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Introduction.

In Yoshizawa [6], the following two theorems were proved.

Theorem A. Let p be an odd prime. Let G be a permutation group
on a set 2=({1, 2, ---, n} which satisfies the following condition. For any
2p points «a,, ++-, a,, of 2, a Sylow p-subgroup P of the stabilizer in G
of the 2p points a,, - - -, @,, is nontrivial and fixes exactly 2p-+r points
of 2, and moreover P is semiregular on the set 2—I(P) of the remaining
n—2p—r points, where » is independent of the choice of «,, ---, a,, and
0<r<p—2. Then n=3p-+7r, and there exists an orbit I' of G such that
|II'l = 3p and G" = A".

Theorem B. Let p be an odd prime = 11. Let G be a permutation
group on a set 2={1, 2, ---, n} which satisfies the following condition.
For any 2p points a,, -+, a,, of 2, a Sylow p-subgroup P of the stabilizer
in G of the 2p points «,, -+, @;, is nontrivial and fixes exactly 3p—1
points of 2, and moreover P is semiregular on the set 2—I(P) of the
remaining n—3p-+1 points. Then n=4p—1, and one of the following
two cases holds: (1) There exists an orbit I" of G such that |I'|=3p
and GF=AT. (2) G has just two orbits I, and I', with |I',|=p, |I:|=p
and |I',|+|T,|=4p—1, and G is (|I",|—p+1)-transitive on I'(i=1, 2).
Moreover, GTiz= AT if |I";|=p+3.

In [1], E. Bannai determined all 2p-fold transitive permutation groups
in which the stabilizer of 2p points is of order prime to p, where p is
an odd prime. By using Theorem A and Theorem B in [6], we will
improve it, namely, we will prove the following result.

THEOREM 1. Let p be an odd prime =11, and let g be an odd prime
with p<q<p+p/3. Let G be a 2p-fold transitive permutation group on
Q={1,2, ---,n}. If the order of Gi,,...., 18 not divisible by q, then G
is S,2p=<n=2p+q—1) or A,(2p+2=n=2p+q—1).
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Besides, by using Theorem 1, we will prove the following result.

THEOREM 2. Let p be an odd prime =11, and let q be an odd prime
with p<q<p+p/3. Let G be a 2p-fold transitive permutation group
on 2={1,2, ---,n}. If G,,...., has an orbit on 2—{1,2, ---, 2p} whose
length is less than gq, then G is S,2p+1=n=2p+qg—1) or A,2p+2=<
n=2p-+q—1).

As an immediate corollary to Theorem 2, we have the following result.

COROLLARY. Let p be an odd prime =11, and let q be an odd prime
with p<q<p+p/38. Let D be a 2p-(v, k, 1) design with 2p<k<2p+q.
If an automorphism group G of D is 2p-fold tramsitive on the set of
points of D, then D is a 2p-(k, k, 1) design, namely o trivial design.

We shall use the same notation as in [4].

§1. Proof of Theorem 1.

Let G be a counter example to the theorem.

Let P be a Sylow p-subgroup of G,,,...,,. Then P+1 and P is not
semiregular on 2—I(P), by [1, Main Theorem] and [2, Theorem 1]. Set
|I(P)|=7(mod p), where 0<r<p—1. We first show that r<q—p—1.
Suppose, by way of contradiction, that » = ¢g—p. Let R be a subgroup
of P such that the order of R is maximal among all subgroups of P fixing
at least 38p points. By Theorem A and Theorem B in [6], we have |I(R)|=
3p+7=2p+q, and moreover we have that there exist 2p points a,, - - -, a,,
of I(R) such that Ng(R)i¥.. o, has a g-cycle. This contradicts the assump-
tion of Theorem 1.

Let @ be a subgroup of P such that the order of Q is maximal
among all subgroups of P fixing at least 4p points. (It may be that
Q=1.) We may assume that I(Q)={1,2, ---, |I(Q)|}. Set N=N4(Q)"?,
Then N satisfies the following properties.

(i) N is a permutation group on I(Q). |I(Q)] = 4p.

(ii) For any 2p points «,, ---, a,, of I(Q), the order of N,,....,
divisible by » but is not divisible by gq.

(iii) For any element x of order » of N fixing at least 2p points,
|I(x)| must be 2p+7 or 8p+r. Moreover, by Theorem A and Theorem
B in [6], we have

(iv) N has an element a of order p with |I(a)|=3p+r.

