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Introduction

The purpose of this paper is to prove the theorem of Paley-Wiener
~ type on the universal covering group of de Sitter group (Theorem 3.4).
Theorems of this type on semisimple Lie groups have been proved in
several cases: L. Ehrenpreis and F. I. Mautner [5] is the first that
proved theorems of Paley-Wiener type for SL(2, R). For a general non-
compact semisimple Lie group, this is not proved but there are some
papers on theorems of similar type; [17] for compact groups, [7], [11] for
symmetric spaces and [1], [14], [16], for certain another function spaces.
And recently some characterizations of the Fourier image of C*-funec-
tion with compact support on a rank 1 semisimple Lie group were given
in [2], [6], [12]. But in the case when G is the universal covering group
of de Sitter group we can give a more explicit characterization than
that of [2], [6], [12].

The techniques used in the proof of Theorem 8.4 are similar to that
of [11]. But, in our case, functions which appear in the proof have
more singularities. Most difficulties of the proof are the arguments on
these singularities. Theorem 8.4 of [13] is the key result. By using
this theorem, we can reduce the proof to the case where above singu-
larities are absent.

We devide this paper into three parts. In the first section, we give
the realization of representations of G and establish certain elementary
properties of the matrix coefficients of these representations. We need
these properties to describe and to prove Theorem 8.4. In the second
section, we give the definition of the Fourier transform and Plancherel
formula. In section three, we state the main theorem (Theorem 3.4)
and prove this.
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§1. Some properties of representations R, T,.,.

Through this paper, we use the same notations as in [18]. So, G is
the universal covering group of de Sitter group and K, M, A, N, N
are the subgroups of G defined in §1 of [18], and we write g=
k(g)a. g N, for the Iwasawa decomposition of ge G ete., let IZ', M be the
sets introduced in §1 of [13] (p. 116). Then for each (n', n”) e K (resp.
ne M) we can correspond to the irreducible unitary representation
T=7"""" of K (resp. 6" of M) on V.=V*"*" (resp. V*). For simplicity
we denote this by e K (resp. o"e M). Moreover, for each ne M we
put

K(n)={r € K; the restriction of r to M contains o} .

In this section, we give the realization of principal series R, ., and
discrete series T,,, of G and establish several facts about R,,,, T,. which
are needed in later arguments.

1.1. Realization of representations R, ,, T,...

For each m e M, we denote by S#°% the space of all C*-functions of
K into V* which satisfies the functional equation;

fm)=0"(m™")f(k) for keK, meM.
Then 273 is a pre-Hilbert space with the Hermitian form

(5, £w=\ (1), £/ .

Let 57, be the completion of 5#°=. Then the principal series represen-
tation R, , of G on 57, is given by

R, .(@)f (k) =€~ 470 f (l(a~h)) ,

where x€ G, ke K, fe 57, and s is a complex number. Thus principal
series representations are parametrized by the set

CA}c={(s, n); 8 is a complex number and 2n is a non-negative integer} .
Let
G.={(p, n); 2p, 2n, n—p are integers with 1<|p|<n}.

Then for each (p, n) € G, we corresponds to a discrete series representa-
tion T,, of G on a Hilbert space 57, as follows;
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T= 02 . if p>0
™~ if p<o0,

where T'"%?, T°"~? gre the realizations of discrete series of G given in
[18] (p. 399). ’

Let 27,(7) (resp. 57, .(zr)) be the space of all K-finite vectors of type
= under R, , (resp. T,,) (€ K) and R,(7) (resp. T,,.(7)) be the orthogonal
projection of 57, (resp. 27,,) onto S#(7) (resp. 3.4(t)). Then R,(7)
(resp. T,,.(7)) are mutually orthogonal. Let P,(7) (z'eff(n)) be a linear
endomorphism from V. onto V"™ which is defined in §1 of [13] and put

(k) =Pyt r(b ™) for keK, veV,.

- |

Then f7,e€ 5#,(r). Furthermore, by simple calculations, we have
(F2 Fr)e=@n+1)/d(z)

where d(7) is the degree of z. Hence the mapping Low—(2n+1)/d(z))"V2f",
is an isometry from V. into S5#(z). Since the restriction of R, . to K
is the representation which is induced from 0", we obtain the next
lemma from the Frobenius’s reciprocity theorem.

LEMMA 1.1. S5£,(7)+#0 if and only if reI_?(n), and when e K(n)
the mapping I., is an isometry from V. onto S£.(7) which satisfies

R, (K)I.,=I.,7t(k) for any keK.

For 7,€ K(n) (¢=1, 2) let v,=P,(t)*P,(t,), E(s, v,, ) be the same as
in §3 of [13] and V, be the representation space of 7,(t=1, 2). Then
we may identify 5#(r,) with V, under the isometry I.,. and regard
R,(t)R, .(x)R.(7,) as a linear endomorphism from V, into V.. Moreover,
by simple calculations, we have the following formula

(B, (@) f7p0py [ ri0)n=(EX3, Vs, X)vy, v)y,, for w,eV, ('i=1,‘ 2).
Consequently, we have the next lemma.
LEMMA 1.2, (d(7,)d(z,)/(2n+1)®)"2E(s, v,, €)= R (TR, (Z)R.(z,).
1.2. Infinitesimal operators.

Let & be the complex universal enveloping algebra of the Lie algebra
f of R and ¢(r) be the eigenvalues of the Casimil; operator w, of & under
the representation ze K. Let |z]=1+]e(z)|(r € K).

LEMMA 1.8. Let e K and -DeR. Then there exists a positive econ-
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stant ¢ and a nmon-negative integer j depending only on D such that
=D =el |
where || || i8 the operator norm.

