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Introduction.

In Yoshizawa [6], the following two theorems were proved.
Theorem A. Let $p$ be an odd prime. Let $G$ be a permutation group

on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following condition. For any
$2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ of $\Omega$ , a Sylow p-subgroup $P$ of the stabilizer in $G$

of the $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ is nontrivial and fixes exactly $2p+r$ points
of $\Omega$ , and moreover $P$ is semiregular on the set $\Omega-I(P)$ of the remaining
$n-2p-r$ points, where $\gamma$ is independent of the choice of $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ and
$0\leqq r\leqq p-2$ . Then $n=3p+r$ , and there exists an orbit $\Gamma$ of $G$ such that
$|\Gamma|\geqq 3p$ and $G^{\Gamma}\geqq A^{\Gamma}$ .

Theorem B. Let $p$ be an odd prime $\geqq 11$ . Let $G$ be a permutation
group on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following condition.
For any $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ of $\Omega$ , a Sylow p-subgroup $P$ of the stabilizer
in $G$ of the $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ is nontrivial and fixes exactly $3p-1$

points of $\Omega$ , and moreover $P$ is semiregular on the set $\Omega-I(P)$ of the
remaining $n-3p+1$ points. Then $n=4p-1$ , and one of the following
two cases holds: (1) There exists an orbit $\Gamma$ of $G$ such that $|\Gamma|\geqq 3p$

and $G^{\Gamma}\geqq A^{\Gamma}$ . (2) $G$ has just two orbits $\Gamma_{1}$ and $\Gamma_{2}$ with $|\Gamma_{1}|\geqq p,$ $|\Gamma_{2}|\geqq p$

and $|\Gamma_{1}|+|\Gamma_{2}|=4p-1$ , and $G^{\Gamma_{i}}$ is $(|\Gamma_{l}|-p+1)$-transitive on $\Gamma_{i}(i=1,2)$ .
Moreover, $G^{\Gamma_{i}}\geqq A^{\Gamma_{i}}$ if $|\Gamma_{i}|\geqq p+3$ .

In [1], E. Bannai determined all $2p$-fold transitive permutation groups
in which the stabilizer of $2p$ points is of order prime to $p$ , where $p$ is
an odd prime. By using Theorem A and Theorem $B$ in [6], we will
improve it, namely, we will prove the following result.

THEOREM 1. Let $p$ be an odd prime $\geqq 11$ , and let $q$ be an odd prime
with $p<q<p+p/3$ . Let $G$ be a $2p$-fold transitive permutation group on
$\Omega=\{1,2, \cdots, n\}$ . If the $ orde\gamma$ of $G_{1,2,\ldots,2p}$ is not divisible by $q$ , then $G$

is $S_{n}(2p\leqq n\leqq 2p+q-1)$ or $A_{n}(2p+2\leqq n\leqq 2p+q-1)$ .
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Besides, by using Theorem 1, we will prove the following result.

THEOREM 2. Let $p$ be an odd prime $\geqq 11$ , and let $q$ be an odd prime
with $p<q<p+p/3$ . Let $G$ be a $2p$-fold transitive permutation group
on $\Omega=\{1,2, \cdots, n\}$ . If $G_{1,2,\ldots,2p}$ has an orbit on $\Omega-\{1,2, \cdots, 2p\}$ whose
length is less than $q$ , then $G$ is $S.(2p+1\leqq n\leqq 2p+q-1)$ or $ A.(2p+2\leqq$

$n\leqq 2p+q-1)$ .
As an immediate corollary to Theorem 2, we have the following result.

COROLLARY. Let $p$ be an odd prime $\geqq 11$ , and let $q$ be an odd prime
with $p<q<p+p/3$ . Let $D$ be a $2p-(v, k, 1)$ design with $2p<k<2p+q$ .
If an automorphism group $G$ of $D$ is $2p$-fold transitive on the set of
points of $D$ , then $D$ is a $2p-(k, k, 1)$ design, namely a trivial design.

We shall use the same notation as in [4].

\S 1. Proof of Theorem 1.

