Classification of Periodic Maps on Compact Surfaces: I

Kazuo YOKOYAMA

Sophia University

Introduction.

A homeomorphism $f: M \to M$ of a space M onto itself is called a periodic map on M with period n if f^n =identity and $f^k \neq$ identity ($1 \leq k < n$). We say that a periodic map f on M is equivalent to a periodic map f' on M' if there exists a homeomorphism $h: M \to M'$ such that fh = hf'. In this paper, we will obtain classification of orientation-preserving periodic maps on compact orientable surfaces. Classification of orientation-reversing periodic maps on compact orientable surfaces and periodic maps on compact non-orientable surfaces will be given in the forthcoming paper [5].

We will consider a pair (f, M) where M is a compact connected surface and f is a periodic map on M with period n. Let $\mathscr{S}_k = \mathscr{S}_k(f) = \{x \in M; f^k(x) = x, f'(x) \neq x \ (1 \leq i < k)\}$ and $\mathscr{S} = \mathscr{S}(f) = \bigcup_{k=1}^{n-1} \mathscr{S}_k(f) = \{x \in M; 1 \leq i < n, f^k(x) = x\}$, say a singular set of f. Let f be a set of f satisfying the condition that f consists of finite points in f (may be empty). For an element f with f or f or f or f is a compact connected surface f is a compact f in f is a compact f

PROPOSITION 1 (Whyburn [4]). The orbit space M/f is a compact surface.

Let $p: M \to M/f$ be a canonical map. Then p is an n-fold cyclic branched covering map of M/f with a branched set $p(\mathscr{S}(f))$. For a compact connected surface X and a set S of finite points in \dot{X} , we denote by $P_n(X, S)$ a set of elements (f, M) of P_n satisfying the following conditions;

- (1) the orbit space M/f is homeomorphic to X,
- (2) the canonical map $p: M \to X$ is an *n*-fold cyclic branched covering map with a branched set S.

Suppose that (f, M) is equivalent to (f', M'). Clearly there exists a Received November 18, 1981

homeomorphism $g: M/f \to M'/f'$ such that $g(p(\mathscr{S}(f))) = p'(\mathscr{S}(f'))$ and gp = ph where $p': M' \to M'/f'$ is a canonical map and $h: M \to M'$ is a homeomorphism satisfying fh = hf'. Let X = M/f and $S = p(\mathscr{S}(f))$. Then $(f, M) \in P_n(X, S)$ and $(f', M') \in P_n(X, S)$. We denote by $\mathscr{S}_n(X, S)$ a set of equivalence classes of $P_n(X, S)$. Then for classification of P_n , we will determine a complete set of equivalence classes of $P_n(X, S)$ (see Theorem 1), and prove that:

THEOREM 2. Assume that X is a compact orientable surface of genus g and that the boundary ∂X consists of l components, and furthermore that a set S consists of m points in \dot{X} . Let $n = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ be the prime decomposition of n. Then the number of elements of $\mathscr{S}_n(X, S)$ is given by;

- (I) $C_0^*(n; l, m) = C_0(n; l, m)/2 + Q_0(n; l, m)/2 \text{ if } g \ge 1,$
- (II) $C_0^*(n; l, m) \sum_{i=1}^s C_0^*(n/p_i; l, m) + \sum_{1 \leq i < j \leq s} C_0^*(n/p_ip_j; l, m) + \cdots + (-1)^j \sum_{1 \leq i_1 < i_2 < \cdots < i_j \leq s} C_0^*(n/(p_{i_1}p_{i_2}\cdots p_{i_j}); l, m) + \cdots + (-1)^s C_0^*(n/(p_1 p_2 \cdots p_s); l, m) = \sum_{q|n} \mu(q)C_0^*(n/q; l, m), if <math>g = 0$, where $\mu(q)$ is the Möbius function. ($C_0(n; l, m)$ and $Q_0(n; l, m)$ are given in § 3 in detail.)

Let P_n^+ be a subset of P_n such that M is an orientable surface and f is an orientation-preserving periodic map. Then, we will obtain, as a consequence, classification of P_n^+ (see Theorem 5 and Theorem 6). Especially, assume that n is a prime number, and let $P_n^+(g, l, l_1, m)$ be a set of elements (f, M) of P_n^+ satisfying the following conditions;

- (1) M is a compact orientable surface of genus g and the boundary ∂M consists of l components,
- (2) f is an orientation preserving periodic map on M such that its singular set $\mathcal{S}(f)$ consists of m points in M,
- (3) the number of setwise fixed boundary components of M by f is l_1 .

Denote by $\mathscr{S}_n^+(g, l, l_1, m)$ a set of equivalence classes of $P_n^+(g, l, l_1, m)$. Then we will prove that:

THEOREM 3. Suppose that n is an odd prime number. Then $P_n^+(g, l, l_1, m) \neq \emptyset$ if and only if g, l, l_1 and m satisfy the following conditions (I), (II) and (III):

- $(I) \quad l-l_1 \equiv 0 \pmod{n},$
- (II) $l_1+m\neq 1$,
- (III) $g+n \times \min\{l_1+m, 1\}-((n-1)/2)(l_1+m)-1$ is a non-negative integer and a multiple of n.

Furthermore, the number of elements of $\mathscr{S}_n^+(g, l, l_1, m)$ is equal to C(n; l, m)/2 + Q(n; l, m)/2. (C(n; l, m) and Q(n; l, m) are given in § 4 in

detail.)

THEOREM 4. Suppose that n=2. Then $P_2^+(g, l, l_1, m) \neq \emptyset$ if and only if g, l, l_1 and m satisfy the following conditions (I), (II'), and (III);

- $(I) \quad l-l_1\equiv 0 \pmod{2},$
- (II') l_1+m is even,
- (III) $g+2\times\min\{l_1+m,1\}-(l_1+m)/2\geq 1$; odd.

Furthermore, the number of elements of $\mathscr{S}_{2}^{+}(g, l, l_{1}, m)$ is equal to 1, that is, an involution $(f, M) \in P_{2}^{+}(g, l, l_{1}, m)$ is unique up to equivalence.

In case of m=0, Theorem 4 is given by Asoh [1].

In § 1, we will give a model of (X, S) and reduce an equivalence relation of $P_n(X, S)$. In § 2, using the homeotopy group of (X, S), we will determine the equivalence classes of $P_n(X, S)$ (see Theorem 1) and in § 3, we will prove Theorem 2. In § 4, we will have classification of orientation-preserving periodic maps.

The author will like to express his sincere gratitude to Prof. Sin'ichi Suzuki, and especially, to his colleague Mr. Teruhiko Hilano for his helpful conversation in § 3.

§ 1. A model for X and the reductions of equivalence relation for $P_n(X, S)$.