PROOF. For each Det, there is a Cartan subalgebra % of f which
contains D. Let A, ---, N, be the weights of z with respect to §. Then

llz(D)||=max{n(D)| <=1, ---, m}.

But it follows from the general representation theory of compact Lie
groups that there is a positive number ¢ satisfying

|7\:¢(D)|§CITI i=1’ e, M,

and ¢ depends only on D. So, this lemma is valid for Det* For general
De &, using the Poincare-Birkhoff-Witt’s theorem and the induction on
degree of D, this lemma is proved.

Let g=t+p be the Cartan decomposition of the Lie algebra g of G
and denote the Killing form by B. For each Xep, we define the func-
tion ¢y on K by

9x(k)=B(Ad (k™)X, H)/B(H, H) (keK)

where H is the element of the Lie algebra a of A so that a,=exp(tH).
Then it is clear that g, € 54. Since p is an Ad(K)-stable subspace of
g and B is a positive definite Ad(K)-invariant symmetric bilinear form
on p,

B(Ad(k™)X, Y)<B(Ad(k ™)X, Adx™)X)B(Y, Y)=BX, X)B(Y, Y)
for any X, Yep. Thus .. |
lax(k)’<B(X, X)/B(H, H), for any Xep, keK.
Let Q.(X) be the bounded linear operator on 5%, given by
Qu(X)f(k)=q(k)f (k) , fezz, and keK.
Then ,
| Qu(X)I*=B(X, X)/B(H, H) .

Lét & be the complex} universal enveloping algebra of g and U be a
continuous representation of G on a Hilbert space 5#°. Then U can be
extended to the differential representation of & on the space of all
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C=-vectors of 2#°. we denote this representation by the same symbol.
The following lemma is preved by E. Thieleker in [19] (Lemma 1,
Lemma 4). o -

LEMMA 1.4. Let Xecp and (3, n)eG,. Then
R, (X)=8Q.(X)+ (R, (0)Q.(X)—Q.(X)R, .(@))/2,
and for t,=t"" ((n), nY)eK) i=1, 2
R ()R, (X)R,(z)#0 if and only if t,eK(n) i=1,2
and
|nj—ny |+ |0 —n)|<1.

PROPOSITION 1.56. Let De®, 7, K(n) i=1, 2. Then,

1) f 7, (resp. 7,) i3 fixed, them except finitely many t, (resp. 7,
R, ()R, .(D)R,(7,)=0.

'2) When R, (t)R,.(D)R,(t,)#0, there are mon-negative imtegers j,
k, m and a positive constant ¢ depending only on D such that

| Bu(z) Ry, a(D)RW(To) [|Sc(L+8 )| 7, M| 7o ™ .

PROOF. First we note that for any z,e K (1=1, 2) there is an in-
teger 57>0 satisfying |z,|<|z,|?. Since

R.()R, (DD")R,(7;) =3, Ru(T)R, (D)Ry(T)RW(T)R, (D) R,(z,)

for any D, D'e®, we may consider only the case De®. When Def,
it follows from Lemma 1.1 that ,

7.(D) if 7, is equivalent to 7,
n Rl n D R‘n - . 3 .
R (@) Bun(D)R.(7,) 0 if 7z, is not equivalent to 7, .

Hence, the first statement is valid for Det and Lemma 1.8 implies the
second statement. When Dep, the frst statement is proved from Lem-
ma 1.4. Since R,(7)R, .(w)=c(z)R,.(7), we have from Lemma 1.4 that

R, ()R, (D)R,. (7)) =(8+(c(7,) — ¢(72)/2) B ,(T))Qu(D)R,(T,) -
Hence,

| Ru(Z) R, (D) R (T || < (8] + (| 7] +1721)/2) || Rulz)Qu(D)RA(T) |
=21 +[sDlz| || | Q.(D)]| |
=2(B(D, D)/B(H, H))"*(1+|8))|7,| |7s] -

So, Proposition 1.5 is proved.
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COROLLARY 1.6. Let De®, (v, V)eK (i=1,2) be satisfying that
R.(t)R, (D)R(t,)#0. For each basis {fi; 1=j=d(z)}, {f7; 1=i=d(z.)}
of S#.(t.), F#a(Ts), we put

| Bu(z) Re s(D)Bu(T) 1= 2, (B, n(D) S, Fidval -

Then there are integers i, j, k and a constant ¢>0 such that
| Ru(z) R, ((D)R (e = e+ |8 )|z, ] 72| -
ProOF. Since
|| Ra(T) Ry, a(D)R (o) L = d(T)A(T)|| BA(TO R, W(D)R(TI) ||
Proposition 1.5 implies
| Ru(z) R, ((D)R (Tl =" A +]|8))¥| 7. [ 7o ¥ d(T)d(z2)

for some integers ', j', k¥’ and a constant ¢’>0. While, if z=7""*", then
d)=n"+n"+1)(n'—n" +1) gnd I7|=1+ @ +1)2+ (0" —1=(n"+1)*+(n")%.
Hence d(z)<|z| for any 7€ K. Therefore, if c=¢/, i=1, j=75"+1, k=K +1
then

HR(T)R, LD)R (Tl e +|8])|z, |z [* .
Thus our lemma is proved.

COROLLARY 1.7. Let D, (z,, V;) i=1, 2 be the same as Corollary 1.6.
Then there are integers i, j, k and a constant ¢>0 such that

|trace(R.(7.)R.,.(D)R.(t)A) |=c || AllL+]|8]){ 7. 7. |*
for every linear endomorphism A of V, and V,.
ProOOF. Since
|trace(Ru(z) R, o(D)Ru(z)A) | S|| Al || Bu(z) R, (D)RW() Iy
Corollary 1.7 is a simple consequence of Corollary 1.6.
1.3. Linear independency.

