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Introduction

In the preceding paper [6], the author proved that, in a two-dimen-
sional connected Stein manifold X satisfying the condition H*X, Z)=0,
one can solve the Riemann-Hilbert problem without apparent singularities
for an arbitrary divisor D and an arbitrary representation of 7,(X— D, %)
into GL,(C). The purpose of the present paper is to give an example of
the Riemann-Hilbert problemwhich cannot be solved without apparent sin-
gularities by the same method as in the two-dimensional case. More
precisely, let S be a 3-dimensional polydisc; then, by a result of H. Lindel
[7], there exists a special divisor D of S such that we can construct a flat
vector bundle V of rank g over S— D satisfying the following conditions:

1) There exists an integrable holomorphic connection V' on &7 (V)
such that Ker7=C(V) where C(V) is the sheaf of germs of locally
constant sections of V.

2) (V) is extended to a locally free analytic sheaf Z5Z on
S—Sing (D) on which F is the meromorphic connection with logarithmic
poles along DN (S—Sing (D)). The eigenvalues a, ---, a, of the residue
of 7 at any point of D—Sing (D) are rational numbers and satisfy the
inequalities 0=<a;<1 for =1, ---, q.

8) 27 is extended uniquely to a coherent analytic sheaf 57~ on S
satisfying SPM=257, but S cannot be extended to any locally free

analytic sheaf on S, where 7'M is the first absolute gap-sheaf of 7
(for the definition of absolute gap-sheaves, see [9]).

It seems to the author that if, in three dimension, one wants to
solve the Riemann-Hilbert problem without apparent singularities even
in the local sense, one should study in detail the Manin extension (See
1.2.) and the structure of vector bundles which are meromorphic along
a divisor (see [3]), and should take deeper consideration on the equation
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of L. Schlesinger and Lappo-Danilevski (see the papers of K. Aomoto
(1], [2D.

§1. Analytic covers and connections with logarithmic poles.

1.1. Let X be an nm-dimensional normal analytic space and let S be
an n-dimensional connected complex manifold. Suppose that a finite
holomorphic mapping f: X— S is given; then there is a divisor D of S
such that f: X*—S* is an unramified covering of the sheet number q,
where we put X*:=X—f"(D) and S*:=S—D. We denote by C, the
constant sheaf on X* with coefficients in C and by ;. the structural
sheaf of the complex manifold X*. Then we can consider two sheaves
on S*; one is the direct image f,(Cz)=:V of C;. which is a locally
constant sheaf with coefficients in C? and the other is the direct image
f«(T%) of T%. which is a locally free analytic sheaf of rank ¢. It is
easy to see that f,(Z%)=V @ Ts. It follows that there exists a unique
integrable holomorphic connection

V: fi(Tre)— Q5e Qg [5(Tx)

satisfying the condition Ker 7=V. Put 8':=S—Sing (D) where Sing (D)
is the singular locus of the divisor D. We write X":=f"%S"). Then
f: X'—S§' is a finite holomorphic mapping and from an elementary fact
about analytic covers (see [4]), it follows that X’ does not have any
singular points. For later applications, we recall the following standard
results about analytic local C-algebras (for the proof, see [5]).

LEMMA 1. Let A and B be n-dimensional analytic local C-algebras.
Suppose that A is regular and that a finite homomorphism : A—B is

given. Then B is a free A-module of finite rank if and only if B is
a Macaulay ring.

X’ being non-singular, the local ring %, at any point ze X’ is
regular; hence 7., is a Macaulay ring. Since f: X’—S is a finite
holomorphic mapping and S’ is a complex manifold, it follows from
Lemma 1 that the direct image f,(c7%) of the structural sheaf 7. of
X' is a locally free analytic sheaf on S’ of rank q. In the rest of 1.1.
we shall prove the following

THEOREM 1. The connection V on f.(T%.) 18 extended to the meromor-
phic commection V on f, (%) with logarithmic poles along DNS'. The
eigenvalues a,, - - -, a, of the residue of V at an arbitrary point of DNS'
are rational numbers and satisfy the inequalities 0<a, <1 for i=1, ---, q.
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The problem is local on DNS'. For an arbitrary point of DNn&S,
we can take a small polydisc centered at x such that the following con-
ditions are satisfied:

1) UcS and UNSing (D)=@.

2) There exists an open polydisc 4 in C*(z, - - -, 2,) centered at the
origin and a complex manifold W (not mecessarily conmnected) where
(2, ++*, 2,) is the coordinate system of C".

38) There exists a finite holomorphic mapping 7: W—4 with the
critical locus A:={ze 4|z,=0}.

4) The following diagram is commutative and the horizontal arrows
are biholomorpic mappings:

FU) w
f :
U 4
i 7

U] W
DnU A

where ¢ and j are the inclusion mappings.

