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Introduction

Local class field theory has been generalized by M. Moriya and T.
Nakayama [4, 5] for the case where the ground field K is a complete
local field (i.e., a complete field under a discrete valuation) with a quasi-
finite residue field C. Here a field C is called quasifinite if C satisfies
the following two conditions;

1. C is a perfect field.

2. Gal(C,/C)=2Z,
where C, is the separable algebraic closure of C and 2=proj. lim Z/nZ.
Thereafter, G. Whaples [7, 8] proved explicitly the existence theorem
over a complete local field K with a quasifinite residue field of char-
acteristic p>0, introducing the notion of analytic subgroups of the
multiplicative group K* of K. J.P. Serre [6] reconstructed class field
theory over such a field K by using the class formation theory which
was introduced by E. Artin. But the existence theorem was discussed
only in the case where the residue field of the ground field is finite.

On the other hand, Y. Kawada and I. Satake [2] applied the residue
vectors defined in E. Witt [9] to the class formation theory of p-exten-
sions over a formal power series field in one variable with a finite co-
efficient field of characteristic »>0. Thereafter, K. Kanesaka and K.
Sekiguchi [3] carried out explicitly the calculation of the residue vectors
of the formal power series field with a perfect coefficient field of charac-
teristic p>0.

In this paper we consider the generalized local class field theory by
the method of Y. Kawada and I. Satake [2] using the explicit calculation
of the residue vectors. Since we consider only p-extensions, the condi-
tion of the residue field to be quasifinite can be replaced by a weaker
condition to be p-quasifinite (see Definition 1.2.1). Namely, we shall prove
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here the fundamental theorems (including the existence theorem) of class
field theory of p-extensions over a formal power series field K with a
p-quasifinite coefficient field, using the theory of abelian p-extensions
and residue vectors of Witt. For the existence theorem, we define a
new topology in K* which we shall call the weak topology. In order
to define the weak topology in K*, we use the explicit calculation of
residue vectors.

In §1 we shall prove a class formation of p-extensions over a com-
plete local field with a p-quasifinite residue field by a similar method as
that of J. P. Serre [6] (see Theorem 1.2.1).

In §2 we shall explain well-known theory of Witt for abelian p-
extensions of a field of characteristic p>0, following Y. Kawada and I.
Satake [2]. In order to give a preparation for class field theory of
infinite extensions which will be considered in forthcoming paper, we
shall also consider infinite abelian p-extensions here. Especially, Theorem
2.2.1 is a natural generalization of Witt theory of finite extensions and
show that the generalized Witt theory is dual to the Galois theory in
the sense of Pontrjagin.

In §3 we define first two group pairings by the use of the residue
vectors (see §8.1). One of these pairings is the same as defined in Y.
Kawada and 1. Satake [2] §2, (32). Next we define the weak topology
in K*. Using the results in §1 and §2 together, we shall prove the
orthogonal theorem (Theorem 3.2.1) and the fundamental theorem (Theo-
rem 3.2.2) (see §3.2). The orthogonal theorem is a natural generalization
of [2] § 2, (XII). Most of the results in §3 can be proved by the results
in §2 and by explicit calculations only. The result of the general theory
of class formation in §1 is used only for a part of the proof of the
orthogonal theorem. Finally we consider the relation between the exist-
ence theorem of G. Whaples [7, 8] and our result.

The author wishes to express his thanks to Professor Yukiyosi
Kawada.

§1. Class formation of p-extensions over a complete local field
with a p-quasifinite residue field.

1.1. First we shall fix some necessary notations which will be used
later. Let K be a field, L/K a finite or an infinite Galois extension with
the Galois group G=Gal (L/K). We always consider Krull’s compact
topology in G. Let A be a G-group. A is called a topological G-group
if, for any ac A, the set of those 0 e G such that ga=a is an open
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subgroup of G; a trivial G-group A, A=L and A=L* are such examples.
For a topological G-group A and a positive integer 7, the r-cohomology
group of G over A is defined by

(1) H"(G, A)=ind.lim H"(G/H, A¥)

where A”={a € A|ca=a for any e H} and H runs over the set of open
normal subgroups of G. Here the inductive limit is defined with respect
to the inductive system with inflation homomorphisms. In particular,
we write

(2) H"(L/K)=H"(G, L*) .
Then, we have ,
(3) H'(L/K)=0.

Let E/K be a finite or an infinite Galois extension containing the Galois
extension L/K. Then we have the following exact sequence:
inf

(4) 0 — H¥L/K) — H¥E/K) —> H¥E/L) (exact).

For a finite Galois extension L/K of degree n, we have

(5) ; n-H*(L/K)=0 .
By (1) and (4), we have also
(6) HE/K)= U, H(L/K) ,

where L runs over the set of finite Galois extensions over K contained
in K.
For an additive group A and a prime number p, we put

(7) AP ={aec A|p°’a=0 for some ¢=0};
and for an additive group homomorphism f: A— B, we put
(7 fP=fl,m (the restriction of f on A®).

By (7) and (7'), we have a functor of the category of additive groups

. . f g [ g®
into itself. If 0—A > B-—C (exact), then 0— A" > B®® »C? (exact).

f g . f(P) g(?) .
If 0—» A= B (C—0 (split, exact), then 0 - A® — B?» —— (C» (0 (split,

exact).
Let K be a field, K,, an algebraic closure of K, K, the separable
algebraic closure of K contained in K, and K[! the maximal separable
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p-extension of K contained in K,. Then K”/K is a Galois extension
and Kc Lc K!*! implies L!*1=K[*,

LEmMMA 1.1.1. Let L/K be a finite or an infinite Galois extension
contained in K,, then

Cont. Hom (Gal (L/K), R/Z)"'=Cont. Hom (Gal (L N K*V/K), R/Z)

where we denote by R, Q, Z the field of real numbers, rational numbers,
and the ring of integers respectively. Here we denote by Cont. Hom ( , )
the set of all continuous homomorphisms.

Proor. For X eCont. Hom (Gal (L/K), R/Z), the order of X is a
power of p if and only if Gal (L/LNK!P)cKerX. Hence if Xe
Cont. Hom (Gal (L/K), R/Z)?, then X induces the homomorphism ¥ of
Gal (LN K*Y/K) into R/Z such that '

Gal (L/K) —— R/Z

e
Gal (LN K/ K)

is a commutative diagram, where the vertical arrow is defined by the
canonical homomorphism. Then the mapping X+ is an isomorphism of
Cont.Hom (Gal(L/K), R/Z)** onto Cont.Hom (Gal(L N K!*'/K), R/Z). Q.E.D.