For each (z, V)eK(n), i=1,2 we identify f(x)=R,(z)R, (®)R,(z;)
with a linear endomorphism on V, into V, by the isomorphism of
Lemma 1.1. ‘

LeEMMA 1.8. Let {v};1<7<d(z,)} be a basis of V, (i=1,2). If f 13
not tidentically zero. Then f;(x)=(f(x)v} v)); 1=i1=d(z,), 1=75=d(T,) are
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linearly independent.

PROOF.  First we prove that for each non-zero vectors v'e V, (i=
1, 2) the function (f(x)v? ¢') is not identically zero. Fix non-zero vectors
v'e V, (¢=1, 2). Then since 7, 7, are irreducible unitary representatlons
of K, for each u'e V,, we can find constants ¢ and elements ki of K
(t=1, 2, =1, ---, m) such that :

w'=3 cjt(kpv', i=1,2.
J .

Hence (f(x)u’, u')=3.;,; cie;'(f(@)To(k)v*, 7:(K})v"). But
(f(@)7o(k)v*, T (K5 )vY) = (f((K}) T 'ak)’, o) .

Therefore, if (f(x)v?, v') is identically zero then f(x) is also identically
zero. Thus (f(x)v*, v') is not identically zero if +(¢=1, 2) are non-zero
vectors and f(x) is not identically zero. Since the linear independency of
fi; is stable under the change of basis, we may assume that {vi; 1=5=
d(z)} (¢=1, 2) are orthonormal basis. Then, for each k, k,€ K, zeG,

Jis(@) = (f(@)7,(k:)0}, Tl((kl)“l)v%)=‘§. (To(k)v3, vi)(T()viy V1) frrio(2) -

From the orthogonal relation of spherical functions on compact group,
we have the formula :

§Kgxﬁj(klxkz)(r1((k1)_l)vi's 1)%/)(2'2((]62)_1)?)3", v})dk.dk,
=(d(7)d(T2)) 7 frr ()08 ;5

where 4 is Kronecker’s symbol.
Now we put f(x)=3},; a;;fi;(x) (a,;; are complex numbers), then

(@2 )Aw) 0 fu@)= | | Floale)(r,((6) )0k, 9D(E6) )0}, vhdkidk, .

If filwx)=0 for all xe€@, then a,;f,;(x)=0 for all xeG and 1=i<d(z)),
1=<j7=<d(z,). Since f;; is not identically zero, we have that

a’ii:O 7’:19 Tty d(?.'l) ’ j=1; c d(tz) .
Thus Lemma 1.8 is proved.

Let V be'a finite dimensional Hilbert space and denote by C*(G: V)
the space of all C~-functions of G into V. Then elements of & act on
C=(G: V) from both left and right as differential operators. We write
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Df, fD (feC>(G: V) De®) for these actions. We also use .Harish-
Chandra’s notations f(D; ), f(x; D).

Let 3B be the center of @ and X, , be the infinitesimal character of
R, .((s, n) eGAc). Namely X%, , is an algebra homomorphism of 8 into the
complex field C such that R, . (Z)p=X,.(Z)p for all pe £ and Ze 3.
Then there is a Casimir element @ € 8 such that X, (@) =8*—(8/2)*+n(n+1)
and w+2w, is an elliptic differential operator on G. ([21])

LEMMA 1.9. Let the functions f,(x), f(x) be the same as in Lemma
1.8. Then these functions are all real analytic on G.

PrROOF. Since f(w; x)=f(x; ®)=X,,.(®)f(x) and f(w,; x)=c(z,)f(x) (also,
J(@; @w)=c(z,)f(x)), f is an eigen function of the elliptic differential
operator w+2w,. Hence f(x), f;;(x) are all real analytic on G.

LEMMA 1.10. Let (s, n)eG, and (z;, V)eR (i=1, ---, m, j=1, 2)
satisfy that f'(x)=R,(7)R.,. ()R, (T.) 18 mot identically vanished for
i1=1, ---, m. Choose a basis v}, j=1, ---, d(z,) of V, (i=1, 2) respectively
and put X,;=X, ., 1=1, ---, m and let

f:'k(w)=(f‘(x)'vi; ’U;); 7'=11 cc, M, j=1’ ) d(Tl), k=1y Tt %y d(z'z) .

If xt;&xt' fOT 7:#:7:’! then f:k "::1, cte, M, j=1y S %y d(tl)p k=19 MY d(Tz)
are linearly independent real analytic functions on G.

ProoF. The analyticity is already proved in Lemma 1.9. For any
complex numbers aj, (i=1, ---, m, j=1, ---, d(z), k=1, - --, d(z,)) we write
Fi@)=3n ahfin(x) and F(x)=3, F'x). First we prove the following;
F(x)=0 implies F¥(x)=0 ¢=1, ---, m. We use the induction on m. When
m=1, our assertion is trivial. Since fi(x; Z)=X(2)f'), F(x; Z)=
X(Z)F*(x). Hence F(x; Z)=3.X(Z)F*x). So,

F(z; Z)~Xu(Z)F @) =3 (0(Z)~ L Z)F'(@) .

From the assumption on X,, we can select an element Z,c 8 such that
X(Z)#X.(Z,) if i+#4 .