We put W*:=W—7"'(A) and 4*:=4—A. By the condition 4), the
problem is reduced to showing that the holomorphic connection /7 on
74(Ty) with Ker V=7,(Cy.) is extended to the meromorphic connection
F on 7.,(,) with logarithmic poles along A. If W=UL, W, is the de-
composition of W into connected components, then the direct images
7.(Cys), Tx(Twe) and 7,() are decomposed into the direct sums 7,(Cy.) =
Di-. f*(CW';)’ T4 (Twe) =B, T*(ﬁw’;) and 7,(Fy) =®i=1 T+(Tw,) where W=
W,—7"%(A)N W,. So we have reduced proving Theorem 1 to the case where
W is connected. When W is connected, we can regard the analytic cover
r: W—4 as follows, by a well-known fact about analytic covers (see [4D;
let ¥ be an n-dimensional non-singular affine algebraic variety in
C*+Y(z,, « -+, 2,, w) defined by the equation w?—2z,=0 and let p: C*+'— C*(2)
be the natural projection. Put W:=p(4H)NY and let z: W—4 be the
holomorphic map induced by the projection p. It is obvious that 7 is a
finite holomorphic mapping with the critical locus A={z € 4|z,=0}; this
is our model of the analytic cover 7: W—4. Hence it is sufficient fo
prove Theorem 1 in the above situation.

Let a ¢ A and take a small polydisc N centered at a in 4. Let s be
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a section of 7,(<7) on N; then by the definition of direct image, there is
a holomorphic function g on z7(N) which corresponds to s under the iso-
morphism I'(z™(N), &%) 3 I'(N, t.(P)). Since 77N ) is a closed complex
submanifold of p % (N)=NXxC and since NxC is a Stein manifold, there
exists, by Theorem B on Stein manifolds, a holomorphic function G(z, w)
on NXxC such that the restriction G|z ™(N) of G to = ¥V ) coincides with
g. For an abitrary ze N, we see that the number of the roots of the
equation w?'—z,=0 is always equal to ¢ (properly counted with multipli-
cities). Hence by the division theorem of Oka (see [8], p. 109), G can
be written in a unique manner in the form

(1) G(z, w)=(w'—2,)Q(z, w)+ H(z, w)
where @ is holomorphic in NxC and H has the following form:
H(z, w)=a,2)+a,(2)w+ - - - +a,_,(2)w'*

with each a,(z) holomorphic on N. It is obvious that Gt (N)=H|t}(N);
hence, putting w*|t™¥(N)=s, (k=0, ---, ¢g—1), we have that

9=0a(2)8,+a,(2)8;+ -+ - +a,_,(2)s,_, .

Since s, (k=0, ---, g—1) can be regarded as a section of 7«(Z) over N,
we obtain the following:

8=0ay(2)8;+ -+ +a,_(2)s,_, ;

here we are identifying g with the section seI'(N, T4(Z%)). The uni-
queness of the expression (1) shows that the sections 8 =, 8, are
linearly independent over I'(N, <,). Since N is an arbitrary small
polydisc centered at a, it follows that, putting e,=wW (k=0, .-+, qg—1),
the set (e, ---, e,_,) is a basis of the locally free analytic sheaf T (%)
over 4.

We will express explicitly the locally constant sheaf T4(Cws) over 4*
by means of the basis (e, ---, ¢,_,). Let b be an arbitrary point of 4*
and let N(b) be a small polydisc centered at b in 4*. Let T7YN())=
Ui, N, be the decomposition of z7%(N(b)) into connected components and
we fix over N(b) a branch (z,)"* of the many-valued holomorphic function
defined by the equation w'—z,=0. Then by changing the indices of N,,
if necessary, we can identify the restriction w|N; of w to N, with
¢ (=) (i=1, -+, q), where {=exp (2ri/q). Since (e, ---, e,—1) is a basis
of 7,.(7%) over N(b), it follows that, for any section v of T,.(Cy.) over
N(b), there exist holomorphic functions b&,(z), ---, b,_i(z) on N(b) such
that
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v=>by(2)ey+ + - - +b,_1(R)e,_; .
Observing that 7}(N(b))=UJi{-, N;, we have

V| N, =by(2)(eo|N;)+ - - - +bq-—1(z)(eq—1|Ni)
for =1, ---, q.

Since we have identified ¢,|N; with {*7%(z,)Y? for i=1, ---, q, we obtain
the following relations, putting v|N,=v,_,€C:
(2) ¥, =by(2) +b,(2)C" (=, )+ - -

+by_ ()T, )V (1=1, -+, Q) .

