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Introduction

Let $E$ be an l-dimensional Euclidean space with an orthonormal basis
$\{e_{i}\}$ and $E^{*}$ its dual with the dual basis $\{\xi_{i}\}$ . Let, further, $W$ be a finite
group of $GL(E)$ generated by reflections. Such a group is completely
classified and forms a Coxeter system $(W, S)$ for an appropriate set $S$

of generators [1]. Let $R$ be the subalgebra of the symmetric algebra
$S(E^{*})$ whose elements are invariant under the action of $W$. As is known,
there exist algebraically independent homogeneous elements $x_{1},$ $\cdots,$ $x_{l}$ of
$R$ such that $R=R[x_{1}, \cdots, x_{l}]$ . Let $D(\xi)$ be the product of linear functions
defining the hyperplanes of reflections of $W$. Then $D(\xi)^{2}$ is represented
as a polynomial of $x_{1},$ $\cdots,$ $x_{l}$ . We denote it by $f_{W}(x)$ and call it the
generalized discriminant in this paper.

Let us consider the space $X=(E^{*}/W)^{c}$ , the complexification of the
quotient space of $E^{*}$ by $W$, whose coordinate ring is $C\otimes R$ . Then

$m_{ij}(x)=\frac{1}{2}\sum_{k=1}^{l}\frac{\partial x_{i}}{\partial\xi_{k}}\frac{\partial x_{\dot{f}}}{\partial\xi_{k}}$ $(1\leqq i, j\leqq l)$

belong to $R$ and the vector fields

$X_{i}=\sum_{j=1}^{l}m_{ij}(x)\frac{\partial}{\partial x_{j}}$
$(1\leqq i\leqq l)$

leave $f(x)=f_{W}(x)$ invariant. More precisely, we have

$X_{i}f(x)=c_{i}(x)f(x)$

with certain polynomials $c_{i}(x)\in R$ . Furthermore, $X_{1},$
$\cdots,$

$X_{l}$ form a free
basis of the Lie algebra of vector fields leaving the set $\{x;f(x)=0\}$

invariant ([7]).
In this paper, we shall study the microlocal structure of the $\mathcal{D}_{X}$-Module
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$\mathscr{L}_{\alpha}=\mathcal{D}_{X}/\sum_{i=1}^{l}\mathcal{D}_{X}(X-\alpha c_{i}(x))$ $(\alpha\in C)$ ,

where $\mathcal{D}_{X}$ is the sheaf of differential operators of finite order whos $($

coefficients are in $p_{X}$ . Our main result is stated in Theorem 4.1, whicl
gives enough information concerning the microlocal structure of $\mathscr{L}_{\alpha}i\iota$

terms of the Coxeter systems.
The main reason why we study $Z_{\alpha}$ stems from the following con

jecture:
$\Leftrightarrow \mathscr{G}_{\alpha}=\mathcal{D}_{x}(f(x))^{\alpha}$

for any $\alpha\in C$ satisfying $b_{f}(\alpha-n)\neq 0(n=0,1,2, \cdots)$ . Here $b_{f}(s)$ is $thl$

b-function of $f(x)$ .
The present paper is organized as follows. We first summariz $($

widely known facts concerning the Coxeter systems in Section 1. In
Section 2, we introduce a symmetric matrix $M(W)$ whose entries $ar\{$

contained in $R$ . The rank of $M(W)$ is connected with the rank of tht
map of $(E^{*})^{c}$ to $X$ (cf. Proposition 2.1). We define the $\mathcal{D}_{X}$-Module 9
and prove a connection of the set

$A=\{(x, \eta)\in T^{*}X;\eta\cdot M(W)(x)=0\}$

with the conjugate classes of certain class of subgroups of $W$ in Section 3
Section 4 is devoted to the proof of Theorem 4.1 which forms the maiI
assertion. We propose two conjectures in Section 5 and in Section 6 we $giv$

one example for the general theory developed in the preceding sections
A concrete treatment for each irreducible Coxeter system will be

given elsewhere.
We are grateful to Professor K. Saito: Inspired by his lecture, one

of us (T. Y.) was led to prove the simpleness of the module $\mathscr{L}_{a}fol$

some examples of Coxeter systems. We are also indebted to Professo]
M. Sato, whose formulation of a general treatment for the Coxeter
system of type $A_{l}$ and whose proof of Theorem 4.1 for this case (un.
published) are very useful for us to find the unified treatment for al]

Coxeter systems.

\S 1. Coxeter system.

To define a Coxeter system $(W_{l}, S)$ we introduce a group $W_{l}$ with a
set of generators $S$ to be defined by the fundamental relations

(1.1) $(s_{i}s_{j})^{m_{ij}}=1$ , $m_{ii}=1$ , $m_{ij}\geqq 2$ if $i\neq j$

($ m_{ij}=\infty$ is permitted).”
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For a basis $e_{1},$ $\cdots,$ $e_{\iota}$ of $R^{l}$ , the mapping $\sigma_{i}$ of $R^{l}$ to $R^{l}$ is defined by
$\sigma_{i}(e_{j})=e_{j}+2(\cos(\pi/m_{ij}))e_{i}$ . Then the representation $\sigma:W_{l}\rightarrow GL(R^{l})$ defined
by $ s_{i}-\rangle$ $\sigma_{i}$ is injective, and we can identify $W_{l}$ with $\sigma(W_{l})$ .

The graph of $(W_{l}, S)$ consists of $l$ vertices $i\circ(1\leqq i\leqq l)$ and segments
with the number $m_{ij}\circ\circ ij\underline{m_{if}}$ each of which joins vertices

$ i\circ$

and
$\mathring{j}$

only
when $m_{ij}\geqq 3$ , and $m_{ij}$

’ is omitted if $m_{ij}=3$ . Remark that $m_{ij}=m_{ji}$ .
A Coxeter system $(W_{l}, S)$ is called irreducible when its graph is con-

nected. As is known, $W_{l}$ is a finite group if and only if the matrix
$(-\cos(\pi/m_{ij}))_{ij}$ is positive-definite. Hereafter, we consider only finite
Coxeter groups. When this is the case, $\sigma(W_{l})$ is a subgroup of a real
orthogonal group $O(l)$ if we introduce an inner product $\langle,\rangle$ in $R^{l}$ by
$\langle e_{i}, e_{j}\rangle=$ -cos $(\pi/m_{ij})$ . We will identify $W_{l}$ with the corresponding finite
subgroup of $0(l)$ and also $\sigma_{i}$ with $s_{i}$ .

Any Coxeter system $(W_{l}, S)$ is decomposed into irreducible ones, as
follows. There are irreducible Coxeter systems $(W_{l_{i}}, S_{i})i=1,$ $\cdots,$ $n$ :
$(W_{l_{i}}, S_{i})$ consists of a subgroup $W_{l_{i}}$ of $W_{l}$ and a subset $S_{i}$ of $S$, with
$W_{l}=\prod_{i=1}^{n}W_{\iota_{i}}$ and $S=\bigcup_{i=1}^{n}S_{i}$ . Furthermore $R^{l}=\oplus_{l=1}^{n}E_{i}$ , where $E$ is the
representation space of $W_{\iota_{i}}$ .

The following theorems are fundamental (cf. Bourbaki [1]).

THEOREM 1.1. Any irreducible finite Coxeter system $(W_{l}, S)$ is
isomorphic to one of the following Coxeter systems:

$A_{l}$ : $\infty\cdots\rightarrow$ $l\geqq 1$ ( $l$ vertices)

$B_{l}$ : $\infty$ $\infty 4$ $l\geqq 2$ ( $l$ vertices)

$l\geqq 4$ ( $l$ vertices)

$E_{0}$ :

$E_{6}$ :

$F_{4}$ :

$G_{2}$ : $oO\underline{6}$

$H_{a}:\infty 5$
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$H_{4}:\infty s$

$I_{2}(m):OO\underline{m}$ ($m=5$ or $m\geqq 7$).

We call $c=s_{1}\cdots s_{\iota}$ a Coxeter transformation, and the order of $c_{1}$

which we denote by $h$ , the Coxeter number. When det $(T-c)=$
$\prod_{\dot{g}=1}^{l}$ ( $T$-exp $(2\pi\sqrt{-1}m_{j}/h)$), $0\leqq m_{1}\leqq\cdots\leqq m_{l}\leqq h$ , we call $(m_{1}, \cdots, m_{l})th\epsilon$

exponents of $W_{l}$ . It is known that $\sum_{j=1}^{l}m_{j}=lh/2$ and that $1=m_{1}<$

$m_{2}\leqq\cdots\leqq m_{l-1}<m_{l}=h-1$ .
Let $e_{1},$ $\cdots,$ $e_{l}$ be an orthonormal basis of $E$. If we define linear

forms $\xi_{i}$ on $E$ by $E\ni\sum_{i=1}^{l}a_{i}e_{i}-\succ a_{i}\in R$ , we can identify the dual $E^{*}$ of
$E$ with $\oplus_{i=1}^{l}R\xi_{i}$ . Let $S(E^{*})$ denote the symmetric algebra of $E^{*}$ anc
$R=S(E^{*})^{W_{l}}$ the subalgebra of $S(E^{*})$ whose elements are invariant undel
the operation of $W_{l}$ . We may identify $S(E^{*})$ with $R[\xi_{1}, \cdots, \xi_{l}]$ . Further.
more, let $H$ be the set of reflections contained in $W_{l}$ .