F(x)=0 implies that 3> (X(Z,)—X.(Z,))F'(x)=0. Since X (Z)#X.(Z.),
the induction hypothesis implies that FYx)=0 i=1, ---, m—1. Thus
F™(x)=0. We have from Lemma 1.9 that F*(x)=0 for all z€ G implies
a3=0 i=1, ..., m, j=1, ---, d(z,), k=1, ---, d(z,). Hence Lemma 1.10 is
proved.
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1.4. Intertwining operators for. .R, e

Let d7n be the Haar measure on N normahzed by S —stmdp=1. For
each (s, n) e G, with Re(s)>0, we consider the following operator;

A, fl0)=\_eerm® fllowhm)dk

where w is an element of the center of K which is defined in §1 of
[18] (p. 116). Then it is well-known that the above integral is absolute-
ly convergent for all fe 5~ and the mapping f— A,.f is a bounded
linear operator on .5#,. Moreover for each fe 5%, the mapping s—A,, .f
is a S#,-valued holomorphic function on {s; s is a complex number with
Re(s)>0} and can be extended meromorphically onto C.

We have the next lemma from Proposition 5. 1 of [13].

LemMa 1.11. Let c=t""cR(n). Then for each f&SA()
A, .f=c.(8, T)f as meromorphic functions of 8, where

2w+ (28 '(—8+8/2+n ) (—s8+1/2—|n"|)
I'(—s+3/24n)(—s8+1/2—n)[(8+3/2+n")[(s+1/2—|n"])
s_{ 1 if »"=0
(-1 if #"<0.

c.(8, T)=

For any x# e G there is an unique non-negatlve number ¢ such that
z e Ka,K (Lemma 2.1 of [18]). We write |2|=¢, then |27}|=]z].

LEMMA 1.12. Fix x€G and n. Then the mapping s— R, . (2) 18 a
holomorphic function on C into the Banach algebra of all bounded linear
operators on 5#,. Moreover

H(_ai_)iRM(ab)Hgm]feme(.ms. j=0,1, -

Proor. It is clear that the function s+ (R,..(®)f, f)). is holomorphic
on C for each f, f'e5#, and z€G. Hence the mapping sr——»R, 2(2) 18
holomorphic. Since ‘

() Ben@ (0)= (o™ (e 210 f ™00

|(55) Bnmrsn [,
éf?,? (It(x’lk)Pe‘*“’"’“”""")(e“‘3’2’“”_”"Hf(k(x"k))]lyn) .
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From the explicit formula of the Iwasawa decomposition (Lemma 1.1 of
Chapter II in [18]), we obtain that

sup (lt(w“k)l’ e—ne(.)t(z—lk))z"'xlj e!Re® izl
. keK . ‘ o

Hence,
(Z) Ra@ir|| slapsenmon| eseo)\fe@)lin d -
While, | | o
el o ) A=, n -
Thus

| () Bunrs||<tzpeman= s, .

So, Lemma 1.12 is proved.
1.5. Results frorh' thé fsubquotient theorem. '

For each subset S of K(n), we denote by S5#,(S)r the algebraic
direct sum >}, 5#(r) and denote by S5#.(S) the closure of 5#,(S)x in
S#,. We write (52)x for 2 (R(n))x. Similarly (525.)x=3 57, (7).
Now we introduce certain subsets of K(n) as follows; let » be a half
of an integer satisfying that n—p is an integer.

(1) For n<p _
St(p, n)={(n’, n") e K(n); p=n'}, Si(p, n)={(n', n") e K(n); p>n'} .
(2) For n=p -
Si(p, n)={(n’, n") € K(n); n"2p}, Si(p, n)={(n', n')e K(n); n" < —p}
and "
Si(p, m)={(n', n") € K(n); |n"|<p} .

The next lemma is reduced from Theorem 2, Theorem 5 of [19] and
Theorem 3 of [20] (also [8]).

LEMMA 1.13. Let-p be the same as above.

(1) When p=n, the subspaces Z,(S:(p, n)), S£.(S;(p, n)) (resp.
SZ(Sf (p, m) U SE(p, m)), S£.(S: (p, n)US{(p, n), S (Si(p, »))) are stable
under R, ,,.(¢) (resp. B_ip_1m,.(%)) for all x€G. '

(2) When p>n, the subspace 57,(Sf(p, n)) (resp. 57, (S;(v, n))) is
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stable under R,.,, . (®) (resp. R_i,..(€)) for all x€G.

(8) Denote by U,,, (resp. U_,,) the representation on %”(S*(p, n))
(resp. 2#,(8;(p, n)) induced from R, ... (resp. R_y11m.4). Then U, i
infinitesimally equivalent to T, for each (p, n) eG’d

(4) Denote by U}, (resp. U;,’,.) the represamtation on S7,(S{(p, »))
(resp. S£,(S7(p, n))) induced from R, (resp: B_,_im,,). Then U., is
infinitesimally equivalent to UL, ,. :

The next corollary is easily proved from Lemmasa 1.18.

COROLLARY 1.14. Let r,=t"" e K(n) i=1, 2 and put

f(s n, x)~R,.(rl)R, ,.(w)R,,(z'z)

Then f(s n, a:) 0 for all x€G in the follow@ng cases;
(1) n<n, and s=p+1/2 with n,<p=n..
(2) m<n! and s=—(p+1/2) with ni<p=<n!
(3) n'n'=0, |n!|<|n| and s=p—1/2 with |n)|<p=<|nl|
(4) ni’né’ZO [n:'|<|nl’| and s=—(p—~1/2) with || <p<Z|n!|
(8) n!'<0<ny and s=p—1/2 with n)<p=<mnl
(6) n;'<0<'n{', and 8= —(p—1/2) with n;<p=n.

The infinitesimal equivalence implies the following corollary (Theorem
4.5.5.2 of [21], or [9], [10)).

COROLLARY 1.15.