Let K be a field. Then the Brauer group of the field K is defined by

(8) B,=H%K,/K) ,
and we have
(9) Bf'=H*K!*/K) .

LEMMA 1.1.2. Let C be a perfect field of characteristic p, then
B =0.

ProoF. By (6) and (9), it is enough to prove that H?*C'/C)=
H*Gal (C'/C), C"*)=0 for a finite Galois p-extension C’ over C. This
relation is clear by the fact that C’* is uniquely p-divisible and Gal (C’/C)
is a finite p-group. Q.E.D.

Let K be a complete field under a discrete valuation. If the residue
field C of K is perfect, then there is a split exact sequence:

(10) 0— B, > By — Cont. Hom (Gal (C,/C), R/Z) — 0 .
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Moreover, let L/K be a finite extension with the ramification index e, -
and C’ the residue field of L, then there is a commutative diagram:

0 > B, » Bx — Cont. Hom (Gal (C,/C), R/Z) — 0
11) resl resl e-resl
0 By > B, - Cont. Hom (Gal (C;/C"), R/Z) —> 0 .

Hence we have the following proposition:

PROPOSITION 1.1.1. Let K be a complete local field with a perfect
residue field C of characteristic p>0, L/K a finite p-extension with the
ramification index e, and C’ the residue field of L. Then, we have the
following commutative diagram:

¥ —— Cont. Hom (Gal (C{*Y/C), R/Z)

a®
(12) Jres v
+
$ —=» Cont. Hom (Gal (C{*/C"), R/Z) .

1.2. We denote by Z, the ring of all p-adic integers. Z, is a topol-
ogical ring by the usual topology.

LEMMA 1.2.1. Let G be a compact topological group with the funda-
mental system of meighborhoods of unity comsisting of all open mormal
subgroups of G of finite indices p* (n=1), and let 0 € G. Then there is
a unique continuous homomorphism f, of Z, to G such that f,(1)=o0.

PrROOF. We define a mapping of Z to G by n+—o¢" for neZ. This
mapping is continuous homomorphism with respect to the relative topology
of ZcZ, Since Z is dense in Z, and G is compact, this continuous
homomorphism is uniquely extended to the continuous homomorphism f,
of Z, to G. Q.E.D.

We denote ¢” instead of f,(v), for ve Z,; and o instead of f,(Z,).

COROLLARY. Let G be as in Lemma 1.2.1.
(i) If 0 e€G is of finite order, then the order is a power of p, and

o7 = Z,: if 0 is of infinite order
~ |Z/p"Z: if o is of finite order p* (n=0) .

(i) If G is commutative, then G is a Z,~group by the following action:
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Z,XxG— G
({)] (4]
», 0) —— 0" .

DEFINITION 1.2.1. Let C be a perfect field of characteristic p. We
say that C is p-quasifinite if the following condition holds:

(13) Gal (C/C)=2Z, .

REMARK. If C is quasifinite of characteristic p, then C is p-quasi-
finite.

Let F'eGal (C*)/C). We say that F' provides C with a structure of p-
quasifinite field or F is a free generator of Gal (C}*)/C) if Gal(C/*)/C)=F?.

PROPOSITION 1.2.1. Let C be a p-quasifinite field, F a free generator
of Gal (C!*/C), C'|C a finite extension of degree p* (n=0), and F'=F*".
Then F'eGal (C?/C") and F' provides C' with a structure of P-quUasi-
Jfinite field. Moreover, C'/C is a cyclic extension.

The proof is clear.
Let C be a p-quasifinite field, F a free generator of Gal (C*/C),
then, we define a mapping g of Cont. Hom (Gal (C/*Y/C), R/Z) into R/Z by

(14) BX)=X(F) for XeCont.Hom (Gal (C/*Y/C), R/Z) .

Let C'/C be a finite extension of degree »" (n=0), then similarly we
define a mapping B’ by
(14" B'X)=X'(F*") for X' eCont. Hom (Gal (C!*Y/C"), R/Z) .
PROPOSITION 1.2.2. We have the following commutative dragram:
Cont. Hom (Gal (C*Y/C), R/Z) ——;—» Q/Z)”
(15) [res lxp"
Cont. Hom (Gal (C!*/C"), R/ Z) T",—» Q/Z)» .

- PROOF. g'res (X)=res X(F*")=X(F*")=p"X(F)=p"B8(X) for any Xe
Cont. Hom (Gal (C!*Y/C), R/Z). Q.E.D.

By (12) and (15), we have

PROPOSITION 1.2.3. Let K be a complete local field with a P-quUast-
Jfinite residue field, L/K a finite separable p-extension of degree [L: K].
We put inviPl=goa”, invi!=g'ca’?. Then, we have the following
commutative diagram:
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P = (Q/2)”

) : [p]
(16) resl mvx lx[L: K]
BY = @/Z)" .
L

COROLLARY. Let K be as in Proposition 1.2.8, L/K a finite Galois
p-extension. Then, we have

17) H¥L/K)=Z|[L: K1Z .
Finally, we have the following theorem:

THEOREM 1.2.1. Let K be a complete local field with a p-quasifinite
residue field C. Put

{R—-—-{L]KCLCKJ“, [L: K]<}, G=Gal(K*/K),
G.,=Gal (K/*Y/L) for Le&.

Then we have a class formation (G, {G.|Lec &}, K", inv¥?). (See J. P.
Serre [6].)

In other words, we define a functor E* of & to the category of
abelian groups by

E*X(L)=L* for Le&
19 E*(iz0)=1%z,0:l.% (restriction)
for L,L'ef, tr,: L L' (natural injection) .

(18)

Then E* satisfies all the conditions of a class formation. (See Y.
Kawada [1].)

By the general theory of class formation, we have
(20) K*|Ny, L*=Gal (LN K,,/K)=G/[G: G]

for Le &, L/K: Galois extension, where G=Gal (L/K), N,/ is the norm
map of L to K, K,, is the maximal abelian extension of K contained in
K, and [G: G] means the commutator subgroup of G. Especially, if Le&
is a finite abelian p-extension over K, then

(20" K*|Ny xL*=Gal (L/K) .