Let X be a compact connected orientable surface of genus g and let the boundary ∂X consist of l components $\tilde{d}_1, \tilde{d}_2, \dots, \tilde{d}_l$. For the sake of convenience, we first take a model for X in the 3-dimensional Euclidean space R^3 as shown in Fig. 1, and simple oriented loops a_1, a_2, \dots, a_g ,

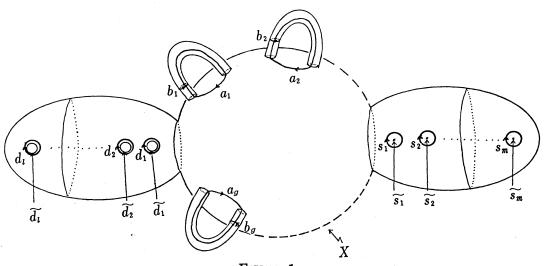


FIGURE 1

 $b_1, b_2, \dots, b_g, d_1, d_2, \dots, d_l$ on X as shown in Fig. 1. Let S be finite points $\tilde{s}_1, \tilde{s}_2, \dots, \tilde{s}_m$ in X, and take simple oriented loops s_1, s_2, \dots, s_m on X as shown in Fig. 1.

To avoid a multiplicity of brackets, we refer to loops rather than to homology classes. Then the first integral homology group of X-S is given by;

$$(1.1) H_1(X-S) = \begin{vmatrix} a_1, b_1, a_2, b_2, \cdots, a_g, b_g, \\ d_1, d_2, \cdots, d_l, \\ s_1, s_2, \cdots, s_m \end{vmatrix}; d_1 + d_2 + \cdots + d_l \\ + s_1 + s_2 + \cdots + s_m = 0 \end{vmatrix}.$$

To determine equivalence classes of $P_n(X, S)$, the following is useful:

DEFINITION 1. Let $[H_1(X-S); Z_n]^*$ be a set of homomorphisms ω of the first integral homology group $H_1(X-S)$ onto the cyclic group Z_n of order n such that $\omega(s_i) \neq 0$ for every $s_i \in H_1(X-S)$. We say that two elements ω_1 and ω_2 of $[H_1(X-S); Z_n]^*$ are \mathscr{A} -equivalent, denoted by $\omega_1 \approx \omega_2$, if there exists a homeomorphism h of (X, S) onto (X, S) such that $\omega_1 h_* = \omega_2$, where h_* is the automorphism of $H_1(X-S)$ induced by $h|_{X-S}$.

To avoid a multiplicity of *, we also use h as h_* , if there is no confusion.

Using a branched covering theory, we obtain the following, in a similar way to P. A. Smith [2]:

PROPOSITION 2. There is a one-to-one correspondence between the set of equivalence classes of $P_n(X, S)$ and the set of \mathscr{A} -equivalence classes of $[H_1(X-S); Z_n]^*$.

Let $Z_n(g; l, m)$ be a set of systems of inegers $(\alpha, \beta, \delta, \theta) = (\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g, \delta_1, \delta_2, \dots, \delta_l, \theta_1, \theta_2, \dots, \theta_m)$ satisfying the following conditions;

- (0) $0 \le \alpha_i < n$, $0 \le \beta_i < n$, $0 \le \delta_j < n$, and $1 \le \theta_k < n$ $(i=1, 2, \dots, g; j=1, 2, \dots, l; k=1, 2, \dots, m)$,
 - $(1) \quad \delta_1 + \delta_2 + \cdots + \delta_l + \theta_1 + \theta_2 + \cdots + \theta_m \equiv 0 \pmod{n},$
- (2) g.c.d. $\{\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g, \delta_1, \delta_2, \dots, \delta_l, \theta_1, \theta_2, \dots, \theta_m\} \equiv 1 \pmod{n}$, where g.c.d. means the greatest common divisor.

REMARK. In case where an element of systems of integers $(\alpha, \beta, \delta, \theta)$ is not an integer satisfying the condition (0), we regard it as a representative of Z_n .

Now ω is an element of $[H_1(X-S); Z_n]^*$. If $\omega(a_i) = \alpha_i$, $\omega(b_i) = \beta_i$, $\omega(d_j) = \delta_j$, and $\omega(s_k) = \theta_k$ $(i=1, 2, \dots, g; j=1, 2, \dots, l; k=1, 2, \dots, m)$, then

 ω is represented by an element $(\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g, \delta_1, \delta_2, \dots, \delta_l, \theta_1, \theta_2, \dots, \theta_m)$ of $Z_n(g; l, m)$, say $\Sigma(\omega)$. Conversely, for an element $(\alpha, \beta, \delta, \theta)$ of $Z_n(g; l, m)$, there exist uniquely an element ω of $[H_1(X-S); Z_n]^*$ such that $\Sigma(\omega) = (\alpha, \beta, \delta, \theta)$. So Σ is a one-to-one correspondence between $[H_1(X-S); Z_n]^*$ and $Z_n(g; l, m)$. We will define the equivalence relation on $Z_n(g; l, m)$ by the equivalence relation \simeq on $[H_1(X-S); Z_n]^*$, as follows:

DEFINITION 2. We say that two elements $(\alpha, \beta, \delta, \theta)$ and $(\alpha', \beta', \delta', \theta')$ of $Z_n(g; l, m)$ are equivalent, denoted by $(\alpha, \beta, \delta, \theta) \sim (\alpha', \beta', \delta', \theta')$, if $\Sigma^{-1}((\alpha, \beta, \delta, \theta))$ is \mathscr{A} -equivalent to $\Sigma^{-1}((\alpha', \beta', \delta', \theta'))$.

We have clearly that Σ is a one-to-one correspondence between the set of \mathscr{A} -equivalence classes of $[H_1(X-S); Z_n]^*$ and the set of equivalence classes of $Z_n(g; l, m)$.

§ 2. Determination of the equivalence classes of $P_n(X, S)$.

To determine the equivalence classes of $P_n(X, S)$, we use the following result of S. Suzuki [3]:

PROPOSITION 3. There exist homeomorphisms ρ , ρ_{1i} , τ_{1} , μ_{1} , θ_{12} of (X, S) onto itself such that automorphisms of $H_{1}(X-S)$ induced by them are given by:

$$\begin{array}{lll} \rho(a_i)=a_{i+1}\;, & \rho(b_i)=b_{i+1}\;, & (i=1,\,2,\,\cdots,\,g)\;;\\ \rho_{1i}(a_1)=a_i\;, & \rho_{1i}(b_1)=b_i\;, & \rho_{1i}(a_i)=a_1\;, & \rho_{1i}(b_i)=b_1\;;\\ \tau_1(a_1)=a_1-b_1\;, & \tau_1(b_1)=b_1\;;\\ \mu_1(a_1)=b_1\;, & \mu_1(b_1)=-a_1\;;\\ \theta_{12}(a_1)=a_1-a_2\;, & \theta_{12}(b_1)=b_1\;, & \theta_{12}(a_2)=a_2\;, & \theta_{12}(b_2)=b_1+b_2\;; \end{array}$$

where the remaining generators of (1.1) are unchanged.