THEOREM 1.2. (1) $S(E^{*})$ is a graded free R-module of rank $\# W_{l}$ .
(2) There are homogeneous elements $x_{1},$ $\cdots,$ $x_{l}$ in $R$ such that

$R\simeq R[x_{1}, \cdots, x_{l}]$ and $k_{j}=\deg_{\epsilon}x_{j}=m_{j}+1$ .
(3) $\prod_{\dot{g}=1}^{l}k_{j}=\# W_{l}$ , $\# H=\sum_{j=1}^{l}m_{j}=\frac{1}{2}lh$ .

(4) An element $z$ of $S(E^{*})$ is called an anti-invariant if $s(z)=-’$’

for any $se$ H. Put $D(\xi)=\prod.eH\phi.(\xi)$ , where $\phi.(\xi)$ denotes a defining func.
tion of the hyperplane fixed by $s$ . Then the set of anti-invariants equal:
$R$ . D. ($D$ is called a fundamental anti-invariant.)

(5) det $(\frac{\partial x_{i}}{\partial\xi_{j}})=\lambda D$ , $\lambda\in R^{\times}$

It follows from (4) that $f_{W_{l}}(x)=D^{2}$ is invariant by $W_{l}$ . The state
ments (2) and (3) show that $f_{W_{l}}(x)$ is weighted homogeneous of typt
$(lh;k_{1}, \cdots, k_{l})$ . We call $f_{W_{l}}$ the generalized discriminant of $W_{l}$ in thif
paper.

Hereafter we put $x_{1}=\xi_{1}^{2}+\cdots+\xi_{l}^{2}$ in view of the fact that $k_{1}=2,3\leqq k_{2}$

and $W_{l}\subset O(E^{*})$ .
For later convenience we prepare some notation. Let $(W_{l}, S)$ be $\{$

finite irreducible Coxeter system. We define $\alpha_{1},$ $\cdots,$ $\alpha_{l}$ as follows:
(i) When $W_{l}$ is a Weyl group of a root system, $\{\alpha_{1}, \cdots, \alpha_{l}\}$ is $i$

complete system of positive simple roots corresponding to $S$ .
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(ii) When $W_{l}$ is $H_{3},$ $H_{4}$ or $I_{2}(m),$ $\{\alpha_{1}, \cdots, \alpha_{l}\}$ is a set of unit vectors
such that

$s_{i}\alpha_{i}=-\alpha_{l}$ for $s_{i}\in S$ $(1\leqq i\leqq l)$ ,

and that

$\langle\alpha_{l}, \alpha_{j}\rangle=-\cos\underline{\pi}$ .
$m_{ij}$

We put

(1.2) $\alpha(W_{l})=\{\alpha_{1}, \cdots, \alpha_{l}\}$ .

(iii) For a general Coxeter system, we define

(1.3) $\alpha(W_{l})=\bigcup_{i=1}^{m}\alpha(W_{i})$ ,

where $(W_{l}, S)=\prod_{i=1}^{m}(W_{i}, S_{i})$ is the decomposition into irreducible com-
ponents.

We define the matrix $P(W_{l})$ by

(1.4) $P(W_{l})=(\langle\alpha_{i}, \alpha_{j}\rangle)_{ij}$ for $\alpha(W_{l})=\{\alpha_{1}, \cdots, \alpha_{l}\}$ .

Then $P(W_{l})$ is obviously positive-definite and symmetric, and

(1.5) $P(W_{l})={}^{t}Q\cdot Q$ .

Here $Q$ is the matrix of the coordinate transformation

(1.6) $(\alpha_{1}, \cdots, \alpha_{l})=(e_{1}, \cdots, e_{l})Q$ .
We denote by $H_{\epsilon}$ the hyperplane fixed by a reflection $s$ , and put

(1.7) $\mathfrak{H}(W_{l})=$ { $H_{\epsilon};s$ is a reflection in $W_{l}$}.

We normalize the defining function $\phi_{H_{\delta}}(\xi)$ of $H_{\epsilon}$ as follows:
(i) If $\alpha_{i}=\sum_{j=1}^{l}a_{lj}e_{j}$ , we set

(1.8) $\phi_{i}(\xi)=\phi_{H_{i}}(\xi)=\sum_{j=1}^{l}a_{lj}\xi_{j}$ .

(ii) For a general $H_{\epsilon}$ with $s=\sum b_{j}\alpha_{j}^{1)}$ we set
1) We identify $\sum b_{j}\alpha_{f}$ with the reflection $s$ with respect to the hyperplane orthogonal to

$\sum b_{j}\alpha_{j}$ . Since all coefficients $b_{j}$ can be taken non-negative (or non-positive) simultaneously,

we assume $b_{j}\geqq 0$ in (1.9).
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(1.9) $\phi_{H}.(\xi)=\sum b_{j}\phi_{j}(\xi)$ .
Here we have written $H$ for $H_{l}i(i=1, \cdots, l)$ .

The subset $C=\{\xi eR^{l};\phi_{H}(\xi)>0,1\leqq i\leqq l\}$ (or $\overline{C}=\{\xi eR^{l};\phi_{H}(\xi)\geqq 0,1\leqq$

$i\leqq l\})$ is called the open chamber (or the closed chamber) determined by
$S$ .

\S 2. A property of the matrix $M(W_{l})$ .
In this section, we fix a Coxeter system $(W_{l}, S)$ . Let $x_{1},$ $\cdots,$ $x_{l}$ be

the set of fundamental invariants, and let $\nabla$ be the gradient with respect
to $\xi$ . The standard inner product $\nabla x_{i}\cdot\nabla x_{j}$ is $W_{l}$-invariant because of
$W_{l}\subset O(E^{*})$ . We define the symmetric matrix

(2.1) $M(W_{l})=(\frac{1}{2}\nabla x_{i}\cdot\nabla x_{j})_{i,j}$

$=\frac{1}{2}[(\frac{\partial x_{i}}{\partial\xi_{\dot{f}}})_{i,j}]^{t}[(\frac{\partial x_{i^{\prime}}}{\partial\xi_{\dot{g}^{\prime}}})_{i^{\prime},j^{\prime}}]$ .
Then it follows from Theorem 1.2, (5) that

(2.2) det $M(W_{l})=\frac{\lambda^{2}}{2^{l}}f_{W_{l}}(x)$ .

We denote by $V$ and $V^{*}$ the complexifications of $E$ and $E^{*}$ , respec-
tively. We also denote by $p(\xi_{1}, \cdots, \xi_{l})=(x_{1}(\xi), \cdots, x_{\iota}(\xi))$ the canonical
map of $V^{*}$ to the quotient space $X=\{(x_{1}, \cdots, x_{\iota})eC^{l}\}$ . Outside the set
$f_{W_{l}}^{-1}(0)$ , this map is obviously a $\# W_{l}$-tuple covering.

The purpose of this section is to investigate the rank of $M(W_{l})$ on
the set $f_{W_{l}}^{-1}(0)$ . In particular, the characterization of it in terms of the
Coxeter system is given.

Once for all,let $\ovalbox{\tt\small REJECT}$ be the set of all affine supports of facets (as to
the definition of facets, see Bourbaki [1] Chapter V, \S 1) and let $\mathscr{A}_{s}$ be
the set of all affine supports of facets that belong to the closed chamber
$\overline{C}$ defined in \S 1. An element of $\ovalbox{\tt\small REJECT}_{s}$ which is given in the form
$H_{t_{1}}\cap\cdots\cap H_{i_{k}}$ is denoted by $\mathscr{A}(s_{i_{1}}, \cdots, s_{i_{k}})$ or $\ovalbox{\tt\small REJECT}(S^{\prime})$ with $S^{\prime}=$

$\{s_{i_{1}}, \cdots, s_{i_{k}}\}\subset S$ . We denote by $c\ovalbox{\tt\small REJECT}(S’)$ the set of points that belong to
the highest dimensional facets of $\ovalbox{\tt\small REJECT}(S^{\prime})$ . According to Bourbaki [1], $W_{l}$

acts on $\ovalbox{\tt\small REJECT}^{\prime}$ such that.$\ovalbox{\tt\small REJECT}^{r}=\bigcup_{w\in W_{l}}w_{c}\ovalbox{\tt\small REJECT}_{S}$ . We now define an equivalence
relation $\sim$ on $\mathscr{A}_{s}$ by

(2.3) $\ovalbox{\tt\small REJECT}(S^{\prime})\sim \mathscr{A}(S^{\prime})$ if and only if $\mathscr{A}(S^{\prime})=w_{-}\Psi(S’)$

for some $weW_{l}$ .
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Under this equivalence relation we denote by $\overline{\mathscr{A}_{s}}$ the set of equivalence
classes $\mathscr{A}_{s}/\sim$ .

Then we have the following.

PROPOSITION 2.1. For any subset $S^{\prime}$ of $S$ and any point $x_{0}$ of
$p(\mathscr{A}(S^{\prime}))0$ we have

(2.4) rank $[M(W_{l})|_{x=x_{0}}]=l-(\# S’)$ .
In order to prove this proposition we prepare two lemmata. We

make constant use of the notation (1.8) and (1.9).

LEMMA 2.2. For any $H\in \mathfrak{H}(W_{l})$ and $x_{i}(1\leqq i\leqq l)$ , there is a poly-
nomial $P_{H,i}(\xi)$ such that

(2.5) $\phi_{H}(\frac{\partial}{\partial\xi})(x_{i}(\xi))=\phi_{H}(\xi)P_{H,i}(\xi)$ .