(1) Let Si(p, n)=8(p, n), Si(p, n)=S(—n, n). Then for each
(p, m) e@d there 1is a closed one-to-one linear operator B,. on
S (S(p, m)), onto (57,,.), such that B, U, . x)v="T, . (0)B, v for all ve
24, (S(p, m), and x€ G, where S£,(S(p, n)), (resp. (Z75.2)0) 18 a certain
U,..-stable (resp. T, ,.-stable) subspace of S#,(S(p, n)) (resp. 57,,.) which
contains S2,(S(p, n))x (resp. (57;,.)x)-

(2) Let 2n, 2p, n—p be integers with n>p and S'(p, n)==S(p, n)=
Si(n+1, p). Then there is a closed ome-to-ome linear operator B, , of
SZ.(S'(p, m)), onto itself such that B}, U. . (x)v= U, (@)B,, v for all ve
(8" (0, n)), and x €@, where 57#,(S'(p, n)), is a certain U} ,-stable and
U, -stable dense subspace of S#,(S'(p, n)) which contains (S (p, n))k.

DEFINITION, F'=(F,, F,) is said to be linked with the principal series
if

(1) For each (3, n)e G, (resp. (p, n) e Gy) F(s, n) (resp. Fu(p, n)) is
a bounded linear operator on SZ, (resp. 57,.).

(2) For each n the mapping s+ F (s, n) is a holomorphlc function
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on C into the Banach algebra of all bounded linear- operators on Sz;.
(3) =&° 1s stable under. F,(s, n) for: all (s, 'n)eG and ' ‘

A, nF(s n)f—__ (—s, n)A, ,,f for all fe%. N

as meromorphlc S#,.-valued functlon Lo
(4) Replacing R, . ), T,.(x) by F (s n), Fd(p, n) respectWely,
Corollary 1.14 and Corollary 1.15 are valid. - .

§2. Plancherel formula. o

We denote the Banach algebra of all bounded linear operators on
&4, (resp. 27,,,) by &, (rvesp.. %,.). Let A, Be &7, (resp. <%,,,) and at
least one of these is of traceclass. Then it is well-known that (A B),
trace(AB) (resp. (A, B), ,=trace(AB)) is well-defined. ‘

We denote the space of all C“-functlons on G with compact support
by 2(G) and put : C

D.(G)= {f € 9 (&;. the support of fc:G,} , N

where 7 is a pos1t1ve constant and G‘——{st lx]S'r} No‘w we define
the Fourier-Laplace (or SImply Fourier) transform F=(f., f.) of f e (G)
by L

Fiom={ fOR. @z @ meC.

Futw, )=\ F&T, @) (o, m) G

where dx is a Haar measure

ALEMMA' 2.1‘. ' The Junction ea(s, z'), c,,(‘——.a, T) ‘does not depend“ on
z e K(n) and ‘ ' ‘
(— s((n+1/2)2——sz)tan7z's> zf n is an inteyer .
C,,(S, T)C,‘("—"s, T) . ’ C ' | .

ks : N .
' - (f_{‘é_ 8((n+1/2)*— s?)cot ns) if m is a half of odd.
.intege'r"'

PROdF ThlS Iemma is easily proved from the explicit formula of
c.(8, 7) (Lemma 1.11).
The following formula is given in [18] and proved in [15].

LEMMA 2.2 (Plancherel formula). For any fe 2(G) and z€G
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fia)= ZS (Ro@™), £(8, )),Qu(s, )ds
Z <Tp n(w_l)’ fd(py n)>p nQd(p’ n)

(p,n) €

Here, there are constants ¢, ¢” depending only on the normaliza-
tion dx such that

Q.(8, n)=c'((2n+1)c,(s, T)c( —~s,'z'))"1 ,
Q.(p, m)=c"2n+1)2 |p|—-1)(n+|p)(n—|p|+1)/16x" .

And v(a)={s;s 18 a complex number with Re(s)= a} for each real
number a.

§3. Main theorem.

For each >0 let 2.(G) be the linear space of all pairs F'=(F,, F;)
satisfying the following conditions;
(1) F is linked WlthA the principal series.
(2) For any 7, 7,€ K and non-negative integers g, h, 1, J, k, there
are constants ¢’>0, ¢’>0 such that
2 \* ' |
~_ Rﬂ(Tl)Fc(sy n)Rn(Tz)
08 ,
L+ 2@ +nP 7l 7| Ty ) Fulp, 0 Tonlzo) IS
We put 2(G)=U,>, 2.(G).

PROPOSITION 3.1. Suppose fe 2 (G) (r>0). Then fe 2,G).

A+ [s)P@+m) 7, sl

écl,rkeu{e(a)(r

PROOF. It is easy to prove that f is linked with the principal series
for any fe 2(G). To obtain the estimate (2), we need the lemmas
below;

LEMMA 3.2. Fizx r,e K (3=1, 2) and fe Z(G). Then for any non-
negative integers i, j there are D, D,€ & such that

l z-1 lil 72 lj-Es’,n(f) =El’,n(-D1fD2)
|7, | 22 P Epln(f) = By (DS Dy)
where
ELL(N)=R, . (t)f(s, m)R.(T), B\ u(f)= Ty n(t)fas(D, 1) Tp,u(72) -

PrOOF. Let D— D~ be anti-automorphism of & such that DV= —D
if Deg. Then for any D, D,e®
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(D.fD.)" (8, n)=R, (D" )f (s, )R, (D) on (),
(D.f Do) a(p, 1)="Tp,n(D")fs(®, 0)T,n(D"y) on (5£5,.)x -

Since ® =0, and R, . (0)R.(t)=R,(7)R, (@)=c(z)R,.(z) (resp. T, . (@)
T a(t)=Tp,u(T) Ty, (@) = ¢(7) T, a(7)),

|7| Ra(z) =(1+¢6(7))Ra(7) = R,,.(L+ @) R(7)

(resp. |7|T,..(0)=T,,(1+wy)) T, (7). Hence D =(1+w,), D,=(1+o,)
satisfy this lemma.