LEMMA 1. For an element $\Sigma(\omega) = (\alpha, \beta, \delta, \theta) \in \mathbb{Z}_n(g; l, m)$, we have the followings:

$$\Sigma(\boldsymbol{\omega}\boldsymbol{\rho}) = (\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}, \cdots, \alpha_{g}, \beta_{g}, \alpha_{1}, \beta_{1}, \boldsymbol{\delta}, \boldsymbol{\theta}) ,$$

$$\Sigma(\boldsymbol{\omega}\boldsymbol{\rho}_{1i}) = (\alpha_{i}, \beta_{i}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{i-1}, \beta_{i-1}, \alpha_{1}, \beta_{1}, \alpha_{i+1}, \beta_{i+1}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta}) ,$$

$$\Sigma(\boldsymbol{\omega}\boldsymbol{\tau}_{1}) = (\alpha_{1} - \beta_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta}) ,$$

$$\Sigma(\boldsymbol{\omega}\boldsymbol{\mu}_{1}) = (\beta_{1}, -\alpha_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta}) ,$$

$$\Sigma(\boldsymbol{\omega}\boldsymbol{\theta}_{12}) = (\alpha_{1} - \alpha_{2}, \beta_{1}, \alpha_{2}, \beta_{2} + \beta_{1}, \alpha_{3}, \beta_{3}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta}) .$$

By these results, we have the following lemma:

LEMMA 2. $(\alpha_1, \beta_1, \dots, \alpha_g, \beta_g, \delta, \theta) \sim (0, \gamma, 0, \dots, 0, \delta, \theta)$, where $\gamma = g.c.d. \{\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g\}$.

PROOF. (I) We will prove that $(\alpha_1, \beta_1, \dots, \alpha_g, \beta_g, \delta, \theta) \sim (0, \gamma_1, 0, \gamma_2, \dots, 0, \gamma_g, \delta, \theta)$, where $\gamma_i = g.c.d. \{\alpha_i, \beta_i\}$. First it will be shown that $(\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g, \delta, \theta) \sim (0, \gamma_1, \alpha_2, \beta_2, \dots, \alpha_g, \beta_g, \delta, \theta)$. If $\alpha_1 = 0$, there is nothing to do. If $\beta_1 = 0$, we have merely to apply μ_1^{-1} . So we may assume that $\alpha_1\beta_1 \neq 0$. Then we have the following;

```
\begin{array}{llll} \exists \ q_1, \ r_1 \in N & \text{such that} & \alpha_1 = q_1\beta_1 + r_1 \ , & 0 < r_1 < \beta_1 \ , \\ \exists \ q_2, \ r_2 \in N & \text{such that} & \beta_1 = q_2r_1 + r_2 \ , & 0 < r_2 < r_1 \ , \\ \exists \ q_3, \ r_3 \in N & \text{such that} & r_1 = q_3r_2 + r_3 \ , & 0 < r_3 < r_2 \ , \\ & & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \exists \ q_{t-2}, \ r_{t-2} \in N & \text{such that} & r_{t-4} = q_{t-2}r_{t-3} + r_{t-2} \ , & 0 < r_{t-2} < r_{t-3} \ , \\ \exists \ q_{t-1}, \ r_{t-1} \in N & \text{such that} & r_{t-3} = q_{t-1}r_{t-2} + r_{t-1} \ , & 0 < r_{t-1} < r_{t-2} \ , \\ \exists \ q_t, \ r_t \in N & \text{such that} & r_{t-2} = q_tr_{t-1} + r_t \ , & r_t = 0 \ . \end{array}
```

Let $h_1 = \tau_1^{q_1} \mu_1^{-1} \tau_1^{-q_2} \mu_1 \tau_1^{q_3} \cdots \mu_1^{(-1)^{i+1}} \tau_1^{(-1)^{i+1} q_i} \cdots \mu_1^{(-1)^{i+1}} \tau_1^{(-1)^{i+1} q_i}$. Then, $\omega \gtrsim \omega h_1$. $\Sigma(\omega h_1) = (0, \gamma_1, \alpha_2, \beta_2, \cdots, \alpha_g, \beta_g, \delta, \theta)$ is equivalent to $\Sigma(\omega)$. By the same way, we have an automorphism h_2 of $H_1(X-S)$ induced by the composition of homeomorphisms τ_1 and μ_1 such that $\Sigma(\omega h_1 \rho_{12} h_2) = (0, \gamma_2, 0, \gamma_1, \alpha_3, \beta_3, \cdots, \alpha_g, \beta_g, \delta, \theta)$ is equivalent to $\Sigma(\omega)$. Repeating the same procedures, we have an automorphism h of $H_1(X-S)$ induced by the composition of homeomorphisms τ_1 , μ_1 and ρ_{1i} such that $\Sigma(\omega h) = (0, \gamma_1, 0, \gamma_2, \cdots, 0, \gamma_g, \delta, \theta)$ is equivalent to $\Sigma(\omega)$.

(II) If $\gamma_1 = \gamma_2 = \cdots = \gamma_g = 0$, there is nothing to do. So we may assume that $\gamma_1 \gamma_2 \cdots \gamma_g \neq 0$. Applying ρ_{1i} , if necessary, we may assume that γ_1 is the smallest positive integer in $\{\gamma_1, \gamma_2, \cdots, \gamma_g\}$. Then there are nonnegative integers q_i and r_i such that $\gamma_i = q_i \gamma_1 + r_i$ $(2 \leq i \leq g)$ and $0 \leq r_i < \gamma_1$. Let $h'_1 = \theta_{12}^{-q_2}(\rho_{12}\rho_{13}\rho_{12}\theta_{12}^{-q_3}\rho_{12}\rho_{13}\rho_{12})\cdots(\rho_{12}\rho_{1g}\rho_{12}\theta_{12}^{-q_g}\rho_{12}\rho_{1g}\rho_{12})$. Then, we have $\omega \approx \omega h'_1$. $\Sigma(\omega h'_1) = (0, \gamma_1, 0, r_2, 0, r_3, \cdots, 0, r_g, \delta, \theta)$ is equivalent to $\Sigma(\omega)$. If r_i is the smallest positive integer in $\{\gamma_1, r_2, r_3, \cdots, r_g\}$, then we apply ρ_{1i} ; and by the same way, we have an automorphism h'_2 of $H_1(X-S)$ induced by the composition of homeomorphisms ρ_{1i} and θ_{12} such that $\Sigma(\omega h'_1\rho_{1i}h'_2) = (0, r_i, 0, r'_2, 0, r'_3, \cdots, 0, r'_g, \delta, \theta)$ is equivalent to $\Sigma(\omega)$. Repeating the same procedures, we have an automorphism h' of $H_1(X-S)$ induced by the composition of homeomorphisms ρ_{1i} and θ_{12} such that $\Sigma(\omega h') = (0, \gamma, 0, 0, \cdots, 0, 0, \delta, \theta)$ is equivalent to $\Sigma(\omega)$, where $\gamma = g.c.d. \{\gamma_1, \gamma_2, \cdots, \gamma_g\}$, completing the proof.