PROOF. Let $s$ be the reflection that fixes $H$. Put $P(\xi)=\phi_{H}(\partial/\partial\xi)(x(\xi))$ .
Then we have

$P(s\xi)=\phi_{H}(\frac{\partial}{\partial(s\xi)})(x_{i}(s\xi))$

$=-\phi_{H}(\frac{\partial}{\partial\xi})(x_{i}(\xi))$

$=-P(\xi)$ .
Therefore, $P(\xi)$ vanishes on $H$ and hence is divided by $\phi_{H}(\xi)$ . Q.E.D.

We now put

(2.6) $J(\xi)=(\phi_{j}(\frac{\partial}{\partial\xi})(x_{i}(\xi)))_{ij}$

Then it follows from (1.6) that

(2.7) $J(\xi)=(\frac{\partial x_{i}}{\partial\xi_{\dot{f}}})\cdot Q$ .

LEMMA 2.3. Let $\xi_{0}$ belong to $L\ovalbox{\tt\small REJECT}^{\prime}(S’)0$ Then

(2.8) rank $J(\xi_{0})=l-(\# S^{\prime})$ .
PROOF. We may assume that $S^{\prime}=\{s_{1}, \cdots, s_{k}\}(k=\# S’)$ without loss

of generality. Let $W$’ denote the subgroup of $W_{l}$ generated by $S^{\prime}$ .
First, we investigate the left $k$ column vectors
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$\phi_{j}(\frac{\partial}{\partial\xi})(x(\xi))=t(\phi_{\dot{f}}(\frac{\partial}{\partial\xi})(x_{1}(\xi)),$ $\cdots,$ $\phi_{j}(\frac{\partial}{\partial\xi})(x_{l}(\xi)))$ .

We can divide these vectors by $\phi_{j}(\xi)$ owing to Lemma 2.2. The definin5
function $\phi_{H}(\xi)$ corresponding to any $H$ in $\mathfrak{H}(W’)$ can be represented $b$]

a linear combination of $\phi_{1}(\xi),$
$\cdots,$

$\phi_{k}(\xi)$ . Therefore $\phi_{H}(\xi)$ divides a certail
non-trivial linear combination of $\phi_{1}(\partial/\partial\xi)(x(\xi)),$

$\cdots,$
$\phi_{k}(\partial/\partial\xi)(x(\xi))$ . Noting

this fact, every $k\times k$ minor of $(\phi_{1}(\partial/\partial\xi)(x(\xi)), \cdots, \phi_{k}(\partial/\partial\xi)(x(\xi)))$ vanishel
on all $H$ in $\mathfrak{H}(W’)$ . From Theorem 1.2 (5), (1.6) and (1.8) it follows thal

det $(\phi_{i}(\frac{\partial}{\partial\xi})(x_{j}(\xi)))=x\cdot(\det Q)\prod_{He\mathfrak{H}(W_{1})}\phi_{H}(\xi)$ .

Therefore, by using Laplace’ expansion, some linear combination of $(l-k)\times$

$(l-k)$-minors of $(\phi_{k+1}(\partial/\partial\xi)(x(\xi)), \cdots, \phi_{l}(\partial/\partial\xi)(x(\xi)))$ becomes $\prod_{H\not\in \mathfrak{H}(W^{\prime})}\phi_{H}(\xi)$

On the other hand, if $\xi\in\ovalbox{\tt\small REJECT}(S’)0$ this function does not vanish and $(2.8^{\backslash }$

follows. Q.E. $D$

PROOF OF PROPOSITION 2.1. Due to Lemma 2.3, we have only tc
prove that

(2.9) rank $M(W_{l})(\xi_{0})=rankJ(\xi_{0})$ .
We also assume $S’=\{s_{1}, \cdots, s_{k}\}$ as in the proof of Lemma 2.3. Then the
proof of Lemma 2.3 shows that there is an invertible matrix $B$ such
that

(2.10) $J(\xi_{0})=B\left(\begin{array}{ll}0 & 0\\0 & I_{l-k}\end{array}\right)$

On the other hand, from the definition of $M(W_{l})$ and $J(\xi)$ , we have

(2.11) $M(W_{l})(\xi)=\frac{1}{2}J(\xi)\cdot P(W_{l})^{-1}\cdot J(\xi)$ .

We define matrices $B’,$ $B$’ and $P^{\prime}$ by the formulae

$\left(\begin{array}{l}B’\\B’\end{array}\right)=B\left(\begin{array}{l}0\\I_{l-k}\end{array}\right)$

$P’=(0, I_{l-k})\cdot P^{-1}\cdot\left(\begin{array}{l}0\\I_{l-k}\end{array}\right)$

Then from (2.10) and (2.11), we have
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2 $M(W_{l})(\xi_{0})=\left(\begin{array}{ll}0 & B’ P^{\prime}\\0 & PB’\end{array}\right){}^{t}B$

$=\left(\begin{array}{ll}0 & B^{\prime}\\0 & B^{\prime}\end{array}\right)\left(\begin{array}{ll}1 & 0\\0 & P’\end{array}\right){}^{t}B$

$=J(\xi_{0})\left(\begin{array}{ll}1 & 0\\0 & P^{\prime}\end{array}\right){}^{t}B$ .

Since $P(W_{l})$ is positive-definite, so is $P(W)^{-1}$ and hence so is $P’$ . Then
the assertion (2.9) follows from the invertibility of the matrix
$\left(\begin{array}{ll}1 & 0\\0 & P^{\prime}\end{array}\right)tB$ . Q.E.D.

REMARK. The above proof also implies that for $\xi_{0}\in\llcorner \mathscr{A}^{\circ}(S^{\prime})$

(2.12) rank $(\frac{\partial x_{i}}{\partial\xi_{j}})|_{\text{\’{e}}=\xi_{0}}=l-(\# S’)$ .

\S 3. The singular support of $\vee r_{\alpha}^{\prime}$ .
We shall interpret Proposition 2.1 from the analytic viewpoint. In

the first place, we review some standard notation and somewhat well-
known facts concerning the theory of differential equations, for details
see [9], [3].

Let $X$ be a complex manifold of dimension $n$ and let $T^{*}X$ be the
cotangent bundle over $X$ . We denote by $\pi$ the natural projection of
$T^{*}X$ to $X$ . Let $p_{X}$ (resp. $\mathcal{D}_{X}$) be the sheaf of germs of holomorphic
functions on $X$ (resp. the sheaf of differential operators of finite order
with coefficients in $p_{X}$). We interpret the system of differential equa-
tions as a coherent $\mathcal{D}_{X}$-Module. For a coherent ideal $\mathscr{J}$ of $\mathcal{D}_{X}$ , the
singular support of the system $\mathscr{L}=\mathcal{D}_{X}/\ovalbox{\tt\small REJECT}$ is, by definition, the analytic
set { $(x,$ $\eta)\in T^{*}X$; $\sigma(P(x,$ $D))(x,$ $\eta)=0$ for all $P(x,$ $D)\in \mathscr{J}$ }, and it is
usually denoted by $S\check{S}(\subset \mathscr{G})$ . $S\check{S}(\subset \mathscr{G})$ is known to be involutory and
$co\dim_{T^{*}X}S\check{S}(\Leftrightarrow \mathscr{G})\leqq n$ for $\mathscr{L}\neq 0$ . A system $\mathscr{L}$ is called holonomic (or sub-
holonomic) when codim $S\check{S}(\Leftrightarrow \mathscr{G})\geqq n$ (or codim $S^{\vee}S(cZ)\geqq n-1$). An involutory
analytic subset of $T^{*}X$ is a holonomic set if each irreducible component

has dimension $n$ . From the definition, $S\check{S}(=\mathscr{G})$ is a holonomic set for a
holonomic system $Z\neq 0$ . For each irreducible component $\Lambda$ of $S\check{S}(Z)$ ,
the multiplicity of ..? along $\Lambda$ is denoted by $m_{\Lambda}(\mathscr{L})$ . When $m_{\Lambda}(\mathscr{L})=1$ ,
we call $\Lambda$ a simple holonomic set. Suppose $\Leftrightarrow \mathscr{G}=\mathcal{D}_{X}u$ with an unknown
function $u$ and $\Lambda$ is a simple holonomic set of $S\check{S}(\mathscr{L})$ . Then the principal
symbol and the order of $u$ on $\Lambda$ are denoted by $\sigma_{\Lambda}(u)$ and $ord_{\Lambda}(u)$ , re-
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spectively.
We shall restrict our attention to the study of differential equationf

governing a complex power of a polynomial or a holomorphic functionl
For details, see [4], [10], [11]. First we put $\mathcal{D}_{X}[s]=\mathcal{D}_{X}\otimes C[s]$ for ar
indeterminate $s$ that commutes with $\mathcal{D}_{X}$ . We define an ideal

$\mathscr{J}_{f}(s)=\{P(s, x, D_{x})\in \mathcal{D}_{X}[s];P(s, x, D_{X})(f(x))=0\}$ ,

for a holomorphic function $f(x)$ on $X$. We also define the following $\mathcal{D}_{X}$

(or $\mathcal{D}_{X}[s]$)-Modules:

$r=\mathcal{D}_{X}[s](f(x))\simeq \mathcal{D}_{X}[s]/Xf(s)$ ,
$\mathscr{M}=\mathcal{D}_{X}[\epsilon](f(x))/\mathcal{D}_{X}[s](f(x))^{+1}$

(3.1)
$\simeq \mathcal{D}_{X}[\epsilon]/(\ovalbox{\tt\small REJECT}_{J}(s)+\mathcal{D}_{X}[s]f(x))$ ,

$\vee r_{\alpha}=\mathcal{D}_{X}/\ovalbox{\tt\small REJECT}_{f}(\alpha)$ $(\alpha eC)$ .
$HereX_{J}(\alpha)=\{P(\alpha, x, D_{X})e\mathcal{D}_{x};P(s, x, Doe)\in \mathscr{J}_{f}(s)\}$ . Then $-\rho\nearrow \mathscr{M}$ and $L\parallel_{\alpha}^{\wedge}$

are coherent $\mathcal{D}_{X}$-Modules. It is provable that $cA_{\alpha}^{\nearrow}\simeq \mathcal{D}_{X}(f(x))^{\alpha}$ if and
only if $\alpha eC$ satisfies $b_{f}(\alpha-n)\neq 0$ for all $n\in N$. Here $b_{f}(s)$ is the b-func-
tion of $f(x)$ .

