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Introduction

In the preceding paper [6], the author proved that, in a two-dimen-
sional connected Stein manifold $X$ satisfying the condition $H^{2}(X, Z)=0$ ,
one can solve the Riemann-Hilbert problem without apparent singularities
for an arbitrary divisor $D$ and an arbitrary representation of $\pi_{1}(X-D, *)$

into $GL_{q}(C)$ . The purpose of the present paper is to give an example of
the Riemann-Hilbert problemwhich cannot be solved without apparent sin-
gularities by the same method as in the two-dimensional case. More
precisely, let $S$ be a 3-dimensional polydisc; then, by a result of H. Lindel
[7], there exists a special divisor $D$ of $S$ such that we can construct a flat
vector bundle $V$ of rank $q$ over $S-D$ satisfying the following conditions:

1) There exists an integrable holomorphic connection $\nabla$ on $p(V)$

such that Ker $\nabla=C(V)$ where $C(V)$ is the sheaf of germs of locally

constant sections of $V$.
2) $p(V)$ is extended to a locally free analytic sheaf $\ovalbox{\tt\small REJECT}$ on

$S$-Sing $(D)$ on which $\nabla$ is the meromorphic connection with logarithmic
poles along $ D\cap$ ( $S$-Sing $(D)$). The eigenvalues $\alpha_{1},$ $\cdots,$ $\alpha_{q}$ of the residue
of $\nabla$ at any point of $D$-Sing $(D)$ are rational numbers and satisfy the
inequalities $0\leqq\alpha_{i}<1$ for $i=1,$ $\cdots,$ $q$ .

3) $\ovalbox{\tt\small REJECT}$ is extended uniquely to a coherent analytic sheaf $\tilde{\ovalbox{\tt\small REJECT}}$ on $S$

satisfying $\tilde{\mathscr{G}}^{[1]}=\tilde{\ovalbox{\tt\small REJECT}}$ but $\mathscr{G}$ cannot be extended to any locally free
analytic sheaf on $S$, where $\tilde{\mathscr{G}}^{[1]}$ is the first absolute gap-sheaf of $\tilde{\mathscr{G}}$

(for the definition of absolute gap-sheaves, see [9]).
It seems to the author that if, in three dimension, one wants to

solve the Riemann-Hilbert problem without apparent singularities even
in the local sense, one should study in detail the Manin extension (See

1.2.) and the structure of vector bundles which are meromorphic along

a divisor (see [3]), and should take deeper consideration on the equation
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of L. Schlesinger and Lappo-Danilevski (see the papers of K. Aomot
[1], [2]).

\S 1. Analytic covers and connections with logarithmic poles.

1.1. Let $X$ be an n-dimensional normal analytic space and let $Sh$

an n-dimensional connected complex manifold. Suppose that a finil
holomorphic mapping $f:X\rightarrow S$ is given; then there is a divisor $D$ of
such that $f:X^{*}\rightarrow S^{*}$ is an unramified covering of the sheet number $($.
where we put $X^{*}:=X-f^{-1}(D)$ and $S^{*}:$ $=S-D$. We denote by $C_{X^{*}}$ th
constant sheaf on $X^{*}$ with coefficients in $C$ and by $p_{X}$. the structuri
sheaf of the complex manifold $X^{*}$ . Then we can consider two sheave
on $S^{*};$ one is the direct image $f_{*}(C_{X}.)=:V$ of $C_{X}$. which is a locall
constant sheaf with coefficients in $C^{q}$ and the other is the direct imag
$f_{*}(P_{x*})$ of $p_{X}$. which is a locally free analytic sheaf of rank $q$ . It]’
easy to see that $f_{*}(P_{X}.)=V\Phi_{c}a_{s*}$ . It follows that there exists a uniqu
integrable holomorphic connection

$\nabla:f_{*}(p_{x*})\rightarrow\Omega_{s}^{1}.\Phi s*f_{*}(p_{x*})$

satisfying the condition Ker $\nabla=V$. Put $S’:=S$-Sing $(D)$ where Sing $(\mathcal{I}$

is the singular locus of the divisor $D$. We write $X’:=f^{-1}(S’)$ . The
$f:X^{\prime}\rightarrow S^{\prime}$ is a finite holomorphic mapping and from an elementary fac
about analytic covers (see [4]), it follows that $X^{\prime}$ does not have an
singular points. For later applications, we recall the following standar
results about analytic local C-algebras (for the proof, see [5]).

LEMMA 1. Let $A$ and $B$ be n-dimensional analytic local C-algebra:
Suppose that $A$ is regular and that a finite homomorphism $\varphi:A\rightarrow Bi$

given. Then $B$ is a free A-module of finite rank if and only if $ B\tau$

a Macaulay ring.

