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Introduction

A quasisimple subgroup L of a finite group G is said to be standard
if |Cy(L)| is even, |Co(L)NCa(L)’| is odd for each geG—Ny(L), and
[L, L°]#1 for each g€ G. Let G,(3") denote the Chevalley group of type
(G,) over the finite field GF(8"). The objective of this paper is to prove
the following theorem. '

THEOREM. Let G be a finite group which possesses a standard sub-
group L such that L/Z(L)=Gy8). Assume that C4(L) has a cyclic Sylow
2-subgroup and that LOGYAG. Then one of the following holds.

(1) E(G)=Gy9).

(2) E(G)/Z(E(G)=Gy3) X Gy(3).

(8) Ny(L)/Co(L)=Aut (Gy(8)) and for an involution z of L, Cs(2) has
o quasisimple subgroup K which satisfies the following conditions:

(i) zeK, O (K) is cyclic of order 4, and K[/O(K)=SU,3).

(ii) [K, OCe(z)]=1.

(iii) KJ/{(z) is a standard subgroup of Cu«(2)/<{z) and O K) 13 a
Sylow 2-subgroup of Cx(K/{z)).

We remark that Case (8) does not occur in any known examples of
G. Thus it is anticipated that once the classification of finite groups
with a standard subgroup of type PSU,8) is established, Case (3) will
be eliminated. This paper represents a contribution to the program of
classifying all finite groups having a standard subgroup of known type.

As usual the method used in the proof is essentially a detailed
analysis of 2-local subgroups of G depending heavily on the structure
of 2-local subgroups of G,(3). In this context the group G.(3) seems to
be “small”’. There are two reasons. First, G,3) is of characteristic
2-type (a group X is said to be of characteristic 2-type provided F*(Y)=
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O.(Y) for every 2-local subgroup Y of X), although it is a Chevalley
group of characteristic 3. Secondly, G,(3) is almost a N-group [27, sec-
tion 8], that is to say, it has only one conjugacy class of nonsolvable
2-local subgroups and the remaining local subgroups are solvable. These
properties cause some technical difficulties in the proof. One more un-
. bPleasant situation appears when N,(L)s=C,(L)L.

Let ¢t be an involution of C4(L). Note that |Z(L)|=1 or 3 by Griess
[15]. A Sylow 2-subgroup of L has a unique maximal subgroup B whose
center is a four-group. In section 3 we study the fusion of the involu-
tion ¢ and show that t*NL=@ and N(B{t)) acts transitively on Z(B)t.
There is an elementary abelian subgroup F' of order 8 in B with the
property that N, (F')’ is the nonsplit extension of E, by GL,2). In sec-
tion 4 we show that if Ng(F(t))<Cy(t), Ns(B{t) contains a Sylow 2-sub-
group of G. By using a transfer lemma we see that ¢¢ O%G) and F is
self-centralizing in a Sylow 2-subgroup of O*G). Thus E(G)=Gy9) by
[13] and [17]. If Ny(F(t)) acts transitively on F%t, then in section 5 we
show that Ng(F(t)) has a normal subgroup M of order 2° such that
Cx(t)=F and either M is elementary abelian or homocyclic abelian of
exponent 4. The case where M is homocyeclic abelian is treated in section
- 6. It can be shown that Case (3) of the main theorem occurs. In the
last stage of this argument we make use of [11, Lemma (1R)] and the
classification of simple groups whose Sylow 2-subgroups are isomorphic
to a Sylow 2-subgroup of PSL(q), ¢=3 (mod 4) by Foote [80]. Finally,
in section 7 we handle the case where M is elementary abelian. After
determining the structure of a Sylow 2-subgroup of O%G), we can appeal
to Shult’s product fusion theorem [24] to conclude that E(G)/Z(E(G))=
G.(3) X G,(8).

Our notation is fairly standard. Possible exceptions are as follows.
For a group X, m(X) and »(X) denote respectively the 2-rank and the
sectional 2-rank of X. .7 (D) denotes the set of involutions in a subset
D of a group and Y=»X implies that X has a subgroup isomorphic to
Y. If Q is a 2-group, £*(Q) is the set of maximal elementary abelian
subgroups of @, J,(Q) is the subgroup generated by all abelian subgroups
of @ of maximal order, and J,(Q) is the subgroup generated by all
abelian subgroups of @ of maximal rank. Moreover, A, and 3, are
respectively an alternating and a symmetric group of degree » and E,.
is an elementary abelian group of order p". As is customary, for a
gruop X a 2-group P is said to be of type X provided P is isomorphic
to a Sylow 2-subgroup of X.

The author is grateful to Masao Kiyota for his advice concerning
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the proof of Lemma (2.5).
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§1. Properties of G,(3).

We enumerate some properties of the Chevalley group G,(3) of type
(G,) defined over GF(3) and its automorphisms. An excellent description
of G,(8") can be found in Ree [22]. Proofs will be omitted in the case
where the assertions are consequences of direct computation.

Let 3 be a root system of type (G,). In some fixed ordering the
set of positive roots I+ can be written as {a, b, a+b, 2a+b, 3a+b, 3a+2b}
where ¢ and b are the fundamental roots. The set I consists of the
elements of 3+ and their negatives. For 7, s € X, define a rational integer
s(r) by s(r)=2 if r=s and s(r)=p—q if r+#s where

p=max {i|s—ire X} and g=max{i[s+irel}.

The reflection w, of I with respect to a root » is given by w,(8)=8—8(1)r.
For each root » there is an injective homomorphism @,: SLy(8) — G(3).

Set
N o« (01 B0 )
xr(a) - ¢r <0 1) ’ nr - ¢r<_ 1 0) ’ hr(B) - q)r (O B—l .

There is an isomorphism  from J=<{h(8)|r€X, BcGF(3)*) onto the
group of all GF(3)-characters of a free abelian group on the generators
a, b. Denote by +, the image of h under y». The isomorphism 4 is
given by +, »(8)=p"". The commutator formulas are taken from [22,
(3.10)]. They are

[2.(@), 2,(R)] = X0 ss(— AB) X2 sr(— azﬁ)w3a+b(asﬁ)xsa+2b(a382) ’
[24(@), Tass(B)]="Tsass(B) »

[xb(a)y x8a+b(B)] = xsa+2b(a/8) 9
[#.(a), z,(8)]=1 for all other pairs 7,seX".

For r, s€ 3 and h € J we have hx,(@)h* =z, (3 (r)a), 1,2, =Ly, )(7r,.X),
and n,hn;'=h, where h’ is the element of J satisfying w4 (t)=n(w.(t))
for te X and the values 7,,=+1 are given in [22, (8.4)]. The group
L=G,®8) is generated by the elements z.(a), r€2X, acGF(3) and
|L|=2°-8°-7-13. Let p be the permutation on I of order 2 defined by
o(+a)=+b, o(x(a+b)==x@Ba+bd), o(x(2a+b))=+(3a+2b). Then the
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graph automorphism ¢ of L is given by o: . (a)—2,,, (@) for re I and
aeGF(3). Hence ni=n,,, and k. (8)°=h,,,(8). By a theorem of Steinberg
[25], Aut (L)=L<{s). Now set

1
1 __1) ’ b,=MNg4s »
1 1
1 _1) ’ b2=n8¢+b ’

bo=ho(—1),  2=her(—1)=ly(—1) .

@ =2, 1175 14%015(—1) = ¢’¢+b<

= T304 s(1) N30 4 4%s015(— 1) = ¢3a+b(

Note that the image of h,.,(—1) under + is identical with that of h,,.,(—1),
80 we have h, ., (—1)=hs(—1). Set S=<a,, b, a, by, k).

(1.1) <S8, o) is generated by a,, b, a,, b,, h,, ¢ subject to the relations
=h=0"=1, ai=bi=ai=bi=z;
[a, b]=z, [a; h]=bsz, [bs, Rol=2,
[a;, 0]=a,a,2 , [b;, 6]=bb2, for i=1,2;
[Ao, 0]=2 .

All other commutators of pairs of generators are trivial. The subgroup
S is a Sylow 2-subgroup of L and S{¢) is a Sylow 2-subgroup of Aut(L).

(1.2) S has seven conjugacy classes of involutions. They are

{z}, {b:d,, b.b,2} ,

{a,q., a,a.2, a,b,a.b,, a,b,a,b.z} ,

{a,b., a,b.2, a,b,b,, a,bb,z} ,

{b,as, bia.z, biasb,, ba,b.2} ,

{a,b,a,, a,b,a,z, a.a.b,, a,a.b:z} ,

{Rho, hoz, biho, byhoZ, bk, byhoz, b,boR,, b.bRGZ) .

The centralizers of involutions in S are as follows:

Ci(z)=S, Cs(b,b.) =<a,as, b, b, by ,
Cs(a,a,) ={a,a,) X {a,, b:b,y=Z,x D, ,
Cs(a,b,) = {a,b,y x<a,, ba,y=2Z,x D, ,
C;s(b,a;) = <b,a,) x <b,, a.b.) =Z,x D, ,
Cs(a,b,a,) = {a,b,a,) X {as, a.b,y=Z,x D, ,
Cs(ho) = <b1b2, ho, z> =FE,.
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(1.3) We have Cy(o)=<a,a,, bb,, 2) and _#(So)=Cso)o=0°5. The
group S{o) has seven conjugacy classes of involutions. Their representa-
tives are z, b.b,, a,a,, a.b,, a;b,a,, h,, 0. The centralizers of these involutions
are Cs<a)(z)=S<0'>, Cs(o>(b1b2)=cs(b1b2)<a>: Cxoy(a.a,) =Cs(a,a.){c), CS(a)(ale)::
Cs(ad,), Cs(a>(a1b1a2) =Cg(a,b,a,){h.0), Cs<a>(h0) = Cs(ho)<b,0), Cs<a)(0' )=Cs(a){0o).

Set A=<ay b, a, by, B=Cybb,), FE=<{bb, aba, z), and F=
{a,a;,b.b,, 2). These subgroups play an important role in later sections.
The next two lemmas can be verified by straightforward computation.

1.4) (1) Z(S)= <Z>, Zz(S)=S’= <b1, b.), S/Zz(S)EEs-

(2) A={a; b)*{a, b,y=Q;*xQ; and A is the unique extra-special
subgroup of S of order 2°.

(38) Z(B)=Q,(Z,S))=<b,b,, z), B is the unique maximal subgroup of
S whose center is nonecyclic, J,(S)=J(B)=<b,, a,a.hy=Z,xZ,, Z(B)=
Q,(J,(B)), and h, inverts Jy(B).

(4) EF=ANB=<{bb,y x{a.a, b,) =Z,xD,, &*(EF)={E, F}, and
EN F=Z(B). :

(6) &*(S/F)={A/F, B|F}, &*(S/{z))=1{A4/<2), Z(S)<hy,)[<z)}, and
Z(S) oy =Z, X Ds. |

(6) |&*(S)|=8 and each member of & *(S) is conjugate in S to
one of E, F, Z(B){hy), {a;b, b,a,, ), or {a,b,, a;b,a,, 2).

(7) m(S)=38 and »(S)=4.

(1.5) (1) Z(S{o))={#), Zy(S{6))=Z(B), Zy(S{o))=EF, S{o)/EF=E,
(2) &*(S<6)/Z(B)={A/Z(B), B{o)|Z(B)} and B{0)/{z)=Qs*Q;.

(8) J,.(S8{a)/<2>)=A/<2).

(4) J,(S{o))=F{o)=E, and &*(S{e))={F{o)}u&*(S)—{F}.

(5) Every abelian subgroup of S{(s) has order at most 16.

(6) m(S{a))=r(8{c))=4. |

(1.6) The group L has only one conjugacy class of involutions by
[7] or [27, Lemma 8.1(v)]. Since +,(a)=+,(0)=—1, by using Bruhat fac-
torization we can verify that C,(2)=K,,,K;..;{hoy Where K, ={z..(a)|ae
GF(8)y=SL,38), r=a+b, 3a+b. The subgroups K,,, and K,,,, are normal
in C.(z). Note that [K,.;, Kissl=1 and K, ,NK,;;=<2). Moreover,
Oy(K,43)=Ka,, by and Oy(Ky,y,)=<as, by. Let X, =<, (a)|a e GF@3)), r=
a+b, 3a+b. Then X, is a Sylow 3-subgroup of K, and A, inverts X,.
Also, Ki,,= K44

(1.7) It is well-known that C.(o)=Aut (PSL,@8)). In particular, F’
is a Sylow 2-subgroup of C.(o).



b4 HIROMICHI YAMADA

1.8) 1) NL(S)=NL(A)nNL(B)=S'

(2) N (A)=C.(2) and N, (A)/A is a Frobenius group of order 18.
A Sylow 8-subgroup of N.(A) has three orbits on (A4/<{z))}, which are
(Lai, b)/{2)), i=1, 2 and the remaining elements.

(3) N (B)=N/(Z(B)=<N,F), N, (B)/B=X%,, and a Sylow 3-subgroup
of N, (B) acts regularly both on Z(B)* and on (J(B)/Z(B))*. Moreover,
C.(Z(B))=B.

(4) C.(E)=E, N (E)SXN,(A), N(E)A=ZX,, N, (E) acts transitively
on E—{2), and a Sylow 3-subgroup of N, (E) acts regularly both on
(E/{z)>)* and on (4/E)'.

(5) CLF)=F, N (F)/F=GL2), and N (F) does not split over F.
Moreover, N (A)N N, (F)/A=23,and a Sylow 3-subgroup of N, (4)N N (F)
acts regularly both on (F/<{z))* and on (A/F)".