Let $\mathcal{G}_{f}$ be the Lie algebra

(3.2) $\mathcal{G}_{f}=$ { $Y:Y$ is a vector field satisfying $Yf\in P_{X}f$}.

Let $\mathcal{G}_{f}(s)$ denote the ideal of $\mathcal{D}_{X}[s]$ generated by $\{Y-s\cdot c(Y);Yf=c(Y)f\}$ .
Let us define the modules

$\swarrow r’=\mathcal{D}_{X}[s]/\mathcal{G}_{f}(s)$ ,
(3.3)

$L\mathscr{M}_{\alpha}^{\rightarrow}=\mathcal{D}_{X}/\mathcal{G}_{f}(\alpha)$ $(\alpha eC)$ ,

where $\mathcal{G}_{f}(\alpha)=\{P(\alpha, x, D_{X});P(s, x, Dae)e\mathcal{G}_{f}(s)\}$ . From the definitions (3.1)
and (3.8), there follow surjective morphisms of $\mathcal{D}_{X}[s]$ (or $\mathcal{D}_{X}$)-Modules:

$\mathscr{M}^{-}\rightarrow_{\infty}r\rightarrow 0$

(3.4)
$\leftrightarrow 4_{\alpha}^{\nearrow\prime}\rightarrow_{\vee}r_{\alpha}\rightarrow 0$ .

It is known that $\mathscr{M}$ and $\infty r_{\alpha}$ (or $\mathscr{M}^{-}$) are holonomic (or sub-holonomic),
More precisely, define

$W=the$ closure of {($x,$ $\epsilon\nabla_{r}$ log $f(x)$) $;x\in X,$ $f(x)\neq 0,$ $seC$}(3.5)
$W_{0}=(W\cap\{(x, \eta)\in T^{*}X;f(x)=0\})\cup T_{X}^{*}X$ .

Here $\nabla_{x}$ denotes the gradient with respect to $x$ . Then we have that
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$\check{S}S(\wedge r)\simeq W$ ,
(3.6) $\check{S}S(\mathscr{M})\subseteqq W\cap f^{-1}(0)$

$S^{\vee}S(-A_{\alpha}^{\prime})\subset W_{0}$ .
We mention a fundamental result concerning $\mathcal{G}_{f}$ .
THEOREM 3.1 (K. Saito). The following statements are equivalent.
(1) $\mathcal{G}_{f}$ is a locally free $P_{X}$-Module.
(2) There are $n$ vector fields $X_{i}=\sum_{j=1}^{n}m_{ij}(x)\partial/\partial x_{j}(1\leqq i\leqq n)$ such that

det $(m_{ij}(x))\in\theta_{X}^{*}f(x)2)$

For a proof, see K. Saito [7].
We shall study the structure of these modules in the case where

$f(x)=f_{W_{l}}(x)$ , the generalized discriminant of a Coxeter group $W_{l}$ . Define
the l-tuple of vector fields $X_{1},$

$\cdots,$
$X_{l}$ by

(8.7) $\left(\begin{array}{l}X_{1}\\X_{2}\\\vdots\\ X_{t}\end{array}\right)=M(W_{l})\left(\begin{array}{l}\partial/\partial x_{1}\\\partial/\partial x_{2}\\\vdots\\\partial/\partial x_{l}\end{array}\right)=\frac{1}{2}(\frac{\partial x_{\mu}}{\partial\xi_{\nu}})\left(\begin{array}{l}\partial/\partial\xi_{1}\\\partial/\partial\xi_{2}\\\vdots\\\partial/\partial\xi_{l}\end{array}\right)$ .

It is easy to see that $XD=(1/2)\sum_{k=1}^{l}(\partial x_{i}/\partial\xi_{k})(\partial D/\partial\xi_{k})$ is anti-invariant
by $W_{l}$ , hence $X_{l}D\in R[x]D$ by Theorem 1.2 (4). Therefore $X_{i}f_{W_{l}}=$

$2(X_{i}D)D\in R[x]f_{W_{l}}$ . Recalling that $x_{1}=\xi_{1}^{2}+\cdots+\xi_{l}^{2}$ , we have

$X_{1}=\sum_{k=1}^{l}\xi_{k}\frac{\partial}{\partial\xi_{k}}=\sum_{i=1}^{l}k_{l}x_{i}\frac{\partial}{\partial x_{i}}$

and hence
$X_{1}f_{W_{l}}=lhf_{W_{l}}$ .

Theorem 3.1 combined with Theorem 1.2 (5) implies the following.

PROPOSITION 3.2. $\mathcal{G}_{f_{W_{l}}}=\sum_{i=1}^{l}\beta_{X}\cdot X_{i}$ .
We shall study, hereafter, the decomposition of $S\check{S}(\swarrow r_{a}^{\prime})$ into irreducible

components. One of our original concerns is to study the decomposition
of $S\check{S}(\infty V_{\alpha})$ . Since $\vee r_{\alpha}$ is a quotient of $\vee r_{\alpha}$ and as we shall show in
the next section that all irreducible components of $S\check{S}(\sim r_{\alpha})$ are simple,
the latter gives us enough information to the former. Moreover it is
conjectured that $\mathscr{M}_{\alpha\rightarrow-\phi_{\alpha}^{\nearrow}}^{\nearrow^{\prime}\sim}$ in our case (cf. \S 5). This isomorphism

2)
$a_{X}^{*}$ denotes the sheaf of invertible elements of $p_{X}$ .
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actually holds for $I_{2}(m)$ . We remark that $\ovalbox{\tt\small REJECT}_{\alpha}^{-}$ is not isomorphic to $\vee\ell$

in general (for example, take $f(x)=x_{1}(x_{1}-x_{2}^{2}x_{S})(x_{1}-x_{2}^{2}x_{4}).$ )
We fix a Coxeter system $(W_{l}, S)$ . When the subgroup of $W_{l}i$

generated by a subset $S$’ of $S$, we call it an S-subgroup of $W_{l}$ and denot
it by $W_{S^{\prime}}$ . We define an equivalence relation $\sim$ on the set of all $ b\sigma$

subgroups such that $W^{\prime}\sim W^{\prime\prime}$ if and only if $W$ ’ is conjugate to $W^{\prime}$

Let $C$ be the set of conjugate classes of S-subgroups. Then

PROPOSITION 3.3. $\ovalbox{\tt\small REJECT}_{S}^{-}\simeq C$.
PROOF. Define the map from ,-gt to $C$ by $\ovalbox{\tt\small REJECT}(S’)\rightarrow W_{S^{\prime}}$ . Then thi

map induces the bijection $indicatedin-l$ this proposition because $w\mathscr{A}(S^{\prime})=$

$\ovalbox{\tt\small REJECT}(S^{\prime})$ if and only if $W_{S^{\prime\prime}}=wW_{S^{\prime}}w$ . Q.E. $D$

We next set $B(S’)=p(\ovalbox{\tt\small REJECT}(S’))$ . We remark that $B(S’)=B(S’)$ if an $($

only if $W_{S^{\prime}}$ and $W_{S^{\prime\prime}}$ are conjugate. Therefore we can restrict our con
sideration to the conjugate classes of S-subgroups of $W_{l}$ as far as th
set

$\Lambda=\{(x, \eta)\in T^{*}X;\eta\cdot M(W_{l})(x)=0\}$

is concerned. Equation (2.12) shows that the mapping $p$ is $everywher|$

of maximal rank on $Ls\mathscr{F}(S^{\prime})l$ for each $S’\subset S$, that is,

(3.8) $co\dim_{X}B(S’)=\# S’$ .
We put $\Lambda(S’)=T_{B(S^{\prime})}^{*}X$. Then $\Lambda(S’)$ is a holonomic set and Equation (3.8
is rewritten in the form

(3.9) $co\dim_{X}\pi(\Lambda(S^{\prime}))=\# S^{\prime}$ .
We are then to prove the relation between the singular support $0$

$c\Lambda_{\alpha}^{\nearrow}$ and the Coxeter subsystems of $W_{l}$ .
LEMMA 3.4. $W_{0}$ is contained in $A$ .
PROOF. From the definition of $M(W_{l})$ , it is easy to see that

( $\nabla_{X}$ log $(f_{W_{l}}(x))$ ) $\cdot M(W_{l})=$ ( $X_{1}$ log $(f_{W_{l}}(x)),$ $\cdots,$
$X_{l}$ log $(f_{W_{l}}(x))$).