$X$’ being non-singular, the local ring $p_{X^{\prime}.x}$ at any point $xeX’ i$
regular; hence $p_{X^{\prime}.n}$ is a Macaulay ring. Since $f:X^{\prime}\rightarrow S$

’ is a finit
holomorphic mapping and $S^{\prime}$ is a complex manifold, it follows from
Lemma 1 that the direct image $f_{*}(P_{X^{\prime}})$ of the structural sheaf $p_{X^{\prime}}o$

$X$’ is a locally free analytic sheaf on $S$’ of rank $q$ . In the rest of 1.1
we shall prove the following

THEOREM 1. The connection $\nabla$ on $f_{*}(P_{x*})$ is extended to the meromot
phic connection $\tilde{\nabla}$ on $f_{*}(P_{X^{\prime}})$ with logarithmic poles along $D\cap S^{\prime}$ . Th
eigenvalues $\alpha_{1},$ $\cdots,$ $\alpha_{q}$ of the residue of $\tilde{\nabla}$ at an arbitrary point of $D\bigcap_{L}$

are rational numbers and satisfy the inequalities $0\leqq\alpha_{i}<1$ for $i=1,$ $\cdots,$ $\{$
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The problem is local on $D\cap S^{\prime}$ . For an arbitrary point $x$ of $D\cap S’$ ,
we can take a small polydisc centered at $x$ such that the following con-
ditions are satisfied:

1) $U\subset S$ and $ U\cap$ Sing $(D)=\emptyset$ .
2) There exists an open polydisc $\Delta$ in $C^{n}(z_{1}, \cdots, z_{n})$ centered at the

origin and a complex manifold $W$ (not necessarily connected) where
$(z_{1}, \cdots, z_{n})$ is the coordinate system of $C$“.

3) There exists a finite holomorphic mapping $\tau:W\rightarrow\Delta$ with the
critical locus $A:=\{ze\Delta|z.=0\}$ .

4) The following diagram is commutative and the horizontal arrows
are biholomorpic mappings:

$f^{-1}(U)$ $W$

$ f\downarrow$ $1-$

$U$ $\Delta$

$ i\lfloor$
$\lfloor j$

$D\cap U$ $A$

where $i$ and $j$ are the inclusion mappings.
We put $W^{*}:=W-\tau^{-1}(A)$ and $\Delta^{*}:$ $=\Delta-A$ . By the condition 4), the

problem is reduced to showing that the holomorphic connection $\nabla$ on
$\tau_{*}(p_{W^{*}})$ with Ker $\nabla=\tau_{*}(C_{W}.)$ is extended to the meromorphic connection
$\tilde{\nabla}$ on $\tau_{*}(p_{W})$ with logarithmic poles along $A$ . If $W=\bigcup_{i=1}^{k}W_{i}$ is the de-
composition of $W$ into connected components, then the direct images
$\tau_{*}(C_{W}.),$ $\tau_{*}(p_{W^{u}})$ and $\tau_{*}(\rho_{W})$ are decomposed into the direct sums $\tau_{*}(C_{W}.)=$

$\oplus^{k}\tau(C_{W_{i}^{*}}),$ $\tau_{*}(p_{W}.)=\oplus_{i=1}^{k}\tau_{*}(p_{W_{i}^{*}})$ and $\tau_{*}(\beta_{W})=\oplus^{k}\tau(\theta_{W})$ where $W^{*}=$

$W_{i}-\tau^{-1}(A)\cap W_{i}$ . So we have reduced proving Theorem 1 to the case where
$W$ is connected. When $W$ is connected, we can regard the analytic cover
$\tau:W\rightarrow\Delta$ as follows, by a well-known fact about analytic covers (see [4]);

let $Y$ be an n-dimensional non-singular affine algebraic variety in
$C^{n+1}(z_{1}, \cdots, z_{n}, w)$ defined by the equation $w^{q}-z.=0$ and let $p:C^{n+1}\rightarrow C^{\nu}(z)$

be the natural projection. Put $W:=p^{-1}(\Delta)\cap Y$ and let $\tau;W\rightarrow\Delta$ be the
holomorphic map induced by the projection $p$ . It is obvious that $\tau$ is a
finite holomorphic mapping with the critical locus $A=\{ze\Delta|z.=0\}$ ; this
is our model of the analytic cover $\tau:W\rightarrow\Delta$ . Hence it is sufficient to
prove Theorem 1 in the above situation.