Now return to the proof of Proposition 3.1. Let X,,, (resp. X},.) be
the infinitesimal character of R,, (resp. T,.,). Then :

(Zf) o8, N)=(FZ) (8, N)=2,..(Z)F (8, M)
(Zf) oD, B)=(FZ) s(p, ) =X} (Z)fs(p, 1) .

Hence,
2@ |(2) Bt =|(2) B2
5.2 | B OlI= N B2 for all Ze§ .

Since for fixed Ze 3, X,,.(Z) (resp. X,,.(Z)) is a polynomial function of
(8, n) (resp. (p, m»)), for any integers g=0, h=0 there is an element Z¢ 3
such that

- A+]s)A+n)t =X, (Z), QA+|p))PA+n)=S1X,(2)] -

Hence for any 7, 7€ K and non-negative integers g, h, i, j, k, there
exist D, D,e® such that ' ’

A+[s])A+n)* [z, [f| e/’

o\ rar o \* v
(2) Eenir)|s|() BiaDs D
A+1p YA +n) 7 [ Pl Er (OIS B3 W(Duf D))l |
Hence the estimate (2) is a consequent of the next lemma.

LEMMA 3.8. Let E..(f), E; .(f) be the same as Lemma 3.2. Then
(1) [l(0/as)*E, [ Nlse(fi)rke' ™" k=01, ---
(2) B (Dll=se()

where o(f)= SG f@) da.

PrROOF. Since
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|2Y Btn||s|(Z) e <], |(2) @i @it

we have

I(2) Beuir)||ssup (|(2 |

z€G

"R,.@|)e) i fe2UE)

B8

So, (1) is concluded from Lemma 1.11. Similarly,

1B OS] 1 Toa@ £ @lda

Since T, is a unitary representation, || T,..(%)||=1 for all xeG. Thus
this lemma is proved and also Proposition 8.1 is proved.

The next theorem which is an analogue of the theorem of Paley-
Wiener type for Spin (4, 1) is the main theorem of this paper.

THEOREM 38.4. Fourier transform f — f gives a lz'nea'r 180morphism
of 2(G) onto DB, and if fe Z(G) then fe g.6).

It is proved in Propos1tlon 3.1 that Fourier transform is a linear
mapping of Z'(G) into & (@) and if fe 2 (G) then fez (B). Further-
more Lemma 2.2 shows that Fourier transform is one-to-one.

To begin with, we prove the next proposition.

PROPOSITION 3.5. For each F=(F, F,)e 2(G) the formula

(8.1) f@=%{ (Bon@™), Fuls, n),Qus, e
+ 3 ATpa @), Falp, 7),.4Qu(p; 1)

(p,n)€Gg

18 absolutely and wuniformly conve%gent on G. Furthermore, f 18 a
C>-function on G and for any D, D,e®

|f low,=sup | (D.f DY(@)|

18 fimite.

ProOOF. To begin with, we consider the following special case;
(8.2) there are 1rreduc1ble umtary representations 7, 7, of K such that

' F,(S, n)=Rn(71)Fc(sy n)Rn(fz) L Fd(p’ ’ﬂ/)— P> »(Tl)Fd(p’ n)Tp ,.(1'2)

LEMMA 3.6. If F=(F, F,)eZ (G) satisfies the condition (3.2), then
Proposition 3.5 is valid. Moreover for any D, D,e® and integers
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120, 7=0 there exists a constant ¢>0 dependmg only on D, D, i, j, F
such that |f|pp,<clz,| 7|, o

ProOF. If we write

{Eﬁf,.(a:)=R,(72)Rsm(x“‘)Rn(TI) :

(3.3) B (@)= T, () Ty @) T, () ,

then

f@)=35 (B, F.(s, 1)>.Qus, nds
+ o . <Era(@), Fud, m)),.Qu(p, n) .

. (pym)e

We have from Proposmon 1.5 that for any De® and reK there are
non-negative integers 4, j, £k and a constant ¢>0 such that

max(|| B, (D)RL(2)l, || Ru(D) R (D)) S (L + |8 )L +n)| 7 |F .

Since E;,.(D,; x; D)= R,(7,)R, «(D)R,, (xR, (D,)R,(z,), there are non-
negative integers 5, 7, J, k and a constant ¢>0 depending only on D, D,
such that

| B n(Dy; 5 Do) || < e(L+[sD*A+n)| 7, 7| 7, [*|| R,,.(x7Y)]] .
Hence, by using Lemma 1.1 and Corollarj 1.7, we conclude that

| B, u(Dy; ; D,), Fy(8, n)),|
sc(+[sD*A+n) 7,1 7o M| R, (27| || Fiu(s, n)|| .

Similarly, we have from Corollary 1.15 that

| CEy u(Dy; %; D), Fy(p, 1))yl ,
Se(l+[p *A+n) 7 Pl 7 || Ty, alx™) || || Falp, n)]| -

Since R,,, ((s, n)eG with Re(s)=0), T,,.((p, n) eG,,) are unitary represen-
tations of G, it is easy to see that the explicit formulas of Q., Q,
(Lemma 2.1, Lemma 2.2) and the above estimates imply the following
result; if F’=(F,, F,)e & (G) satisfies (8.2), then for any D, D,ec® and
integers 1=0, j=0 there is a constant ¢>0 dependlng' only on D, D, F,
%, 7 such that C

|34, <BiaDis 55 D), Fuls, m5.Qus, myds
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+ In)Ze‘,ad By (Dy; 23 D), Fi(d, m)),,.Qu(p, n)
LA A |

Hence Lemma 3.6 is proved.