We use some more typical homeomorphisms of surfaces.

DEFINITION 3. Let $A' = \{(r, \theta); r \leq 6\}$, $A = \{(r, \theta); r \leq 5\}$, $A_1 = \{(r, \theta); r \leq 1\}$, $B_+ = \{(r, \theta); (r \cos \theta - 3)^2 + r^2 \sin^2 \theta \leq 1\}$, $B_- = \{(r, \theta); (r \cos \theta + 3)^2 + r^2 \sin^2 \theta \leq 1\}$ be subsets in R^2 as shown in Fig. 2. We define a homeomorphism $\varphi: A' \rightarrow A'$ by putting

$$\varphi((r,\theta)) = (r,\theta+\pi) \quad \text{if} \quad r \leq 5,$$

$$\varphi((r,\theta)) = (r,\theta+(6-r)\pi) \quad \text{if} \quad 5 \leq r \leq 6,$$

and define a homeomorphism $\psi: A-A_1 \rightarrow A-A_1$ by putting

$$\psi((r,\theta)) = (r, \theta + 2(r-1)\pi)$$
 if $1 \le r \le 2$,

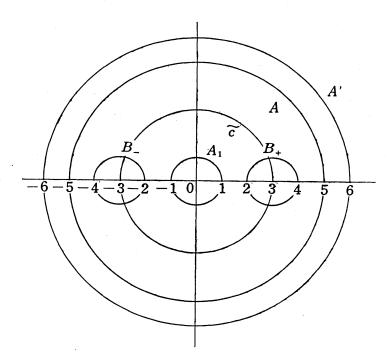


FIGURE 2

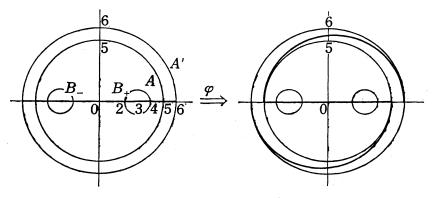


FIGURE 3

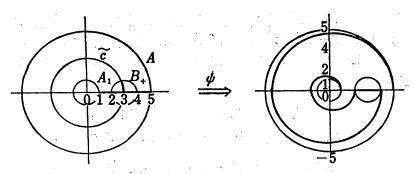


FIGURE 4

$$\psi((r,\theta)) = (r, \theta + 2(5-r)\pi) \quad \text{if} \quad 4 \le r \le 5,$$

$$\psi((r,\theta)) = (r,\theta) \quad \text{if} \quad 2 \le r \le 4,$$

which are the same maps as ρ'_{12} and $\dot{\sigma}_{ez_i1}$ in S. Suzuki [3], as shown in Fig. 3 and Fig. 4.

(1) $\underline{\partial_i}$ ($2 \leq i \leq l$): Let h be an embedding of $A' - (\mathring{B}_+ \cup \mathring{B}_-)$ in X - S such that $h(A' - (\mathring{B}_+ \cup \mathring{B}_-)) \cap \partial X = h(\partial B_+) \cup h(\partial B_-) = \widetilde{d}_1 \cup \widetilde{d}_i$ and $h(A' - (\mathring{B}_+ \cup \mathring{B}_-)) \cap \{a_1, b_1, \cdots, a_g, b_g, d_1, d_2, \cdots, d_l\} = \{d_1, d_i\}$. Then we have a homeomorphism ∂_i of (X, S) onto itself defined by $\partial_i = h\varphi h^{-1}$ on $h(A' - (\mathring{B}_+ \cup \mathring{B}_-))$ and by $\partial_i = h\varphi h^{-1}$ the identity on $X - h(A' - (\mathring{B}_+ \cup \mathring{B}_-))$; see Fig. 5.

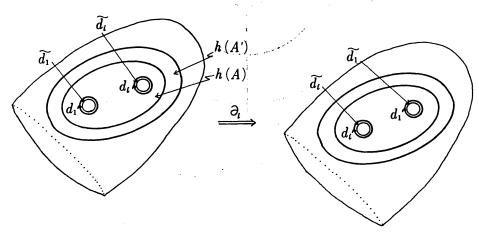
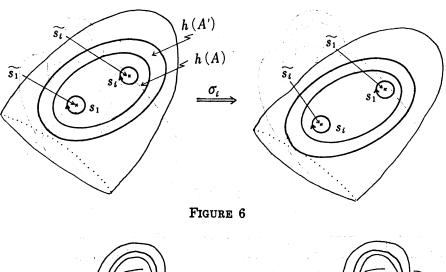


FIGURE 5

- (2) σ_j $(2 \le j \le m)$: Let h be an embedding of A' in X such that $h(A') \cap S = h((3,0)) \cup h((-3,0)) = \tilde{s}_1 \cup \tilde{s}_j$ and $h(A') \cap \{a_1, b_1, a_2, b_2, \dots, a_g, b_g, s_1, s_2, \dots, s_m\} = \{s_1, s_j\}$. Then we have a homeomorphism σ_j of (X, S) onto itself defined by $\sigma_j = h\psi h^{-1}$ on h(A') and by $\sigma_j = the$ identity on X h(A'); see Fig. 6.
- (3) $\underline{\partial_a}$: We take a 2-cell Δ and identify $\partial \Delta$ with a component \overline{d}_1 of ∂X . We obtain the surface $X \cup \Delta$ of genus g with l-1 boundary



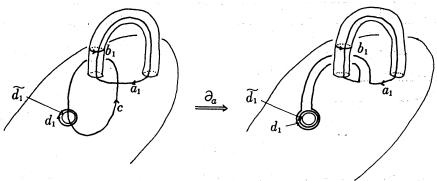


FIGURE 7

components. Let c be a simple loop on $X \cup \Delta$ passing through the center of Δ such that $c \cap \{a_1, b_1, \cdots, a_g, b_g, d_1, d_2, \cdots, d_l, s_1, s_2, \cdots, s_m\} = c \cap \{a_1, d_1\}$ and c intersects transversally at one point with a_1 ; see Fig. 7. Let b be an embedding of $A - A_1$ in $X \cup \Delta - S$ satisfying the following conditions; (1) $h(\tilde{c}) = c$, (2) $h(A - A_1)$ is a regular neighborhood of c, (3) $h(A - A_1) \cap \{a_1, b_1, \cdots, a_g, b_g, d_1, d_2, \cdots, d_l\} = h(A - A_1) \cap \{a_1, d_1\}$ and (4) $h(B_+) = \Delta$, where $\tilde{c} = \{(r, \theta); r = 3\}$. Then, we have a homeomorphism ∂_a of (X, S) onto itself defined by $\partial_a = h\psi h^{-1}$ on $h(A - A_1)$ and by $\partial_a = \text{the identity on } X - h(A - A_1)$; see Fig. 7.