ProOF. By (1.4), A and B are weakly closed in S with respect to
L. As S=AB and Z(S)=<z), (1) follows from the structure of C.(z).
As Z(A)=<{z) and 0,C.(2))=A, (2) is a consequence of (1.6). Also,
C.(Z(B))=B. We now proceed as in the proof of [27, Lemma 8.3(a)].
Since B is weakly closed in S, N (B) controls the L-fusion of elements
in Z(B). All involutions of L are conjugate, so N,(B) acts transitively
on Z(B)! and thus N, (B)/B=Aut (Z(B))=2Y;. Let <{(k) be a Sylow 3-sub-
group of N (B). Then k acts regularly on Z(B)*. Since J(B)=Z,XZ,
and Q,(Jy(B))=Z(B), k acts regularly on (J,(B)/Z(B))* as well. Now
&£ *(B)={E, F, Z(B){hoy, Z(B){hyy*}. Since E and F are normal in S=
N.(S), they are not conjugate in L by Burnside’s fusion lemma. If &
normalizes both E and F, then E=Z(B)Cz(k) and F=Z(B)Cy(k) so that
|Cs(k)|=4. But as k acts fixed-point-freely on Jy(B), we have |Cy(k)|=2,
a contradiction. Thus each member of # *(B) is conjugate to E or F
by an element of <k). The structure of N,(4A) shows that N.(4)N
NF)A=X,. By (1.7), C.(6) N N(F') has order 2-3-7. Hence 2°-3-7 divides
INL(F)/F| and as Aut (F)=GL,2) and C.(F)=F, we conclude that
N (F)/F=GLy(2). We can verify that x*e€ Z(B) for every element x of
S of order 4, so N, (F') does not split over F' and (5) holds. Now B/F
is a four-group and N,(B)/B=J,, so it follows from the structure of
N, (F)/F that N, (B)<N_(F') and (3) holds. We see that N, (A)NN(E)
acts transitively on E—<z) and N, (A)NN(E)/E is an extension of a
four-group by ;. Thus if N,(A)ZN,(E), we have N, (E)/E=Aut (E)=
GL,2). But then N,(B)<N(FE), which is impossible since %k does not
normalize E. Therefore N, (E)<N(A) and (4) holds.

(1.9) Every maximal elementary abelian 2-subgroup of L is conju-
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gate to E or F in L.

PROOF. By the structure of N (A4), {a:b, b,a,, z2) and <{a,b., a,b,a,, 2)
are conjugate to E and F' in N, (A) respectively. We have shown in the
proof of the above lemma that Z(B){h,> is conjugate to E in N (B).
Now the assertion follows from (1.4) (6).

(1.10) (1) N (A)Xo)/A=3,x2Z; and Cr,(A/{2))=Cr(EF[{z))=A.
(2) o centralizes N, (F)/F.

PROOF. Since ¢ centralizes S/F, (2) holds. (1) can be easily verified.

§ 2. Preliminaries.

In this section we collect some preliminary lemmas to be used in
later sections. The following two lemmas are well-known.

(2.1) (1) Aut(PSL,09))=PI'L,9)=PGL,9){f)>, where f denotes the
involutive field automorphism. -If K is a subgroup of PI'L,(9) of index
2 then K=PGL,09) or X, or else K has a quasidihedral Sylow 2-subgroup
of order 16.

(2) A Sylow 2-subgroup of PGL,9) 18 dihedral, all involutions in
PGL,9)— PSL,9) are conjugate, and if a is an involution in PGL,9)—
PSL,9) then PSL,(9)NC(a) is a Frobenius group of order 10.

(3) PSL,9)<f>=2%, and a Sylow 2-subgroup of 3, i8 isomorphic to
Z, X D,.

(4) There 18 no involution in K— PSL,9) if K has a quasidihedral
Sylow 2-subgroup.

(5) A Sylow 3-subgroup of PSL,9) is self-centralizing in PI'L9).

(2.2) Let A=Qy*Qs. Then A has a unique expression as the central
product of two quaternion subgroups and Out (A)=2, wreath Z,.

(2.3) Let D={w, v,y = Z X Z,. Then X=Aut (D) can be 'represe'nted
as a matrix group

e o
c d
a b

< ): v, — v and v, —— viv} .

¢c d

We have | X|=2°+8, 0,(X)=C(Q(D))=E,, and X/0,(X)=Aut (Q,D))=5,.
Let {k) be a Sylow 3-subgroup of X. Then Cy(x)=Q,(D) for all 1#xe
[04(X), k).

a,b,c,de Z/AZ with ad—bc#0 (mod 4)
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PROOF. See [13, Part II, Lemma 2.1] or [20, p. 364].
The next lemma is due to Harada and Yamaki [18].

(2.4) A simple subgroup of GL(2) is isomorphic to one of the follow-
ing groups: A,, 5=m=T; GL,(2), 3=n=6; SLy8), Sp(2), or SUS3).

(2.5) (1) |GLg(2)|=2%*-3-5*-7*-17-81-127.

(2) A Sylow 3-subgroup of GL4(2) is isomorphic to (Z, wreath Z,) x Z,
and it has a unique elementary abelian subgroup of order 3. If GL(2)=
D=FEy, then the nmormalizer of D in GL(2) is an extension of ;X Z;X
2yxX3, by X,

(8) The normalizer in GL(2) of a Sylow T-subgroup has order
2:.3%.T* and it 18 isomorphic to (F, wreath Z,) XY, where F, denotes a
Frobenius group of order 21.

(4) PSL,(q)=GL2) if and only if q=2, 2%, 2}, 2%, 3, 8%, or T.

PROOF. Let I= ((1) g and K=((1) 1‘) Define e, € GL4(2) to be

K I I
I K | I

e, =

I I I
I I

K I

Then ef*=e,, e;'=¢;, and {¢;|0=1<3)=Z, wreath Z,. Let P={(¢]|0=1=4).
Then P is a Sylow 3-subgroup of X=GLy(2) and D={e;|1<1<4) is the
unique elementary abelian subgroup of P of order 3*. We can verify
that N,(D) induces a permutation representation on the set {{¢,>|1=1=4]}.
The image of this representation is 3, and the kernel consists of those
elements which normalize each {(¢,>, 1<1=<4, so in fact it is isomorphic
to I3 x3;x3;%x%;. Thus (2) holds. For the proof of (3), let

0 0 1 L J
-0 1 1), ﬁ=( ; ) f2=( L )
111 I I

where J denotes the 3 dimensional unit matrix. Then Q=<{f,, f,> is a
Sylow T-subgroup of X and if xe€ N;(Q), we have either z e N,({fD)N
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N:({f) or {fp*=<{f) and {fp"=<{f). Let

u=(.f ’ I).

Then u is an involution of X with fi*=f,. Moreover N ({fD)NN({f))=
F,, xFy, x 3, since in GL,(2) the normalizer of a Sylow T7-subgroup is a
Frobenius group of order 21. Thus (8) holds. The order of PSL,(q)
divides | X| only if q is one of the values listed in (4) or else qe{7% 17,
81, 127}). It follows from [81, section 6] that GL.,(2) does not have a
subgroup isomorphic to PSL.q) if ¢=17,81, or 127. In PSL,(7*) the
normalizer of a Sylow 7-subgroup has order 2°-3-T7%, so PSL,(7*)<~GL4(2)
by (8) and thus (4) holds.

(2.6) Let X be a nontrivial extension of Zm X ZyX Zym by GLy(2) and
set M=0,(X). Then for each value of n=1, the isomorphism class of X
18 determined by whether X does or does not split over M. Furthermore,
if P is a Sylow 2-subgroup of X themn P is generated by the elements
u, v, w, r, 8 with M=<{u, v, w) subject to the relations

ur=w—1 , ,vr=,v—-1 y wr=u—1 , sr____s-l ,
u'=v, V=w, w=uv"'w ,
r’=1, and s'=1 or s‘'=uw.

The group X splits over M if and only if s*=1. If n=1, P 8 of type
GL,(2) or Gy8) according as s‘=1 or st=uw. If n=2, P is of type HS
or OS according as st=1 or s*=uw where HS and OS denote respectively
the Higman-Sims simple group and the O’ Nan-Sims simple group.

PrROOF. See [1] and [21].

In the next two lemmas we use the above notation. The assertions
of these lemmas can be verified by direct computation.

2.7 If n=2 and s*=uw, then J(P)=M and P/Q,(M) is of type
G,(3).

(2.8) If n=2 and s*=1, then J(P)=M and P/Q,(M) is of type GL,(2).
Moreover the following conditions hold.

(1) ZP)={ww*, Z,(P)=<{u’ uw), and Z,(P)={u’, v*, uw).

(2) If x i3 an involution of P such that |Cp(x)|=2° then x is con-
jugate in P to ww?, u*?, u?, 8¢, or vw's®. We have Cp(u’v*)=<rs, XM,
Cr(u?) =<{rs*» M, Cp(s*) =7, 8)Z,(P), and Co(vw's®) = vr, vs) Z,(P). Further-
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more ww’ € P', v’ € Cp(u™v?)’, u* € Cp(u?)', 8* € Cp(s?)’, and vw's® ¢ Cplvw’st) =
{(v8)®». Observe that (v3)*=wuvs® and (v8)*=u w:.

(8) Let N=Q,(M) and P=P/N. Then P has four conjugacy classes
of complements for M in P. We can take {7, 8), {uiw¥, 8y, (¥F, 93>, and
{uvwr, v5) as their representatives. Furthermore both {r,sd)N and
(uwr, 8)N split over N but neither (vr,vs)N nor {uvwr, vsdDN splits
over N. ‘

(2.9) Let X be the monsplit extension of E; by GLy(2). Then
|Aut (X): X |=2 and Aut (X)=(Gy(3) N N(F)){o) in the notation of section 1.

Proor. By (2.6) such a group X is uniquely determined. Since
Z(X)=1, we can regard X as a subgroup of H=Aut (X). Set M=0,X).
Then X/M induces the automorphism group of M, so we have H/M=
X/MxY/M where Y=Cyz(M). Assume that Y is not a 2-group and let
1+=W e 8Syl, (Y) with p an odd prime. For each Sylow 2-subgroup P of X,
W stabilizes the series P>M>1 and so [W, P]=1. But then W=Cy(X)=1,
a contradiction. Thus Y is a 2-group. If there exists an element v of
order 4 in Y, then [UO'(M(v))|=2. As [X, Y]=<M, X normalizes M<{v)
and so U'(M{v))<Cx(X)=1, a contradiction. Hence Y is elementary
abelian. Take a subgroup @ of X of order 21, so that Y=MxC,(Q)
and QY is a maximal subgroup of X. Then for yecC,(Q)’, we have
Cu(y)=QY, |y?|=8, and y"=My. For each ye Y—M, H> M{y) and so
ly"|=8. Let x be a 2-element of X— M such that e M. Then |Y: Cy(x)|<
|Cy(x)|=|Cx(x)|]=4. Thus |[Y|<16 and the lemma holds.

§3. Fusion of the involution £.

Henceforth let G be a group which possesses a standard subgroup L
with L/Z(L)=G,(3) such that C(L) has a cyclic Sylow 2-subgroup and LO(G)
is not normal in G. Let S be a Sylow 2-subgroup of L. The Schur
multiplier of G,(3) is of order 3 by Griess [15], so we can identify S with
a Sylow 2-subgroup of G,(8). We shall use the same symbols as in section
1 for elements and subgroups of S for the rest of the paper. Let ¢ be
an involution of C(L) and set H=C(t). Then L is normal in H by our
hypothesis and | H: LC,(L)|<2. Let R be a Sylow 2-subgroup of LCy(L)
and T a Sylow 2-subgroup of H with SXR<T. We begin by studying
the fusion of the involution ¢.

(3.1) <t) eSyl,(C(L)), Cx(L)y={tY)OH), t°NL=Q, and t"'?E = Z(S)t.
PrOOF. Since LO(G) is not normal in G, t¢ Z*(G) and by the Z*-
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theorem [9] we can take x€G such that £+t and [¢, t*]=1. Then
te H*[>L*. If teL*C(L®), t+t"" e LCyx(L). If t¢ L*C(L*), each involu-
tion of tL® is conjugate to ¢ by an element of L~ and SL,8)=C..(t)'=
H>=L by (1.8) and (1.7). So .* (#CL(t))<t*NtL. Thusin either case
t° N LC,(L)#{t}. Since L has exactly one conjugacy class of involutions,
we conclude that 7N (z, t)={t}. Now ¢ is extremal in a Sylow 2-subgroup
of G containing T with respect to G and {z, t)S Z(T), so we have N
(z, £y =t""" N <z, t). Put Q=Cg(L), 80 that R=SxQ and Q is cyclic with
t the unique involution. Suppose |Q|>2. By @1.5)(1), Z(TYSZ(R)=
(zyxQ and so R=T and Z(T)={#, ty, for otherwise N(T)H. Now
J(TIZ(R))=AQ/Z(R) by (1.5)(3), whence J,(T mod Z(T)=AQ. As
Z(AQ)=<{2)Q, this yields N(T)=H, a contradiction. Thus <¢) € Syl, (C(L))
and Cy(L)=<t)O(H). Then there is no element v in G such that v*=t.
As (a.hy)'=2, it follows that t*NL=. Finally we have t¥ ZE) = Z(S)t.

DEFINITION. If R#T, T/{t) is isomorphic to a Sylow 2-subgroup of
Aut (G4(8)) and there is an element g€ T—R such that g acts on L/Z(L)
as the graph automorphism and g¢°=1 or gt=t. Let T, be a Sylow
2-subgroup of N(Z(R)) containing T, so that |T.: T|=2 and t":=Z(S)t.
Let R,=T, if R=T and R,=N({a,, b)) if R=T. Set

C.= 02([CN(B(t))(Z(B)) , N (B)])B<t) and T,=TC..

3.2) A and S are normal in T, and RNT=R. If R+«T, then
|T,: R, |=2. .

ProOF. As |T.: T|=2, A)y=J(T mod Z(T)) is normal in T,. Sup-
pose AT, and take wxecT,—T. Then t*=2t and A*<AUAt. As A is
generated by its involutions, u® e At for some involution % of A. But
then w®=zt for some yeL and w***=t, contrary to t*NL=@. Thus
AT, Similarly we have ST, for St>)=R.NT<T, and S is gener-
ated by its involutions. If R+T, the element g interchanges <a,, b,) and
{@sy by, 80 | Ty R,|=2 by (2.2).