Now we return to the proof of Proposition 3.5. Let {7;;1=1,2, --:}
be a complete set of irreducible unltary representatlons of K Whlch are
mutually inequivalent. For each F=(F, F,)e < (G) we put

(Fi:n ia ’

where

Fi,(s n)=R,(z)F (8, n)R.(z;) ,
(p, n)— P, n(z-t)Fd(py n) Tp ﬂ-(T.‘l)

Then F; satlsﬁes (3.2). Let fi; be the functlon corresponding to F;; by |
(3.1). Then for any D, D,e® there is a constant ¢>0 .such. that

lfii!plpzéclft]—ll?jl-l_ 1, .7 1, 2 3, ,
Since |7 |=(n'+1)2*+(n")% 3 |z~ is finite. . Thus for any. Dl, D c®
le-D2=% (D1fijDz)

is absolutely and uniformly convergent on any compact subset of G. So,
our proposition is proved.

PROPOSITION 3.7. If F=(F. F.)e 2,(G) satisfies @®. 2), then the
support of f is contained in G,. :

PrROOF. Since R,(z)=0 if z¢ K(n), we may regard F.(s, n) as a
linear endomorphism on the representation space V, of 7, into the re-
presentation space V, of 7, (Lemma 1.1) and we have from Lemma 1.2
that : ' :

(R, (&™), Fu(8, n)),=((d(z)d(z,))"*/(2n +1))trace(L(s, v,, x)F (s, n)) .

We write E'(s, n, ) for the spherical function on G*=G—K which is
given by the function E(s, n, t) defined in (6.1) of [13] (see Proposition
2.2 of [13]). Then we have from Theorem 3.1 and Proposition 5.4 of
[13] that “ ‘ o ‘ ' L .

E(s, v, x)=¢(B'(s, n, ¥)c,(s, 7.) + E'(—3, n, 2)c.(—s, 7)) for any zeG*,

where ¢e=+1. Since
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A,,,F,(s, n)=Fe(_8: n)Ac.n [
(3.4) cx(8, T)F (s, m)=c,(8, T5), F.(—s, n) .

Therefore,

E(s, v,, ™) F (s, n)
‘ =(C”(8, Z'z)E'(S, n, x-l)Fc(—s) n) +.cn(—89 72)E’(—sy n, x_l)Fo(sy n)) .

Hence,

[,. B, Futs, m5.Qu6, mids=c'f,(2)
where ¢’ is a suitable constant and
f,.(a:):Sm)trace (B'(s, n, 5™)F(—8, m)en(—3, T2)'ds .
Let 7,=z*" € K(n) 1=1, 2 and put

S'={—(k+1/2); 2k, n—Fk are integers with max (|n}|, |n/|)<k<n},
S"={—(k+1/2); 2k, n—k are integers with 0=<k<|n)| or n<k<nl}.
Then the singularities of the function

s+— E'(s, n, x™Y)e,(—s, 7,)7!

on the half space C_={se C;Re(s)<0} are at most simple poles and the
set of singular points are contained in S'US”.
At the beginning, we assume that

(3.5) F (s, n)=0 for s=k+1/2;2k, n—Fk are integers with 0<k<n .

Then it is an easy consequence of the f.ormula (3.4) and Corollary 5.3
of [13] that the assumption (8.5) implies

(3.6) F(s, n)=0 for s=—(k+1/2); 2k, n—k are integers with |n}|<k<n .

By using the equivalence relation (2) of Corollary 1.15, we can see that
(3.6) implies ~

(3.7) F(s, n)=0 for s=k+1/2;2k, n—Fk are integers with
n<k=min(n], n;) .

Consequently we have from Corollary 1.14 that the assumptiéh (8.5)
implies .
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(8.8) . Fs,n)=0 for s=k+1/2; 2k, n—k are integers with
0sk=<n, and k=n. .

Hence F,(—s,n)=0 for each secSUS". Thus the funection
s+ E'(s, n, ™) F,(—s, n)c,(—s, 7,)~! is holomorphic on C_, ' Furthermore,
the relation (1) in Corollary 1.15 conclude that F,(p, n)=0 for all
(p, n) € G, if (3.5) is satisfied. Let |

M(z'l, 7)={n; 2n is an integer with »=0 and Ty z'zeﬁ(n)} .

Then F, (s, n)=0 for all (s, n) e@,, with n ¢ M(z‘l, 7,). Since M(z'l, T,) 1S a
finite set, the function '

fs:@)= 5, trace(H'(s, n, a)Fi(—s, m)es(—8, 7o)

neM(ryTg)

on C_xG* is well-defined and for each € G+ the function st— f(s: ) is
holomorphic on C_. By the definition of E'(s, n, ),

1B(s, m, @)l|=lje~¥1=! 5% e™¥1e1 A (s,
Semewvniel 51 g~Hell| A,(s)]] [|0, |

for e G* and seC with {Im(s){>0. But we have from (4.2) off[13]
that there is a constant ¢>0 such that :

A SERS, 146 k=123 -, and [Im@)|21.

Consequently we have ffom Lemma 4.5 of [13] that
|Ays)|<(e)/k! for k=1, 2,3, -+ and |Im(s)|21.

Hence, - | .
(3.9) . [[E'(8, n, D| < I|va]|(L—e=l) g Rew—amiel |
Since | |

| Egl e‘““°8“_>’f(z+a)l“(z)—‘=1; |larg(z)|<m% for any aecC,
there exists a coﬁstant ¢>0 and an integer i=0 such that
(3.10) lea(—s, T)|=c|s]* .