If we put b,(2)=b,(2)(2,)"* (5=0, ---, ¢g—1), we can rewrite (2) in matrix
notations in the following form:

50 (0
A Al _ (2
gq—-l ,Uq—l
where
1 1 1
1 N
(3) Ao g 4

1 Cq-l e C(q"l)(q—l)

The determinant of the matrix A is non-zero by a result of van der
Monde; hence we see that, in order for the section v of 7,(Z%.) to be
constant on N(b), it is necessary and sufficient that the function
(50(z), coe, 3q_1(z)) is constant on N(b). This means that, when we use
the basis (e, - -, ¢,,) of 7,() over N(b), any section v of 7,(Cy.) over
N() can be written in the following form:

V=Ce+ 25" e+« « - +Co12a ' e,

where ¢, ---, ¢,_, are arbitrary constants: ¢,€C. v is a horizontal
section of V. So, writing Ve,=>I=} w;e;, we have

g-—-1 vy g—1 ,i dz vy
0=rv=>,¢z;"Ve,+ 2',(:‘(———----—"‘>z,t e, ;
i=0 =0 q n

hence by an elementary computation, we conclude that the connection
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matrix I'=(w,;) is written in the following form:
0
1/ 0 e
0 . . 2
(@—D/a/
This formula shows that 7 is the meromorphic connection on 7.(c%)
with logarithmic poles along A and the eigenvalues of the residue of 7

are 0, 1/q, ---,(@—1)/q. This completes the proof of Theorem 1.
Q.E.D.

1.2. Let M be an arbitrary connected complex manifold and let D
be a normal crossing divisor. Suppose that a flat vector bundle V of
rank ¢ on M—D is given; then there is a unique holomorphic integrable
connection ¥ on (V) such that Ker/=C(V). As is well-known,
Deligne-Manin [3] proved that the vector bundle V is extended uniquely
to a holomorphic vector bundle ¥V on which F is the meromorphic
connection with logarithmic poles along D. Moreover the eigenvalues
o, -+, @, of the residue of / at any point of D satisfy the inequalities
0=Rea;<1. We shall call such an extension of the flat vector bundle
V the Manin extension of V. Turning to our situation, let the nota-
tions be the same as those in Theorem 1. From Theorem 1, it follows
that the locally free analytic sheaf f,(%%:) is the Manin extension of the
flat vector bundle f,(7.). Hence we have the following:

COROLLARY 1 TO THEOREM 1. f,.(%) is the Manin extension of the
Aat vector bundle f.(Ty.).

Let X be a normal complex space and S be an n-dimensional con-
nected complex manifold. Let f: X— S be a finite holomorphic mapping
with the critical locus D. We suppose that D is mormal crossing.
Since f,(Z%)=:V is a flat vector bundle on S—D with the integrable
holomorphic connection 7 such that Ker/7=C(V), it follows from the
result of Deligne-Manin quoted above that there exists the Manin
extension V of V which is locally free on S. By the definition of the
(n—2)-th absolute gap-sheaf and the continuation theorem of Hartogs,
we have V" %=V where V* % is the (n—2)-th absolute gap-sheaf of
V. On the other hand, from the Corollary 1 to Theorem 1, it follows
that f,(%) is the Manin extension of V on S’. Since Manin extension
is unique, we have V|S'=f,(%). X is normal and f: X— S is a finite
holomorphic mapping; hence by Hartogs’ continuation theorem, we see
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that (f ()" 2=f,(T%). Sing (D) being of codimension at least two
and f,(c) coherent on S, we conclude, by a result of Y.-T. Siu ([9],
p. 202), that two coherent extensions V and f,.(<%) of V|S'=f,() on
S are isomorphic; therefore it follows that f.(Z%) is locally free on S.
Hence we obtain the following:

COROLLARY 2 TO THEOREM 1. Let f: X— S be as above. We suppose
that the critical locus D of f: X— S is normal crossing; then the direct
image f.(T%) 18 a locally free anmalytic sheaf on S.

§2. An example to the Riemann-Hilbert problem.

H. Lindel [7] gave the following example; let X be an analytic space
defined by the following equations in C°® (x,, 2, 2, Yo, Y1, Ys)» TY;—%;Y;=0
(4, 570, 1, 2, i£75), S, xi=0, i, 2w, =0, i xyi=0, 3i,¥i=0. X is
a 8-dimensional analytic space with the only isolated singular point
£,=(0, -++,0). Then X is mormal, but the local ring &%, of X at x,
is not a Macaulay 7ring. By a well-known local theory of analytic
spaces, there exists a finite holomorphic mapping f: X—S=C® From
Lemma 1, it follows that the direct image f.(%%) is mot a locally free
analytic sheaf on S. Let D be a critical locus of f: X—S and put
S’:=S—Sing (D). We write X":=f"S"). By Corollary 1 to Theorem 1,
we see that the direct image f,(%:) is the Manin extension of the flat
vector bundle f,(%.). If the locally free analytic sheaf f,(<%/) could
be extended to a locally free analytic sheaf .~ on S, then by the same
reason as in the proof of Corollary 2 to Theorem 1, we would have
F«(T) =57 Since f,(7%) is not locally free, this is contradiction. Thus
f«(Z%) cannot be extended to a locally free analytic sheaf on S. Hence
we have the following:

THEOREM 2. There exists a special divisor D of C*® and a certain
flat vector bundle V on C*—D such that the Manin extension of V on
C*—Sing (D) cannot be extended to a locally free analytic sheaf on C°.
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