(3.3) N(B(t))=N(Z(B)t))=Nu(B)C.=N(B), [O(H), C.]J=1, HNC,=
B{t>, t%2=Z(B)t, and C,/B<t) =~ Z(B) as Ny(B)-modules. Moreover, T.=T, €
Syl, (N(B(t))) and T,/Cr(Z(B)) is dihedral of order 8 with C.,(Z(B))/Cr(Z(B))
and T,/Cy(Z(B)) the only four-subgroups.

PROOF. Let X=N(B(t)), Y=C(Z(B), Y.=lY, N(B)]BCx(L), and
X,=C,(Z(B)). Since T\D>R,NT — R and B{t) is the unique maximal sub-
group of R whose center is elementary abelian of order 8 by 1.4),
T.<X. Thus t* = Z(B{t))— L=Z(B)t, for N, (B) acts transitively on Z(B)*.
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As C;(t)=Ny(B)=Ny(Z(B)), this implies X=N(Z(B){t)). We also have
{uv|u, vet®NB{t))=DB since B is generated by its involutions and all
involutions of B are conjugate to each other in L. Thus X <N(B). Now
LC,(LYNC(Z(B))=BCy(L) and |X,: BCy(L)|=|T: R|. By (1.8) (8), N (B)
induces the automorphism group of Z(B), hence X=YN,(B). Then the
map defined by X,y [y, t]=t* for ye Y is an Ny(B)-isomorphism of
Y/X, onto Z(B) and X/X,=Y/X,- Nyz(B)/X,=3,.

We wish to show that Y=Y, X, and Y NX,=BCy(L). If R=T, then
Y=Y, and these assertions hold. Assume that R<T. As OH)=0(X),
BCy(L) is normal in X. Let X=X/BCy(L). Then ¥ has order 8 and
N(B)=<g) x N;(B) with N(B)=Z, Let Cky=0y(N,(B)). Then k acts
nontrivially on Y/X,, so ¥ is quaternion or abelian. The subgroup T\NY
is of index 2 in T, and by (8.2) we have O} T)<R,N TN Y =B{t), whence
T.NnYis a four-group and Y is abelian. Therefore ¥ is a direct product
of [Y, k]=7, and Cy(k)=X, as required.

Since Cy,(O(H))O(H) contains BCy(L), the action of % shows that it
is equal to Y, and so Y,=0,(Y,)O(H). Note that 0,(Y,)=C, by the defini-
tion. Since C, is normal in X, T, is a unique Sylow 2-subgroup of X
containing T, so T,<T,. Finally, C(Z(B))=T,N X, is normal in T, and
Cr,(Z(B))/C(Z(B))=Y/X,, hence the structure of T,/C;(Z(B)) is determined.

§4. The case C;(4)={z, t).

In this section we assume that Cr,(A)=<z,t). Under this hypothesis
we shall prove that E(G)=G,9).

4.1) A(R,—R)*@. Ifd is an involution in R,—R and 1f bars
denote images in A/{z), then one of the following holds.

(i) ai=a.b,, at=a, and bi=b,, i=1, 2.

(ii) @i=a,, ai=a.b,, and bi=b,, i=1, 2.

dii) <a, b, )*=<(a,, b,> and b¢=h,.
If R#T, then (i) or (ii) holds and T./A{t) is dihedral of order 8 with
R,/A(t) and T/A(t) the only four-subgroups.

Proor. If ~#(T)=._7(T), then N(T,)<N(Z(R)) since _#(T) generates
T or R and Z(T)=Z(R). But T,<]T,, so we get A(T—-T)+o.

Suppose R=T. Then R,=T, by the definition. As d normalizes A
by (3.2), it follows from (2.2) that <a, b)>*=<a,, b,> or {as b,). Also, d
centralizes b,b, since Z(B) is normal in R, by (3.3). Thus if d inter-
changes {a,, b,) and {a,, b,), (iii) holds. Assume that d normalizes {as, b,
t=1,2. Then d centralizes b, and b,. Recall that S is normal in T, by
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(3.2). We have Cp(A4)=C,(A)A=A(t) by the hypothesis of this section,
Vo ol —
so S{d)=8S{d)/A acts faithfully on A and is isomorphic to a subgroup

of Out (A). Moreover, % is a four-group generated by %, and d. Now
ah=a,b, and dlo=b, for i=1,2 by (1.1). If d centralizes @, and @, then
d centralizes A. If a?=a,b, for i=1,2 then hd centralizes A. Thus (i)
or (ii) holds.

Next suppose R+T. Then CTI(Z)=C'T1(A)A is equal to A<t> by our
hypothesis and T,/A{t)> is isomorphic to a Sylow 2-subgroup of Out (4),
which is dihedral of order 8. Certainly 7T/A<t) is a four-group. Let d
be an involution in 7,—T. Then R{d)/A{t) is the other four-subgroup
of T,/A{t)>. Since ge T—R interchanges {a,, b,> and <a,, b,), (2.2) shows
that d normalizes {a,, b)) and thus R{(d)=R, by the definition of R..
Hence .#(R,—R)#* @. 2As before we see that d satisfies (i) or (ii).

. (4.2) T,eSyL(Q).

ProOF. In view of (8.3) it is enough to show that Z(B){t) is a
characteristic subgroup of T,. For this purpose we distinguish two cases:
R=T and R+#T. First assume that R==7. By our hypothesis C,(A4)=
{z, t), s0 Z(T,)=<z). As Cr(A/{z))=Cr(A)A, (1.5) (1) shows that Z,(T)=
Z(T mod {(z))=Z(B){t>. Since Z(B) and {(z, t) are normal in T,, we have
Z(T)=Z(B){t). It follows from (4.1) that Z(T,/A{))=R[A{t), so
Z(T)<R. Let T,=T,/Z(T)). Then Z(T)=Z(T)={ad, b,) by (1.5) ().
Since an involution d € R,—R does not centralize a,d, by (4.1), we con-
clude that Z(T,)=<b, b,t). Now C,t)=T, so Z(T,)=<z). Then
N, Kz, t))="T, implies Z,(T,)< Z,(T,). Since Z(B) is normal in T}, it follows
that Z,(T,)=Z(B). Also, N (R)=T, gives that Z,(T;,)<Z,(T,). Moreover,
Z(B)}{t> is normal in T,. Hence we have Q,(Z,(T,)=2Z(B){t), which is
characteristic in T,.

Next assume that R=T. Then R,=T, by the definition and as above
we have Z(R)=<{(z) and Z(B){t)<=Z,(R)<Z(R mod {(z))=<b,, b, t) since
Cr,(A/{2))=A(ty. Now Z(T,=(z) and since N.({z, t))=R,, it follows
that ¢¢ Z,(T.)<Z,(R,). Since Z(B) is normal in T,, we conclude that
Q.(Z,(T,) =Z(B), which is characteristic in T,. As before Z(T, mod Z(B))=
N, (R)=R,. Let T,=T,/Z(B) and let d be an involution in R,—R. Sup-
pose {a, b><]R,. Then (i) or (ii) of (4.1) holds. Since b,=b, and E,=
(T x 8y with S=Ak,>, Z(R)=<b,, t>. Thus Z(T, mod Z(B))=<b,, b, t).
Since Z(B){t) is normal in T,, we conclude that Q,(Z(T, mod Z(B)))=Z(B){t)-
Suppose <a,, b,> <4 R,. Then (iii) of (4.1) holds and Z,(R,)=Z(B)<t>, whence
Z(T)=2Z(B). In this case we have feZ(T)<ZR,)=(ad, b, ). By
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(8.3), B is normal in T, and by (1.4) (3), &€*(B)={D,, D,, E, F} where
D,=Z(B){h,> and D,=Z(B){b,h,y. The subgroups D, and D, are conjugate
in S; so if one of E of F is normal in 7T, then the other is also normal
in T,. Thus if @,@, € Z(T,) then E and F are normal in T, and we halre
Z(T)=Z(R). Similarly, if @,a.b, € Z(T,) then Z(T,)=2Z(R,). Hence Z(T,
is equal to one of (D, <b, >, or Z(R,). If Z(T)=(3T>, Z(T.)=2Z(B)t).
If Z(T)={(b, 5, QZ(T))=2Z(B)t). Finally if Z(T,)=2(R,), Z(Z(T.))=
Z(B){t). In any case Z(B){t) is characteristic in T, as required.

(4.3) N(F{t))<H and N, (F)=T. If R+T, the element g T—R
defined in section 3 is of order 4, that is g*=t.

PROOF. If N(F(t))Z£H, we have t¥""=Ft since t*NL=@ and
N, (F') acts transitively on F*! But then |N(F<t))|,=8|T|, contrary to
(4.2). Thus N(F(t))<H. As Z(B){t)is normalin T,, N, (F) is contained
in N, (F{t))=T. Hence N, (F)=T. Suppose R=T and |g|=2. Then
F{g, t) is the unique elementary abelian subgroup of T of order 2° by
(1.5) (4). Since B is normal in T,. it follows that T,[>F<{g, t)NB=F,
which is a contradiction. Thus g*=¢.

(4.4) A Sylow 2-subgroup of OXG) is of order 2° and of sectional
rank 4.

Proor. As S splits over B, there is a complement K for B in N,(B)
by Gaschiitz’s theorem. By (1.8) (8), K/Z(L)=ZX,. Hence setting {ed>=
SNK and <{k)=[04«(K), e], we have K={e, k) x Z(L).

We shall show that N(B{t)) has a normal subgroups M, with the
property that C,=M,(t)=M,=B. As .#(R,—R)* @ and as S is normal
in T, by (38.2), R,/S is a four-group. Hence R,/B is elementary abelian of
order 8, for | R,/C, (Z(B))|=2 and Cy«(Z(B))=B. Suppose R=T and choose
ye€T,—T,. Then as N.(S)=T, has index 2 in T, and as B<]T,, SS¥ is
a normal subgroup of T, contained in T, and SN S*=B. Likewise, Z(T)=
Z(R) implies N, (T)=T, and as C(Z(B))=Cr,(Z(B){t)) is normal in T,, we
have TNT*=C,(Z(B)). This shows that SS*£T and thus SS*NT=S.
Since T,/SS* is of order 4, it follows that T,<SS*NTNC(Z(B))=B and
T,/B is abelian of order 16. By (4.3), ¢g’=t, so we conclude that
Q(T,/B)=R,/B. In particular, R, <]T, and T,/R, is abelian of order 4.
Since (T./C.(Z(B)))=C,(Z(B))/C.(Z(B)) by (3.3) and since C.(Z(B))NR,=
B{t)>, we get that (T,/B(t))=C,(Z(B))/B{t). Then as T,/C, has order 4,
C;/B contains C,(Z(B))/B, which is a four-group. Suppose R=T. Then
|T,: R,|=2 and |C,: C,N R,|=2, whence C,N R,/B is a four-group. There-
fore in either case C,/B has rank at least 2. Now the element k acts
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nontrivially on C,/B{)=Z(B) by (1.8)(8) and (3.3), so it follows that
C,/B=[C,/B, k] x B{t)/B. Set M,=[C,, k]1B. Then C,=Myt)+M, More-
over, M,=[C,, N.(B)]B by the structure of N.(B) so that M,<]N(Bt)).

Let = be an extremal conjugate of ¢ in T, with respect to G and
set S,=M,S. Note that |C,(x)|=|Cr(t)|=|T| by the definition. Also,
Cs,(t)=8 and T,=S<t) if R=T and T,=S( gy if R+T by (4.3). Thus
|S,(t>)NC(x)|=2". We wish to show that z is not contained in S;. Assume
by way of contradiction that xeS,. We shall study the structure of
the group Cye, k> and derive a contradiction. First of all we have
x ¢ H, for otherwise « € Cg,(t)=S, which conflicts with ¢*NL=o. By (4.3)
this implies that 2 normalizes neither F nor F<{t).

We argue that e M,NT,. Since M,/B=Z(B) and S,/B is a semidirect
product of M,/B and S/B, S,/B is dihedral of order 8. As |Ty:T,|=2,
we have |M,: M,nT,|=2 and M,NT,=Z(S, mod B). Thus if xe M,NT,,
the centralizer of z in S,(t)/B(t) has order 4. Consider the series
S (8> = B = F{(td)= Z(B){(t> of subgroups of St). Since x does not
normalize F{td, x centralizes at most four elements of B{t)/Z(B){t).
Then as |S,{tdDNC(x)|=2', * must centralize Z(B){t). This contradicts
ze¢ H. Thus xe M,NT,.

Let W=[M,, k]. Since k acts nontrivially on M,/B=Z(B) and since
z is an involution in M,— B, it follows that M,/J,(B) is abelian of order
8 and so M,/J(B)=W/J(B)xB/J(B). If W/Z(B) is nonabelian, then
(W/Z(B)) =J(B)|Z(B), for k acts transitively on the nonidentity elements
of J,(B)/Z(B) by (1.8) (3). But then W/Z(B) is dihedral, quasidihedral, or
generalized quaternion of order 16 by [12, Theorem 5.4.5], which is im-
possible since J,(B)/Z(B) is a four-group. Thus W’'=Z(B). Suppose ¥ ¢ w
and let T,=T,/Z(B)}t). Let u be the involution in Cx(k), so that B=
J(B)Xu>. As xeM,— W and M,= WB, we have M,= W<{x)=W(uy. The
element a does not normalize F<t), so it does not centralize B and the
group M, is nonabelian. Thus % does not centralize W. Since k nor-
malizes Cj(%) and acts irreducibly on W/J,(B), we get that Cy (W) =J(B).
Now % € Wu and W is abelian by the above, so Cy(u)=Cw(®). Since xz ¢ H,
it follows that Cyy(x) is a proper subgroup of Jy(B){t) and is of order
at most 16. But |S,(¢d> NC(x)|=2" and |S,(t): W{t)|=4, a contradiction.
Therefore, x € W.