§2. Abelian p-extensions over a field of characteristic p.

2.0. First we shall reproduce here well-known Witt theory for
abelian p-extension in characteristic » for our further development. Let



174 KOJI SEKIGUCHI

K be a field of characteristic p, F, the prime field of K. We denote by
W.(K), W, (K) (n=1) the ring of Witt vectors over K of infinite length,
of length %, respectively. For a Witt vector x=(x,, x,, ) (®, € K, n=
0,1,2, ---) of infinite length, we define the mappings V, =, (n=1) by
Ve=(0, z, x,, --+) e W.(K) and by mx=(x, x, -+, ®,_,) € W,(K). Then
V is an injective additive homomorphism, x, is a surjective ring homo-
morphism, and Kerzx,=V"W_(K) holds. Hence we have the exact
sequence:

00— V"W (K) — W (K) 2 W,(K)—0 .

We define a topology in W.(K) by taking {V*W.(K)|n=1} as the funda-
mental system of neighborhoods of 0. Then W.(K) is a topological
ring and W, (K) is a discrete ring with the quotient topology. We define
the ring homomorphism A, of W, (K) onto W,_(K) by (x, 2, -, %,_s»
xn_l)&(aco, &, -+, %,,). Then we have 7w,=A,,,-7,,,. Hence we have
W (K)=proj. lim W,(K) with respect to the projective system (W,(K), A,).
For a Witt vector x=(x,, #,, ---) of infinite length or of finite length =,
we define the mappings P, ¢ as usual by Pr=(x3, z?, - - -) and by gx= Pr—z.
Then P is an injective ring homomorphism, ¥ is an additive homomor-
phism and Ker 9= W, (F,) (x=c or =) holds. Moreover, we have pr=
PoVx=VoPxr and pzx=V"zx+g-V*(x+ Pr+Px+---+P* %), for z¢
W.(K), n=1. Hence, we have

(1) Tl W(K)=9W.(K)+ V"W (K)=¢W(K)+p"W.(K) .

In particular, we have W, (F,)=Z/p"Z and W.(F,)=Z, We define the
injective additive homomorphism 7, of W,(F,) into R/Z by

m(1)=;}7+z (¢ R/Z) .

Then we have p-7,,,=%,°A4,,,, and D9, ,°%, ;=7 °%,.

Let K, be the algebraic closure of K. For Be W.(K,,) or Be W,(K,)
(B=(B,, By, -++)), we define the field K(B) generated by B over K by
K(B)=K(B,, B,, ---). Similarly, for a set Zc W.(K,) or Zc W (K,), we
define the field K(Z) generated by Z over K by K(Z)=K(B|Be Z), and
for a set Mc W.(K) or McC W,(K), we define the field K(p—M) by
Ky'M)=K(B|¢BeM).

Let L/K be a finite Galois extension with the Galois group G=
Gal (L/K), then W.(L) and W,(L) are G-groups by the action: ¢B=
(6B, 0B, ---) for 6€G and Be W,.(L) or Be W,(L). Then we have
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W.(K)={Be W, L)|cB=B for any 6e€G} (x=oc or n). Hence we can
define the trace mapping of W,(L) onto W, (K) by Ty, /0 B=2c¢ 0B
(*=oc0 or n). Then 1l-cohomology group of G over W, (L) is trivial:

(2) HYG, W,(L))=0.

From (2) follows, as usual, the following theorem of Witt. Let L/K be
" a cyclic extension of degree p», then there exists a vector Be W, (L)
such that ¢B=be W,(K) and L=K(B)=K(9™'b). Conversely, for any
vector be W, (K), there exists a vector Be W,(K,) such that yB=b and
L=K(B)=K(97b) is a cyclic extension of K with the degree p" (0=r=n).

2.1. Let 2=K@®P =K’ NK,, be the maximal abelian p-extension of
K contained in K, (cK,), 2, the composite field of all ecyclic extensions
of degree p" of K contained in 2. Then we have

®) a-yo.,

and

(4) Q=K' W.(K)), 2,=Kg W(K)) .

We put

(5) I' K)=Gal (2/K) , I'"'(K)=Gal (2,/K) .

Then I'(K) and I''(K) are compact abelian groups. By (3), we have
(6) I'(K)=proj. lim I'(K) .

We define the discrete abelian groups T(K) and W, (K) (n=1) by
(7) [BE)=(W(K)/[9 W(K)RQ/Z)* ,

(B,(K)=(WK)[9 W(K)Q(D"Z|Z) ,

where @ means the tensor product over Z. Since QB,,(K)CQB,,“(K)- for
all n=1 and W(K)= U,z BW,(K), we have

(8) W(K)=ind. lim B, (K) ,

with respect to the inductive system of the injection mappings. Let
L/K be any extension, then TB(L) is defined similarly by (7). We define
the additive homomorphism ., of W(K) to W(L) by

(9) Br: O+eW(K)NQW/p"+2Z) — (b+9W(L))RL/p"+2Z) .
By (7) and (9), we have a functor 2B of the category of fields of charac-
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teristic p>0 to the category of discrete additive groups.

PROPOSITION 2.1.1. (i) 2B(K) 48 a divisible torsion p-group.
(ii) Let Q be any subgroup of W(K), then Q is divisible +of and only
if @=pQ.

The proof is clear.
PROPOSITION 2.1.2.
(10) B (K)=W,(K)eW,(K) (n21).

PrROOF. We define a bilinear mapping of (W..(K)/® W..(K)) X (p~"Z/Z)
onto W.(K)/9W,.(K) by (b+¢W.(K), i/p"+Z)—in,b+9W,(K). By the
property of tensor product, we have the homomorphism (b+9 W..(K)®
1/p*+Z)—r,b+9 W, (K) of W, (K) onto W, (K)/9¢W,(K). From (1) follows
that this homomorphism is injective. Q.E.D.

Hence we can define the additive homomorphism ¢, of W, (K) into
B(K) by
(11) Pat (bOy bl; Tty bn—l)
= ((boy by +++, 0,4, 0,0, -+ )+ W.(K)Q(1/p"+ Z) ,
and we have Ker ¢,=9 W, (K), Im ¢,=,(K),

12) G+PW(KNQA/D"+Z)=¢,-7(b) for be W.(K),
(13) PPrs1°Wpt1 =@, ° T,

(14) B,(K)={BeWK)|p"8=0} (n=1),

(15) B is of order p* = b, ¢ K for B=¢,ox,(b).