For any element $(x_{0}, \eta_{0})$ of $W_{0}$ , there exist an analytic path $t\rightarrow x(t)0l$

$X$ and a real analytic function $s(t)$ such that

$x_{0}=\lim_{t\rightarrow 0}x(t)$

$\eta_{0}=\lim_{t\rightarrow 0}s(t)\cdot$ ( $\nabla_{x}$ log $(f_{W_{l}}(x(t)))$ )
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with

$\lim_{t\rightarrow 0}s(t)=0$ .

Noting that

(3.10) $X_{i}f_{W_{l}}(x)=c_{i}(x)f_{W_{l}}(x)$

with $c_{i}(x)=c(X_{i})$ , we have

$\eta_{0}\cdot M(W_{l})|_{x=x_{0}}=\lim_{t\cdot\rightarrow 0}s(t)\cdot$ ( $\nabla_{X}$ log $(f_{W_{l}}(x(t)))$) $M(W_{l})|_{x=x(t)}$

$=\lim_{t\rightarrow 0}s(t)(c_{1}(x(t)), \cdots, c_{\iota}(x(t)))$

$=0$ . Q.E.D.

By this lemma and (3.6), we conclude that $S\check{S}(\Lambda_{\alpha}\nearrow)$ is contained in
$\Lambda$ . Furthermore

LEMMA 3.5. $ S\check{S}(\Lambda\nearrow_{\alpha})\subseteqq\Lambda$ .
PROOF. By an elementary calculation, we have

$\sigma(X_{i}-\alpha c(X_{i}))=\sigma(X_{i})$

$=\frac{1}{2}\sum_{\dot{g}=1}^{l}\nabla x_{i}\cdot\nabla x_{j}\sigma(\frac{\partial}{\partial x_{j}})$ .

Therefore, $(x, \eta)\in S\check{S}(\vee r_{\alpha}^{\prime})$ must satisfy $\eta\cdot M(W_{l})(x)=0$ . Q.E.D.

These results are summarized in Figure 1.

$\check{S}S(\backslash A_{\alpha}^{\nearrow r})\subset A\cup\cup$

$S\check{S}(\mathcal{D}_{X}(f_{W_{l}}(x))^{\alpha})\subset S^{\vee}S(\mathscr{M}_{\alpha}^{\nearrow})$

.
$\subset W_{0}$

FIGURE 1

Finally we decompose $\Lambda$ into irreducible components.

PROPOSITION 3.6. $A=\bigcup_{S^{\prime}\subset S}\Lambda(S’)$ .
PROOF. Lemma 2.2 and the proof of Proposition 2.1 show that the

condition $\eta\cdot M(W_{l})(x)=0$ is equivalent to the condition $\phi_{j}(\xi)(\eta\cdot P_{j}(\xi))=0$

$(1\leqq j\leqq l)$ . Here we put

$P_{j}(\xi)={}^{t}(P_{H_{j},1}(\xi), \cdots, P_{H_{j},l}(\xi))$ .
(As to the definition of $P_{H_{j},i}(\xi)$ , see Lemma 2.2.) Therefore the regular
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part of each irreducible component of $A$ is represented by

(3.11) $Q(S’)=\{(x, \eta)eT^{*}X;x=x(\xi),$ $\xi\in \mathscr{A}^{\circ}(S’)$ and
$\eta\cdot P_{j}(\xi)=0$ if $s_{\dot{f}}\not\in S^{\prime}$}

for a subset $S^{\prime}$ of $S$ . Conversely, $Q(S^{\prime})\subset A$ for any subset $S^{\prime}$ . Notin\ddagger
that $\overline{\pi(Q(S’))}=B(S^{\prime})$ and dim $Q(S^{\prime})=l-(\# S’)$ , we can easily conclude that
$\overline{Q(S’})=T_{B(S^{\prime})}^{*}X$. Q.E.D

\S 4. The microlocal structure of $cA_{\alpha}^{\nearrow\prime}$ .
This section is devoted to the proof of the main theorem.
As we have shown in the last part of \S 2, $B(S^{\prime})$ and $\Lambda(S’)$ depend

only on the conjugate class of the S-subgroup $W_{S^{\prime}}$ . We write $[S’]$ for the
conjugate class of $W_{S^{\prime}}$ in $C$, and $B([S^{\prime}])$ and $\Lambda([S’])$ for $B(S’)$ and $\Lambda(S’)$

respectively.
We denote by $u$ the generator of $\backslash A_{\alpha}^{\nearrow}$ such that

$u=1$ mod $\mathcal{G}_{f_{W_{l}}}(\alpha)$ .
THEOREM 4.1.
(1) $\check{S}S(\infty r_{\alpha}^{\prime})=\bigcup_{[S^{\prime}]}\Lambda([S’])$ , where $[S^{\prime}]$ runs all over the set of $con$ .

iugate classes of S-subgroups.
(2) For any subset $S$’ of $S$, $\Lambda([S’])$ is an irreducible simple

holonomic set and

(4.1) $co\dim_{X}\pi(\Lambda([S’]))=\# S$’

(4.2) $ord_{A([S^{\prime}])}u=-\frac{1}{2}\sum_{i}(\# S_{i})h(S_{i}^{\prime})(\alpha+\frac{1}{2})$ .

Here $\prod_{i}$ ( $W_{i}^{\prime}$, S\’i) is the irreducible decomposition of $(W_{S^{\prime}}, S’)$ and $h(Si)$

is the Coxeter number of $W_{i}^{\prime}$ .
(3) For a given S\’i, we proceed to delete one of its vertices and

segments attached to it, and denote by $S_{ij}^{\prime}(1\leqq j\leqq\# S_{i}^{\prime})$ the resulting graphs.
Then $\Lambda([S’])$ and each of the holonomic sets $\Lambda([Si_{j}])$ intersect on the
common one codimensional analytic subset which we denote by $I$($S’$, S\’i).
Furthermore, for two subsets S\’i and $S_{k}$ of $S’,$ $I(S^{\prime}, S’)=I(S’, S_{k}^{\prime})$ if and
only if $S’=S_{k}^{\prime}$ .

REMARK. Let $S$’ and $S^{\prime\prime}$ be two subsets of $S$ such that $S’\supset S^{\prime\prime}$ .
Assume that $\# S’=\# S’+1$ . Then Theorem 4.1 (3) assures that $\Lambda([S’])$

and $\Lambda([S^{\prime}])$ intersect in an analytic subset of codimension 1. The
converse statement at least holds for cases $A_{l},$ $B_{l},$ $G_{2},$ $H_{\epsilon},$ $H$ and $I_{2}(m)$ .
However it does not hold in general.
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PROOF. Constant use is made of notation in \S 1. We introduce
linear forms $\zeta_{i}(1\leqq i\leqq l)$ on $V$ defined by

$\zeta_{l}:\sum_{j=1}^{l}a_{t}\alpha_{i}\mapsto a_{i}$ .

Then $\zeta_{1},$

$\cdots,$
$\zeta_{l}$ constitute a basis of $V^{*}$ and the transformation between

$\zeta_{i}$ and $\xi_{i}(1\leqq i\leqq l)$ is given by

(4.3) $Q\left(\begin{array}{l}\zeta_{1}\\\vdots\\\zeta_{l}\end{array}\right)=\left(\begin{array}{l}\xi_{1}\\\vdots\\\xi_{l}\end{array}\right)$ .

Hence

(4.4) $(\frac{\partial}{\partial\zeta_{1}},$ $\cdots,$ $\frac{\partial}{\partial\zeta_{l}})=(\frac{\partial}{\partial\xi_{1}},$ $\cdots,$ $\frac{\partial}{\partial\xi_{l}})Q$ .

(cf. (1.5) and (1.6))
The first step to prove the theorem is to reduce the claims to those

for the conormal bundle of the origin for an irreducible Coxeter system.
For this purpose, we begin by examining the connection among the
generalized discriminants of Coxeter subsystems of a given Coxeter
system.

Let $(W_{\iota}, S)$ be a Coxeter system, $(W_{S^{\prime}}, S’)$ a Coxeter subsystem of
$(W_{\iota}, S)$ . Then we decompose the fundamental anti-invariant $D$ into two
factors, one vanishing on every hyperplane contained in $\mathfrak{H}(W_{S^{\prime}})$ and the
other invertible in a neighborhood of $\dot{\mathscr{A}}(S’)$ . That is,

(4.5) $D(\xi)=\prod_{He\mathfrak{H}(W_{l})}\phi_{H}(\xi)$

$=(\prod_{He\mathfrak{H}(W_{l})\backslash \mathfrak{H}(W_{S^{\prime}})}\phi_{H}(\xi))(\prod_{He\mathfrak{H}(W_{S^{\prime}})}\phi_{H}(\xi))$ .

Choose a point $\xi_{0}$ in $\ovalbox{\tt\small REJECT}(S’)0$ It should be noted that we can restrict our
consideration in a neighborhood of $\xi_{0}$ . We may put $S’=\{s_{1}, \cdots, s_{k}\}$

without losing generality. We take a linear local coordinate at $\xi_{0}$ by

(4.6) $(\xi_{0})+\sum_{i=1}^{l-k}\tau_{i}\epsilon_{i}+\sum_{j=1}^{k}\zeta_{j}\alpha_{j}$ .