We argue that C, (Jy(B))=Jy(B). For this purpose let V=J,(B) and
suppose C,,(V)*#V. Since k is transitive on the nonidentity elements
of W/V, the only (k)-invariant proper subgroups of M,/V are W/V and
B/V. Hence we have C,(V)=W. Let W= W/Z(B). Then since x€¢ W—B
and W'=2Z(B), W is generated by V and z*» and so W is elementary
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abelian. The element %k has order 3 and acts fixed-point-freely on W,
so <&Z®) is a four-group and W=(E*®»x V. Set U=(Z(B), 2*>. Then
U has order 16 and k is transitive on (U/Z(B))}, whence U= Z(B)UZ(B)xU
Z(B)x* U Z(B)z**. This implies that U is elementary abelian. As W= Uv,
we get that W is abelian of order 2°. Now, suppose there is an abelian
subgroup D of T of order 2°. Then as S has index 2 or 4 in T, |SND|=2\
Hence SN D=V by (1.4) (3). But it follows from (1.1) that Cn(V)= Vt>.
Thus T does not have an abelian subgroup of order 2. Since T e Syl, (H)
and « is a conjugate of ¢ contained in W, W must be nonabelian. This
contradiction shows that C.,(Jo(B))=Jy(B).

Let Y=M{e, k) and Y=Y/J(B). As Cy(Z(B)=M, J,(B) is self-
centralizing in Y by the above and ¥ is isomorphic to a subgroup of
the automorphism group of J(B)=Z,xZ,. Now <k) is a Sylow 8-sub-
group of Y and W=[M,, k], so J(B)NC(w)=2Z(B) for all & e W* by (2.3).
In particular, J(B)NC(x)=2Z(B). As F lies between B and Z(B) and =z
does not normalize F, it follows that Cj,u (x)=J,(B)/Z(B) and thus
Cx(®)=2Z(B). But |SKt)NC(x)|=2" and |S,(t)/B|=2*, so |Cy(x)|=8, which
is a contradiction. Therefore, = ¢ S, as asserted.

We have shown that any extremal conjugate of ¢ in T, with respect
to G is not contained in S,. Thus by [29, Corollary 5.3.2], t¢ O%G). As
S=<L=0%G), the action of {e, k) on M,/B gives that S,<0%G). Hence
S;=T,NO0%Q) is a Sylow 2-subgroup of O*G). It follows from (4.3) that
N, (F)=S8. Thus Cy(F)=F and by Harada [17, Theorem 2], S, is of
sectional rank 4. The proof is complete.

(4.5) E(G)=Gy9).

PROOF. Let G=G/O(G). Then L is a standard subgroup of G and
so F*(G) is simple. The preceding lemma together with [13] and [6]
shows that F'*(G)=G,(9). Now the assertion follows from [28, (2.10)].

§5. The case Cp(A)+#{z, t).

From now on we assume that C, (A)+#(z, t). Set C,=C,(4). It is
dihedral of order 8 since C,(A)=(z, t)>. Also, Co=Cg,(A). Let d be an
involution in C,—<(z, t), so that C,=<t, d), & *(C,)={{z, t), {z, d)}, and
R,=R{d). Set C,=AC,.

(5.1) If R+T, the element g defined in section 3 is an involution
and furthermore we may assume that d°=d. :

PrROOF. The element g normalizes {z, d), so d°=d or zd. Replacing
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g with tg if necessary, we may assume that d°=d. By the definition
g*=1 or else g*=t, so we get g°=1.

DEFINITION. Let M,=[C,, N (B)]B and R,=RM.,.
(5.2) C,=M(t)# M, C,=C,, and C,/Z(B) is elementary abelian.

Proor. As T, <T, d lies in Cr(Z(B))=Cr(Z(B))C,. If R= T,
C(Z(B))=B(t> and d e C,. Suppose BR+T. Then Cx(Z(B))=Byg, t>. Let
bars denote images in N(B{t))/J(B)Cx(L). Let k be an element of a
Sylow 3-subgroup of N, (B) not contained in Z(L), so that N,(B)=
Z(L)Bk){abbdy and |k|=3 by (1.8)3). As C,(Z(B)=Bd, 7)=E,
C.NB{(d, g> is a four-group. By (3.3), C./B= Z(B), so C, -[Cz, k)% B.
Then as B(k) <] Nx(B), Nx(B) normalizes [C,, kl= [Cz, B(k)] and CTZ(Z(B))—-
[C., k1< B{g). Now abb, €A and Csga.bb,)= B, for [a.b.b,, gl ¢ J«(B) by
(1.1). Hence d € Cr,(Z(B)) N C(a:b:b,) =C,, so d € C,Cx(L)=C, X O(H) by (8.8).
Thus C,=C,.

As C, and (z, t) are normal in T,, {z, d) is also normal in T, and
{d, B{Y]=<z). Now k is transitive on (C;/B(t)>)!, whence C,=B{t)U
B{>d U BYA U B(EYd”.  As B(t)/Z(B) is elementary abelian, C,/Z(B) is
of exponent 2 and thus it is elementary abelian. Let tildes denote
images in N(B{t))/B. Then C, -—[Cz, E1x (). As Z(L)B{k) <| N (B) and
[C., Z(L)]=1, we have [C,, kl=M, and C,=Mt)+M,.

(5.8) N(ALt))=Nyx(AXd)=N(C) and J(T,/<{z))=C./<2)-

PROOF. As Z(A{t))=Z(R), N(A{t))<N(Z(R))=Ng(Z(R)){d) by (3.1).
Then N(A)=Nz(Z(R)) implies N(A{t))=Nx(A){d). Now Cy(4)= O(H)Z(R)
and [O(H), C]]=1, so NAG)INCA)=0H)xC, and C,<IN(ALL)). As
C,/{z) is elementary abelian, the latter assertion follows from (1.5) (3).

DEFINITION. Let C,=O0,(Cyxuun(F), Nal(F)DVF{(t), M,=[C, NL(F)]F
S;=SM,, and R,=RM,.

(5.4) (1) NEF())=Nz(F)M,, HNM,=F, t”B—Ft and M,/F=F as
N, (F)-modules.

(2) Cy=MJt)=C, and [C,, C]=FGC,.

(8) M,=Cy(F) and M,=C,(F)B with |Cy,(F)/F|=4. Thus R, s a
subgroup of R, of index 2.

PROOF. Set X=N(F(t)) and X,=Cy(F). Then C,=X, for C,/Z(B)

is abelian. As N (F)<X, t*=Ft by (8.1) and F<{X. Set Y= Cx(F).
Then de Y, so the map defined by y+—[y, t] for ye Y is a Ng(F')-homo-
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morphism of Y onto F. As Cy(t)=X,, Y/X, is Ng(F')-isomorphic to F'.
Also, t"'=Ft and X=Ng(F)Y. Now X/Y=Nj(F)/X,=GL42) and
| Xo: Co(L)F |=|T: R|, so O(X)=0(H). Let X=X/OH)F. A Sylow
T-subgroup @ of N (F') acts fixed-point-freely on Y/X,=F, so C3(Q)=X,.
Then X,<Z(Y) by [28, (2.4)] and X,(d) is elementary abelian. Since ¥
is a union of the N (F')-conjugates of X,(d), Y is elementary abelian.
Let X=X/FCy(L) and Y,=[Y, Ngy(F)]FCx(L). If R=T, Y=Y,
Suppose R#T. Then |X,|=2. Set D=C,(F). Then Cy/D acts faithfully
on F' and centralizes Z(B), so its order is at. most 4. As Cy(F)=F, we

get Cz=BD and |C,/D|=|D/F(t)|=4. Then Y=Dx X,, so |C;S)|=4. As

L(F)~GL3(2), [13, Part II, Lemma 3.7] shows that there is a subgroup
Y* normalized by N, (F") such that Y= ¥*x X°. Then Y*=[¥, N.(F)]=7..
The element % in the first paragraph of the proof of (4.4) acts fixed-
point-freely both on B/F and on C,/B{t)>=Z(B), so also on C,. Hence
D=[D, k]F{t)<Y,. The action of N, (F) on Y, gives Y,=C,(O(H))O(H),
for [D, O(H)]=1 by (8.8). Thus Y, is 2-closed with 0,(Y,)=C; and de
D=C,;. Now X=N(F)C,, HNC,=F{t), and C,/F{(t)=F as Nx(F)-modules.
Since Cr(A)=<z), (C\/F{t>)NC(A)=FC,/F{t>. Then [A, F]=<z) implies
[A, G]=FC, As FC,<C,, [C, C]<FC,.

As C,=M(t), we have M,=C, (F)B and |C,(F)/F|=4. LetC,=C,/F,
so that C,=E,, by the first paragraph. As C,=>C,.(F) LF) X (B, ICGS(S)|24
By [18, Part II, Lemma 3.7] the action of N, (F)/Z(L)F on C, is decom-
posable and so C,=M,%x(f). The element k of the above paragraph acts
fixed-point-freely on M,/F, so C,,(F)=[C.,(F), kKlJF<M, The proof is
complete.

(5.5) If R#T, then [g, M]=1.

. PROOF. By (1.10), g centralizes N, (F)/Z(L)F, so N, (F) acts on
Cu(Z(LYF{g>)=Cu(9). By (5.1), Cu(9)=F(C,NM,). As C,NM,ZF, the
action of N, (F') yields the assertion. :

DEFINITION. Let C,=O0,([Cyz¢»(E), Nu(E))E{t).

(6.6) (1) N(E())=Nx&E)C, HNC,=E{t), t04=Et, and C,/E{t)=FK
as Ny(E)-modules.
(2) C,=C, and [C,, C,]SEC,.

PROOF. Set X=N(E(t)), X,=Cy(E), and Y=Cy(E). Then C,<X and
C=Y by (6.2). As N, (E)=X and t*NL=©, (1.8) (4) shows t*=FE¢t and
EX. If P is a Sylow 2-subgroup of X containing S, then t*=FE¢
and as |S/Cy(E)|=|Aut (&)|,, P=Cx(E)S. Hence t*=Et and X=N,(E)Y.
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The map defined by Xy—|[y,t] for y€Y is an N(&)-isomorphism of
Y/X, onto E. Now N (E)/Z(L)E=3,, |X,: ECy(L)|=|T: R|, and an ele-
ment f of a Sylow 3-subgroup of N,(F) not contained in Z(L) acts tran-
sitively both on (E/{z))* and on (A4/E)* by (1.8) (4). Note that O(X)=
O(H). Let X=X/ECy(L). If R=T, Y=E. Suppose R+#T. Then|Y|=
and | X,|=2. As Ny(E)XN(), [f,Cl=1 by (56.3). As Y/X,=E, Cxf)=
Cox X, and [¥, FINC(f)<X,. Moreover, Y=[¥, f1xCi(f) by [28, (2.4)].
The group GC,/C.(E) centralizes Z(B), so its order is at most 4. As

Cy(E)=E, we have C,=C,(E)B and Co(BD/E(t)=C,/BSt). If 1Y, f1=z X,
[Y, f1 is quaternion. But 502( Yx X,=FE,, a contradiction. Thus Y=
[T, F1XCs(f) = E,. )

As Z(T)=<(z) and |T,: T,|=2, C,<{T, by (6.3) and Ny(C,)=C,,(E)X,.
Thus ¥ normalizes C, by the action of f, so [C, ¥]=C,n ¥=C..

Let Y,=[Y, Ny(E)|ECx(L) and Y=¥/C,, If R=T,Y,=Y. If R=T,
Y=[Y, f1xX, with |X,|=2. As A centralizes ¥ by the above and
A f>=0,,(N,E), we get [V, fl=Y,. 1f C,zY,, Y=7,xC,xX,. This
is impossible since N.(E) is indecomposable on Y/X,. Thus C,<7Y, and
Y=Y,xX,, Now Cx(O(H))O(H) is a normal subgroup of X containing
N (E)Cy(L), so it contains Y,. Hence Y,=0,(Y,)xO(H). As O4Y,)=C,
(1) holds. Moreover, C,<¥, implies C,=C,. As [C, Y]1=C,, [C, C]l=s
CEC,(LYNC,=EC, and (2) holds.

(5.7 Let Vi;=C,NM,. Then V.M, and one of the followmg holds.
(1) V.=(z,d> and M, is elementary abelian.

(2) Vi=<dt) and M, is homocyclic abelian of exponent 4 and is
inverted by t.

ProOF. By (5.2), C,NM,={dt) or <z, d). Also, C,NM,=YV, since
Cy,(F)SM,. (5.4) shows that C, normalizes C, and SM,=S,NR,<]R,.
Then as C,NSM,=AV,, Z(AV,)=V,<| M, and hence |M,/Cy(V,)|<2. As
M,/F is N, (F)-isomorphic to F and N, (A)<N(C,), N, (A)NN.F) acts
transitively on (M,/FV,)* by (1.8) (6). Thus Z(M,)=FV,. Now the asser-
tion follows from the action of N, (F).

§6. The case V,=<dt).

In this section we assume that V,=d{dt). By (5.7), M, is homocyeclic
abelian of exponent 4 and ¢ inverts it. We shall show that Case (3) of
the main theorem occurs.

(6.1) N(CH)=N(C)=NAV)EN(V), |N(C): NAK)|=2, C(C/ V)=
O(H)C,, and N(C)/OH)C, is isomorphic to a subgroup of Aut (A4, con-
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taining A, with TM, e Syl, (N(C)).