(4) $\underline{\sigma_a}$: We take a 2-cell Δ in X such that $\Delta \supset s_1$, $\Delta \cap \{a_1, b_1, \cdots, a_g, b_g, s_1, s_2, \cdots, s_m\} = \{s_1\}$ and $\Delta \cap S = \{\tilde{s}_1\}$. Let c be a simple loop on X passing through \tilde{s}_1 such that $c \cap \{a_1, b_1, \cdots, a_g, b_g, d_1, d_2, \cdots, d_l, s_1, s_2, \cdots, s_m\} = c \cap \{a_1, s_1\}$ and that c intersects transversally at one point with a_1 (see Fig. 8). Let h be an embedding of $A - A_1$ into X satisfying the conditions; (1) $h(\tilde{c}) = c$, (2) $h(A - A_1)$ is a regular neighborhood of c, (3) $h(A - A_1) \cap \{a_1, b_1, \cdots, a_g, b_g, s_1, s_2, \cdots, s_m\} = h(A - A_1) \cap \{a_1, s_1\}$ and (4) $h(B_+) = \Delta$. Then, we have a homeomorphism σ_a of (X, S) onto itself defined by $\sigma_a = h\psi h^{-1}$ on $h(A - A_1)$ and by $\sigma_a = the$ identity on $X - h(A - A_1)$; see Fig. 8.

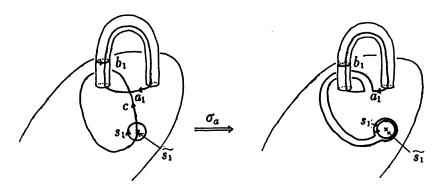
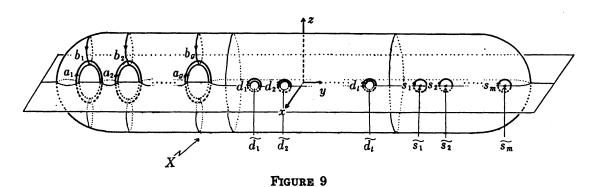


FIGURE 8



(5) $\underline{\eta}$: For the sake of convenience, we take a model for X in the 3-dimensional Euclidean space R^s as shown in Fig. 9. Let η be a homeomorphism of (X, S) defined by $\eta(x, y, z) = (x, y, -z)$.

Then, by S. Suzuki [3] and in an elementary way, we have the followings:

PROPOSITION 4. The homeotopy group of (X, S) is generated by ρ , ρ_{1i} $(2 \le i \le g)$, τ_1 , μ_1 , θ_{12} , ∂_j $(2 \le j \le l)$, σ_k $(2 \le k \le m)$, ∂_a , σ_a and η .

LEMMA 3. (1) The automorphisms of $H_1(X-S)$ induced by them are given by;

$$\begin{split} &\partial_i(d_1) = d_i \;, \qquad \partial_i(d_i) = d_1 \;; \\ &\sigma_i(s_1) = s_i \;, \qquad \sigma_i(s_i) = s_1 \;; \\ &\partial_a(a_1) = a_1 - d_1 \;; \\ &\sigma_a(a_1) = a_1 - s_1 \;; \\ &\eta(a_i) = -a_i \quad (1 \leq i \leq g) \;, \qquad \eta(d_j) = -d_j \quad (1 \leq j \leq l) \;, \\ &\eta(s_k) = -s_k \quad (1 \leq k \leq m) \;. \end{split}$$

(2) For an element $\Sigma(\omega) = (\alpha, \beta, \delta, \theta)$ of $Z_n(g; l, m)$, we have

$$\Sigma(\boldsymbol{\omega}\partial_{i}) = (\boldsymbol{\alpha}, \boldsymbol{\beta}, \delta_{i}, \delta_{2}, \delta_{3}, \cdots, \delta_{i-1}, \delta_{1}, \delta_{i+1}, \cdots, \delta_{l}, \boldsymbol{\theta})$$

$$\Sigma(\boldsymbol{\omega}\sigma_{i}) = (\boldsymbol{\alpha}, \boldsymbol{\beta}, \delta, \theta_{i}, \theta_{2}, \theta_{3}, \cdots, \theta_{i-1}, \theta_{1}, \theta_{i+1}, \cdots, \theta_{m})$$

$$\Sigma(\boldsymbol{\omega}\partial_{a}) = (\alpha_{1} - \delta_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta})$$

$$\Sigma(\boldsymbol{\omega}\sigma_{a}) = (\boldsymbol{\alpha}_{1} - \theta_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}, \boldsymbol{\delta}, \boldsymbol{\theta})$$

$$\Sigma(\boldsymbol{\omega}\eta) = (-\alpha_{1}, \beta_{1}, -\alpha_{2}, \beta_{2}, \cdots, -\alpha_{g}, \beta_{g}, -\delta_{1}, -\delta_{2}, \cdots, -\delta_{l}, -\theta_{1}, -\theta_{2}, \cdots, -\theta_{m}).$$

By using the Lemmas 1 and 3, we have the following lemma:

LEMMA 4. $(0, \gamma, 0, 0, \cdots, 0, 0, \delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m) \sim (0, 1, 0, 0, \cdots, 0, 0, \delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m)$.

PROOF. Since g.c.d. $\{\gamma, \delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m\} \equiv 1 \pmod{n}$, there exist integers $z_0, z_1, \cdots, z_l, z_1', z_2', \cdots, z_m'$ such that $z_0\gamma + z_1\delta_1 + z_2\delta_2 + \cdots + z_l\delta_l + z_l'\theta_1 + z_2'\theta_2 + \cdots + z_m'\theta_m \equiv 1 \pmod{n}$. Let $h = \tau_1^{-z_0}\partial_a^{-z_1}(\partial_2\partial_a^{-z_2}\partial_2) \cdots (\partial_l\partial_a^{-z_l}\partial_l)$ $\sigma_a^{-z_1'}(\sigma_2\sigma_a^{-z_2'}\sigma_2) \cdots (\sigma_m\sigma_a^{-z_m'}\sigma_m)$, then $\omega \approx \omega h$. Hence $\Sigma(\omega h) = (1, \gamma, 0, 0, \cdots, 0, 0, \delta, \theta)$ is equivalent to $\Sigma(\omega)$. $\Sigma(\omega h\mu_1\tau_1^{-\gamma}\mu_1^2) = (0, 1, 0, 0, \cdots, 0, 0, \delta, \theta)$ is equivalent to $\Sigma(\omega)$.

