw; &)=Fw, —(k,+¢)i) .

As we have (5.8)Aand (56.10), the functions F’(w; g, e'A >0, define a
cohomolgy class [F(w; +0)]e HX(C; RXK'). We call [F(w; +0)] the
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Laplacie transformation of F. We will denote the mapping
F— [F(w; +0)] by <&

(5.11) Z: Exp(R+i(— o, —k;); L)— HXC; RXK").

ExAMPLE. The exponential function F({)=exp(—1i2{) belongs to the
space Exp(R+i(—co, —k;); L) if and only if z2e€ L. The Laplace trans-
formation F(w; &) of the exponential function F(r)=exp(—iz7) is the
¢’-Cauchy kernel:

(5.12) Flw; &)= 271m_ exP(("’ij Nz=w)  yec\L.

PROPOSITION 5.2. For FeExp(R+1i(—, —Fki); L), the Fourier

transformation of the analytic functional I’E{[F'(w; +0)] coitncides with
the original function F, that 1s,

(5.13) S olnte #=id .

o~ A~~~ o~
PROOF. Put S=Inte F(F)=Int[F(w; +0)]. By the definition of Int,
we have

8©=|_,, lexp(—iwt)Fw; &)dw

for Im{<—k,—¢’. We decompose the integral path —odL, into three
parts I, II and III as shown in the following figure:

wy }v - 1
iIA Le . w,=(a—e&)+1(k,+¢€),
0 B - w,=(a—¢&)+i(k,—¢) .
Wy I
We have
(5.14) S =§ +§ +§ .
—dLg I 11 II1

We suppose for simplicity C9\= —(ky+¢€')i. On the integral path I, we
have Im w>Fk, and F(w; ¢")=F(w, , 1). Therefore for Im { < —k,—¢’, we
have

[ [exp(— w0 Fw; &)dw

= lexp(— 1w F(w, &, Ddw
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.LSI [exp(— iwC)](S " F(r)exp(iwr)dr)dw

2n ot

:2%SCO+R+ F(7) (SI exp(iw(f—C))dw>d2'
_ —1 exp(rw,(z —§))
- Sco+n+ F(z) s dr .

Similarly we have, for Re {+#0,
S [exp(—iwl)]|F(w; &)dw
11 ‘

= lexp(— w0 F(w, ¢, —i)dw

L[ | peexpin=0)—expliu(e—0)y
271 Jeo—irt ’ 7—¢

Finally we have, for Im {< —k;—¢’,
| Sm [exp(— iwl)]F(w; &)dw

= Sm [exp(— wl)F(w, &, —1)dw

1 S F(o)EXRw(t=0) 4.
2wt Jeomrt VT L

By (5.14) we have, for { with Im {< —k,—¢" and Re {0,

S©=|
=_1_SC F() exp(iw_l(z-—C)) ir

211
+ 1 : S F(7) exp(tw,(t —{)) dr ,
2w Jo, —C

where C, and C, are the paths depicted in the following figures:

i [exp(—iwl)]F(w; €)dw

7

- e - e — - - - - - e e - = -
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By the Cauchy integral formula we have

1 exp(tw,(z —&))
271 Sol F) T—C de

_{F(C) for £ with Re>0 and Im{< —Fk,—¢’
o for { with Re<0 and Im{< —Fk;—¢',

and

1 exp(1w,(z —&))
277 Soz F@ T—C de

_{0 for { with Re{>0 and Im{<—k,—¢’
T F(@©) for ¢ with Rel<0 and Im{< —k,—¢' .

Adding these two formulas, we obtain

(5.15) S =F) for ¢ with Re{+#0 and Im{< —k;—¢' .
S and F are both holomorphic in the open half plane {¢; Im (< —Fki}, S
and F coincide in this half plane. Q.E.D.

THEOREM 5.1. Suppose L s the right half strip (4.1). Then the
Sollowing diagram is commutative and every mapping in it 18 a linear
topological isomorphism:

Q(L; K') > Exp(R+i(— oo, —k}); L)
(5.16) \\& /
Int\\~. /’K/
H;(C; R¥K"))

ProOOF. We proved in Theorem 4.2 that Z and 'ﬂ-t/: are inverse to
each other. .# oInto.¢” —id is shown in Proposition 5.2. We have only
to show ﬁfoZoﬁ“sid, which is equivalent to Fo T =2,

Let Se@Q'(L; K’) be given. Put

| - F(@Q)=(S.,, exp(—1z()) .
Put {,= —(k;+¢)1. We have for we W(’),

(5.17) Fw; ¢)
=1 >,
= §c0+R+C' F(C)exp( 1wl)dg

2
2w Jep+rTC

(8,, exp(—12{)yexptwl)dl
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=1(s, Sww exp(i(w—2))d )