LEmMA 2.1.1. If ¢,07,(b)=g, T, (b") holds for m, n=1, b, b’ c¢ W (K),
then, we have K(9™'m,b)=K(¢ 'rw,b").

PrOOF. We may assume n=m. By (13), we have ¢, o7, (b)=g,0
Tw(p™""b) and so w,b —7,(p™ "b) e9W,(K). Hence we have K(9 'm, b')=
K(¢7'ma(p™"0)). On the other hand, we have =n,.(p™ "b)=r, (V™ "b)=
,---,0,b, ---,0,,) mod9W,_(K). This implies that K(¢ 'z,(p™ "b))=
K(g~'m,b). Q.E.D.

By this lemma, we can define the field K(¥'8) generated by g-'g
over K as

(16) K(9™'B)=K(¢7'mw,b) for B=g¢,om,(b)eTW(K), be W.(K).
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Moreover, for any subset Q of T’(K), we define the field K(¥'Q) generated
by 97'Q over K as K(¥'Q)=K(¢'R|Be Q).

Let K be any field of characteristic p, then we define an invariant
MXK) (which is a cardinal number) by

amn MK )—_—dim% K/¢K .
ProproSITION 2.1.8.

BWB(K)=P Q/Z)” (direct sum) .

A(K)
The proof is clear by (10), (14) (put »=1) and Proposition 2.1.1. (i).

COROLLARY. Let K,, K, be two fields of characteristic p, then we
have MK))=NK,) if and only if BW(K,)=BW(K,).

2.2, For any vector be W.(K), there exists a vector Be W.(Q)
such that 9B=b. For any oel'(K), we have cB—Be W.(F,) and ¢B—
B=0B'—B’ holds for different B’ with ¢B'=b. Hence we can write
0B—B=0(97'b)—¢~'b. We define a mapping < , Y. of I'(K)x W.(K) onto
W.(F,) by

(18) (o, b)L=0(97"0)—%™d
for 0 e I'(K), be W.(K).

ProrosSITION 2.2.1. (i) The mapping { , YL is a group pairing.
(ii) We denote by BL the ammnihilator (operation) of the pairing
{y YE. Then, we have

(19) Bl (W.(K))=1, B(I'(K))=9W.(K) .
Hence, we have an orthogonal pairing:
(20) o e NEK)X W (K9 W (K) — W (F,) .

ProOF. (i) The bilinearity of <, DL is evident. Let (o, b) e I'(K) X
Wo(K), n=1, then we put L=K(¢'x,b). Since L/K is a finite cyclic
p-extension, H=Gal (2/L) is an open subgroup of I'(K). Moreover, we
have (0cH, b+-V"W(K))Lc{o, b)L+p"W.(F,). This proves the continuity
of (, L. :

(ii) If oceBL(W.(K)), then o(9 'b)=%7'b holds for any be W.(K),
and hence o=1. It is clear that ¢ W.(K)cBL(I'(K)). Conversely, let
be BL(I'(K)). Then o(9'b)=%"'b holds for any ceI'(K) and so ¢~'be
W.(K). Hence, we have be e W_(K). Q.E.D.
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By Corollary (ii) of Lemma 1.2.1 and by the isomorphism W.(F,)=
Z,, I'K) is a W.(F,)-group. Then we have

(21) {a*, byL=1{a, b)L =0, vb)L
for ceI'(K), be W(K) and v e W (F,).

LEMMA 2.2.1. If ¢,° 7. (b)=gncT.(b") holds for m, n=1, b, b’ €¢ W (K),
them 7, 7,40, bYL=n, {0, b'DL for any o e I'(K).

PrROOF. We may assume n<m. By (13), we have =z, (b'—p»p™"b)e
YW, (K). By (19), we have =,{0o, b >L=m,{o, p*"b),. Hence we have
N © Tml0, U YE=Dp 0 TQud™ "0, b)L =7, o7, {0, b). Q.E.D.

By this lemma, we can define the mapping <, > of I'(K)XTW(K)
into R/Z by

(22) <0.’ B>r=vﬂ°7tﬂ<0-9 b>ol;
for o e I'(K), be W.(K), B=¢,°m.(b) e WK).

PROPOSITION 2.2.2. (i) The mapping { , )’ 18 a group pairing.
(ii) We denote by B the anmihilator (operation) of the pairing
{, Y. Then, we have

(23) B ®(K)=1, B'(I'(K))=0.
Hence we have an orthogonal pairing:
(24) (L, TNK)XB(K)— RIZ .

By the duality theorem of Pontrjagin, the compact group I'(K) i8 dual
to the discrete group TW(K).

PROOF. (i) is clear by Proposition 2.2.1. (i).

(i) If o e BF(W(K)), then x,{g, b)L=0 holds for any b e W.(K), n=1.
Since (o, b)L=0 for any be W.(K), we have o=1. If B=g¢g,om,(b) e
BT(I'(K)), then o(¢~'m,b)=%"'r,b holds any g € I'(K). Since n,be W, .(K),
we have 8=¢,°7x,(b)=0. Q.E.D.

We put |
(25) {f ={the set of all subfields of 2 containing K},

Fir={Le L|[L: K]< o},

(26) {%={the set of all closed subgroups of I'(K)},
Spen={H € 5# |H: open in I'(K)},
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@27 {eg’={the set of all subgroups of W(K)},
&' ={Q e & | Q: finite} .

We define the mappings between . and 5#; between 5#° and &, between
& and &, by

(28) Hi— L=‘.QH , L+—— H=Gal (2/L) (Galois correspondences),
(29) Q— H=B"(Q), H+——Q=B"(H),

(30) L—— Q=KerBy,,, Q+—— L=K(¥™'Q),

for Le &5, He 5%, Qe &, respectively.

LEMMA 2.2.2. (i) BT(Q)=Gal (2/K(¥7'Q)) holds for any Qe &
(ii) BT(Gal (Q/L))=Ker B,, holds for any Le &

The proof is clear.

THEOREM 2.2.1. (i) The mappings (28), (29), (80) between ¥, 57
and & are all bijective.