Let $G$ be a counter example to the theorem.
Let $P$ be a Sylow p-subgroup of $G_{1,2\ldots.,2p}$ . Then $P\neq 1$ and $P$ is not

semiregular on $\Omega-I(P)$ , by [1, Main Theorem] and [2, Theorem 1]. Set
$|I(P)|\equiv r(mod p)$ , where $0\leqq r\leqq p-1$ . We first show that $r\leqq q-p-1$ .
Suppose, by way of contradiction, that $r\geqq q-p$ . Let $R$ be a subgroup
of $P$ such that the order of $R$ is maximal among all subgroups of $P$ fixing
at least $3p$ points. By Theorem A and Theorem $B$ in [6], we have $|I(R)|=$

$3p+r\geqq 2p+q$ , and moreover we have that there exist $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$

of $I(R)$ such that $N_{G}(R)_{\alpha_{1},\ldots,\alpha_{2p}}^{t(R)}$ has a q-cycle. This contradicts the assump-
tion of Theorem 1.

Let $Q$ be a subgroup of $P$ such that the order of $Q$ is maximal
among all subgroups of $P$ fixing at least $4p$ points. (It may be that
$Q=1.)$ We may assume that $I(Q)=\{1,2, \cdots, |I(Q)|\}$ . Set $N=N_{G}(Q)^{t(Q)}$ .
Then $N$ satisfies the following properties.

(i) $N$ is a permutation group on $I(Q)$ . $|I(Q)|\geqq 4p$ .
(ii) For any $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2p}$ of $I(Q)$ , the order of $N_{\alpha_{1},\ldots.\alpha_{l}}$ is

$p$

divisible by $p$ but is not divisible by $q$ .
(iii) For any element $x$ of order $p$ of $N$ fixing at least $2p$ points,

$|I(x)|$ must be $2p+r$ or $3p+r$ . Moreover, by Theorem A and Theorem
$B$ in [6], we have

(iv) $N$ has an element $a$ of order $p$ with $|I(a)|=3p+r$ .
We may assume that

$ a=(1)(2)\cdots(3p+r)(3p+r+1, \cdots, 4p+r)\cdots$ .
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Set $T=C_{N}(a)_{3p+r+1,\ldots,4p+r}^{I(a)}$ . Then $T$ satisfies the following three pro-
perties.

(1) $T$ is a permutation group on $I(a)$ . $|I(a)|=3p+r$ .
(2) For any $p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{p}$ of $I(a)$ , the order of $T_{a_{1},\ldots,\alpha_{p}}$ is

divisible by $p$ .
(3) For any $p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{p}$ of $I(a)$ , the order of $T_{\alpha_{1},\ldots,\alpha_{p}}$ is not

divisible by $q$ .
We will show that such $T$ does not exist. Let $\Delta_{1},$

$\cdots,$
$\Delta_{\epsilon}$ be the

orbits of $T$ with $|\Delta_{i}|\geqq p(i=1, \cdots, s)$ .
Suppose that $s\geqq 3$ . Since $|I(a)|=3p+r\leqq 4p-1$ , we have $s=3$ . Set

$|\Delta_{i}|=p+k_{i}(i=1,2,3)$ . Then, $(p+k_{1})+(p+k_{2})+(p+k_{3})\leqq 3p+r$ , and so,
$(k_{1}+1)+(k_{2}+1)+(k_{3}+1)\leqq r+3\leqq q-p+2<p/3+2<p$ . We get a contradic-
tion, by (2).