Here we have identified $\alpha_{i}$ with its numerical vector with respect to the
basis $\{e_{1}, \cdots, e_{l}\}$ and have taken $\{\epsilon_{1}, \cdots, \epsilon_{l-k}\}$ as a set of linearly in-
dependent vectors which span $\mathscr{A}(S’)$ . Then the decomposition (4.5) turns
out to be
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(4.7) $D(\xi)=\psi(\tau, \zeta)\cdot\prod_{He\mathfrak{H}(W_{S^{\prime}})}\phi_{H}(\sum_{\dot{g}=1}^{k}\zeta_{j}\alpha_{\dot{f}})$ .

The second factor of the right-hand side of (4.7) is nothing but a
fundamental anti-invariant of the Coxeter system $(W_{S^{\prime}}, S’)$ . Let $\{z_{\mu}\}$ be
the set of fundamental invariants of $(W_{S^{\prime}}, S’)$ . Noting that $p|_{X(S^{\prime})}$ has
maximal rank at $\xi_{0}$ by Lemma 2.3 and that $g=\psi^{2}$ is invariant by $W_{S^{\prime}}$ ,
we reach the formula

(4.8) $f_{W_{l}}(x)=g(t, z)f_{W_{S^{\prime}}}(z)$ ,

where $t$ is a local parameter of $B(S’)$ at $x_{0}=p(\xi_{0})$ corresponding to $\tau$ .
Since $g$ is invertible near $x_{0}$ , we obtain

(4.9) $P(s, x, D)(gf_{W_{S}},)^{\epsilon}=0$ if and only if $P$( $s,$ $x,$ $ D+s\nabla$ log $g$) $(f_{W_{S}},)^{*}=0$ .
Set

$\leftrightarrow\parallel_{\alpha}^{\nearrow}=\mathcal{D}_{Z}/\mathcal{G}_{f_{W_{S^{\prime}}}}(\alpha)$ ,

$\mathcal{G}_{f_{W_{S}}},=$ { $Y;Y$ is a vector field on $Z,$ $Yf_{W_{S}},$ $\in P_{Z}f_{W_{S}},$ },

where $Z=C_{z}^{l-k}$ (cf. (3.2) and (3.3)). Then, (4.8) and (4.9) imply

(4.10) $\mathcal{G}_{f_{w_{l}}}(s)=\mathcal{D}_{X}[s](g\mathcal{G}_{f_{W_{S}}},(s)g^{-1})+\sum_{i=1}^{l-k}\mathcal{D}_{X}[s](g\frac{\partial}{\partial t_{i}}g^{-1})$ .

Since

(4.11) $\mathcal{D}_{X}/(\mathcal{D}_{X}\mathcal{G}_{f_{W_{S}}},(\alpha)+\sum_{=1}^{l-k}\mathcal{D}_{X}(\frac{\partial}{\partial t_{i}}))^{\sim}\rightarrow\beta_{U}\otimes^{\wedge}\nu r_{\alpha}$
’

for a neighborhood $U$ of the origin in $Z$ , we obtain

(4.12) $S\check{S}(LA_{\alpha}^{\nearrow})\simeq T_{U}^{*}U\times S\check{S}(cA\alpha)$

in a neighborhood of $\pi^{-1}(x_{0})$ . If $\Lambda$ is an irreducible holonomic set of
$\check{S}S(\mathscr{M}_{\alpha}^{\prime})$ containing $(x_{0}, \eta_{0}),$

$\Lambda$ is represented by $ T_{U}^{*}U\times\Lambda$ with a certain
holonomic set $\Lambda$ of $S\check{S}(\vee\ell_{\alpha}^{\prime})$ . Let $(W_{S^{\prime}}, S’)=\prod_{i}$ ( $W_{i}$ , S\’i) be the de-
composition into.irreducible components. Then $f_{W_{S}},(z)=\prod_{i}f_{W_{i}}(z^{\{i)})$ , where
$f_{W_{i}}(z^{(i)})$ is the generalized discriminant of $W_{i}$ . We now put

(4.13) $\left\{\begin{array}{l}\infty\ell_{\alpha}^{\prime}=\otimes\infty^{V_{\alpha}}\\\swarrow r_{a},=\mathcal{D}_{z_{i}}/\mathcal{G}_{f_{W_{i}^{\prime}}}(\alpha)\end{array}\right.$

where $Z_{i}=C_{z^{(i)}}^{i}(l_{i}=\# S_{i})$ . Then the above argument shows that for each
$i$ there is an open neighborhood $U_{i}$ of the origin in $Z_{i}$ such that
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(4.14)
$\Lambda\cong T_{U}^{*}Ux\prod_{i}\Lambda_{i}^{\prime}$

with $\Lambda_{i}=T_{\{0\}}^{*}U_{i}$ . It follows from the definition of $m$ (cf. p. 201) that

(4.15)
$m_{\Lambda}(V_{\alpha})=\prod_{i}m_{\Lambda_{i}^{\prime}}(\ovalbox{\tt\small REJECT}_{\alpha,i}^{-\prime})$ .

Assuming that $(W_{l}, S)$ is irreducible, we prove that $\Lambda$ is simple for
$\Lambda=\Lambda(S)$ . Since $m_{1j}(x)=m_{j1}(x)=k_{j}x_{j},$ $\sum_{j=1}^{l}p_{T^{*}X}\sigma(X_{j})$ is a simple ideal on
$\Lambda$ and therefore $X_{1}-\alpha c_{1}(x),$

$\cdots,$
$X_{l}-\alpha c_{l}(x)$ form an involutory basis of

$\mathcal{G}(\alpha)$ on $\Lambda$ . (cf. (3.10)) Hence $\Lambda$ is contained in $S\check{S}(\vee r_{\alpha})$ and simple.
In order to obtain the principal symbol of $u$ (which is the generator of
$\leftrightarrow\parallel_{\alpha}^{-}$ such that $u=1$ mod $\mathcal{G}(\alpha))$ on $\Lambda$ , we determine $L_{(X_{i}-\alpha c_{i}(x))}|_{\Lambda}$ for each
$i$ . (As to the definition of $L_{P}$ , see \S 2 in [5].) A simple calculation
shows that

$L_{tx_{1}-\alpha c_{1}(x))|\Lambda}=-\sum_{j=1}^{l}k_{j}\eta_{j}\frac{\partial}{\partial\eta_{j}}-lh(\alpha+\frac{1}{4})-\frac{l}{2}$

(4.16)
$L_{(x_{l}-\alpha c_{i}(x))|\Lambda}=-k_{i}\eta_{1}\frac{\partial}{\partial\eta_{i}}$ $(i=2, \cdots, l)$ .

Equation (4.16) and the definition of $\sigma_{\Lambda}(u)$ imply that

(4.17) $\sigma_{A}(u)=\eta_{1}^{-(1/2)lh(\alpha+1/2)-l/2}\sqrt{\frac{d\eta_{1}d\eta_{l}}{dx_{1}dx_{l}}}$ .

(Note that $\sum_{i=1}^{l}k_{i}=(1/2)lh+l.$ ) Since the order of $u$ on $\Lambda$ is, by defini-
tion, the homogeneous degree of $\sigma_{\Lambda}(u)$ with respect to $\eta$ , we have

(4.18) $ord_{\Lambda}u=-\frac{1}{2}lh(\alpha+\frac{1}{2})$ .

We now proceed to the proof of the theorem. We may assume
without loss of generality that $(W_{\iota}, S)$ is irreducible. Let $\Lambda(S’)$ be an
irreducible holonomic set corresponding to a subset $S$’ of $S$. Then the
above argument combined with (4.14) shows that $\Lambda(S’)$ is simple and
contained in $\check{S}S(\ovalbox{\tt\small REJECT}_{\alpha}^{\rightarrow})$ . This and Lemma 3.5 assert (1). Equation (4.1)
is nothing other than (3.9). Use the above notation. Let $u_{i}$ be the
generator of $N_{\alpha,t}$ for each $i$ . Since $\Lambda(S’)$ is simple, we have the follow-
ing formula by using an elementary property of $ord_{\Lambda}$ (see, Proposition
4.2.4 in [9])

(4.19) $ord_{\Lambda}u=\sum_{i}ord_{A_{i}^{\prime}}u_{\dot{l}}^{\prime}$ .
Equation (4.2) is, then, an easy consequence of (4.18) and (4.19). Next
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we prove (3). In view of (4.14), we may assume $\Lambda=\Lambda(S)$ . We pul
$S’=S-\{s\}$ for some $s_{i}$ in $S$ . Then from the definition, for any poinl
$(x_{0}, \eta_{0})\in\Lambda(S)\cap\Lambda(S^{\prime})$ , there exist an analytic path $\xi(t)e\mathscr{A}(S’)$ and a vecto]

$\eta(t)$ such that

$(x(\xi(t)), \eta(t))e\Lambda(S’)$ (if $t\neq 0$)

(4.20) $x_{0}(=0)=\lim_{t\rightarrow 0}x(\xi(t))$

$\eta_{0}=\lim_{t\rightarrow 0}\eta(t)$ .