(ii) If L,, H, Q, (i=1, 2) correspond to ome another by (28), (29),
(30), then L,CL,=H DH,~=Q,CQ..

Since & 57, & are all complete lattices, (28) and (29) are dual
latticeisomorphisms, (30) is a lattice-isomorphism.

(iii) If L and Q correspond to each other by (80), then we have an

orthogonal pairing:
(31) <, >:Gal(L/K)xQ — R/Z .

Hence, Gal (L/K) s dual to Q.

(iv) If L, H, Q correspond to one another by (28), (29), (30), then we
have Le "™ = He SZpm=Q c & =Gal (L/K)=Q.

(v) Q,, I'K)y", B, (K) (n=1) correspond to one another by (28),
(29), (30).

Hence we have

(32) ' K)=I'K)/[I'(K)",
and we have an orthogonal pairing:
(33) CHOIMK)x B, (K)— R/ Z .
Hence I'(K) 18 dual to T, (K).
ProOF. (i) The mapping (28) is bijective by the fundamental theo-
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rem of Galois theory. The mapping (29) is bijective by the duality
theorem of Pontrjagin. By Lemma 2.2.2, the mapping (30) is the com-
posite of (28) and (29), so (30) is also bijective.

(i), (iii), (iv) hold also by the fundamental theorem of Galois theory
and the duality theorem of Pontrjagin.

(v) By (4), (16), we have 2,=K(9"B®,(K)). On the other hand, by
(14) we have B'(I'(K)*")=2,(K). Q.E.D.

ExaMpLES. 1. A (K)=0. This is equivalent to K=K, TW(K)=0,
I'(K)=1 and K'=K. Especially, if K is an algebraically closed field of
characteristic p, then AM(K)=0.

2. MK)=1. This is equivalent to K=9K®PF,, BWK)=(Q/Z)” and
I'(K)=2Z, Especially, if K is a finite field of characteristic p, a quasi-
finite field of characteristic p or a p-quasifinite field, then M(K)=1.

3. AMK)=W, If Kis a formal power series field with the finite
coefficient field of characteristic p, then we have MK)=¥W,.

Now we consider a field C of characteristic p such that AC)=1.
Let 0 eI'(C). We define a mapping S, of W.(C) to W.(F,) by

(84) S,:b—— (o, b)L for be W.(C).
By (21), S, is a W.(F,)-homomorphism of W.(C) to W.(F,) and satisfies
(35) S,=v-S, (Ve W (F,).
If Fel(C) satisfies I'(C)=F"~*»', then we have
LeEMMA 2.2.8. (i) SreCont. Hom (W.(C), W.(F},)).
(ii) Ker S;=9W.(C), Im Sy= W_(F},).

(iil) SF'(P"Wa(F,)=¢ Wx(C)+p"W.(C) (nz1).

(iv) The exact sequence 0—>KJWW(C)—>WO°(C)—S—F> W.(F,)—0 s'plits. In
other words, if we put b(F)e W (C) such that Sz(b(F))=1, then we have

(36) Wo(C)=9W(CYDW(F)b(F) .

ProOOF. (i) and (ii) are clear.

(iii) We have b e SF (" W.(F,))=(F, b)L e p"W_(F,)=n,(F, b)L=0=
w,be9W, (C)=becpW. (C)+p"W.(C).

(iv) is also clear. Q.E.D.

Moreover, we assume C{#P1=Clfl. Let C’'/C be a separable extension
of degree p", then we have I'(C")=I'(C)*""=F*"2,=Z,. Hence we have
AMCH=1 and so Sp.,»: W.(C')— W.(F,) is defined similarly by (34).
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LEMMA 2.2.4.
37 Sppn=Sp- Tww(c'/m .

PrOOF. Since I'(C")=I'(C)*", we have Gal (C’/C)={1, F, ---, F*""'}, and

SO Twm(al/g)b,=2g:_1 Fi(b,) (fOl‘ b’ (S Wm(C’)). Then we have SF. Tww(cl/g)b'=
2185 (V) = S5 (F— Dy (F'Y) = Sy (Fo+1 — Bt = (o — 1) =
Spomd'. Q.E.D.

This lemma means that S, is a generalization of the trace mapping
Ty..cr,- Especially, if C=F, (g=p, f=1) is the finite field of charac-
teristic p with g elements, and F'=P’ is the Frobenius automorphism,
then Sp= Ty c/r,-

§3. Class field theory of p-extensions over a formal power series
field with a p-quasifinite coefficient field.

3.0. Let C be a perfect field of characteristic p, K a formal power
series field in one variable ¢ over the field C: K=C((t)). For aeK*
and be W.(K), the residue vector ResZ (a, b) e W.(C) is defined in E.
Witt [9], and satisfies the following properties: let a, a’ € K*, b, b’ € W..(K),
ce W.(C), then
R-1. ResZ(a-a, b)=ResX (a, b) +ResE (a', b).

R-2. ResZ(a, b+b")=ResE (a, b) +ResZ (a, b’).

R-3. ResZ (a, cb)=c-ResE (a, b).

R-4. ResZ (a, Vb)= V(ResX (a, b)).

R-5. ResZ (a, Pb)= P(ResX (a, b)).

R-6. ResXl: K*xX W_(K)— W.(C) is continuous, with respect to the usual
topology in K*, W.(K), W.(C) defined by the discrete valuation.

R-7. Resk' (oa, 0b)=0(ResE (a, b)), for another formal power series field
K' and a ring isomorphism o¢: K— K’ such that ordy=ord, oo,
where we denote by ordg, ordy. the discrete normal exponential
valuation of K, K’, respectively.
Let L/K be a finite extension. Then, L is also a formal power
series field. Let C’ be the coefficient field of L. Then we have

R-8. Ty. e oResk (a, b)=ResE (a, Ty, 1/xb), for ac K*, be W.(L).

We can calculate the residue vectors explicitly as follows. We denote

by 0x, mg, Ux, U =1+4+m; the valuation ring, the valuation ideal, the

unit group, the l-unit group of K, respectively. We shall use here the

mapping f, € Cont. Hom (W.(C), UY¥) for uem,, which is defined in K.

Kanesaka and K. Sekiguchi [8]. Then we have the following decomposi-

tion of K*:
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(1) K*=C*xt"xUg, U= Il Fi(W(C).