PROOF. Let X=N(C)NN(V,), Y=N(A(t)), and X=X/V,. By (5.3),
Y=N(z, t))=Nxz(A)}d)<N(C)<N(V,) and as C,=AC, we have Y<X.
Also, M;=X by (5.4) (2) and t**=Ft. The only four-subgroups of C, are
{z,t) and {z, d), so Y is a subgroup of C,(¥)=N(C,) of index at most 2.
As AV,=C,(V)X, t*<C,—A=At. (1.8)(2) shows that under the
action of N, (4), A=A/{(z) is divided into four orbits of lengths 1, 3, 3,
and 9 and that b,b, € F' belongs to the orbit of length 9. Thus |£%|=10,
13, or 16. In any case t* generates C,. The order of Aut (C,)=GL,2)
is not divisible by 18, so |T¥|#13. If t¥= A%, there is an element xc X
such that *=a,t. Then t*=wva,t for some ve V,. But t inverts V, and
a,€ A centralizes C,, so (va,t)*=ai(vt)’*=2 and |va,t|=4, a contradiction.
Thus [£¥]=10. Let X=X/Cx(C). Then (X, %) is a 2-transitive permu-
tation group of degree 10. (1.10) (1) shows that C,(C,)=Cg(A4/{(z)) V.=
O(H)C,, so Y/Cy(C)=Ny(A)/Ca(L)A is of order 2-3* or 2:-3:. Since
|Cx(): Y|<2, we have |X|=2"-3*.5 where 2<n<4. Then a minimal
normal subgroup N of X is simple and by Brauer [5] it is isomorphic
to A; or A,. If N=A,, then |Cz(N)| is divisible by 3, a contradiction.
Thus N=A, and Cz(N)=1. If C;()=Y or Cx(C)#C,(C,), then X=A,
and R+ T so that Y= Y/O(H)C,=3,x 3, by (1.10) (1). But the normalizer
of a Sylow 3-subgroup of A, is a Frobenius group of order 36, a contra-
diction. Thus |C,(): Y|=2 and C;(C,)=0(H)C,. Now Ny(C,)=Ngx(A), for
HNC,=A(t). Hence [tV |=|N(C): Ng(A4)|=|N(C,): X|-| X: Cx()|-|Cx():
Ny(A)|=40|N(C,): X|. By (8.1), t*“v<C,—A. Moreover, there are pre-
cisely 71—19=52 involutions in C,— A since C,=D,*D,*D,. Thus N(C)<
N(V). As Z(AV)=V, (6.1) holds.

(6.2) S, is isomorphic to a Sylow 2-subgroup of the Higman-Sims
stmple group.

PrROOF. The Schur multiplier of GL,(2) has order 2, so N, (F)=
NL(F)' x Z(L) and N (F)' M, is an extension of Z,x Z,x Z, by GL,(2). Since
N (F)' N My=F=Q,(M,), the assertion follows from (2.6) and (2.7).

(6.3) R=T.

PrOOF. By (2.8), Ji(S;)=M, and Z(S,) has order 2. Thus Z(S,)={z)
and so Cs (V) =AM, for AM, is a maximal subgroup of S,. By [14, (2.11),
(2.27), (2.28)], S;/{z) has exactly two elementary abelian subgroups of
order 32, whose preimages in S, are isomorphic to Q,*Q;*Z,. Now AV,=
Q:*Qs*Z, and (AV,)=(z). Denote by W/{z) the other elementary abelian
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subgroup of S;/{z) of order 32. As Z(AV,)=1V,, [14, (2.25)] shows that
AM,=Cy(V)=AW and AM,/V, is of type PSL,(4). Hence &*(AM,/V,)=
{AV,/V, W/V,}. It then follows that & *(AM,/{z))={AV,/{z), W/{z)} and
Z(AM,/{(z))=AV.N W/{z). As |AV,N W|=16, we also have Z(AM,/{(z))=
FV,/<{z). As N, (F)M,F is the split extension of an elementary abelian
group of order 8 by GL,2), S,/F is of type GL,2). Hence Z(S,/F)=
FV,/F, AM,/FV, is the unique elementary abelian subgroup of S,/F'V,
of order 16, and AM,/F=Q,*xQ,. Thus Z(AM/t)/F)=FV,{(t)/F. As
[t, M]=F, we get Z(AM/t)/<{z))=FV,/{z). Suppose there exists an
elementary abelian subgroup U/<{z) of R,/{z) of order 2° different from
C,/{z). Then since R,=S<t), S;NU=W and so AMt)=CU and
|IC,NU|=2. But C.NU/{2)SZ(AMt)/{z))=FV,/{z), a contradiction.
Therefore, C,/{z) is a unique elementary abelian subgroup of R,/{z) of
order 2°

Assume that R=T. Then R, € Syl,(N(C)) by (6.1). As Z(R;)=<z),
the above shows N(R,)<N(C,). Hence R,eSyl,(G). (2.6) gives a presen-
tation of S;, namely, S, is generated by the elements u, v, w, , 8 subject
to the relations listed in (2.6). We have Z(S;) = {uw*w*) and Z,(S;) = {u*v*, uw).
As V., <8, it follows that Z,(S,)=Z(B)V,. Since S,/F is a split extension
of M,/F by S/F with S/F=D,, S*={vr, vs)F or {uvwr, vs)F for some
a € M, by (2.8) (3). Replacing » and 8 with »*™ and s*”', we may assume
that S={vr, v8) F' or {uvwr, vs)F. We argue that every extremal con-
jugate of t in R, with respect to G lies in R,—S,. Suppose false and
choose an extremal conjugate e of ¢ in R, such that ecS,. Then as
Cr(t)=R e Syl,(H), there is an element y € G with R'=Cg(e) and t'=e.
As R,=S(t), |Cs,(e)|=2° or 2". Thus (2.8) (2) implies that e¢ is conjugate
to vw’s® in S,, for t¢ H'. Hence we may assume that e=vw’s’. Now
R'=Cple), z=uw?, Z(R)=<(z,t), and Z(R)NR'=<z). We see that
Z(Cry(e)) =<z, e) and Z(Cp,(e)) N Cr,(e) = (z) since Cg (vw’s’)’={(vs)*) contains
w*w®. Therefore, (2)'=(Z(R)NR')*=<{z) and y € C(z). AS Z(B)V,=2Z(S;)=
{uv?, uw), we have e=vw's*=(uw)*(ws)’e SV,. Moreover, [e, Z,(Sy)]=1
and so ecSV,NC(V,)=AV,. Let Cz)=C(z)/<z). Then R, is a Sylow
2-subgroup of C(z) and 7,2cC,. Since t7=¢ and C, is weakly closed
in R, by the first paragraph, ¥ and & are conjugate in C(z)NN(C,)
and so t*€{e, z) for some xe N(C,). By (6.1), N(C)=N(V,), whereas
[¢, V.11 and [¢*, V;]=1. This contradiction implies that every extremal
conjugate of ¢t in R, lies in R,—S,. Now [29, Corollary 5.3.2] gives that
t ¢ 0@ and since L=Z0¥@) and M,=[M, N, (F)]=<0*%G), we have S;=
R,NO¥G) € Syl, (OXGR)). Hence E(G/O(GR)) is isomorphic to the Higman-
Sims simple group by [14, Theorem A]. But in view of the centralizers
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of the involutions in the automorphism group of the Higman-Sims simple
group [3, p. 441], we see that this is incompatible with the structure of
H. The proof is complete.

(6.4) Case (3) of the main theorem holds.

PROOF. We apply the argument in the proof of [11, (6F)] to A4, V,,
C,, and C, in place of A,, W, D,, and D, respectively. For this purpose
it is enough to prove the following four statements:

(1) NAV)/CAVV)=Z,,

(2) C,eSylL(C(AV,/V) and N(AV,)=N(C,)C(AV,/V),

(3) N(C)C(AV,/V)[CAV,/V)=Z, wreath Z,

(4) |N(V):N(AV)| is even.

As C,=AVt), (6.1) gives N(C)NC(AV,/V)=0(H)C,. Moreover,
C(AV,/V)<I|N(AV,), so we have N(AV,)=N(C)C(AV,/V,) by the Frattini
argument. Thus (2) holds. By (5.5), g centralizes S,/AV,, so TM,/C,=
R,/C,x<g)>C,/C,. Hence it follows from (2.1) and (6.1) that N(C,)/O(H)C, =
2s.  Thus (1) holds. Now N(A(t))/O(H)C,=Ngy(A)/Cx(L)A=3,x3, by
(1.10) (1).  Since [N(C,): N(A{t))|=2 and N(C)<N(C), we have
N(C)/O(H)C,=3, wreath Z, which is the normalizer of a Sylow 3-sub-
group of N(C,)/O(H)C,=%,. Thus (3) holds.

We wish to show that C(g)NN({g, t))ZH. Suppose false and set
C=C(g). Then Ny (g, t))=C,t). By (6.3), H=LO(H)g, t) and so
Co(t)=Cr(9)=Cr(9)Cox(9)<9, t). Set J=C,(g)". Then by (1.7), J=SL,(@8),
FeSyl,(C.(g9)), and C& NC(J)=Cyu(g)<g, t>. _Let C=C/{g>. Then as
Cs(t)=Nc(£g, t))/<g> =Cc(t), we have Cz({)NC(J)=Coup (9)<¥). Thus J is
a standard subgroup of C isomorphic to SL,@8) and <) is a Sylow 2-sub-
group of Ci(J). Moreover, C contains M,=Z,x Z,x Z, by (5.5). A theo-
rem of Griess, Mason, and Seitz [16] together with [28, (2.10)] shows
that E(C)/Z(E(C))=PSU,8) or PSL,8) and CyE(C)) has odd order. In
view of the Schur multipliers of these simple groups, we have E(C
mod {g)>)=C* x {g) and {g) € Syl, (C,(C*)) where C*=E(C mod {g))’. Thus
C* is a standard subgroup of G and (g} is a Sylow 2-subgroup of C(C*).
As C*=PSU8), SU,8), or PSL,8), [16] and [23] show that EG/0@))
is isomorphic to one of PSU,(8) x PSU,®8), PSLy(8) x PSL8), or PSL(64).
By using [4], we see that this is incompatible with the structure of H.
Therefore, N,({g, t))ZL H.

Put X=N(F{g, t)). Since T does not have an abelian subgroup of
order 2’ by (1.4) (8) and M,(g) is abelian of order 2, t°NF{g)=@. By
the above paragraph | Ny({g, t)): Cx(g)|=2 and F{g, t) € Syl, (Cx(g9)), whence
a Sylow 2-subgroup of N,({g, t)) containing F{g, t) lies in X and acts
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transitively on {t, gt}. As M,<X and t¥s=Ft, we have that t*=F{g)t
and X<N(F{g>). By (1.10)(2), g centralizes N (F)'/F since N (F)=
N (FY xZ(L), so TeSyl,(Cx(t). Let T, be a Sylow 2-subgroup of X
containing T,=TM, Then |T;:T,|=2 and t"+=t*. We argue that
V.<{T,. We have shown in the proof of (6.8) that Z(S;)=<2), Zy(S,)=
Z(B)V,, and Z(S,/F)=FV,/F. As C,(®)=T and Z(T)=<{%,t) by (1.5) (1),
Z(Ty)={z>. Also,we get Z(T,/F)=FV<g, t)/F and FV,{g, t) NC(M,/Z(B))=
FV.<g), for [M, t]£Z(B). Furthermore, it follows from (1.1) that
FV<{g)NC(A/Z(B)=FV, Thus Z(T,/Z(B))=FV,/Z(B)and Z,(Ty)=Z(B)V,.
As Q(Z(B)V,))=Z(B), we conclude that F'V, and F=Q,(FV, are charac-
teristic subgroups of 7T,. In particular, they are normal in 7,. Now
Cr(®)= Na(F{g») = Nioun(F(g))<g, £ S N(F)Coun(0)<g, t), for F{g) nL=F,
and N, (F)<C,t). As X=(T, Cx(t)), this implies that F<]X. Let
Y=Cy(F) and X=X/C(F{g,t)). As C(F{g, t))=FCou(9)g, t), Cxt)=
N (F)|F=GL,2). Hence X/Y is isomorphic to Aut (F)=GL,2) and X
is a semidirect product of ¥ by Ci(t) with |Y|=16. In particular,
T.Coun(g)=T,Y. Since M,/F=F as Ny(F)-modules by (5.4), [¥, Cx(®)]=M,.
Take an element %k of N (F) NN.(A) of order 3. Then k centralizes V,
and acts transitively on the nonidentity elements of F/{z) by (1.8) ().
We have Y=Cy(k)[7, k] with [Y, kK]<M, Denote by N the preimage of
Cs(k) in Y. Then NZY=T.Couwm(9)>FV,. Suppose V, is not normal
in N and choose a € N—Ny(V,). Then (dt)*=dtf for some feF—<z).
As [N, k]=1, there is an element be C(F{g, t)) such that ak=bka. Note
that a centralizes O}(FV,)=(z) and b normalizes V,. Now (dt)**=(dtf)*=
dif* and (dt)*=(dt)**=dtf or difz, so that f*=f or zf, which conflicts
with the action of & on F/<{2). Hence V, is normal in N and so Y=
NM,[>V,. Since T,<N(C)<N(V), we get T,<T, Y[ V,. Thus (4) holds,
for T, is a Sylow 2-subgroup of N(AV,) by (2).

Now by Foote [30], PSL.(q), ¢=3 (mod 4) and PSUq), ¢=1 (mod 4)
are the only simple groups whose Sylow 2-subgroups are isomorphic to
a Sylow 2-subgroup of PSL.(q), ¢g=38 (mod 4). Since the Schur multipliers
of these groups are subgroups of Z, arguing as in [11, (6F)] we see
that Case (3) of the main theorem holds.

§7. The case V,={z, d).

In this section we assume that V,=(z,d). Under this hypothesis
we shall show that Case (2) of the main theorem occurs.

DEFINITION. Let C,=O0,N(C,)), M,=C,(V), Re=RM, M,=C,(V),
and V,=M,Nn M,.
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(7.1) (1) N(C)=Ngx(A)d)=N(V).

(2) N(C)=Nz(AM,, HNM=A, M, acts transitively on
C/V,—AV/V, [M, AV,]JSV,, and M,/AV,=A/{z) as Nz(A)-modules.

(3) Ce=Mt) and M, contains M, and M,.