" om

_1 /g exp(—(lc;—|—s’)(z—w))>
2t \ Z—w

=S(w; ¢) . ’

The functions F(w; &) and S‘(w: ¢’) are holomorphic in the domain C\L.
Therefore we have ﬁ’(w; e’)=S’(w; ¢') for weC\L, which proves
FPoF =%, ' Q.E.D.
§6. The Fourier transformation of Q(R+1:K; K').
In this section we suppose the strip L is an entire strip:
(6.1) L=R+1K=(— o, )+1i[k, k,] .
DEFINITION 6.1. For fe QR+1K; K’'), we define the Fourier trans-
formation . f=f by
(6-2) FRO=FO=\" fa+ipexp(~it@+iy)de .

It can be easily proved that the integral (6.2) converges for { e (R+iK')..
and y € K(¢) and is independent of y e K(¢) for some &>0 and &>0.
The Fourier transformation f of f belongs to the space QR+1K'; —K).
Moreover we have, by a routine argument,

THEOREM 6.1. The Fourier transformation
(6.3) Z :QR+1iK; K')— QR+1K'; —K)
18 a linear topological isomorphism.

DEFINITION 6.2. For an analytic functional SeQ(R+iK; K’), we
define #;Se€ Q' (R—1K’; K) by the formula:

(6.4) (FS, [=(S, Ffy for feQR—iK'; K).

We call the transformation &, the dual Fourier transformation.
As &, is the dual operator of the linear topological isomorphism
(6.3), we have

COROLLARY. The dual Fourier tramsformation

(6.5) i+ QR+1K; K')—> Q(R—1iK'; K)
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18 a linear topological isomorphism.

The aim of this section is to study the dual Fourier transformation
(6.5) by means of the Fourler transformation defined in the preceding
sections.

Let us fix @ and b with a<b and put

(6.6) L,=[a, «)+4K, L_=(—co, b]+iK ,
(6.7) Lo=[a, b] +iK .

PROPOSITION 6.1. The sequence (6.8) is an exact sequemce of DFS
spaces:

(6.8) 0~——»Q(L K) — Q(L,; K"PQ(L_; K) —> Q(Ly; K')— 0,
where we put

W)=y flo)  for Fe@L; K7, |
h’z(fu fz) :fliLo "“leLo Sor (fu fz) € Q(L+; K’)@Q(L—; K') .
(fleys flies filz, and fy)., denote the restrictions to L., L_ and L,.)

PrROOF. For brevity, we write (6.8) as follows:

(6.8 0— Q2580 g, —0.

By the uniqueness of the analytic continuation, A, is one-to-one, i.e.
(6.8") is exact at Q. As we have clearly Im h,=Ker h,, (6.8") is exact
at Q. PQ_-. Therefore we have only to show A, is onto.

Fix fe @ =Q(L,; K')="(L,) arbitrarily. Choose ¢,>0 for which f
is continuous on L,.. We have by the Cauchy integral formula

f(z)exp(zz) _ %SM f(w)exp(wz) dw

w—=z
SRR

:fx(z) '—fz(z) ’

where we put

C={weoL,., Re wgﬁﬂ’} ,

Do

C,

{w €oL,,., Re w>—'ﬂz} .

[\

The function
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fiz)= (; 1)."’18 S(w)exp(w®) ;..
i Je; w—=z

is holomorphic in C\C;, for j=1,2. In particular, f, is holomorphic in
intL,,. and f, in intL_,. If we fix ¢ with 0<e<¢, f, is bounded on
L,. and f, is bounded on L_.. As we have

f(z)=exp(—2*)fi(z) —exp(—2")fx(2) ,
exp(—2)fi(2) €Q, and exp(—2")f(2)€Q.-,

the function f belongs to Im h,, which proves k, is onto. Q.E.D.
Passing to the dual operators, we have the following

PROPOSITION 6.2. The sequence (6.9) is an exact sequence of FS
spaces:

(6.9) 0—Q'(L; K L QL KNDR(L; K') 2 Q'(Ly; K') —0.

It is well known that the Fourier transformation

(6.10) F 18— 8(0)=<(8,, exp(—120)}
establishes a linear topological isomorphism

(6.11) F: Q(L,; K')— Exp(C; L),
where

Exp(C; L,)={Fe ~(C); ¥¢>0,3C=0 such that
|F(Q)|=Cexph.(E)+elCD},
hp(Q)=Hg(&)+bn,+an_,

{77 for =0, 0 for =0,
N+=

0 for =0, 7-= n for 7=0.