EEY
(j,7)=1

On the other hand, we have the following decomposition of W.(K):

W K)=Woim)BWCIDW(tCIt™])
(2) WD =@ @ W-OOPTTIQUV( D W.O)e™D,

(m,p)=1 (m,p)=1

where {a}=(a, 0,0, --:)e W(K) for acK, and D,zo Damzi: m,p1=1 Weol(C) X
Ps{t-—m} = {2020 ZnZl; (m,p)=1 b(e) m)PG{t—m} l b(ey m) € Woo(C)’ limo—'oo b(e’ m) = 0
(the convergence is uniform with respect to m=1l, (m,p)=1),
liMpco: (m, ;=1 (€, m)=0 (the convergence is uniform with respect to e=0)},
D WOt ™}={ g.l b(m){t"}|b(m) € W(C), lim b(m)=0} .

m21
(m,p)=1 (m,p)=1 (m,p)=1

Using these decompositions, let a € K*, be W.(K) be

a=c-t"- ’];_l; fei(a(9)) »

(,p)=1
(3) b=b"+b'+¢2zo ...2?;1 b(e, m)P'{t‘"‘}+‘§:‘,21 V¥ ,.zz‘l b'(i, m){t™™)) ,
(

(m,p)=1 m,p)=1

where ceC*, ne Z, a(4), b, ble, m), b'(i, m) e W.(C), b’ € Wo(mg). Then
we have

(4) ResE (a, b)=n-b'+% Zz,l m-ble, m)- P‘a(m)
+§1 Vi ...2;;1 —'m-b'(i, m)-a(m)) .
(m,p)=1

(See K. Kanesaka and K. Sekiguchi [3].)

3.1. From now until the end of this paper, we denote by K a formal
power series field in one variable t over a p-quasifinite field C. If F
provides C with a structure of p-quasifinite field, then we have A(C)=1,
I'(C)=F?% and so S; is defined by (34) in §2 and satisfies Lemma 2.2.3.

LEMMA 8.1.1. The additive group W.(K) 18 decomposed as
(5) W=(K)=9 W (K)DW(F,)b(F)D ”‘EQ W (C}{t™},

(m,p)=1

where b(F) € W.(C) such that Sy(b(F))=1. (See Lemma 2.2.3.)
PrRoOF. It is clear that @W.(myz)=W.(mg), W.(C)=9W.(C)D
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W (F,)b(F"). Hence, it is enough to prove that W..(t"'C[t™!]) =9 W..(t*C[t )P
Dmzi: (mm=1 We(C){t™™}. Obviously, W.(t™*C[t™']) contains both 9 W..(¢~'C[t™]),
Dmzii imm=1 Wo(C){t™™} and so their direct sum. Conversely, let b=
¢'Pt "} e W..(C)P{t—™}. If we put ce W.(C) such that P‘c=¢’, then we
bhave b= P‘(c{t™™}). Then b= =i Pi(c{t™™}))+ec{t™™}). Hence we have
W.(C)P{t ™} Co(W.(t'CItD))DW(C){t™™}. Let b=z, Vi mz1: im,p1=1 (%,
m){t™™}) € 121 V(@Pmz1: (m,p)=1 W.(C){t™™}), where lim,,_ .., (m,p)=1 b(@, m)=0.
If we put b(9)=3mzi;mm=100, m){t™™}, b(3)=0b(¢)+pb()+- - +p*b(3),
then we have b=3., V(b)) =3z, p'D(1) — (2, V' (%)) € Wt 'C[t DD
Dmzis =1 Wo(C){t™™}. Hence we have W.(t'C[t']) c oWt 'C[t )P
@mgu {(m,p)=1 Woo(C){t_m}' Q-E-D-

We define a mapping (, >X of K*x W (K) onto W.(F,) by
(6) ' {a, b)&=Sr(ResZ (a, b))
for ac K*, be W,,(K).

PROPOSITION 3.1.1. (i) The mapping { , DX is a group pairing.
(ii) We denote by BZ the anmihilator (operation) of the pairing
{y YX. Then, we have

(7) Bi(W.(K))=C*, BYEK*)=¢W.(K).
Hence we have an orthogonal pairing:
(8) (o Dat KX[C* X Wo(K)[9Wo(K) — W (F,) .
(iii) Using the decomposition (1) and (5), let a € K*, be W.(K) be

a=c-t* II fula(s)

(9 ) (4, p)=1
b=9®)+v-b(F)+ m‘;. b(m){t~™}

(m,p)=1

where ¢ceC*, mneZ, a(j),bm)eW.(C), beW.(K), veWL.(F,),
Hm,, co;m, ;=1 0(M)=0. Then we have

(10) {a, bDE=n-v+ Ez‘.l m-Sgla(m)b(m)) .
(m,p)=1 .
PROOF. (i) is clear by R-1, R-2, R-6 and Lemma 2.2.8. (i).
(ii) and (iii) are also clear by (1), (4), (5). Q.E.D.

LEMMA 8.1.2. If ¢,°7,(b)=g¢n 7, (b') holds for m, n=1, b, b’ € W.(K),
then ,°w,{a, b)E=n,w{a, VDX for any aec K*.
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PROOF. We may assume n=m. By (13) in §2 and (7), we have
ala, b'YE=n.(a, P "b)E. Hence, we have 7, °7m.(a, b')c="7a o T 0™ "{a,
bHE=n, . {a, b)E. Q.E.D.

By this lemma, we can define the mapping < , )* of K* XB(K) into
R/Z by

(11) (@, BF=1,°7La, b)=
for ac K*, be W.(K), B=¢.m.(b) e B(K).

PROPOSITION 3.1.2. (i) The mapping { , )* 18 a group pairing.
(ii) We demote by BT the amnihilator (operation) of the pairing
{,y Y. Then we have :

12) BX(B(K))=C*, BX(K*)=0.
Hence we have an orthogonal pairing:
13) {, Y:K*|C*XBK)— R|Z .

Here the duality theorem of Pontrjagin can mot be applied for this
pairing. Hence K*/C* is mot dual to T(K).

PROOF. (i) is clear by Proposition 3.1.1. (i).

(i) Itisclear that C*C BX(TW(K)). Conversely, let a € BX(W(K)), then
7.{a, b>X=0 for all be W.(K), n=1. Since <a, b)S=0 for all be W..(K),
we have a e C*. If B=¢,om,(b) € BES(K*), then =, {a, b)X=0 for all a € K*.
Since 7w,bec9W,.(K), we have 8=4,°m,(b)=0. Q.E.D.