Let $a\in A$ and take a small polydisc $N$ centered at $a$ in $\Delta$ . Let $s$ be
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a section of $\tau_{*}(\beta_{W})$ on $N$; then by the definition of direct image, there is
a holomorphic function $g$ on $\tau^{-1}(N)$ which corresponds to $s$ under the iso-
morphism $\Gamma(\tau^{-1}(N), P_{W})\rightarrow\sim\Gamma(N, \tau_{*}(\rho_{W}))$ . Since $\tau^{-1}(N)$ is a closed complex
submanifold of $p^{-1}(N)=N\times C$ and since $N\times C$ is a Stein manifold, there
exists, by Theorem $B$ on Stein manifolds, a holomorphic function $G(z, w)$

on $N\times C$ such that the restriction $G|\tau^{-1}(N)$ of $G$ to $\tau^{-1}(N)$ coincides with
$g$ . For an abitrary $z\in N$, we see that the number of the roots of the
equation $w^{q}-z.=0$ is always equal to $q$ (properly counted with multipli-
cities). Hence by the division theorem of Oka (see [8], p. 109), $G$ can
be written in a unique manner in the form
(1) $G(z, w)=(w^{q}-z.)Q(z, w)+H(z, w)$

where $Q$ is holomorphic in $N\times C$ and $H$ has the following form:
$H(z, w)=a_{0}(z)+a_{1}(z)w+\cdots+a_{q-1}(z)w^{q-1}$

with each $a_{i}(z)$ holomorphic on $N$. It is obvious that $G|\tau^{-1}(N)=H|\tau^{-1}(N)$ ;
hence, putting $w^{k}|\tau^{-1}(N)=s_{k}(k=0, \cdots, q-1)$ , we have that

$g=a_{0}(z)s_{0}+a_{1}(z)s_{1}+\cdots+a_{q-1}(z)s_{q-1}$ .
Since $s_{k}(k=0, \cdots, q-1)$ can be regarded as a section of $\tau_{*}(\rho_{W})$ over $N$,
we obtain the following:

$s=a_{0}(z)s_{0}+\cdots+a_{q-1}(z)s_{q-1}$ ;

here we are identifying $g$ with the section $se\Gamma(N, \tau_{*}(p_{W}))$ . The uni-
queness of the expression (1) shows that the sections $s_{0},$ $\cdots,$ $s_{q-1}$ are
linearly independent over $\Gamma(N, \rho_{N})$ . Since $N$ is an arbitrary small
polydisc centered at $a$ , it follows that, putting $e_{k}=w^{k}|W(k=0, \cdots, q-1)$ ,
the set $(e_{0}, \cdots, e_{q-1})$ is a basis of the locally free analytic sheaf $\tau_{*}(\mathcal{E}_{W})$

over $\Delta$ .
We will express explicitly the locally constant sheaf $\tau_{*}(C_{W}.)$ over $\Delta^{*}$

by means of the basis $(e_{0}, \cdots, e_{q-1})$ . Let $b$ be an arbitrary point of $\Delta^{*}$

and let $N(b)$ be a small polydisc centered at $b$ in $\Delta^{*}$ . Let $\tau^{-1}(N(b))=$

$U_{i=1}^{q}N_{i}$ be the decomposition of $\tau^{-1}(N(b))$ into connected components and
we fix over $N(b)$ a branch $(z.)^{1/q}$ of the many-valued holomorphic function
defined by the equation $w^{q}-z_{n}=0$ . Then by changing the indices of $N_{i}$ ,
if necessary, we can identify the restriction $w|N_{i}$ of $w$ to $N$ with
$\zeta^{i-1}(z,.)^{1/q}(i=1, \cdots, q)$ , where $\zeta=\exp(2\pi i/q)$ . Since $(e_{0}, \cdots, e_{q-1})$ is a basis
of $\tau_{*}(\rho_{W})$ over $N(b)$ , it follows that, for any section $v$ of $\tau_{*}(C_{W^{*}})$ over
$N(b)$ , there exist holomorphic functions $b_{0}(z),$

$\cdots,$ $b_{q-1}(z)$ on $N(b)$ such
that
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$v=b_{0}(z)e_{0}+\cdots+b_{q-1}(z)e_{q-1}$ .
Observing that $\tau^{1}(N(b))=\bigcup_{i=1}^{q}N_{i}$ , we have

$v|N_{i}=b_{0}(z)(e_{0}|N_{i})+\cdots+b_{q-1}(z)(e_{q-1}|N_{i})$

for $i=1,$ $\cdots,$ $q$ .
Since we have identified $e_{1}|N_{i}$ with $\zeta^{i-1}(z_{n})^{1/q}$ for $i=1,$ $\cdots,$ $q$ , we obtain
the following relations, putting $v|N_{i}=v_{i-1}\in C$:

(2) $ v_{i}=b_{0}(z)+b_{1}(z)\zeta^{\ell-1}(z, )^{1/q}+\cdots$

$+b_{q-1}(z)\zeta^{(q-1)(i-1)}(z_{n})^{(q-1)/q}$ $(i=1, \cdots, q)$ .
If we put $b_{i}(z)=b_{i}(z)(z)^{i/q}\wedge(i=0, \cdots, q-1)$ , we can rewrite (2) in matrix
notations in the following form:

$A^{\wedge}\left(\begin{array}{l}b_{0}\\b_{1}\wedge\\\vdots\\ b_{q-1}\wedge\end{array}\right)=\left(\begin{array}{l}v_{0}\\v_{1}\\\vdots\\ v_{q-1}\end{array}\right)$ ,

where

(3) $A=\left(\begin{array}{llll}1 & 1 & \cdots & l\\l & \zeta & \cdots & \zeta^{(q-1)}\\\cdots & \cdots & \cdots & \cdots\\ 1 & \zeta^{q-1} & \cdots & \zeta^{(q-1)(q-1)}\end{array}\right)$ .

The determinant of the matrix $A$ is non-zero by a result of van der
Monde; hence we see that, in order for the section $v$ of $\tau_{*}(p_{W^{*}})$ to be
constant on $N(b)$ , it is necessary and sufficient that the function
$(b_{0}(z)\wedge, \cdots, b_{q-1}(z))\wedge$ is constant on $N(b)$ . This means that, when we use
the basis $(e_{0}, \cdots, e_{q-1})$ of $\tau_{*}(\rho_{W})$ over $N(b)$ , any section $v$ of $\tau_{*}(C_{W^{*}})$ over
$N(b)$ can be written in the following form:

$v=c_{0}e_{0}+c_{1}z_{n}^{-1/q}e_{1}+\cdots+c_{q-1}z^{-(q-1)/q}e_{q-1}$

where $c_{0},$ $\cdots,$ $c_{q-1}$ are arbitrary constants: $c_{i}\in C.$ $v$ is a horizontal
section of $\nabla$ . So, writing $\nabla e_{i}=\sum_{i=0}^{q-1}\omega_{j}e_{j}$ , we have

$0=\nabla v=\sum_{i=0}^{q-1}c_{i}z_{n}^{-i/q}\nabla e+\sum_{i=0}^{q-1}c_{i}(-\frac{i}{q}\frac{d_{Z,n}}{z_{n}})z_{n}^{-i/q}e_{i}$ ;

hence by an elementary computation, we conclude that the connection
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matrix $\Gamma=(\omega_{\dot{f}})$ is written in the following form:

$\Gamma=\left(\begin{array}{llll}0 & & & \\ & & 1/q & 0\\ & 0 & & (q-1)/q\end{array}\right)\frac{dz,}{z_{l}}\cdot$ .

This formula shows that $\nabla$ is the meromorphic connection on $\tau_{*}(p_{W}$

with logarithmic poles along $A$ and the eigenvalues of the residue of $l$

are $0,1/q,$ $\cdots,$ $(q-1)/q$ . This completes the proof of Theorem 1.
Q.E. $D$

1.2. Let $M$ be an arbitrary connected complex manifold and let 1
be a normal crossing divisor. Suppose that a flat vector bundle $Vo$:
rank $q$ on $M-D$ is given; then there is a unique holomorphic integrabll
connection $\nabla$ on $p(V)$ such that Ker $\nabla=C(V)$ . As is well-known
Deligne-Manin [3] proved that the vector bundle $V$ is extended unique13
to a holomorphic vector bundle $\tilde{V}$ on which $\nabla$ is the $meromorphi\{$

connection with logarithmic poles along $D$ . Moreover the $eigenvalue\{$

$\alpha_{1},$ $\cdots,$ $\alpha_{q}$ of the residue of $\nabla$ at any point of $D$ satisfy the inequalitie.
$0\leqq{\rm Re}\alpha_{i}<1$ . We shall call such an extension of the flat vector bundlt
$V$ the $Man’\dot{b}n$ extension of $V$. Turning to our situation, let the nota
tions be the same as those in Theorem 1. From Theorem 1, it followf
that the locally free analytic sheaf $f_{*}(P_{X^{\prime}})$ is the Manin extension of tht
flat vector bundle $f_{*}(P_{X}.)$ . Hence we have the following:

COROLLARY 1 TO THEOREM 1. $f_{*}(P_{X^{\prime}})$ is the Manin extension of $th_{t}$

flat vector bundle $f_{*}(P_{X}.)$ .
Let $X$ be a normal complex space and $S$ be an n-dimensional con.

nected complex manifold. Let $f:X\rightarrow S$ be a finite holomorphic mapping
with the critical locus D. We suppose that $D$ is normal crossing
Since $f_{*}(P_{x*})=:V$ is a flat vector bundle on $S-D$ with the integrablt
holomorphic connection $\nabla$ such that Ker $\nabla=C(V)$ , it follows from the
result of Deligne-Manin quoted above that there exists the Manir
extension $\tilde{V}$ of $V$ which is locally free on $S$ . By the definition of the
$(n-2)$-th absolute gap-sheaf and the continuation theorem of Hartogs
we have $\tilde{V}^{[\hslash 2]}-=\tilde{V}$ where $\tilde{V}^{[\hslash 2]}-$ is the $(n-2)$-th absolute gap-sheaf of

$\tilde{V}$. On the other hand, from the Corollary 1 to Theorem 1, it followf
that $f_{*}(P_{X^{\prime}})$ is the Manin extension of $V$ on $S’$ . Since Manin extensior
is unique, we have $\tilde{V}|S’=f_{*}(p_{X^{\prime}})$ . $X$ is normal and $f:X\rightarrow S$ is a finite
holomorphic mapping; hence by Hartogs’ continuation theorem, we see
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that $(f_{*}(P_{X}))^{\mathfrak{c}’ 2J}-=f_{*}(p_{X})$ . Sing $(D)$ being of codimension at least two
and $f_{*}(P_{X})$ coherent on $S$, we conclude, by a result of Y.-T. Siu ([9],
p. 202), that two coherent extensions $\tilde{V}$ and $f_{*}(P_{X})$ of $\tilde{V}|S’=f_{*}(P_{X^{\prime}})$ on
$S$ are isomorphic; therefore it follows that $f_{*}(P_{X})$ is locally free on $S$ .
Hence we obtain the following:

COROLLARY 2 TO THEOREM 1. Let $f:X\rightarrow S$ be as above. We suppose
that the critical locus $D$ of $f:X\rightarrow S$ is normal crossing; then the direct
image $f_{*}(P_{X})$ is a locally free analytic sheaf on $S$ .

\S 2. An example to the Riemann-Hilbert problem.

H. Lindel [7] gave the following example; let $X$ be an analytic space
defined by the following equations in $C^{6}(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{g}),$ $x_{i}y_{j}-x_{j}y_{i}=0$

$(i, j\neq 0,1,2, i\neq j),$ $\sum_{i=0}^{2}x_{i}^{3}=0,$ $\sum_{i=0}^{2}x_{i}^{2}y_{i}=0,$ $\sum_{i=0}^{2}x_{i}y_{i}^{2}=0,$ $\sum_{i=0}^{2}y_{i}^{\epsilon}=0$ . $X$ Is
a 3-dimensional analytic space with the only isolated singular point
$x_{0}=(0, \cdots, 0)$ . Then $X$ is normal, but the local ring $p_{X,x_{0}}$ of $X$ at $x_{0}$

is not a Macaulay ring. By a well-known local theory of analytic
spaces, there exists a finite holomorphic mapping $f:X\rightarrow S=C^{3}$ . From
Lemma 1, it follows that the direct image $f_{*}(P_{X})$ is not a locally free
analytic sheaf on $S$ . Let $D$ be a critical locus of $f:X\rightarrow S$ and put
$S^{\prime}:=S$-Sing $(D)$ . We write $X’:=f^{-1}(S^{\prime})$ . By Corollary 1 to Theorem 1,
we see that the direct image $f_{*}(P_{X^{\prime}})$ is the Manin extension of the flat
vector bundle $f_{*}(P_{X^{l}})$ . If the locally free analytic sheaf $f_{*}(P_{X^{\prime}})$ could
be extended to a locally free analytic sheaf $\mathscr{L}$ on $S$, then by the same
reason as in the proof of Corollary 2 to Theorem 1, we would have
$f_{*}(\rho_{X})=Z$. Since $f_{*}(P_{X})$ is not locally free, this is contradiction. Thus
$f_{*}(P_{X^{\prime}})$ cannot be extended to a locally free analytic sheaf on $S$ . Hence
we have the following:

THEOREM 2. There exists a special divisor $D$ of $C^{3}$ and a certa$|in$

flat vector bundle $V$ on $C’-D$ such that the Manin extension of $V$ on
$C^{3}$ -Sing $(D)$ cannot be extended to a locally free analytic sheaf on $C^{3}$ .
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