PrROOF. Let X=N(C)NN(V,) and X=X/V,. As &*(C))={{z, t>, V.},
(1) follows from (5.3) and (5.7). By (5.4), C;<X and t¥s=Ft. As in the
proof of (6.1), t*<AZ and [£%|=10 or 16. Let X=X/C,(C,). We have
Cx(f)=N(Co) and Cx(Cl)=N(Coln C(A)=0(H)C,, s0 Cji()=CL(t)/C<(C)=
NL(A)/Cx(I)A. If |t*|=10, (X, t*) is a 2-transitive permutation group
of order 2:-3:*.5 or 2°-3*-5. Hence X=A4, by [5]. But then R=T and
C:;(T)=3,x 3, contrary to X=A, Thus t*=Af. As in the proof of
6.1), | #(C,—A)|=52 and Ng(C,)=Ngy(A). We have |t"%|=|N(C): X|-
| X: Cx(?)|-1Cx(t): Na(A4)|=2°| N(C)): X|, so N(C)=X.

Now |X:C:(t)|=16 and |X|=2°3* or 2°-3%, so X is solvable with

O0y(X)=1and Cz(0,(X))<0,(X). This implies |0,(X)|=16, while 0,(Cz(¥))=1.
Thus 0,(X) is a regular normal subgroup of (X, A7). As OH)=0(X),
N(A)SC(OH) X and 04X mod Cx(C,))<C(O(H))O(H). Thus Oy(X
mod Cx(C))=0(H)xC,. As AC, Z(C, contains <&, b,) or (@, b,> by
1.8) (2). If Z(Cy=(a, b), then AV,NC(a, b,)V,)={a,, b.)>V, is normal
in C, and Z(Cy)=(@,, byy. By symmetry, Z(Co)=(a,, b,y implies Z(Cp)=
(@, b,>. In any case we have [C, AV,]<V,. As V, is a four-group,
C,;=M,t). The map defined by AV [z, t] for xe M, is an N,(A)-
isomorphism of M,/AV, onto A. Thus (2) holds.

Let K=N, (A NN, (F). Since M/F=F as K-modules and C,NC,=
(ANGC,)C,=FC, by (5.4), it follows from (1.8) (6) that K acts irreducibly
on CC,/C, and either C,=C, or C,NC,C;=C,. Let X=X/O(H)C,, which
is isomorphic to Nyz(A4)/Cx(I)A. If C.,NC.C,=C,, C, is a four-subgroup
of X normalized by K. But this conflicts with the structure of X. Thus
Co=C;, so M;=M, Similarly, C,/E{t)=FE as N, (E)-modules and C,NC,=
EC, by (5.6), so that N, (F) acts 1rreduc1bly on C,CJ/C, by (1.8) (4). If
C,NC.C,=C, C, is a four-subgroup of X normalized by N, (E), contrary
to the structure of X. Thus C,=C, and M,>M,.

(7.2) (1) M,=B=*V,, BNV,=Z(B), and |V,|=2'. In particular,
[S, Vi]=1.

(2) M, is elementary abelian.

(3) M;=V, and M,/V, is elemetary abelan.

(4) If R+#T, then [g9, M]< M,.

PrROOF. Let R,=R,/V,, R,=RM,, and B,=N,(EFC,). By (71.1), %=
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At, Cg(t)=SC,, and C, centralizes A. Thus R,={x¢c R,|{* e EFt}, so
|R,: B,|=2. We also have R,={xcR,|t*cFt} and R,={xcR,|T*c Et}.
Similarly R,={x ¢ R,|t* e Z(B)t}, for R,<R, and t®»=Z(B)t. Then Fin
Et=Z(B)t implies R,NR,=R,. As |R; R,|=|R;: R,|=2, we conclude that
Rb/Rz = Rs/Rz X R4/Rz- ) .

We argue that Q(Z,(R))=Z(B)V,. As Z(R,)<Cy(t)=R, Z(R)=2Z(R,)=
(z). As Np({z, t))=R, by (3.1), t ¢ Z(R)=ZyR,)=2Z(R)V,=<by, b,, d, t).
Now R,={(M, M, R> and [F, M,]=[E, M,]J=1. Thus Z(B)V,={z, bb,, d)<
Z,(R,) and so Z,(R,) is equal to one of Z(B)V,, <b, b, d), or <bd, d, b,t).
As t®=EFt, Ry} (b,b, b,t> and thus Z,(R,)=Z(B)V, or (b, b, d). In
either case Q,(Z,(Ry)=Z(B)V,.

As Cy,(t)=F and C,,(t)=E, C,(t)=Z(B). Hence |V,|=24 for V, is
elementary abelian and invariant under . As |M,|=|M,|=2°, this implies
|M,M,|=2°. Now |M,: M,nR;|=2 and M,NR,NC(Z(B)) has index 2 in
M,NR,, for Z(B) is a normal subgroup of B, not centralized by A. Thus
M,NR,NC(Z(B))=MM, and |V,|=2'. Then as Z(B)V,<|M, by the above,
M,/C\,(Z(B)V,) is abelian and M;<AV,NCZMBV)=ANB)V, by (7.1) (2).
Hence (1.8) (2) shows M;<V,. If M;+V, M;=<z) and A<M, Then
as M,< N, (F{t)) and AF{t)=A{t), M, normalizes Z(A{))=K(z, t), a con-
tradiction. Thus M/=V,. As EV.<Z(M,), EV, is elementary abelian of
order 2° An element f of a Sylow 3-subgroup of N (¥) not contained in
Z(L) acts transitively on (M,/EV,)! by (1.8) (4) and (5.6)(1). Set W=(E'V,),
so that M,=EV,W. If C,(x)=W forxe W—EV,, E*(M)={EV, W} by
[28, (2.1)]. But then f normalizes EV,, a contradiction. Hence M, is
elementary abelian. By (1.8)(5), N (A)NN.(F) acts transitively on
(A/F):. The Ny(A)-isomorphism M,/A V,— A defined by AVyr—ly, ]
maps AM,/AV, onto F, so M,/AM,=A/F. Now M, =M, and M,/M, is
abelian, so the action of N.(A)NN.(F) on M,/AM, shows that M,/M, is
elementary abelian. Then O(M)<M,NAV,=FV, and so O(M,)=V, by
the action of N (4), Thus (2) and (3) hold.

As t:<tMsO\t¥a=Z(B)t, V, normalizes Z(B){t), As t"*=Z(B)t and
S,[> Z(B), it follows from (5.4) that Ny (Z(B){¢))=SM, Let I=Cy(F).
Then SM,=SI and V,<SM,NC(F)=<I, whence M,=BYV,. An element k
of a Sylow 3-subgroup of N (B) not contained in Z(L) acts transitively
both on (M,/I)* and on (I/F)* by (1.8)(8), for I/F=M,/B=Z(B) as N.(B)-
modules by (8.3). Then since EFV, is a maximal subgroup of M,, M,=
(EFV)EFVy)* and V,N V¢<Z(M,). Also, |V:N V#|=8 since |I: V,|=2.
Now M,=BYV, implies Z(M,)<C,(E)=V, Let tildes denote images in
N(Z(B))/Z(B). Then I'=[I, k] x F, so the only k-invariant proper subgroups
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of I are F and [T, k]. As Z(M,)=F, Z(M,))=[I, k] and Z(M,)=V,. Thus
(1) holds.

Finally, suppose R+#T. As g normalizes M,, [g, M,])<C,(g9). By
(6.5), Cu, @)=V, If Cu(9)#V, then as [g, E]+1, M,=C,(9)E and
[9, M]=Z(B). In any case g centralizes M,M,/M,=M,/V,. Since g cen-
tralizes AM,/M, and since [g, N.(F)]<FZ(L) by (1.10) and Z(L)<O(H)
centalizes M,, the action of N, (A)N N, (F) on M,/AM, yields [g, M,/M,]=1.
Thus (4) holds.

(7.3) N(Co)=Ngn(A)M,.

PROOF. Since F'=[M,, t]<C,, the action of N, (A) gives A<C.. Now
Ce=M,NC,=AV,. Hence C;=AV, by (7.2)(3) and V,=Z(AV,) <] N(C,).
Let C.,=C,/V,. Then Cu,(t)=Nyu,(C)=AV,, so £*(Cy)={M, C}. Thus
(7.1) (2) shows N(C,)=Nz(A)M,.

(7.4) C,e8yl(C(4/<2))) and C,e8ylL,(C(AV,/V))).

PROOF. Suppose C,,(A)>V,. Then ¢ centralizes some nonidentity
element of C,,(A4)/V,. But C,(C/V,)=AV, by (7.1) and AV,NC(4A)=V,,
a contradiction. Thus C,,(4)=V,. Set D=N,,(A)and Y=N,(A)D. Then
Y= Y/AC,(A)=>0ut (4). Let Q be a Sylow 3-subgroup of N,(A). Then
|@|=9 and as @ normalizes D, (2.2) shows D=1. Then as C, (4)=7V,,
D=AV, By (7.1), N(C)NN(A)=NxA)V,. Hence N(C)NC(A/{z))=
O(H)C,, so C, is a Sylow 2-subgroup of C(A/<{z)). Since AV,/V,=A/{z),
N(C,)NCAV,/]V)=0(H)C, by (7.3) and the assertion holds.

DEFINITION. Let C;=O0,([N(BC;,) N N(M,) N C(BM,/M,), N4(B)])BC, and
M,=[C,, N,(B)]|BM,. Moreover, let M,=M,M,.

(7.5) (1) N(BC)NN(M,;)=Ny(B)M,, HNM,=B, M, acts transitively
on BC,/My,—BM,/M,, and M,/BM,=B|F as Ny(B)-modules.

(2) C=Mt), M,;=zM,, and Z(IM)= V..

(3) M,/M; is elementary abelian.

(4) If R+#T, then [g, M= M,.

PROOF. Let X=N(BC,)NN(M,), N(M,)=NM)M, Y=C,(B), and
X,=Cx(B{)). As &*(C)={M,, F()}, (5.4) gives Cy(f)=N,(C,) =N, (B)M,.
Then as B=B/F, Xo=Cu(B/F)M, with Cy(B/F)=Cu(L)B if R=T and
Cy(L)B{g) if R+T.

We wish to show that N, (R)=AM,<X, t*=Bt, and BM,<]{X. Put
D=N,,(R,). As R,=R|F, &*(R,)={A{), B{)} by (1.4) (5). Moreover,
M, normalizes M,C,=M,ACt). Thus D<X. As R,<R,, DZR,. Hence
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T2£{f}). As Z(R)=E()> and Z(R,)N M,=E, we have t°=Et. By (1.8) (3),
N,(B) acts transitively on B*, so £*=Bt or B*UBt. Now T'M, € Syl,(Cx(¢))
and TD is a 2-subgroup of X properly containing TM,, so t*=Bt and
BM,<]X. Since Cy,(F)=AM, and t¥=At by (7.1)(2) and since M, is
abelian, D={v e M,|t>c Ef}. This implies D=M,, for t*=Et by (5.6).
Thus D=AM,.

Since | X: Cz(Z)|=4 and X[> B and since C;(t)/X, induces the auto-
morphism group of B, X/X, is a split extension of Y/X, by C,(t)/X,.
Hence X=(Cy@®), D>[>Z(B). Then Y=Cy(Z(B)) and M,<Y. The map
defined by X,y— [y, Z] is an Ny(B)-isomorphism of Y/X, onto B. Also,
O(X)=0(X,)=0(H).

Let I=BC,O(H) and Y,=[Y, Ny(B)lI. If R=T, X,=1I and Y=Y%,.
If R#T, |Y/I|=8 and the image of M,(g) in Y/I is a four-group. Let
k be an element of a Sylow 3-subgroup of N.(B) with k¢ Z(L). Then
(k> Xy=04y(C({¥) mod X,) and & acts transitively on (Y/X,)}, so Y/I=[Y/I,
E]x X,/I. As <k)X,<|Cy(), the preimage of [Y/I, k] in Y is Y,. Hence
Y=Y.X, and Y,nX,=I. As X[ Cy(O(H))=N,(B)C;, Y.=C(O(H))O(H).
Thus Y,=C,xO(H). '

Let X=X/BM,. If R=T, Y=Y, and so C;=M, and C, is a four-
subgroup of C,, If R#T, Y=MJg) and as |Y:Y,|=2, C.N M, g) has
index 2 in M, {g) and C.nC,(9> is a four-subgroup. In any case, as
|C,|=8, €, is abelian by the action of k and C,=<¥)x[C, k]. As
(OBZ(L)<]Ni(B) and BZ(L) centralizes C,, [C, kl=I[C, N.(B)]=M,.
Hence C,=M,(t)=M, and (1) holds. By (7.2) (1), V,=Z(M,), so N (B)
normalizes V,. Now Co(Vo)=BM, If R=T, Cql V=M, by (7.2) (2). If
R=T, Co(V))2C:NMLg)£LBM,; by (5.5). The only k-invariant proper
subgroups of C, are () and M, and as t ¢ C(V,), we get Co(V,)=M,.

Suppose R=T. Then |M;: BM,|=2 and (7.2)(3) shows M,=BM;N
C(M,) V)M, for Cyx(F[{z))=EF. Since M,=B/F as N.(B)-modules,
i, = BT, x M: for some involution z€ N, (B)—N,(S). Now EE*F=B and
so M,M:M,=BM, Comparing orders, we have M,=M,x M7, which is
elementary abelian. Thus (2) and (3) hold in this case.

Suppose R==T. Then M, {g)=Clg) NC(V)=MLg). Asge X, [M, g]=
M, X,= BM,and /(5> = E,. Hence BM, <] M,(g) and M,=BM,NC(M,/ V)<
M/g>. Note that N (F)=N/(F) xZ(L), g centralizes N (F)/F, and
N (B)=(N (B NN (F))xZ(L). Let x be an involution of N,(B)N N (F)
not contained in N,(S), Then [g, x]<F, so M, and M; are normal in
ML<g>. Now Cgz()=E by the first paragraph, so M,NnM:NC@E)=1 and
thus M,N M:=1. Tnen M JI:NCE)=B and as g ¢ B, M,(g) =M. M{g). By
(7.2) (4), [g, M]=1, so M<g) is elementary abelian. Thus (3) and (4)
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hold. It remains to show that M,=M,. As Cx(f)=B and Cy(M,/V,)=EF,
Ca,(M,/V)NC(E)=FE. As|E|=2, this implies |[Cxz (M,/V,)|<4. Hence com-
paring orders, we get M;{g> N C(M,/V,)=Mg). By (1.2)(8), Cs(M,/ V)= A4,
so setting U=SM,{g>, we have C,(M,/V))=AMg). By (1.1), g does not
centralize E/{z), whence U[>C,(M,/V,)=AM,. Thus SM,=ABM, is normal
in U. Now |U/SM;|=|U/M,|=4 and | U/C,(Z(B))|=2. As SM,NC(Z(B))=
BM;, it follows that U’<M,nM, Moreover, U=8M, and as i,=B/F,
U'+1. As |BM,/BM,|=2, we get M,=BM, The proof is complete.