Suppose that $s=2$ . We may assume that $|\Delta_{1}|\geqq|\Delta_{2}|$ . Then, $|\Delta_{2}|\leqq$

$(3p+r)/2\leqq(2p+q-1)/2=p+(q-1)/2$ . Set $|\Delta_{2}|=p+k$ . Then, $k\leqq(q-1)/2<$

$(2/3)p-1/2$ , and so, $p-(k+1)>p/3-1/2$ . We take $k+1$ points $\alpha_{1},$ $\cdots,$ $\alpha_{k+1}$

from $\Delta_{2}$ . Set $V=T_{\alpha_{1}^{1},\cdots,\alpha_{k+1}}^{\Delta}$ . Then by (2), for any $p-k-1$ points $\beta_{1},$ $\cdots$ ,
$\beta_{p-k-1}$ of $\Delta_{1},$ $V_{\beta_{1},\ldots,\beta_{p-k-1}}$ has an element of order $p$ . Assume that $V$ has
just two orbits $\Sigma_{1}$ and $\Sigma_{2}$ with $|\Sigma_{i}|\geqq p(’\dot{b}=1,2)$ . Set $|\Sigma_{i}|=p+l_{i}(i=1,2)$ .
In this case, $l_{l}<p(i=1,2)$ . Since $|\Sigma_{1}|+|\Sigma_{2}|+|\Delta_{2}|\leqq|I(a)|=3p+r$ , we have
that $(p+l_{1})+(p+l_{2})+(p+k)\leqq 3p+r$ . So, $l_{1}+l_{Z}+2\leqq r-k+2$ . Hence, $p-$

$k-1-(l_{1}+1)-(l_{2}+1)\geqq p-k-1-(r-k+2)=p-r-3\geqq p-(q-p-1)-3=$
$2p-q-2\geqq 0$ . We take $l_{1}+1$ points $\gamma_{1},$ $\cdots,$ $\gamma_{l_{1}+1}$ from $\Sigma_{1}$ and $l_{2}+1$ points
$\delta_{1},$

$\cdots,$
$\delta_{l_{2}+1}$ from $\Sigma_{2}$ . Then, the order of $V_{\gamma_{1},\ldots,\gamma_{l_{1},\iota’ l_{2}+1}}+1^{\delta\cdots,\delta}$ is not divisible

by $p$ , which is a contradiction. Therefore, we may assume that $V$ has
the only one orbit $\Sigma$ with $|\Sigma|\geqq p$ . We remark that for any $p-k-1$

points $\eta_{1},$ $\cdots,$ $\eta_{p-k-1}$ of $\Sigma,$ $V_{\eta_{1},\ldots,\eta_{p-k-1}}^{\Sigma}$ has an element of order $p$ . Es-
pecially, $|\Sigma|\geqq p+(p-k-1)>p+(p/3-1/2)$ . Hence $|\Sigma|>q-1/2$ . Then we
have $|\Sigma|\geqq q$ . Suppose that $V^{\Sigma}$ is imprimitive. Let $\{\Pi_{1}, \cdots, \Pi_{t}\}$ be the
system of imprimitivity of $V^{X}$ . Set $|\Pi_{1}|=d$ . Assume $d\geqq p$ . So, we
have $t=2$ . Moreover, we can see that $2(d-p)+2>p-k-1$ . Hence,
$2d+k>3p-3$ . On the other hand, since $|\Sigma|+|\Delta_{2}|\leqq 3p+r$ , we have
$2d+p+k\leqq 3p+r$ . So, $2d+k\leqq 2p+r$ . Hence $2p+r>3p-3$ , which is a
contradiction. Therefore, $d<p$ . Then, we can see that $d(p-k-1)+$
$dp\leqq|\Sigma|$ . Since $|\Sigma|+|\Delta_{2}|\leqq 3p+r$ and $d\geqq 2$ , we have that $2(p-k-1)+$

$2p+(p+k)\leqq 3p+r$ . Hence, $5p-k-2\leqq 3p+r\leqq 2p+q-1$ , which is a con-
tradiction. Therefore, $V^{\Sigma}$ is primitive. Since $p-k-1>p/3-1/2$ , by [5,

Theorem 13.10], we have $V^{\Sigma}\geqq A^{\Sigma}$ . Since $|\Sigma|\geqq q$ , this contradicts (3).