We have shown in §4 that the Fourier transformation (6.10) esta-
blishes the linear topological isomorphism

(6.12) F: Q(L,; K')— Exp(R+i(—co, —k,); L) .
As 7 is bounded from above in R+i(— oo, —k}), we have

(6.13) Exp(R+1i(— o0, —k); L,)
={F e P(R+1i(—o, —ki); Ve>0, V¢’>0,3C=0 such that
|FQ)|=Cexp(h,(O)+elt) for Im{<—k;—¢} .
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In the same way as in the case Q'(L.; K’), we can prove the
Fourier transformation (6.10) establishes the linear topological iso-
morphism:

(6.14) F :Q'(L_; K')— Exp(R+1i(—ki, ~); L),
where
(6.15) Exp(R+1i(—k;, «); L_.)

={FeoR+1i(—k, «)); Ye>0, ve’>0,3C=0 such that
IF(Q)=C exp(h.,(8) +¢|E]) for Im{=—ki+¢'}

Now we define

(6.16) Exp(C\(R—1K'); L,)
={Fe 7 (C\(R—tK')); Vve>0, v&’>0,3C=0 such that
|[F(Q)|=C exp(h. (8)+¢|C) for Im{¢ —K'(¢")}.

By the definition, we have clearly
(6.17) Exp(C\(R—1K"); L,)
=Exp(R+i(— oo, —k); L,)DExp(R+i(—ki, ); L) .

DEFINITION 6.3. (i) We put |
(6.18) Hp-:x(C; Exp(L,))=Exp(C\(R—tK'); Lo)/Exp(C; L) .
(ii) We define the Fourier transformation
(6.19) F: Q(R+1K; K')— Hj_;x/(C; Exp(L,))
in such a way that the following diagram becomes commutative:

h ky
0—QR+1K; K') «—— Q.PR- — Q;——0

(6.20) & |~ |~
0 «—— Hz x/(C; Exp) —— Exp(C\(R—:K")) —— Exp(C) —0,
where we abbreviated L,=[a, b]+1K:
Hy x(C; Exp)=Hz x/(C; Exp(Ly)) ,

Exp(C\(R—1K'"))=Exp(C\(R—<K"); L,) and
Exp(C)=Exp(C; L) .

By the definition we have clearly
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(6.21) RE**¥(C; K)DExp(C; L,)
(6.22) R**(C\(R—1K"); K)DExp(C\(R—:K"); L,),

where we recall L,=][a, b]+¢K. Therefore we can define canonically the
mapping

(6.23) ¢: Hy x(C; Exp(Ly)) — Hp_ix(C; R**(K)) .

THEOREM 6.2. Suppose L=R+1iK is the entire strip (6.1). Define
L, L_and L, by (6.6) and (6.7). Then the following diagram is com-

mulative and every mapping appeared in the diagram is a linear
topological isomorphism:

QR+iK; K)-Z% QR—iK'; K)

[
(6.24) H}:_.x(C; Exp(la, b]+ iK))/ /Int
| s

HioxlC; R (K)) 7~

where 7, is the dual Fourier transformation defined by (6.4), # is the
Fourier transformation defined by (6.20), the mapping ¢ is defined by
(6.23) and the mapping Int is defined by (2.18).

Proor. Choose arbitrarily Se @ (R+:K; K’) and fe Q R—i1K’; K).
By Proposition 6.2, we can decompose S as follows:

(6.25) S=8+—-8-, S*eQ(L; K'), S eQ(L_; K').

There exists positive numberg ¢’ and e such that fe Q,(R—tK'),..; K(€)).
The Fourier transformation f(z) of f is given by

+eo—k't

(6.26) Fo=\"" fexp(—ita)dt,

—00—

where k' is an arbitrary number in the interval (k{—2¢, k;+2¢’). By
the above remarks, we can calculate as follows:

(T8, FY=(S, >
=(st, [0 f@exp(—icaac )

—oo—(kgt+e’)i

—<S:, S+w—(ki—e::’:f((:)exp(—’iCz)dC>

—oo—(ki—e i
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e N GG

—oo—(kyte’)i

~T o8 @

—oo—(k;—e’)

N Sa(R—'tK') , f(C)[g(C)]dC
=(Int[S], f> ,

from which results the commutativity of the diagram. We showed
already the mappings .#,;, % and Int are linear topological isomorphisms.
Therefore the mapping ¢ is also a linear topological isomorphism because
of the commutative diagram (6.24). Q.E.D.

COROLLARY. Suppose R+1i1K is the entire strip (6.1) and K’ is a
compact interval. Then we have the following several complex repre-
sentations of the space of analytic functionals Q(R+1K; K'):

(6.27) Q(R+1iK; K'Y=H},.x(C; R*E(K"))
= Hy,x(C; R**5(K'))
=Hz.x(C; Exp([a, b]+1K")), a<b .

In fact, we have only to exchange the roles of R+tK and R—iK’
in the theorem.
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