Since the symmetric group \mathfrak{S}_u (u=l or m) is generated by the set of transpositions $\{(1,i)\}_{i=1}^n$, we have the following:

LEMMA 5. For any permutation λ of $\{1, 2, \dots, l\}$ and λ' of $\{1, 2, \dots, m\}$, we have $(\alpha, \beta, \delta_1, \delta_2, \dots, \delta_l, \theta) \sim (\alpha, \beta, \delta_{\lambda(1)}, \delta_{\lambda(2)}, \dots, \delta_{\lambda(l)}, \theta)$, and $(\alpha, \beta, \delta_1, \theta_2, \dots, \theta_m) \sim (\alpha, \beta, \delta, \theta_{\lambda'(1)}, \theta_{\lambda'(2)}, \dots, \theta_{\lambda'(m)})$.

To determine a complete set of equivalence classes of $Z_n(g; l, m)$, we will define an equivalence relation γ as follows:

DEFINITION 4. (I) An element $(\delta, \theta) = (\delta_1, \delta_2, \dots, \delta_l, \theta_1, \theta_2, \dots, \theta_m)$ of $Z_n(0; l, m)$ is η -equivalent to an element $(\delta', \theta') = (\delta'_1, \delta'_2, \dots, \delta'_l, \theta'_1, \theta'_2, \dots, \theta'_m)$ of $Z_n(0; l, m)$, denoted by $(\delta, \theta)_{\gamma}(\delta', \theta')$, if (i) $(\delta, \theta) = (\delta', \theta')$ or (ii) (a) if $\delta_1 = \delta_2 = \dots = \delta_j = 0 < \delta_{j+1}$ and $\delta'_1 = \delta'_2 = \dots = \delta'_{j'} = 0 < \delta'_{j'+1}$, then j = j', (b) $n - \delta_l = \delta'_{j+1}$, $n - \delta_{l-1} = \delta'_{j+2}$, \dots , $n - \delta_{l-i+1} = \delta'_{j+1}$, \dots , $n - \delta_{j+1} = \delta'_l$, and (c) $n - \theta_m = \theta'_1$, $n - \theta_{m-1} = \theta'_2$, \dots , $n - \theta_{m-i+1} = \theta'_i$, \dots , $n - \theta_1 = \theta'_m$.

(II) An element $(0, 1, 0, 0, \dots, 0, 0, \delta, \theta)$ of $Z_n(g; l, m)$ is η -equivalent to an element $(0, 1, 0, 0, \dots, 0, 0, \delta', \theta')$ of $Z_n(g; l, m)$, denoted by $(0, 1, 0, 0, \dots, 0, 0, \delta, \theta) \gamma(0, 1, 0, 0, \dots, 0, 0, \delta', \theta')$, if $(\delta, \theta) \gamma(\delta', \theta')$.

THEOREM 1. A complete set of equivalence classes on $Z_n(g; l, m)$ is represented by

$$(1) \qquad \mathscr{Z}_{n}(g; l, m) = \begin{cases} (0, 1, 0, 0, \cdots, 0, 0, \delta_{1}, \delta_{2}, \cdots, \delta_{l}, \theta_{1}, \theta_{2}, \cdots, \theta_{m}); \\ 0 \leq \delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{l} < n, \\ 1 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{m} < n, \\ \delta_{1} + \delta_{2} + \cdots + \delta_{l} + \theta_{1} + \theta_{2} + \cdots + \theta_{m} \equiv 0 \pmod{n} \end{cases}$$

$$if \quad g \geq 1.$$

$$(2) \qquad \mathcal{Z}_{n}(0; l, m) = \begin{cases} (\delta_{1}, \delta_{2}, \cdots, \delta_{l}, \theta_{1}, \theta_{2}, \cdots, \theta_{m}) ; \\ g.c.d. \{\delta_{1}, \delta_{2}, \cdots, \delta_{l}, \theta_{1}, \theta_{2}, \cdots, \theta_{m}\} \equiv 1 \pmod{n} \end{cases}$$

$$1 \leq \theta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{l} < n ,$$

$$1 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{m} < n ,$$

$$\delta_{1} + \delta_{2} + \cdots + \delta_{l} + \theta_{1} + \theta_{2} + \cdots + \theta_{m} \equiv 0 \pmod{n}$$

PROOF. By Lemmas 4 and 5, any element $\Sigma(\omega) = (\alpha, \beta, \delta, \theta)$ of $Z_n(g; l, m)$ is equivalent to an element of a set $\mathcal{Z}_n(g; l, m)$. Hence it is sufficient to prove that two distinct elements of the set $\mathcal{Z}_n(g; l, m)$ are not equivalent.

Let $\Sigma(\omega) = (0, 1, 0, 0, \cdots, 0, 0, \delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m)$ and $\Sigma(\omega') = (0, 1, 0, 0, \cdots, 0, 0, \delta'_1, \delta'_2, \cdots, \delta'_l, \theta'_1, \theta'_2, \cdots, \theta'_m)$ be equivalent elements of $Z_n(g; l, m)$. Then, by Proposition 4, there exists a homeomorphism h of (X, S) onto itself which is a composition of elements in $\{\rho, \rho_{1i}, \tau_1, \mu_1, \theta_{12}, \theta_3, \sigma_a, \sigma_a, \eta\}$ such that $\omega' = \omega h_*$, where h_* is the automorphism of $H_1(X-S)$ induced by $h|_{X-S}$. By Lemmas 1 and 3, we note (i) $\{\delta_1, \delta_2, \cdots, \delta_l\} = \{\delta'_1, \delta'_2, \cdots, \delta'_l\}$ and $\{\theta_1, \theta_2, \cdots, \theta_m\} = \{\theta'_1, \theta'_2, \cdots, \theta'_m\}$ or (ii) $\{\delta_1, \delta_2, \cdots, \delta_l\} = \{-\delta'_1, -\delta'_2, \cdots, -\delta'_l\}$ and $\{\theta_1, \theta_2, \cdots, \theta_m\} = \{-\theta'_1, -\theta'_2, \cdots, -\theta'_m\}$. Hence we have $(\delta, \theta)_{\gamma}(\delta', \theta')$, since $0 \le \delta_1 \le \delta_2 \le \cdots \le \delta_l < n$, $0 \le \delta'_1 \le \delta'_2 \le \cdots \le \delta'_l < n$, $1 \le \theta_1 \le \theta_2 \le \cdots \le \theta_m < n$, and $1 \le \theta'_1 \le \theta'_2 \le \cdots \le \theta'_m < n$.