Therefore, we have $s=1$ . By (2), for any $p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{p}$ of $\Delta_{1}$ ,
$T_{\alpha_{1},\ldots,\alpha_{p}}^{\Delta_{1}}$ has an element of order $p$ . Hence, we have that $2p\leqq|\Delta_{1}|\leqq 3p+r$ .
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Assume that $T^{\Delta_{1}}$ is imprimitive. Let $\{\Gamma_{1}, \cdots, \Gamma_{v}\}$ be the system of
imprimitivity of $T^{\Delta_{1}}$ , and let $|\Gamma_{1}|=f$. If $f\geqq p$ , then $v=2$ or 3, and we
get a contradiction by using the similar argument to that of the above
case $s=2,3$ respectively. Hence, we have $f<p$ . So, we can see that
$pf+pf\leqq|\Delta_{1}|$ . But, this is a contradiction, since $f\geqq 2$ . Therefore, $T^{\Delta_{1}}$ is
primitive. Then by [5, Theorem 13.10], we have $T^{\Delta_{1}}\geqq A^{\Delta_{1}}$ , which is a
contradiction by (3).

\S 2. Proof of Theorem 2.

Let $G$ be a counter example to the theorem. Let $\Delta$ be an orbit of
$G_{1,2,\ldots,2p}$ on $\Omega-\{1,2, \cdots, 2p\}$ such that $|\Delta|<q$ . By [4], we have $2\leqq|\Delta|<q$ .

Let $Q$ be a Sylow q-subgroup of $G_{1,2,\ldots,2p}$ . Then $Q\neq 1$ , by Theorem
1. By the lemma of Witt [5, Theorem 9.4] and Theorem 1, we have
$N_{a}(Q)^{t(Q}‘\geqq A^{I(Q)}$ . So, $N_{G}(Q)_{1.l\ldots.,2\dot{p}}^{t(Q)-\{12\ldots..2p\}}\geqq A^{t(Q)-\{1,2,\ldots,2p\}}$ . Hence we have $I(Q)=$
$\Delta\cup\{1,2, \cdots, 2p\}$ , since $ I(Q)\supset\Delta$ . This shows that $I(Q)$ is independent of
the choice of Sylow q-subgroup $Q$ of $G_{1,2\ldots..2p}$ and is uniquely determined
by $G_{1.2,\ldots,2p}$ . Let $R$ be a subgroup of $Q$ such that the order of $R$ is
maximal among all subgroups of $Q$ fixing more than $|I(Q)|$ points. We
may assume that $I(R)=\{1,2, \cdots, |I(R)|\}$ . Set $N=N_{G}(R)^{I(R)}$ and $|\Delta|=l$ .
Then $N$ satisfies the following properties.

(i) $N$ is a permutation group on $I(R)$ . $|I(R)|\equiv 2p+l(mod q)$ .
(ii) For any $2p$ points $\alpha_{1},$ $\cdots,$ $\alpha_{lp}$ of $I(R)$ , a Sylow q-subgroup $S$ of

$N_{\alpha_{1},\ldots,\alpha_{Sp}}$ satisfies that $S\neq 1,$ $|I(S)|=2p+l,$ $S$ is semiregular on $I(R)-I(S)$ ,
and $I(S)$ is independent of the choice of Sylow q-subgroup $S$ of of $N_{\alpha_{1},\ldots.\alpha_{2}}$

and is uniquely determined by $N_{\alpha_{1}\ldots.,\alpha_{2p}}$ . $p$

Let $x$ be an element of order $q$ of $N_{1,\ldots,2p}$ . Then, we may assume
that

$ x=(1)(2)\cdots(2p+l)(2p+l+1, \cdots, 2p+l+q)\cdots$ .
Set $T=C_{N}(x)_{2p+l+1,\ldots,2p+l+q}^{I(x)}$ . Then $T$ satisfies the following properties.
(1) $T$ is a permutation group on $I(x)$ . $|I(x)|=2p+l$ .
(2) For any $2p-q$ points $\alpha_{1},$ $\cdots,$ $\alpha_{2}$,-, of $I(x)$ , a Sylow q-subgroup

$M$ of $T_{\alpha_{1}\ldots..\alpha_{2p-q}}$ is a cyclic group of order $q$ generated by a q-cycle, and
$|I(M)|=2p-q+l$ . Moreover, $I(M)$ is independent of the choice of Sylow
q-subgroup $M$ of $T_{\alpha_{1},\ldots,\alpha_{2p-q}}$ and is uniquely determined by $T_{\alpha_{1},\ldots,\alpha_{2}}-$

Suppose that $T$ is primitive. By [5, Theorem 13.9], we have $T^{p}\geqq^{q}A^{t(x)}$ ,
which contradicts (2).