Then Lemma 2.3 shows that, if $t\neq 0,$ $\xi(t)$ and $\eta(t)$ satisfy the equation

(4.21) $\eta(t)\cdot P_{i}(\xi(t))=0$

(as to the definition of $P(\xi)$ , see Lemma 2.2 and the proof of Proposi $\cdot$

tion 3.6). The limitation $t\rightarrow 0$ implies

(4.22) $\eta_{0}\cdot P_{i}(0)=0$ .
Since we assumed $x_{1}=\xi_{1}^{2}+\cdots+\xi_{l}^{2}$ , we have $P_{H_{i},1}(\xi)=c(c$ is a non-zere
constant). On the other hand, for each $j(2\leqq j\leqq l),$ $P_{H,j}(\xi)$ is a homo $\cdot$

geneous polynomial of $\xi$ with $\deg_{\text{\’{e}}}P_{H,j}(\xi)\geqq 1$ . Hence Equation $(4.22_{2}^{\backslash }$

means that $\eta_{1}^{0}=0$ and $\eta_{2}^{0},$

$\cdots,$
$\eta_{\iota}^{0}$ can take arbitrary values. Here we $pu\{$

$\eta_{0}=(\eta_{1}^{0}, \cdots, \eta_{\iota}^{0})$ . The intersection of $\Lambda(S’)$ and $\Lambda(S)$ is, therefore, giver
by $\{(x, \eta)eT^{*}X;x=0, \eta_{1}=0\}$ and thus we conclude that codim $\Lambda(S’)\cap$

$\Lambda(S)=1$ . Hence we have proved (3) except for the last part of it, whicl
is, however, nearly obvious. Q.E. $D$

\S 5. Two conjectures.

We fix a Coxeter system $(W_{l}, S)$ and put $f(x)=f_{W_{l}}(x)$ . Let $b_{f}(\epsilon)$ bt
the b-function of $f(x)$ , which is, by definition, the monic polynomial of
$s$ with the minimal degree such that

(5.1) $P(s, x, D_{g})(f(x))^{+1}=b_{f}(s)(f(x))$

for a differential operator $P(s, x, D.)$ (cf. [10]). In view of

(5.2) $X_{1}(f(x))^{\epsilon+1}=lh(s+1)(f(x))^{+1}$ ,

we can eliminate $s$ from the operator $P(s, x, D.)$ . As is known, we havt

(5.3) $-\parallel_{\alpha}^{\wedge}=\mathcal{D}_{X}(f(x))^{\alpha}$

for any $\alpha\in C$ if $b_{f}(\alpha-n)\neq 0$ for any non-negative integer $n$ . As remarkec
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in \S 3, $-A_{\alpha}^{\nearrow}$ is a quotient of $\infty r_{\alpha}$ . The microlocal structure of $\vee r_{\alpha}$ has
been elaborated in \S 4. The reason why we have mainly interested in
$\sim f_{\alpha}^{\prime}$ instead of $\vee r_{\alpha}$ is partly based on the conjecture:

CONJECTURE I. $\infty r_{\alpha}=\ovalbox{\tt\small REJECT}_{\alpha}^{-}$ for any $\alpha\in C$.
Once we assume that

(5.4) $S\check{S}(\vee\psi_{\alpha}^{\prime})=W_{0}$

(cf. (3.6)), Theorem 4.1 (1) and Lemma 3.4 easily reduce Conjecture I to

CONJECTURE I’. $A=W_{0}$ .
We state another conjecture concerning the b-function of $f(x)$ :

CONJECTURE II. $b_{f}(s)=\Pi_{i=1}^{l}\Pi_{k^{i}=1}^{k-1}(s+1/2+k/k_{i})$ .
On assuming Conjecture II, we readily have

(5.5) deg $b_{f}(s)=\frac{1}{2}lh$ .

Equation (5.5) is closely connected with the explicit form of the principal
symbol (cf. (4.17)).

We remark that these conjectures are true at least for the Coxeter
system of type $I_{2}(m)$ (as proven elsewhere) as well as type $A_{3}$ (cf. \S 6).
We also defer the determination of the fundamental invariants and
$M(W_{l})$ for all irreducible Coxeter systems (except for $E_{7}$ and $E_{8}$) until
a subsequent paper. The succeeding section provides an easy example
which illustrates our general formulation and supports Conjectures I
and II.

\S 6. An example.

Let $(W, S)$ be the Coxeter system of type $D_{3}$ (which is equal to $A_{3}$).
We try here to determine the fundamental invariants and the generalized
discriminant $f(x)$ and prove that

(6.1) $A=W_{0}$

(6.2) $b_{f}(s)=(s+1)^{2}(s+\frac{5}{6})(s+\frac{7}{6})(s+\frac{3}{4})(s+\frac{5}{4})$ .
8) Professor M. Kashiwara announced (private communication) that he has proved (5.4)

though his proof is not yet published. Hence we assume (5.4) in the example discussed in
the next section.
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Let $E=Re_{1}+Re_{2}+Re_{3}$ be a vector space with an orthonormal basi
$\{e_{1}, e_{2}, e_{3}\}$ . Then the Coxeter group $W=W(D_{3})$ is generated by th
reflections $s_{1},$ $s_{2},$ $s_{3}$ :

$s_{1}:(e_{1}, e_{2}, e_{3})\mapsto(e_{2}, e_{1}, e_{s})$ ,
$s_{2}:(e_{1}, e_{2}, e_{3})\mapsto(e_{1}, e_{3}, e_{2})$ ,
$s_{3}:(e_{1}, e_{2}, e_{3})-*(e_{1}, -e_{3}, -e_{2})$ .

As is known, $W$ is a semi-direct product of $S_{8}$ by $(Z/2Z)^{2}$ , which $i$

isomorphic to $\mathfrak{S}_{4}$ . The Coxeter diagram is of the form:

FIGURE 2

$S=\{s_{1}, s_{2}, s_{3}\}$ is a set of generators. Let $\xi_{1},$ $\xi_{2}$ and $\xi_{3}$ be linear form
on $E$ defined by

$\xi_{i}(e_{j})=\delta_{ij}$ $(i, j=1,2,3)$

and put
$E^{*}=R\xi_{1}+R\xi_{2}+R\xi_{s}$ .

Let us identify the symmetric algebra $S(E^{*})$ with $R[\xi_{1}, \xi_{2}, \xi_{3}]$ . The $\cdot$

$R=S(E^{*})^{W}$ is generated by $x_{2},$ $x_{3},$ $x_{4}$ :
$x_{2}=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}$

$x_{3}=\xi_{1}\xi_{2}\xi_{3}$

$x_{4}=\xi_{2}^{2}\xi_{3}^{2}+\xi_{3}^{2}\xi_{1}^{2}+\xi_{1}^{2}\xi_{2}^{2}$ .
By simple calculation, it follows that

$M(D_{3})=(3x_{3}$ $\frac{1}{2x2}x_{4}3x_{3}2x3$ $6x_{3}^{2}+2x_{2}x4x2x_{2}x_{3})$ ,

$f(x)=f_{D_{3}}(x)=\det M(D_{8})$

$=-8(x_{4}-\frac{1}{3}x_{2}^{2})^{3}-54(x_{3}^{2}-\frac{1}{3}x_{2}x+\frac{2}{27}x_{2}^{3})^{2}$
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In this case, $f(x)$ is the discriminant of the polynomial

$P(u)=u^{3}-x_{2}u^{2}+x_{4}u-x_{3}^{2}$

$=(u-\xi_{1}^{2})(u-\xi_{2}^{2})(u-\xi_{3}^{z})$

(up to a constant factor). From the above matrix $M(D_{3})$ , we have

$X_{1}=2x_{2}\frac{\partial}{\partial x_{2}}+3x_{3}\frac{\partial}{\partial x_{3}}+4x_{4}\frac{\partial}{\partial x_{4}}$ ,

$X_{2}=3x_{3}\frac{\partial}{\partial x_{2}}+\frac{1}{2}x_{4}\frac{\partial}{\partial x_{3}}+2x_{2}x_{3}\frac{\partial}{\partial x_{4}}$ ,

$X_{3}=4x_{4}\frac{\partial}{\partial x_{2}}+2x_{2}x_{3}\frac{\partial}{\partial x_{3}}+(6x_{3}^{2}+2x_{2}x_{4})\frac{\partial}{\partial x_{4}}$ .

Hence

$[X_{1}, X_{2}]=X_{2}$ , $[X_{1}, X_{3}]=2X_{3}$ , $[X_{2}, X_{3}]=x_{3}X_{1}$

and

$X_{1}f=12f$ , $X_{2}f=0$ , $X_{3}f=4x_{2}f$ .

The conjugate classes of S-subgroups of $W$ are

$W_{1,2,3}=[S]$ , $W_{1,2}=[\{s_{1}, s_{2}\}]$

$W_{2,8}=[\{s_{2}, s_{3}\}]$ , $W_{1}=[\{s_{1}\}]$ , $W_{0}=[\emptyset]$ .
Hence, from Theorem 4.1 (1), it follows that

$S\check{S}(\cup A_{\alpha}^{\nearrow})=\Lambda_{1,2,3}\cup\Lambda_{1,2}U\Lambda_{2,3}\cup\Lambda_{1}U\Lambda_{0}$ .
Here we have put $\Lambda_{1,2,3}=\Lambda(W_{1,2,3})$ etc.

PROPOSITION 6.1. $\vee r_{\alpha\leftrightarrow}=4_{\alpha}^{\nearrow}$ .
PROOF. It is sufficient to prove that

$\Lambda\subset W_{0}$ ,

because we have already proved in Theorem 4.1 that $W_{0}\subset A$ .
We now show that

$\Lambda_{1,2,3}\subset W_{0}$ .
Put $f_{i}=\partial f/\partial x_{i}(i=1,2,3)$ . Then
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$f_{2}(x)=4(x_{2}x^{2}+9x_{3}^{2}x_{4}-6x_{2}^{2}x_{\theta}^{2})$ ,
$f_{8}(x)=8x_{S}(9x_{2}x_{4}-27x_{S}^{2}-2x_{2}^{S})$ ,
$f(x)=4(-6x^{2}+x_{2}^{2}x+9x_{2}x_{s}^{2})$ .