Let $\Sigma(\omega) = (\delta, \theta)$ and $\Sigma(\omega') = (\delta', \theta')$ be equivalent elements of $Z_n(0; l, m)$. By the same way, we have $(\delta, \theta)_{\widetilde{\gamma}}(\delta', \theta')$.

§ 3. Proof of Theorem 2.

To determine the number of elements of $\mathscr{P}_n(X, S)$, we will first take the set $D_0(n; l, m) = \{(\delta_1, \delta_2, \dots, \delta_l, \theta_1, \theta_2, \dots, \theta_m); \delta_i, \theta_j \in N, 0 \leq \delta_1 \leq \delta_2 \leq \dots \leq \delta_l < n, 1 \leq \theta_1 \leq \theta_2 \leq \dots \leq \theta_m < n, \delta_1 + \delta_2 + \dots + \delta_l + \theta_1 + \theta_2 + \dots + \theta_m \equiv 0 \pmod{n}\}$ and compute the number $C_0(n; l, m)$ of elements of $D_0(n; l, m)$.

Let $f_j(x, y) = \sum_{i=0}^{\infty} y^i x^{ij}$ be a formal power series, and $F_f(x, y) = \prod_{j=0}^{n-1} f_j(x, y)$, $F_s(x, z) = \prod_{j=1}^{n-1} f_j(x, z)$ and $F(x, y, z) = F_f(x, y) F_s(x, z)$. Then, we have F(x, y, z) as a generating function. Hence $C_0(n; l, m)$ is equal to the sum $\sum_{i=0}^{l+m-1} K(i)$ of the coefficients K(i) of the terms $x^{in}y^lz^m$ in F(x, y, z). Therefore, $C_0(n; l, m)$ is equal to the coefficient of the term

 $y^i z^m$ in $(\sum_{i=1}^n F(\zeta_i, y, z))/n$, where $\zeta_i = \cos 2\pi/n + i \sin 2\pi/n$ and $\zeta_i = \zeta_i^i$. If dis a divisor of n, and if ζ is a primitive d-th root of unity ($\zeta = \zeta$, for some i), then $F(\zeta, y, z) = (1-y^d)^{-d'}(1-z)(1-z^d)^{-d'}$, where d' is the natural number n/d. Hence the coefficient of the term y^lz^m in $F(\zeta, y, z)$ is equal to

$$\begin{pmatrix} \left(\frac{l}{d}+d'-1\right) \left(\frac{m}{d}+d'-1\right) & \text{if} \quad l\equiv 0 \pmod n \text{ and } m\equiv 0 \pmod n, \\ d'-1 & \left(\frac{l}{d}+d'-1\right) \left(\frac{m-1}{d}+d'-1\right) & \text{if} \quad l\equiv 0 \pmod n \text{ and } m\equiv 1 \pmod n, \\ d'-1 & d'-1 & \text{otherwise}, \end{pmatrix}$$
 where $\binom{a}{b}=a!/((a-b)!b!)$.

Therefore, $C_0(n; l, m)$ is given as follows:

Let d_1, d_2, \dots, d_n be all common divisors of l, m and n except 1 and $d_i'=n/d_i$ $(i=1, 2, \dots, s)$. Also c_1, c_2, \dots, c_t be every common divisor of l, m-1 and n except 1 and $c_j = n/c_j$ $(j=1, 2, \dots, t)$. Then, we have

$$C_0(n; l, m) = rac{1}{n} \left\{ inom{l+n-1}{n-1} inom{m+n-2}{n-2} + \sum_{i=1}^{i} arphi(d_i) inom{rac{l}{d_i} + d'_i - 1}{d'_i - 1} inom{rac{m}{d_i} + d'_i - 1}{d'_i - 1} - \sum_{j=1}^{t} arphi(c_j) inom{rac{l}{c_j} + c'_j - 1}{c'_j - 1} inom{m-1}{c_j} + c'_j - 1}{c'_j - 1}
ight\},$$

where $\varphi(d)$ is the Euler function.

Let $Q_0(n; l, m)$ be the number of elements (δ, θ) of $D_0(n; l, m)$ satisfying that $\{(\delta', \theta') \in D_0(n; l, m); (\delta', \theta') \sim (\delta, \theta)\} = \{(\delta, \theta)\}$. Then, $Q_0(n; l, m)$ is equal to

$$\begin{cases} \left(\left[\frac{n}{2} \right] + \left[\frac{m}{2} \right] - 1 \right) \left(\left[\frac{n}{2} \right] + \left[\frac{l}{2} \right] \right) & \text{if } (1) \text{ } m \text{ is even or } (2) \text{ } n \text{ is even,} \\ \left[\frac{m}{2} \right] & \left(\left[\frac{l}{2} \right] \right) & \text{otherwise;} \end{cases}$$

where [c/2] is the largest integer not greater than c/2.

THEOREM 2. (1) The number $C_0^*(n; l, m)$ of elements of $\mathscr{S}_n(X, S)$

is given by

$$C_0^*(n; l, m) = \frac{1}{2}C_0(n; l, m) + \frac{1}{2}Q_0(n; l, m)$$
 if $g \ge 1$.

(2) Suppose g=0. Let $n=p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}$, where p_i is a prime number and e_i is a positive integer $(i=1, 2, \dots, s)$. Then, the number of elements of $\mathscr{S}_n(X, S)$ is given by

$$C_0^*(n; l, m) - \sum_{i=1}^s C_0^* \left(\frac{n}{p_i}; l, m\right) + \sum_{1 \le i < j \le s} C_0^* \left(\frac{n}{p_i p_j}; l, m\right) + \cdots \\ + (-1)^j \sum_{1 \le i_1 < i_2 < \dots < i_j \le s} C_0^* \left(\frac{n}{p_{i_1} p_{i_2} \cdots p_{i_j}}; l, m\right) + \cdots \\ + (-1)^s C_0^* \left(\frac{n}{p_1 p_2 \cdots p_s}; l, m\right) \left(= \sum_{q \mid n} \mu(q) C_0^* \left(\frac{n}{q}; l, m\right)\right).$$

PROOF. (1) By Theorem 1, $C_0^*(n; l, m)$ is equal to the number of elements of $D_0(n; l, m)/\eta$. Hence $C_0^*(n; l, m) = \{C_0(n; l, m) - Q_0(n; l, m)\}/2 + Q_0(n; l, m) = C_0(n; l, m)/2 + Q_0(n; l, m)/2$.