We may assume that

a=1)2) --+ Bp+7r)BD+r+1, «+v, dD+7) -+ .
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Set T=Cy(@)i?11.:..psr. Then T satisfies the following three pro-
perties.

(1) T is a permutation group on I(a). |I(a)|=3p+r.

(2) For any p points a, ---, @, of I(a), the order of T,,..., is
divisible by ».

(3) For any p points a,, ---, @, of I(a), the order of T.,...., is not"
divisible by gq.

We will show that such 7 does not exist. Let 4, ---, 4, be the
orbits of T with |4,| = p(i=1, +-+, 8).

Suppose that s = 3. Since |I(a)|=3p+r=<4p—1, we have s=3. Set.
|Ai|:p+kz(’l’=19 2, 3). Then, (p+k1)+(p+k2)+(p+k3)§3p+/r’ and so,
(I, + 1)+ kb + 1)+ (ke + 1) Sr+3=<qg—p+2<p/3+2<p. We get a contradic-
tion, by (2).

Suppose that s=2. We may assume that |4,|=|4,|. Then, |[4|=<
(Bp+1r)2=2p+q—1)/2=p+(¢—1)/2. Set |4|=p+k. Then, k=(¢—1)/2<
(2/3)p—1/2, and so, p—(k+1)>p/83—1/2. We take k+1 points a,, - -+, Quy,
from 4,. Set V=T%.. ,.,. Then by (2), for any p—k—1 points 8,, ---,
By—k— Of 4y, Vi, oip,_,_, has an element of order p. Assume that V has
just two orbits ¥, and ¥, with |¥,|=p(1=1, 2). Set |2 [=p+l(1=1, 2).
In this case, l,<p(i=1, 2). Since |3,|+|5,|+|4|<|L(a)|=3p+r, we have
that (p+1)+@+1l)+(p+k)<8p+r. So, l,+l,+2=<r—k+2. Hence, p—
E—1—+D)—@+)=2p—k—1—(r—k+2)=p—r—-82p—(@—p—1)—-3=
2p—q—2=0. We take l,+1 points v, -+, 7, from 2, and [,+1 points
8y +++y 014, from X,. Then, the order of Vi, ...n i6,-01,4, 18 DOt divisible
by p, which is a contradiction. Therefore, we may assume that V has
the only one orbit ¥ with |3|=p. We remark that for any »—k—1
points %y, +++, Pp_sy of X, Vi .., . has an element of order p. Es-
pecially, | J|=p+(p—k—1)>p+(p/3—1/2). Hence |¥|>q—1/2. Then we
have |3|=q. Suppose that V*¥ is imprimitive. Let {II, ---, II,} be the
system of imprimitivity of V. Set |II,|=d. Assume dz=p. So, we
have t=2. Moreover, we can see that 2(d—p)+2>p—k—1. Hence,
2d+k>3p—3. On the other hand, since |X|+|4,|<3p+r, we have
2d+p+k<3p+r. So, 2d+k=2p+r. Hence 2p+7r>3p—3, which is a
contradiction. Therefore, d<p. Then, we can see that d(p—k—1)+
dp<|X|. Since |X|+]|4,|<8p+r and d=2, we have that 2(p—Fk—1)+
2p+(p+k)<3p+r. Hence, 5p—k—2=3p+r=<2p+q—1, which is a con-
tradietion. Therefore, V¥ is primitive. Since p—k—1>p/3—1/2, by [5,
Theorem 13.10], we have V*=A*. Since |3 |=gq, this contradicts (3).

Therefore, we have s=1. By (2), for any p points «,, ---, @, of 4,,
T4,...., has an element of order p. Hence, we have that 2p<|4,|=38p+7.
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Assume that T“ is imprimitive. Let {I", «-+,I',)}) be the system of
imprimitivity of T“, and let |I',|=f. If f=p, then v=2 or 3, and we
get a contradiction by using the similar argument to that of the above
case 8=2, 3 respectively. Hence, we have f<p. So, we can see that
»f+pf=|4,]. But, this is a contradiction, since f=2. Therefore, T* is
primitive. Then by [5, Theorem 13.10], we have T“ = A%, which is a
contradiction by (8).