(7.6) Let P=MM, Then P is a subgroup of order 22 with Cp(t)=‘S
and P[> M,.

ProoF. Let R,=RM, Note that C,,(t)=EF, for M,sM,NM,. As
Cy,t)=2Z(B) and R,=RYV, by (1.2) (1), R,/V,=R/Z(B). As R,=RYV, is of
index 2 in R,, we have S'<R,<R NR'V,=S'V,. If R,=S, then R,> R,
which conflicts with ¢t®2£Z(R). Thus R;=S'V,. Now R, is a normal
subgroup of R, of index 4, (M(t))'=F, and R,/M,=R/EF. Hence
EFV,sRi=R,NM,=EFV, 1If Ri=EFV, R,>R,. But R=SxC, and
Zy(R,)=Z,S)C,, whence t**£Z,(R,). Thus R,=EFYV, and Z(R)=V, If
M;,=<z) then M;[>FE and as M;<N(F<t)), M, normalizes Z(EF{t>). But
t**=Ft. Thus M;=V, by (7.2) (8). Now Cy(Z(B))=BM(t), so Ce (V)=
BM,. As FV,/V,= F/{z)Cr(FV,/V)=AMLt) and Cy(M,/V,)=AM,.

Let X=N(R,)NN(M,). We have shown that X<N(V)NNV,)N
N(AM,)\ N(BM,). Suppose there is an abelian subgroup D of EF V(¢
of order 2° not contained in EFV,. Then EFV,(t)=EFV,D and V,nD<
Z(EFV,t))=Z(B). Now (EFV,ND)V, is an abelian subgroup of EFV,,
S0 its order is at most 2. Then |EFV,ND|<8 and |D|<16, a contra-
diction. Thus J(EFVt))=EFV,. By (1.2)(1), Z(M)=1V,, so V, is
invariant under N,(B). As &*(V,(t))={V,, Z(B){t)}, N(V,{tD))=Nu(B)V,
by (8.8). This shows & *(M,{t)/V,)={M,/V,, EFV,{t)]/V,}. Thus N (M,{t))<
N (EFVt))SN(EFV,). Let tildes denote images in N(V,)/V,. Then
t4s=EF?t. Hence N (Mt)) acts transitively on EFT and as N (M,{t>)N
C(®)=Nz(Mt)) N N(Vi(t))=Nu(S)V,, we have N (Mt))=Nu(S)M,

Let X=X/M,. Then C;()=Nx(S)M, by the above. As |R, R,|=
|RM,: R;|=2, (R,, M,)<X. As A and B are normal subgroups of X of
order 2, X=Cx(S). Now t*<St and the map X—S; z—[z, ] is a
Ny(S)-homomorphism with kernel Cy(f). As f¥s=At and T*'=B¢, this
homomorphism is surjective. Thus |X: Nx(S)M,|=|X: N,(S)M,|=2 and
X=Ny(S)P. As O,(Nxz(S)M,)=RM, or RM{g) for i=6,7, TP is a group.
Set Q=TP and U=Cy(M,/V,). If U>M,, t centralizes some nonidentity
element of U/M,, so N,(C)>M, But (7.8) shows N,(C,)=Cn(M,/V,)M,=
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M, for QNH=T and C,(EF/{z))=A. Hence M,=Co(M,/V,)<|Q. Now
SM,NSM,=SM,, so |P|=2% As |P:Cy®)|=4, Cs(t)=SM, and we get
Cp(t)=S.

(7.7)  Let K be the normal closure of N.(F)M, in N(M,). Then
PeSyl,(K) and either K/M,=GLy2)X GLy2) and t interchanges its com-
ponents or K/M,=SL,4).

PROOF. Let J=N,(F), X=N(M,), and X=X/M,. Then N (F)=
JX Z(L) and if R+T, g centralizes J/F. As & *(Mt))={M, F{t)}, (56.4)
gives Cy(t)=Ny(F)M,. Thus C,‘(t) (t)JO(H) or (g, IYJO(H) with J=
GL4(2). As in the proof of (7.2), M,/AM,=A/F. Thus N,(A) acts irre-
ducibly on M,/AM,, so M,=[N,(4), M,J<K. Similarly, N,(B) acts irre-
ducibly on M,/BM, by (7.5) and M,=[N,(B), M,]J<K. Hence P<K.

Let X=X/O(X mod M,). Then CX(t)"’CX(t)/CO(x)(t), for X=X/0(X).
As O(X)(t}ﬂC(t)SO(CX(t)) and [0,(Cz(D)]|=4, m(0«X))<2 by Suzuki
[26, Lemma 4] and so [J, OZ(X)] 1. Then there is a component of X
not centralized by J, for F*(X)= E(X)0,X) and CX(F*(X))SOZ(X) As
J is a component of Cz(¥), [2, Lemma 2.7] shows J<E(X). Thus K=
E(R), for B=(J%) is a perfect normal subgroup. Now [M, t]=A by
(7.1) @). As O(X)NCE)=0(Cz®))=0(H) and [0(H), A]=1, [0(X), A]=1
by [10, (1])]. Thus K centralizes O(X) and K=E(K). Applying [2,
Lemma 2.7] to K(f>, we can choose a component ¥ of K such that
J<¥ or Y= ¥ and J=(YY*'NCE)) with Y/Z(Y)=J. In any case X
acts transitively on the set of components of K since K=(J%). If
C (M) % Z(K), then Co(3,) contains some component of K and so K=
C.(MT). But then J<K=<Cg(M,), a contradiction. Thus Cr(My)=<Z(K)-
Now K/Cg(M,)=>Aut (M,)=GL42). Since 7 divides | Y/Z(Y)| and each
component of K is conjugate to ¥, K has at most two components.

Suppose K has two components. If J<¥, ¢ normalizes ¥ and the
other component of K, say ¥,. Let U be a t-invariant Sylow 2-sub-
group of ¥,. Then Cy()(&) lies in CzE)NC(), so |Cz&){>|=4 and by
Suzuki’s lemma, m(T)<2. But P<K and M,=[N,(4), M]J<¥. As Y
and ¥, are conjugate and M,=E,, this is impossible. Thus E=YY!
and ¥/Z(¥)=GLy2). Suppose Z(¥)#1. Then ¥=SL,(7). If YUY‘=1,
then Cz@)[> Cz()=SL,(7), contrary to the structure of Cz(). If
|¥ N ¥t|=2, then m(X)=3, a contradiction. Thus Y=GL,(2).

Suppose K is quasisimple. By (7.6), Cs(f)=S=<J and SnZK)=1.
Since PNZ(K) is a E-invariant 2-subgroup, this implies PN Z(K)=1.
If C.(M)=Z(K), then as |P|=2°, K/Z(K)=GL\2), GL«(2), GL,2), or
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Sps(2) by (2.4). A Sylow 2-subgroup of GL,(2) possesses a unique ele-
mentary abelian subgroup of order 16, while M,=M,=FE,. The remain-
ing three groups have trivial Schur multipliers. As Cz(f)[>J=GL(2),
[4, section 19] shows that this is not the case. If C,(M)=Z(K), K/C (M)
is quasisimple with nontrivial center. Looking at the local subgroups
of GL«2), we have K/Cx(M,)=SL,4). Then PO,(K)eSyl(X) and as
PNZ(K)=1, O,(K) has a complement in K by Gaschiitz’s theorem [19,
p. 121]. Since K is perfect, this implies O,(K)=1. In view of the Schur
multiplier of PSL,(4), we get K=SL,(4).

(7.8) K/M,%SL(4).

PROOF. Suppose K/M,=SL,4) and let Q be a Sylow 3-subgroup of
Z(K mod M,). Then Cy,(@)=1 and K=M,C(Q). As |Ny,,(@)|=2 and
S (Mit)=t":, we may assume that Q*=Q. Then N, (F) =Cg(t) is a split
extension of F' by Cr(Q)NC(t), a contradiction.

DEFINITION. By (7.7) and (7.8) we can write K/M,=L,/M,x L!/M,
with L,/M,=GL,2).

(7.9) K=L;xXL; and L=Cx(t)=N, (F)'.

PROOF. Suppose C,,(L,)=1 and let D=L,NP and W=C,, (D). Then
1W< Li and as C,(L)=1, |W|=8. Now L,=(D, D*) for some involu-
tion ze L,, so WNW*<Cy(L,)=1. As |M,|=2°, we get |W|=8 and L{/M,
acts irreducibly on W. As L!={(D! D*", it follows that |Cy(D")|=2.
Now V.=<Z(P) by (7.5) (2). But then C,(D"=V,, a contradiction. Thus
U=Cy(L,)#1. By (5.4)(1) a Sylow 7-subgroup @ of N, (F) acts fixed-
point-freely on M,. Thus UN U*'<C, (K )=C\,(@Q)=1, 80 |U|=8 and L,/M;
is irreducible on U*. As Z(L,/U%=M,/U* and the Schur multiplier of
GLy(2) has order 2, |[L:NM,: Ut|<2. As Cu,(@)=1, we have LN M,=U"*
and K=L;xL{*. As Cgy,(t)=N.(F)M,/M,, the assertion holds.

DEFINITION. Let U=L;NP. Thus P=Ux U*and U=C,(#)=S. Note
that Z(P)=V,.

(7.10) t*NP=@ and N(P{t))=Ngx(S)P.

PROOF. In S the centralizer of every involution has rank 3, so in
P the centralizer of every involution has rank 6. As m(H)<5, t*NP=g.
Now Ny(P<{t))=Ngy(8S), for LN P{t>)=S. As _#(P<{t)—P)=t?, we conclude
that N(P<{t))=Ny,(S)P.

(7.11) If R=T, then P e Syl,(0%(G)).
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PROOF. If R=T, the preceding lemma shows P<t)eSyl,(G) and
moreover, t ¢ O¥G) by the Thompson fusion lemma.

(7.12) Ewery involution of U is conjugate to the involution of Z(U)
in <L, N.(E)) and every involution of P— U is conjugate to an involution
of Vi—Z(U) in <K, N (E)).

PROOF. Let F,=0,L)), so that M,=F,xF¢. Let E,=M,NU, A=
J,(U mod Z(U)), and B,=M,NU. As M,/V,=E; and J.(S/Z(8))= A/ Z(S),
we have J,(P/V)=M,/V, and M,=A,xAi. By (7.1) 1), [N(4), V.]=1,
so N.(A) normalizes Z(M, mod Z(U))=A,Z(U)*. Take a Sylow 3-subgroup
Q of N(F)' NN, (A). Then [4, Q]=A. As Q=<K, Q normalizes LiNM,=A4,
and so A, is Q-isomorphic to C, (t)=A. Thus [4, Q]=4, and we have
[4,Z(U), Z(L)Q]=A,, for Z(L) centralizes P. If @, is a Sylow 3-subgroup
of N,(A) containing Q, then Z(L)Q<]Q,. Thus N, (4)=(Q,, S)=N(A).
By (7.5) (2), Z(P)=V, and as Q,(Z«(8S))=2(B), Q(Z,(P))=V,. Hence V,=
(V.nU)x(V,nU)* and V,NU=C,,(t)=4(B). Then as Cy(Z(B))=1B,
Co(Vy)=M, Thus B,=C,(V,nU), Z(B)=V,NU, and M,=B,xB;. Now
M, M,=Cy (V) =C,(Z(By)) X C.(Z(By))* and C,(Z(B))=M,nM,NC(E)=
ANB. By (1.4) (4), C,(Z(B,))=A,N B, has precisely two maximal elemen-
tary abelian subgroups, one of which is F,. Denote by E, the other
maximal elementary abelian subgroup of A,NB,. Then the only t-invari-
ant members of &*(M,NM,) are E.E! and F,F¢. Thus M,=E.E|, so
E,=E,. Hence M,=E,xE¢, &*(E,F)={E, F}, and Z(B)=E,NF,. As
N.(E) normalizes M, and E,=M,N A,, E, is N,(E)-isomorphic to C,,(t)=E.
Then by (1.8) (4), an element ¢ of a Sylow 3-subgroup of N, (E) with
e¢ Z(L) acts transitively on (E,/Z(U))*.

Set (2> =Z(U). Let y be an involution in U. If y¢F, then as
L}/F,=GLy2) and &*(E,F,)={E, F,}, y is fused into E, by an element
of L. Thus y is fused into Z(B,) by an element of (L, N.(&)). Now
all involutions of F, are conjugate in L;. Thus y and z, are conjugate
in <{L;, N.(E)).

Let 2 be an involution in P—U. If e U? « and 2z are conjugate
in (K, N_(E)> by the above. Suppose ¢ U* and choose x, € U and x, € U*
so that x=ux,2,. As L!/F, has only one conjugacy class of involutions
and € *(E,F,)={E, F,}, replacing « with a suitable K-conjugate of x if
necessary, we may assume that z, € E,UF, and w,c EfUF;. If x,€F,
and z,c F¢, x is conjugate to z2; in K. If z,€F, and z,€ Ef/—F;, then
x'=z, for some ac L, and x*=2x,, Now x’e Z(B,)* for some be {¢) and
x*=zuxi. Thus % is conjugate to zw2; in (K, N, (K)). If =z ¢eKE,—F, and
z, € F{, then by symmetry x and z,2; are conjugate in (K, N, (E)). Finally,
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assume that x, ¢ E,—F, and «,€ E;—F;. There is an involution f such
that U=Af) and ffi=h,, for S=A<h). As Z(U)NE,=Z(B,), f has
two orbits on (E,/Z(U))t. Now E,=Z(B,)UZ(B,)'UZB,)* and Z(B,)" =
Z(B)*". As [e, t]=1, we also have E{=Z(B,)!U Z(B,)* U Z(B,)*" and Z(B,)" ' =
Z(B,)'*. Note that [f, z,]=[f*, 2]=1. As x, € E,—Z(B,) and z, ¢ E:— Z(B,)",
we can choose a € (f, f*) so that «x!e Z(B,)* and 2?ec Z(B,)*”. Then z**
and 2,2} are conjuate in K. The proof is complete.