Let L/K be a finite Galois p-extension, C’ the coefficient field of L.
Then, C’/C is a finite p-extension. If the degree [C': C]=p", then ('
is also a p-quasifinite field and F** provides C’ with a structure of
p-quasifinite field (see Proposition 1.2.1). Hence the pairings {, dE=
Spo-Resi( , ), { , D' are defined similarly by (6), (11), respectively.

LEMMA 3.1.8. (i) (0@, abdL=<(@, b>% holds for @eL*, be W.(L),
o ¢ Gal (L/K). N
(i) <a, bYi=<a, TwownbdZ holds for ac K*, be W.(L).

PROOF. (i) By R-7, we have ResZ (0@, ob)=0c ResZ (@, b). Since
6(C")=C', we have o], € Gal (C'/C) and so Sy»*-6=8p" Hence we have
Spon-ResZ (0@, 0b) =Sz -Resk (@, b).

(ii) is clear by R-8 and Lemma 2.2.4. Q.E.D.

PROPOSITION 3.1.3. (N /&, b)X=<@a, b): holds for @ec L*, be W.(K).
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PROOF. For any be W.(K), there exists be W.(L) such that
T,.xb=b. By Lemma 3.1.3.(i), we have {(cd, bY2=(&, 7Y% and so
(Nyp/z8, bDE=(&, Ty xbde=<&, bd5. On the other hand, by Lemma
3.1.8. (ii), we have (N, @, b>L={(N, &, bDX. Q.E.D.

COROLLARY. (i) (N @, BYF=(Ka, Wx,.B)" holds for @ e L*, B e B(K).
(ii) BX(NpxL*)=Ker Wg,;.

Proor. (i) is clear by Proposition 3.1.3.
(ii) We have Be Bf(NpxL™)«=(NyxL*, B)* =0=(L*, g, Z"=0=
Br,B=0=LB¢cKer Wg,,. Q.E.D.

3.2. We define a new topology in K*. We denote by W.(C)* the
unit group of the ring W.(C). We put

(14) Vi, m, n, c)=t** Xfm(p"W(C)+c 9 W.(C)) X ,.E fei( W(C))
(§,p)=1,§#m

where ¢=0, m=1, (m, p)=1, n=0, ce W.(C)*. V(e, m,n,c) is a sub-

group of K*, and the intersection of all V(e, m, n, ¢) (=0, m=1, (m, p)=1,

n=0, ce W.(C)*) consists of only the unity of K*. Hence there exists

a unique topology in K* generated by

{Vie, m, n, ¢)|e=0, m=1, (m, p)=1, n=0, ce W,(C)*}.

We call this topology the weak topology in K*. The set of all finite
intersection of V(e, m, n, ¢) (¢=0, m=1, (m, p)=1, n=0, ce W, (C)*) is a
fundamental system of neighborhoods of unity with respect to the weak
topology in K*. K* is a topological group with respect to the weak
topology.

LEMMA 8.2.1. The weak topology im K*/C* i3 the compact-open
topology with respect to the pairing { , Y%, i.e., {BX(Q)/C*|Q e &=} 1is
a fundamental system of meighborhoods of unity with respect to the
weak topology in K*/C*. '

PROOF. For ex=1, m=1, (m, p)=1, n=1, ce W..(C)*, we put Q(e, m,
n, c)=2Z-¢,on b(F)DZ ¢,om,(c{t™™}) € £"*. By (10) and Lemma 2.2.3, we
have C*Xx V(e, m, n, ¢)=B%(Q(e, m, n, ¢)). On the other hand, for any
Qe &™, there exist e,;=1, m,=1, (m, p)=1, n,=1, ¢(i) e W.(C)*, (1=
1,2, ---,7) such that Qc>i_, Qe,, m,, n,, ¢(2)). Then we have Ni_, C*x
Ve, m,, n,, c(3)) C BX(Q). Q.E.D.

Hence ( , X and (, > are also continuous mappings and so are
group pairings with respect to the weak topology in K*. Since we have
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Cont. Hom (W (K)/¢W.(K), W.(F,)=I'(K), we can define the mapping
ox of K* into I'(K) by

(15) {Px(a), bpo={a, b)=

for ae K*, be W.(K). For any Le &, we define the mapping o, of
K* into Gal (L/K) by

(16) Or/x(a)=pPx(a)l, (the restriction of pg(a) on L),
for a € K*. Obviously, we have px=p, and

17 Koux(@), B =<a, BY*

for a € K*, BeKer Bg,;.

ProOPOSITION 3.2.1. (i) Let L, H, Q and L', H’, Q correspond to
one another, respectively by (28), (29), (30) in §2. If L'cL, then we have

(18) Pzix(Gal (L/L"))= pz' (H")=B*(Q") .

(ii) 0.k €Cont. Hom (K*, Gal (L/K)), with respect to the weak topol-
ogy in K*.

(iil) 0.,x(K*) 18 dense in Gal (L/K).

(iv) Ker pg=C".

(v) The weak topology in K*/C* is the relative topology of I'(K)
with respect to the injection Pg: K*|C*=TI'(K).

PROOF. (i) For any ae K*, we have a e pzix(Gal (L/L')) = px(a)c
H'={pg(a), @) =0=<a, Q)*=0.

(ii) It is sufficient to prove that p,e Cont. Hom (K*, I'(K)). For
any a,a’'c K*, be W.(K), we have {pgla-a’), bpi=<(a-a’, b)E={a, b)X+
<a’, 5% = {px(a), b)L + {pxla’), b)L = {oxla) - pxla’), b)L. Hence we have
Px(a-a")=px(a)-px(a’). The continuity of px is clear by Lemma 3.2.1
and (18).

(iili) We put o,/ x(K*)=Gal (L/L'), H'=Gal (2/L’), and Q' =Ker B/,
By (18), we have K*=pz'(H)=B*(Q'). Since K*/BX(Q)xQ — R/Z is an
orthogonal pairing, K*/B*(Q')=1 is compact, and Q' is discrete, we have
Q=0 and so L'=K.

(iv) By (12), (18), we have Ker px=BX(W(K))=C*.

(v) is clear by Lemma 3.2.1 and (18). Q.E.D.