$We$ define an analytic path $(x_{2}(t), x_{3}(t),$ $x_{4}(t))$ which coverges to the origi $\cdot$

when $t\rightarrow 0$ , by

$x_{2}(t)=3at+bt^{2}$

$x_{3}(t)=cat^{2}$

$x_{4}(t)=\frac{3}{2}a^{2}t^{2}$ ,

where $a,$ $b,$ $c$ are arbitrary numbers. Then it is easy to see

$\lim_{t\rightarrow 0}\frac{1}{9a^{\epsilon}+t^{f}}(f_{2}(x(t)), f_{3}(x(t)),$ $f(x(t)))$

$=(3a^{2}, -12ac, 4(b+3c^{2}))$ .
Since we can regard $a,$ $b,$ $c$ as being arbitrary, this equation and th
definition of $W_{0}$ imply that

$\Lambda_{1,2,3}\subset W_{0}$ .
We remark in advance that Conjecture I holds for the Coxete

systems of type $A_{1}$ or $A_{2}$ . This follows from a direct calculation. I
follows from this remark and (4.14) that $\Lambda_{1,2},$ $\Lambda_{2.3},$ $\Lambda_{1}$ and $\Lambda_{0}$ are containe $($

in $W_{0}$ . Hence the assertion. Q.E. $D$

Next we show

PROPOSITION 6.2. $b_{f}(s)=(s+1)^{2}(s+5/6)(s+7/6)(s+3/4)(s+5/4)$ .
PROOF. We apply the method expressed in Appendix to the presen

case and use the notation there. In this case,
$\ovalbox{\tt\small REJECT}^{(0)}=\mathcal{D}_{X}X_{2}+\mathcal{D}_{X}(3X_{3}-xX_{1})$ ,

$X_{0}=\frac{1}{12}X_{1}$ .

A straightforward calculation leads us to
$\Psi=C\Delta_{1}(x)+C\Delta_{2}(x)$ ,

where
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$\Delta_{1}(x)=\delta(x)$ ,

$\Delta_{2}(x)=\{(\frac{\partial}{\partial x_{2}})^{8}-\frac{3}{4}(\frac{\partial}{\partial x_{2}})(\frac{\partial}{\partial x})+\frac{1}{16}(\frac{\partial}{\partial x_{s}})^{2}\}\delta(x)$ ,

and

$X_{0}\Delta_{1}(x)=-\frac{3}{4}\Delta_{1}(x)$

$X_{0}\Delta_{2}(x)=-\frac{5}{4}\Delta_{2}(x)$ .

Thus from Lemma A.2, it follows

(6.3) $b_{f}^{3}\sim(s)=(s+\frac{3}{4})(s+\frac{5}{4})$ .

FIGURE 8
THE HOLON0MY DIAGRAM OF $A_{\alpha}^{\wedge}$
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As to $ b_{f}^{2}(s)\sim$ , the corresponding procedure is reduced to the case of the
Coxeter systems of type $A_{2}$ and $A_{1}\times A_{1}$ , which is, however, an easy task
(recorded in a subsequent paper [13]). The result is

(6.4) $b_{f}^{2}\sim(s)=(s+1)(s+\frac{5}{6})(s+\frac{7}{6})$ .

Hence the proposition follows from (6.3), (6.4) and Lemma A.l.
Q.E.D.

We have thus proved (6.1) and (6.2). Conjectures I and II are,
therefore, true in this case. The results mentioned above are summarized
in the holonomy diagram of $\infty\parallel_{\alpha}^{\nearrow}$ in the previous page. (As to the holo-
nomy diagram, refer to [3], [8], [11].)

REMARK. One will find an interesting theory written out somewhat
a wider scope in K. Saito [6], whose example is in deep connection with
ours.

Appendix.

We here record a general method of determining $b_{f}(s)$ for an analytic
function $f(x)$ . We keep here the notation (3.1). Put

(A.1) $\tilde{\mathscr{M}}:=(s+1)\mathscr{M}$

$\simeq \mathcal{D}_{X}[s]/(\ovalbox{\tt\small REJECT}(s)+\mathcal{D}_{X}[s](\mathfrak{a}+p_{X}f))$ ,

where

$\mathfrak{a}=\sum_{i=1}^{*}p_{X^{\frac{\partial f}{\partial x_{i}}}}$ .

Regarding $s$ as an endomorphism $of\swarrow\swarrow\sim$ we write $ b_{f}(s)\sim$ for the minimal
polynomial of $s$ . Then, from the definition, we have

(A.2) $ b_{f}(s)=(s+1)b_{f}(s)\sim$ .
Assume that there exists a vector field $X_{0}$ such that

(A.3) $s-X_{0}\in\ovalbox{\tt\small REJECT}(s)$ .
Then (A.1) turns out to be

(A.4) $\tilde{\mathscr{M}}=\mathcal{D}_{X}/(\mathscr{J}^{\{C)}+\mathcal{D}_{X}\mathfrak{a})$ ,
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where

$\ovalbox{\tt\small REJECT}^{(0)}=\mathcal{D}_{X}\cap\ovalbox{\tt\small REJECT}(s)$ .
We take a regular stratification $X=\bigcup_{\alpha}X_{\alpha}$ in the sense of H. Whitney
such that

(A.5)4) $S\check{S}(\mathscr{M}\tilde{d})\subset\bigcup_{\alpha}T_{x_{a}}^{*}X$ .

Then we define $ b_{f}^{k}(s)\sim$ as the minimal polynomial of the endomorphism $s$

of

$\bigoplus_{co\dim X_{\alpha}=k}\mathscr{G}\mathscr{G}_{m\ovalbox{\tt\small REJECT}_{X}}(\mathscr{M}\swarrow^{\sim}, \mathscr{B}_{x_{\alpha}|X})_{x_{\alpha}}$
$(x_{\alpha}\in X_{\alpha})$ ,

where $\mathscr{B}_{x_{\alpha}1X}$ denotes the space of delta functions supported on $X_{\alpha}\subset X$ ;
$\ovalbox{\tt\small REJECT}_{pt}$ being an abbreviation of $\mathscr{B}_{\{0\}1X}$ .

We now recall an interdependence between $ b_{f}\sim$ and $\tilde{b}_{f}^{k}$ (cf. Theorem
3.3 in [10]).

LEMMA $A.1^{b)}$

$ 1.c.m(b_{f}^{k})|b_{f}|\prod_{k2\leqq k\leqq n=2}^{n}b_{f}^{k}\sim\sim\sim$ .

In order to determine $ b_{f}^{n}(s)\sim$ , we decompose

$\mathscr{F}=\ovalbox{\tt\small REJECT}_{a\prime\prime l}\mathcal{D}_{X}(\mathscr{M}\tilde{\swarrow}\mathscr{B}_{pt})_{0^{6)}}$

into root subspaces of $s$ . Under the assumption (A.3), a homomorphism
$1-*\Delta(x)\in \mathscr{B}_{pt}$ in S7‘ is an eigenvector of $s$ belonging to an eigenvalue $\beta$

if and only if the following condition holds.

$X_{0}\Delta(x)=\beta\Delta(x)$ ,
(A.6) $Q(x, D_{x})\Delta(x)=0$ for all $Q(x, D_{x})\in \mathscr{J}^{(0)}$ ,

$\frac{\partial f}{\partial x_{i}}\Delta(x)=0$ for $i=1,$ $\cdots,$ $n$ .

Thus we have

LEMMA A.2. For a complex number $\beta,$
$ b_{f}^{n}(s)\sim$ has the factor $ s-\beta$ if

and only if there exists a $\Delta(x)e\ovalbox{\tt\small REJECT}_{pt}$ satisfying (A.6).

4) See, for example, M. Kashiwara, Section 3 in “On the maximally overdetermined system
of linear differential equations, $I$ , Publ. of RIMS, Kyoto Univ. 10 (1974/1975), 563-579.

b) l.c.m is an abbreviation of the least common multiple.
6) For the definition of the notation, see [10] and the references there.
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We have defined $b_{f}(s)$ by the existence of $P(s, x, D.)$ in (5.1). Con
versely, if we find out $ b_{f}(s)\sim$ and $c\mathscr{J}(s)$ , we can construct $P(s, x, D.)$ il
(5.1). We now explain a method of the construction of such an operato]
under the assumption (A.3) for simplicity. From the definition of $ b_{f}(s)\sim$

it follows

(A.7) $ b_{f}(X_{0})=Q(x, D_{x})+\sum_{i=1}^{n}R_{i}(x, D_{x})\frac{\partial f}{\partial x}\sim$ ,

for some $Q(x, D_{x})\in\ovalbox{\tt\small REJECT}^{(0)}$ and $R(x, D_{r})\in \mathcal{D}_{X}$ $(i=1, \cdots, n)$ . Then th $($

operator in question is given by

(A.8) $P(x, D_{x})=\sum_{i=1}^{\#}R_{i}(x, D_{x})\frac{\partial}{\partial x_{i}}$ ,

which works as follows:

$P(x, D_{x})f^{+1}=(s+1)\sum_{=1}R_{i}(x, D_{x})(\frac{\partial f}{\partial x}f\cdot)$

$=(s+1)b_{f}(X_{0})f^{\iota}\sim$

$=(s+1)b_{f}(s)f^{*}\sim$

$=b_{f}(s)f$.
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