These estimates (3.9), (8.10) are valid for |Im(s)|=1 or Re(s)< —b, where
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b is a suitable positive number. From the estimate for F, we have.
that if F' satisfies (8.5) then for any integer i>0 there are constants
¢, ¢’ such that

(3.11) : | f(s: )| =c'(1+]8]) YL —e1#l) g Rea1—32IzlgIRet) |r
for each € G+ and seC._. -

Hence, by Cauchy’s integral formula, we have that
f(m)=§n ) ¢ f(s: x)ds
for any positive number @ where ¢” is a suitable constant. Therefore
from (3.11) we conclude that
(3.12) for any positive humber a there is a constant ¢ such that
If(@)|=c(l—e*)ee=imn,

Hence, if |x|>r then

[f@)|=e(l—e '*)lim g2 " =0 ,

So, the support of f is contained in G,.
For general case, we need the following lemma.

LEMMA 3.8. Let F, 7, 7, be the same as in Proposition 38.7. Then
there i3 a function h € 2,(G) which satisfies

1) , ks, n)=Fy(s, n) for each (s, m)e(*),
where (*)={(k+1/2, n); n € M(z,, 7,) and n—k is an integer with 0<k<n
2) h(8, n)=R,(T)h.(8, n)R,(z;) for any (s, n)eG, .

PROOF. Let (s, »), (&', n")e(*) and (s, n)*#(s’, n'). Then it is easy
to see that X, ,#X,. ,. Let V, denote the space of all linear endomor-
phisms on 5#(z,) into S5#5(r,) and set V=@u.mecey V.. Then V is a
finite dimensional complex Hilbert space. We consider the linear map-
ping @:h— @ memhi(s,n) of (G into V, where hi(s, n)=
R, (z)h(3, n)R,(7,).

Then @ is a surjective mapping. To prove this, we suppose that
for each (s, n) € (*) there are A(s, n) € V, such that

P ) (hi(s, n), A(s, n))y,=0 for all he DYR),

(s,n) € (*

where ( , )y, is an inner product on V,. Since
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53, (Bits, m), Als, )y, = | g@h@ds ,

(8,n) € (*)

where

0@)= 3 (RuEIRua@EL(T), Als, W)y, ,

8,1n)
gx)=0 if |x|<r.

Hence from the analiticity of g (Lemma 1.9) we have g=0 on G. So,
from Lemma 1.10 we conclude that A(s, n)=0 for all (s, n)e(*). Thus
(@(h), v),=0 for all h € =2,(G) which implies v=0. Hence the surjectivity
of @ is proved.

Now we define the functions &, & on K by

&(k)=d(t,)trace(r,(k)) for ke K i=1,2,
and put |

@rhre)@=| | e ey onarnardr .

Then we know that (£,*h*&,) € Z.(G) for he Z,(G) and

(E¥h*8)" (8, n) =R, (t)h,(s, n)R,(z,) for all (s, n)eG,,
(&£ (D, 1)= T, (T )ha(D, 7)T,.,a(z:) for all (p, n)eG,.

Moreover it is easy to see that if h e &(G) satisfies 1) then & *h*¢&, is
also satisfies 1). Therefore the surjectivity of @ implies Lemma 3.8.

Now we return to the proof of Proposition 3.7. For any Fe .@;(@),
we select a function ke Z,(G) so that & satifies the properties 1), 2) of
Lemma 3.8 and put FF==F—h. Then F satiesfies the assumptio~n (3.5).
Let f be the function corresponding to F by (3.1). Then f=f—*h.
Hence, the assertion in the special case implies that

supp(f)=the support of fc supp(f)U supp(h) G, .
Thus Proposition 8.7 is proved.

LEMMA 3.9. If F=(F, F,)e 2(G), then F.(s, n) (resp. Fu(p, n)) is
a Hilbe'r;t-Schmidt operator on 57, (resp. 5%,.,) for any (8, n)e€ G, (resp.
(p, n) €G,;). Furthemore, denote the Hilbert-Schmidt norm by || |lus.
Then

IFIE =35 IFs, n)lls@ue, mds+ 5, 1D, m)llkauld, n)
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18 convergent.
PROOF. For each 7, 7,€ K, it is easy to see that

” Rn(TI)Fc(s’ n)Rn(Tz) Hgiséd(ﬁ)d(fz)l l Ru(tl)Fc(S, n)Ru(z-2) H2
slallnlIR.(z)F (s, n)Ru(z)I" -

Hence, for any non-negative integers h, 4, j, k¥ and 7, 7, € K, there is a
constant ¢>0 such that

HRu(T)F (8, )R, (T)l|sZc(X+18)*A+n)~¥ 7|7, 7*
Since

”Fo(87 n)”HS_Z HRn(Tt)F (89 n)Rn(T:)”HS ’

for any integers ¢=0, j=0, there is a constant ¢>0 such that
| Fo(s, m)l|us=e(l+|8))"* (1 +n)™7 .
Similarly, for any integers 1=0, =0 there is a constant ¢>0 such that
| Fa(p, mlfazs<se(L+|p)7*A+n)~7 .

Then Lemma 3.9 is an easy consequence of these estimates. Using
Lemma 3.9 and Theorem 2 of [1], we obtain the following.

COROLLARY 3.10. For each Fe <=z (@) there is a square integrable
Junction on. G such that f=F.

PrROOF OF THEOREM 3.4. Theorem 3.4 has been essentially proved,
because the injectivity of the Fourier transform is a simple consequence
of Lemma 2.2 and Proposition 3.1, and the surjectivity is a simple con-
sequence of Proposition 8.5, Proposition 8.7 and Corollary §.10: Moreover
Proposition 8.7 implies that fe 2,(Q) if and only if fe 2(G). So,
Theorem 3.4 is completely proved.
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