REMARK. There exists Le.% such that the weak topology in
K*/Ker p,,x is not the relative topology of Gal (L/K) with respect to
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the injection g,/x: K*/Ker p,,x<>Gal (L/K), in the case where the coeffici-
ent field C is infinite.
By (18), we have

(19) Ker 0./x=px'(H)=B*(Q) .
We put

¥ ={the set of all closed subgroups of K* with respect to
the weak topology containing C*},
Hpen={A € ¥ |A is open in K* with respect to the weak
topology} .

(20)

We define the mappings between & and 5%, between & and & by
(21) Ar—— H=0p,(4), Hi— A=px'(H),

(22) Ar— Q=B*4), Q— A=B*@),

for He 27, Qe &, Ac 57, respectively.

LemMMA 3.2.2. (i) For any A e 57, we have B'(0x(A))=B%(A). Hence
we have

(23) Px(A)=B"(B*(4)) .
(ii) For any Ae & we have A=px'(0x(A))=B*(B%(A)).

PrOOF. (i) For any BeTW(K), we have g€ B(fox(A))={px(4), BT =
0=<{A, B =0<= 43 c BX(A).

(i) It is clear that Acpz'(0x(4)). Conversely, let a € pz'(0x(4)).
Take an open neighborhood V of a in K*. Then by Proposition 3.2.1.
(v), we have an open set W in I'(K) such that p,(V)=W N p(K*). Since
OCx(a) € px(A), we have W N ox(A)+= . I1f 6 € WNpx(A), then there exists
a’' € A such that o=px(a’). Since pg(a’) e W N po(K*)=px(V), there exists
a" €V such that px(a’)=px(a”). This impliesa” eV NA and so VNA+D.
Hence we have ac A. Let Q=B%(A), H=px(A). Then by (23), we have
H=B"(Q). Hence we have B*(B*(4))=B%(Q)=px'(H)=pz'(0x(4))=A.

Q.E.D.

COROLLARY. The mapping (21): A H=px(A) is an injective lat-
tice-homomorphism. Hence we have

(24) S ZF .
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THEOREM 3.2.1. Let L/K be a finite separable p-extension. Then
we have

(25) NpxL*=B*(Ker BWg,,) .
Proor. It is sufficient to prove that
(26) NpxL*=Ker p,/x ,

for Le ™. Since Gal (L/K) is a finite group, by Proposition 3.2.1. (iii),
Pz/x 18 surjective. On the other hand, by Corollary (ii) of Proposition
3.1.3, we have N L *cCKer p,x. Since (K*: Ny xL*)=(K*:Ker p,/x)=
[L: K], we have N, L*=Ker o &. Q.E.D.

THEOREM 3.2.2. The mapping
27 L+— A=N,,L*

18 a dual lattice-isomorphism of " onto pen. And we have the iso-
morphism:

(28) Prx: K*[A — Gal (L/K) .

ProoF. It is sufficient to prove that the mapping (27) of " to
Vopen 18 surjective. Let A € 9,.., H=px(A). By Proposition 3.2.1. (v),
there exists an open set W in I'(K) such that px(A)=W N px(K*). For
any cc€W and any open neighborhood W’ of ¢ in I'(K), we have
W Ne(A)=W' NW Np(K*)#*@. Hence, we have o cp,(4). This im-
plies WCH, and so He 5%,... If we put L=02% ¢ &¥"», then we have
N, xL*=pz"(H)=A. Q.E.D.

REMARK. We consider the relation between the existence theorem
of G. Whaples [7, 8] and our Theorem 8.2.2. First we recall the exist-
ence theorem of G. Whaples in the case where the ground field K is a
formal power series field. Let C be a quasifinite field of characteristic
»p>0, K the formal power series field over the field C. Consider the
subring generated by P over W.(C) of the endomorphism ring of the
additive group W.(C). An element £ in this ring is written by 8=
2o c(V)P” for ex=0, c(v) e W.(C). Let E be the set of those 8=3_, ¢(v)P*
such that ¢(v) e W..(C)* for some v=0,1, ---,e. A subgroup A of K* is
called analytic if the following two conditions hold:

(A-1) A is an open subgroup of K* with respect to the usual topology
defined by the discrete valuation.
(A-2) There exists an element 8 € E such that
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[ (8W.L(C)cA for any i=1.

(See Definition 1 and Lemma 8 in G. Whaples [7, 8].)
Then the existence theorem of G. Whaples is described as follows:

THEOREM (Whaples). Let A be a subgroup of K*. A is the morm
group of a finite abelian extension of K if and only if A is analytic
and of finite indexr (see Theorem 4 and Theorem 5 in G. Whaples
[7, 8).

Next consider the condition:
(A-2") For any j=1, (4, p)=1, there exists an element £;¢ E such that
f:i(2;Wa(C)) C A.

By Proposition 21 in G. Whaples [8], property (1.7): f.»(a)=f.(Va) in K.
Kanesaka and K. Sekiguchi [38] and p=P-V=Vo-P, we can prove that
(A-1) and (A-2’') imply (A-2). Hence (A-1) and (A-2') are equivalent to
(A-1) and (A-2). On the other hand, G. Whaples [8] defined a topology
in W.(C) by taking {fW.(C)+p"W.(C)|8ec E, n=0} as the fundamental
system of neighborhoods of 0. We call this topology the W-topology
(Whaples-topology) in W.(C). Let U® be the l-unit group of K. We
define a topology in U™ as the direct product topology of W-topology
in W.(C) by §3, (1): UY=Tl,21:05,m=: T:i{ W(C)), and call this topology
the W-topology in UY. Then we have the following theorem:

THEOREM (#). Let A be a subgroup of K*. A 1is analytic if and
only if ANUY 18 open in U® with respect to the W-topology in UY.

Since the usual topology in U defined by the discrete valuation is
the direct product topology of the usual topology in W.(C) defined by
the discrete valuation by §3, (1), the equivalence of (A-1) and (A-2) to
(A-1) and (A-2') implies Theorem (#). Hence the condition: A e . %,..
implies that A is analytic and of finite index p*(n=0, 1, ---). Therefore
the existence theorem of G. Whaples implies our existence theorem in
the case where the coefficient field C is quasifinite of characteristic p.
The author can not prove directly the converse, namely the equivalence
of the weak topology in U® to the W-topology in UY.
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