§2. Proof of Theorem 2,

Let G be a counter example to the theorem. Let 4 be an orbit of
G,s,....0 o0 2—(1, 2, ---, 2p} such that |4|<q. By [4], we have 2<|4]|<q.

Let Q be a Sylow g-subgroup of G,,....,,. Then Q # 1, by Theorem
1. By the lemma of Witt [5, Theorem 9.4] and Theorem 1, we have
Ng(Q)' Pz AT@, So, Ng(Q)I Q@22 > gI@-2--29)  Hence we have Q)=
4U1{1,2, ---, 2p}, since I(Q) > 4. This shows that I(Q) is independent of
the choice of Sylow g-subgroup @ of G,,...,, and is uniquely determined
by G,,...:». Let R be a subgroup of Q such that the order of R is
maximal among all subgroups of @ fixing more than | I(Q)] points. We
may assume that I(R)={1,2, ---, [I(R)|}. Set N=NyR)"® and |4|=L.
Then N satisfies the following properties.

(1) N is a permutation group on I(R). |I(R)|=2p+I(mod Q).

(ii) For any 2p points «a,, ---, @,, of I(R), a Sylow g-subgroup S of
N,,,....a,, satisfies that S=£1, | I(S)|=2p+1, S is semiregular on I(R)— I(S),
and I(S) is independent of the choice of Sylow g-subgroup S of of N.,,....,
and is uniquely determined by N.,.. agy®

Let « be an element of order g of N,,....,. Then, we may assume
that

r=1)2) --- 2p+DRp+1+1, ---, 2p+14q) - -+

Set T'=Cy(®)571+1,-...2p414¢- Then T satisfies the following properties.
(1) T is a permutation group on I(x). | I(x) | =2p+1.
(2) For any 2p—gq points a,, ---, a,,_, of I(x), a Sylow g-subgroup
..... ap—, 18 @ cyclic group of order ¢ generated by a g-cycle, and
| I(M)|=2p—q+1l. Moreover, I(M) is independent of the choice of Sylow
qg-subgroup M of T,,.. -azy—, @Nd is uniquely determined by Tayeersy e
Suppose that T is primitive. By [5, Theorem 13.9], we have T>A’ )
which contradicts (2).
Next suppose that 7T is imprimitive. Let {I", ---, I',} be the system
of imprimitivity of T, and let |I',|=d. Assume that d<q. Then, we
can see that d(2p—q)+dg=<2p+!. Since 2<d, we have 22p—q)+2¢<
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2p+1. So, we have 2p—1=<0, which is a contradiction. Therefore d=gq,
and so, we have s=2. Set d=q+k. Then, we can see that 2(k+1)>
2p—gq. On the other hand, we have 2(¢+%)=2p+!. Hence, 2p+1—2¢+2>
2p—gq. Thus l=q¢—1, and so, we have k=(2p—qg—1)/2. We take 2p—q—Fk
points a,, +++, @y,_,_, from I',. Since (¢+k)—(2p—q—Fk)<q, we have that
for any k points B, -+, Br of Iy T3y, 15,5, DBS @ g-cycle. So,
Tff,...,,xzp_q_k is a k-transitive group, by [3, Lemma 6]. Hence, T%2 gy 2
A”: by [6, Theorem 13.9]. We take 2p—gq points 7v,, - *+, Vsp_, from I',.
By considering the Sylow g-subgroups of T} ..., we get a contradiction
by (2).

Therefore, T is an intransitive group. Suppose that T has just
two orbits I, and I', with |I";|=q(1=1, 2). Set |I';|=¢+k:;(i=1, 2). Then,
we can see that (k,+1)+(k,+1)>2p—q. On the other hand (¢+Fk)+
(q+k,)<2p+1—1. So, we have 2p—q—2<2p—2¢+1—1. Thus ¢—1<I,
which is a contradiction. Therefore, we may assume that T has the
only one orbit I with |I"'|=q. We take a point a from I(x)—I" and
2p—q points B, +++, By, from I'. Let <{a) be a Sylow g¢-subgroup of
Ts,.....55,—,» Where a is a g-cycle. We take a point v from I(x)—I(a). Let
(b) be a Sylow g-subgroup of Tj,,..., , ,r» Where b is a g-cycle. Since
{a) and (b) are Sylow g-subgroups of T,4,,....s,, , ,» We get a contradiction
by (2).
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