(1.18) If R+T, then P e Syl (0(@)).

PROOF. Suppose R+#T and let P, be a Sylow 2-subgroup of N(K)
containing P{g, t). Set P,=N, (L) and U,=C,(L;)!. We have shown in
the proof of (7.12) that M,=F,xF¢{, M,=E,xE! M,=A,x A, and
& *(EF,)={E,, F,} where F,=04L;), E,=M,N U, and 4,=J,(U mod Z(U)).
By (7.4), M, is a Sylow 2-subgroup of C(AV,/V.)NC(V)), so it is a Sylow
2-subgroup of C(M,/V)NC(V)). Now A,=Cy,(t)=A, so Z(M)=V,. As
C(M)<IC(M,/ V)N C(V)), it follows that C(M,)= V,0(C(M,)) by [12, Theorem
7.4.3]. Thus C(K) has odd order and U,N Ui=1. By the Krull-Schmidt
theorem N(K) acts on the set {L, L}, so P,=P,t). (2.9) implies
|U,: U|=2. Similarly, P,/U{ is isomorphic to a subgroup of Aut (L)) and
|P: UUS|<2. If |U, U|=2, then P,=U,x U! and U,=Cp(t)=8{g), so
there is an involution g, € U, such that g,gi=g. Thus one of the following
two cases occurs:

Case 1. U,=U{g,p=S{g) with g,gt=g and P,=U,x U¢.

Case 2. U,=U and P,=P{g).

As C,(t)=T, Z(P)={z). As P,>V, Z(P) contains V,. On the
other hand, Z,(P)<N; ({7, t))=TC, and as TGC,/<{z) =S{g)/<{z) X Ci/{z),
Z(TC, mod {z))=Z(B)C, by (1.5) (1). Hence Z,(P)=Z(B)C,NCM,/{z))=
Z(B)V,. As Cg(t)=A{t) and Z(A{L))={z,t), Z(C)=<z). Moreover,
Z(Co/ V)=AV,/V, since N, (C)=C, by (7.1)(1). If Z(P)=2Z(B)V,, then
Z(B)V,=Z,(C)<AV,, so we have Z,(C)=AV, by (1.8)(2) and M,[> A.
But M,<N, (F<{t)) and AF<{t)=A{t), whereas M, does not normalize
Z(A(t)), a contradiction. Thus Z,(P,)=V,. As P{g)NC(L)=U*, Ulg)=
P{g>/U* is isomorphic to a Sylow 2-subgroup of Aut (L!). Hence by (5.5)
and (1.5) (4), J(U{g>)=Fg) and J(PLg)/U")=F,U*g)/U", so J(P{g))=
Mg). (1.5)(4) also shows .#(Ug)=F,g and _#(Pg)=M,g.

We argue that in Case 1, J,(P,)=M(<g,, g¢) and J,(P,/V)=M,/V,. As
P,=Py(t) and Cp(t)=T, every involution of P,—P, is conjugate to ¢ in
P, and the centralizer of which in P, has rank 5. Now J,(U,)=F<g,,
so M{g,, ;) is a unique elementary abelian subgroup of P, of order 2°
and is self-centralizing in P,. Thus J,(P)=M{g, g;>. Let P,=P]/V,.
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"Then as V,=Z(U)xZU)t,, P,=U,xU¢ and U,=Cs¥)=5(g)=8{g)/<{z).
(1.5) (8) shows J,(U,)=A4, and Cs(My)=M,, so J(P,/V,)=M,/V..

Next we argue that in Case 2, J,.(P)=Mg) and J . (P,/V)=M,/V,.
As P=Ux Ut=Ux U*, #(Pt)=t" and Z(Pgt)=(gt)"*. As Cp ()=S{g, t)
and C, (gt)=Cx(gt){g, t) with Cp(gt)=U and as P,=Fg, t), the centralizer
in P, of every involution of P,—P{g) has rank at most 5. As J,(P{g))=
MJ(g> is self-centralizing in P,, we get J.(P)=M<g). Let P,=P,/V,.
Then P=Ux Ut=Ux U’ and the rank of U is 4, so the centralizer in
P, of every involution of P,—.P{(g) has rank at most 6. As P{g)/U‘=
S<g>, (1.5) (8) gives J,(PXg)/ U V) =A,U*V,/U*V,. Also, U'V/V,=U*/Z(U")
and J(U'Vy/V)=A;Vy/V.. Thus J(P./V)=M/V..

We have shown that M,/Z,(P)=J.(P,/Z(P)) and M,=M,NJ.(P).
Hence N(P)<N(M,)=N(K), which implies P, € Syl,(G). As shown before
#(Pg)=M,g, whence the centralizer in P of every involution of P, has
rank 6. Since m(H)=5, we conclude that t*NP,=@.

We wish to show that M,{g,, g5><t) € Syl,(C(g)) in Case 1 and M,{g, ) €
Syl,(C(g)) in Case 2. For this purpose let X=C(g). Assume that Case 1
holds. As Ms(ﬂo: 90> =F{go) X (Folgo))* and M,{g,, g5 N H=F({g), we have
& * (Mo, 96 <tD) ={M{0,, gt), F<g, t)} and N(Mg,, g:)<t)) =N(F<g, t))-
Now t*s=Ft and t*°*=gt, so Mg, g¢> acts transitively on FtUFgt. As
t*NP,= @, this implies t** " =FtUFgt. Then as F{(g, t) € Syl, (Cx(?)),
| Nx(F<g, t))|;=2'. Hence Mg, gi)<t) € Syl (C(g)).

Set I=C,(9)’. By (1.7), I=SL,8) and FeSyl,(C.(g)). Moreover,
Cx(t)=Cx(g9)=Cr(9)Coun(9){g, t>. Assume that ¢ and gt are not conjugate
in Ny({g, t5) and let X=X/{g>. Then Cz(})=C.(t)/{g), so I is a standard
subgroup of X and (%) eSylL (C:(I)). As M,=E,, [16] and [28, (2.10)}
show that E(X)=SL,2%), SL,8), or SL,8)xSL,8) and CzE(X)) is of
odd order. If E(X)=SL,2") or SL,8), then as the Schur multipliers
of these groups are trivial, E(Xmod (g))=X*x<{g) where X*=E(X
mod {g))’. As {g) eSyl,(C;(X*), X* is a standard subgroup of G iso-
morphic to SL,(2°%) or SL,8). Hence by [16] and [238], E(G/O(G)) is deter-
miried. But then [4] and the structure of H yield a contradiction. Thus
E(X)=SLy(8) X SLy(8) and Mg, t) € Syl,(C(g)).

Assume that Case 2 holds and that ¢t and gt are conjugate in N,({g, t))-
Let Y=N(M,{g)) and Y=Y/M,(g>. Let D be a Sylow 2-subgroup of
Ny (F{g, t)) containing M,{g, t). By our hypothesis N,({g, t)) is transitive
on {t, gt} and as F{g, t)> € Syl,(Cx(t)), a Sylow 2-subgroup of N ( g, t))
containing F{g, t) lies in N (F<{g, t)) and is transitive on {¢, gt}. Thus
N, (F{g,t)) is transitive on FtUFgt and |N (F{g,t))|.=2. Then
|D: M (g, t)|=2, t?=F{g)t, and C,(t)=F{g, t). As &*(MLg, t))={M:«<9),
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F{g, t)}, DEY. By (71.2) (4), g centralizes K/M,, so K<Y. As P, eSyl,(G)
and t°NP,=0, P,=P{&)>eSylL(Y) and t*NnP=@. By the Thompson
fusion lemma, Y=0%¥){&) and OXY)=K with PeSyl,(K). Let J=
N (FY. Then Noui(F{g, t))SNow (F)=0H)xJ and as [g, J|ISF,
Nu(F{g, t))=JCoz(9){g, t). Now " @N=¢? whence N(F{g, )=
Nu(F{g, t))D=Ny(M<g, t)). As Ny(Mg,t)) is the preimage of Cy() in
Y, No(F{g, t))=J X Coun(g) X {t)> is a subgroup of Cz{) of index 2 with
J=GL(2). As K=L,xL' and L,=GL(2), O,Y/0(Y))=1 and so
E(Y/O(Y))=F*(Y/O(Y))#1. There are no proper t-invariant normal
subgroups of K, so K<E(YmodO(Y)). Let X, be a component of
E(Y/O(Y)). Then 1£X,NPO(Y)/0(Y)eSyL(X), so X, -contains
L,0(Y)/O(Y) or L:O(Y)/O(Y), for they are the only proper normal sub-
groups of KO(Y)/O(Y). There are no simple groups whose Sylow
2-subgroups are isomorphic to P, so we have E(Y/0O(¥))=X,xX; and
X, =E(Y/O(Y))NCE)<|Cz@®)O(Y)/0(Y). Thus X,=GL2) and E(Y/O(Y))=
KO(Y)/0(Y). By (1.5)(1), [M, T]1=B and [C,# (), BI=[Cow(g), Bl=1.
Thus [0(Y), B]=1 by [10, (1J)] and we conclude that E(Y)=K. Now

=0%Y)ND)E). As |0(Y)/K| is odd, O(Y)ND=<K and D<K{I>N
C(f)=f{f>. But then D<My, t)JSN(F{t)), contrary to t?=F{g)t.
Thus in Case 2, ¢t and gt are not conjugate in N,({g, t)) and by the
preceding paragraph M,{g, t) € Syl, (C(g)).

Next we wish to show that |C(gt)|;=2%. For this purpose let C=C(gt)
and C=C/{gt). As g and t are not conjugate in G, N({t, gt))=Cc(t),
and C5()=Cc(t)/<{gt). Recall that Cy(¢)=Cgr(9)=Cr(g9)Cou(9)<g,t) and
I=C,(g9)=SLy8). Then C;t)NCUI)=Coum(g){t)>, so I is a standard sub-
group of C and <{Z) € Syl, (C5(I)). Moreover, C=C.(gt){g, t> with Cp(gt)=U.
By [16] and [28, (2.10)], E(C)/Z(E(C)) is isomorphic to one of SL,(2%), SLS8),
PSU(8), G48), or SL,8)xSL,8) and C3E(C)) is of odd order. In the
first three cases, setting C*=ZF(Cmod {gt))’ we have E(Cmod {gt))=
C*x{gt) and C* is a standard subgroup of G with {(gt) € Syl,(C(C*)).
Hence E(G/O(G)) is determined by [16] and [23]. But each possibility
of E(G/O(@)) is incompatible with the structure of H. If E(C)=SL,8)x
SL,8), Cx(gt)<{t) is a Sylow 2-subgroup of C. But C.(gt)<f) has rank
4, a contradiction. Thus E(C)/Z(E(C))=G,3) and C.(gt){g, t> is a Sylow
2-subgroup of C(gt) as required.

Since |C(g)|,=2° and |C(gt)|.=2%, (7.12) gives g° N P=(gt)° N P=@. As
shown before P, € Syl, (G) and t°N P,= @&, whence ¢ ¢ O*(G) by the Thompson
fusion lemma. Thus in Case 2, P=P,N O0%G) € Syl, (O*G)) by Thompson’s
lemma. Suppose Case 1 holds. Then gt=t¢ O*G). Hence if g ¢ 0*G),
R is a Sylow 2-subgroup of O*G){t)NH, so that P is a Sylow 2-sub-
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group of OO @)<{t))=0%@) by (7.11). If geO¥G), P,NO*G) is equal
to P{g)>, P{git), or P{g, gt>. As ¢g°NP= and (g,t)’=g, P,NO*G)=*P{g)
or P{g;t) by [28, (2.83)]. Assume that P,NO*G)=P{g,, ¢g;). Then there
is an involution x € g?NP{g,y. Choose z,€ U{g,y and x,€ U* such that
x=x,2,. Then x, ¢ Ug, By (1.8), a¢=g, for some ac U. If z,=1, then
Cx)=F,{g,>U*, which contradicts |C(g)|.=2°. Thus =z, is an involution
of U* and as L}/F,=GLy2) and & *(E,F,)={E,, F,}, we have x}¢c E;UFy
for some be L. Then C,«(x!) is nonabelian by (1.2) and as z**=gy3,
Co(@*?) =Cy(go)Cre(x}). But Mg, gi)<t> €Syl (C(g)), so My (g, gy is an
abelian Sylow 2-subgroup of O*G)NC(g), a contradiction. Therefore
P=P,N0¥G) € Syl, (0*@)). The proof is complete.

(1.14) E(G)|Z(E(®)=G4(3) X G,(3).

ProOF. By (7.11) and (7.13), P is a Sylow 2-subgroup of O*G).
We argue that U is strongly involution closed in P with respect to O*G).
Suppose false and choose an involution a€ U and an element x< O%G)
such that a*e P—U. As (K, L)<O0%G), we may assume that ac Z(U)
and ¢°c V, by (7.12). Then as V,=Z(P), a and a° are conjugate in
O*GYNNP). Now P=UxU?, so N(P) acts on the set {U’, U"*} by the
Krull-Schmidt theorem. As U’<]P, this implies U’'<]O*G)NN(P). But
then as Z(U)< U’, we have a®c U’, a contradiction. Thus U is strongly
involution closed in P with respect to O*G). Let bars denote images
in G/O(G). Then L is a standard subgroup of G, so [24, Corollary 2]
and a property of groups with a standard subgroup show that E(G)=
G,(8) xGy(3). Now [28, (2.10)] establishes the assertion.
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