Next suppose that $T$ is imprimitive. Let $\{\Gamma_{1}, \cdots, \Gamma.\}$ be the system
of imprimitivity of $T$, and let $|\Gamma_{1}|=d$ . Assume that $d<q$ . Then, we
can see that $d(2p-q)+dq\leqq 2p+l$ . Since $2\leqq d$ , we have $ 2(2p-q)+2q\leqq$
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$2p+l$ . So, we have $2p-l\leqq 0$ , which is a contradiction. Therefore $d\geqq q$ ,
and so, we have $s=2$ . Set $d=q+k$ . Then, we can see that $2(k+1)>$

$2p-q$ . On the other hand, we have $2(q+k)=2p+l$ . Hence, $2p+l-2q+2>$
$2p-q$ . Thus $l=q-l$ , and so, we have $k=(2p-q-1)/2$ . We take $2p-q-k$

points $\alpha_{1},$ $\cdots,$ $\alpha_{2p-,-k}$ from $\Gamma_{1}$ . Since $(q+k)-(2p-q-k)<q$ , we have that
for any $k$ points $\beta_{1},$ $\cdots,$

$\beta_{k}$ of $\Gamma_{2},$ $T_{\alpha_{1},\ldots,\alpha_{2p-q-k}.\beta_{1},\ldots,\beta_{k}}^{\Gamma_{2}}$ has a q-cycle. So,
$T_{\alpha_{1},\cdots,\alpha_{2p-q-k}}^{\Gamma_{2}}$ is a k-transitive group, by [3, Lemma 6]. Hence, $ T_{a_{1},\cdots,\alpha_{2p-,-k}}^{\Gamma_{2}}\geqq$

$A^{\Gamma_{2}}$ by [5, Theorem 13.9]. We take $2p-q$ points $\gamma_{1},$ $\cdots,$ $\gamma_{2p-q}$ from $\Gamma_{1}$ .
By considering the Sylow q-subgroups of $T_{\gamma_{1},\ldots,\gamma_{2p-}}$ , we get a contradiction
by (2).

Therefore, $T$ is an intransitive group. Suppose that $T$ has just
two orbits $\Gamma_{1}$ and $\Gamma_{2}$ with $|\Gamma_{i}|\geqq q(i=1,2)$ . Set $\Gamma_{l}|=q+k_{i}(i=1,2)$ . Then,
we can see that $(k_{1}+1)+(k_{2}+1)>2p-q$ . On the other hand $(q+k_{1})+$

$(q+k_{2})\leqq 2p+l-1$ . So, we have $2p-q-2<2p-2q+l-1$ . Thus $q-1<l$ ,
which is a contradiction. Therefore, we may assume that $T$ has the
only one orbit $\Gamma$ with $|\Gamma|\geqq q$ . We take a point a from $ I(x)-\Gamma$ and
$2p-q$ points $\beta_{1},$

$\cdots,$ $\beta_{2p-q}$ from $\Gamma$ . Let $\langle a\rangle$ be a Sylow q-subgroup of
$T_{\beta_{1},\cdots,\beta_{2p-q}}$ , where $a$ is a q-cycle. We take a point 7 from $I(x)-I(a)$ . Let
$\langle b\rangle$ be a Sylow q-subgroup of $T_{\rho_{1},\ldots,\rho_{2p-q-1},\gamma}$ , where $b$ is a q-cycle. Since
$\langle a\rangle$ and $\langle b\rangle$ are Sylow q-subgroups of $T_{\alpha,\beta_{1}\ldots.,\beta_{2p-q-1}}$ , we get a contradiction
by (2).
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