- (2) We take an integer $q = p_{i_1} p_{i_2} \cdots p_{i_j}$, where $1 \le i_1 < i_2 < \cdots < i_j \le s$. Then we consider the subset $D_0(n, q; l, m)$ of $D_0(n; l, m)$ satisfying that q is a divisor of g.c.d. $\{\delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m, n\}$. The correspondence $(\delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \delta_l/q, \delta_1/q, \delta_2/q, \cdots, \delta_l/q, \theta_1/q, \theta_2/q, \cdots, \theta_m/q)$ defines a bijection from $D_0(n, q; l, m)$ to $D_0(n/q; l, m)$. Hence $C_0^*(n/q; l, m)$ is equal to the number of elements of $D_0(n, q; l, m)$. We have Theorem 2 (2).
 - § 4. Classification of orientation-preserving periodic maps on compact orientable surfaces.

For a compact orientable surface M, we will determine the number of equivalence classes of periodic maps with period n on M.

For brevity, we first assume that n is a prime number. Let $P_n^+(g, l, l_1, m)$ be a set defined in Introduction. For $(f, M) \in P_n^+(g, l, l_1, m)$ its orbit space M/f is a compact orientable surface of genus $\{2g-2-(n-1)(l_1+m)+2n\}/2n$ with $(l-l_1)/n+l_1$ boundary components, and a canonical map $p: M \to M/f$ is a branched covering of M/f with branched set $p(\mathscr{S})$ consisting of m points. Hence we have $(f, M) \in P_n(X, S)$, where the genus of X is $\{2g-2-(n-1)(l_1+m)+2n\}/2n$, the boundary ∂X consists of $(l-l_1)/n+l_1$ components, and S consists of m points in \dot{X} .

It is necessary for $P_n^+(g, l, l_1, m) \neq \emptyset$ that

(a)
$$l-l_1\equiv 0 \pmod{n}$$
,

(b)
$$g-1-((n-1)/2)(l_1+m)\equiv 0 \pmod{n}$$
,

and (c)
$$g-1-((n-1)/2)(l_1+m)\geq 0$$
, if $n\neq 2$;

(a), (b')
$$2g-2-(l_1+m)\equiv 0 \pmod{4}$$
,

and (c')
$$2g-2-(l_1+m)+4\geq 0$$
, if $n=2$.

To determine the number of elements of $\mathscr{S}_n^+(g, l, l_1, m)$, we will take the subset $D(n; l_1, m)$ of $D_0(n; l_1, m)$ satisfying that $1 \le \delta_1$. In the same way as in § 3, the number $C(n; l_1, m)$ of elements of $D(n; l_1, m)$ is given by;

$$\begin{cases} \frac{1}{n} \left\{ \binom{l_1 + n - 2}{n - 2} \binom{m + n - 2}{n - 2} + n - 1 \right\} & \text{if} \quad l_1 \equiv 0, \ m \equiv 0 \pmod{n} \text{ or} \\ l_1 \equiv 1, \ m \equiv 1 \pmod{n}, \\ \frac{1}{n} \left\{ \binom{l_1 + n - 2}{n - 2} \binom{m + n - 2}{n - 2} - n + 1 \right\} & \text{if} \quad l_1 \equiv 0, \ m \equiv 1 \pmod{n} \text{ or} \\ l_1 \equiv 1, \ m \equiv 0 \pmod{n}, \\ \frac{1}{n} \binom{l_1 + n - 2}{n - 2} \binom{m + n - 2}{n - 2} & \text{otherwise}. \end{cases}$$

Let $Q(n; l_1, m)$ be the number of elements of $D(n; l_1, m)$ satisfying that $(\delta_1, \delta_2, \dots, \delta_{l_1}, \theta_1, \theta_2, \dots, \theta_m) = (n - \delta_{l_1}, n - \delta_{l_1-1}, \dots, n - \delta_2, n - \delta_1, n - \theta_m, n - \theta_{m-1}, \dots, n - \theta_2, n - \theta_1)$. Clearly, $Q(n; l_1, m)$ is equal to;

$$\begin{cases} \left(\left[\frac{n-1}{2}\right] + \frac{l_1}{2} - 1\right) \left(\left[\frac{n-1}{2}\right] + \frac{m}{2} - 1\right) & \text{if } l_1 \text{ and } m \text{ is even,} \\ \frac{l_1}{2} & \text{otherwise.} \end{cases}$$

THEOREM 3. Suppose that n is an odd prime number. Then we have $P_n^+(g, l, l_1, m) \neq \emptyset$ if and only if we have the following conditions (1), (2) and (3);

- $(1) \quad l-l_1 \equiv 0 \pmod{n},$
- (2) $l_1+m\neq 1$,
- (3) $g+n\times\min\{l_1+m,1\}-((n-1)/2)(l_1+m)-1$ is a non-negative integer and is a multiple of n.

Furthermore, the number of elements of $\mathscr{S}_n^+(g, l, l_1, m)$ is equal to $C(n; l_1, m)/2 + Q(n; l_1, m)/2$.

PROOF. (Necessity) (I) The case $l_1+m\geq 2$. By (1) and (3), we have $(f, M) \in P_n(X, S)$, where X is a compact surface of genus $g(X) = \{2g-2-(n-1)+2n\}/2n$ with $(l-l_1)/n+l_1$ boundary components and S is m points

in \dot{X} . If g(X)>0, then $\mathscr{P}_n^+(g,\,l,\,l_1,\,m)$ is a one-to-one correspondence to the subset of $\mathscr{X}_n(g(X),\,(l-l_1)/n+l_1,\,m)$ satisfying that $\delta_1=\delta_2=\cdots=\delta_{(l-l_1)/n}=0<\delta_{(l-l_1)/n+1}\leq\cdots\leq\delta_{(l-l_1)/n+l_1}< n$. If g(X)=0, then $\mathscr{P}_n^+(g,\,l,\,l_1,\,m)$ is a one-to-one correspondence to the subset of $\mathscr{X}_n(0,\,(l-l_1)/n+l_1,\,m)$ satisfying that (i) g.c.d. $\{\delta_1,\,\delta_2,\,\cdots,\,\delta_{(l-l_1)/n+l_1},\,\theta_1,\,\theta_2,\,\cdots,\,\theta_n\}\equiv 1$, and (ii) $\delta_1=\delta_2=\cdots=\delta_{(l-l_1)/n}=0<\delta_{(l-l_1)/n+1}\leq\cdots\leq\delta_{(l-l_1)/n+l_1}< n$. But the condition (i) is always satisfied, since $l_1+m\geq 2$ and n is prime. Hence $\mathscr{P}_n^+(g,\,l,\,l_1,\,m)$ is a one-to-one correspondence to $D(n;\,l_1,\,m)/\eta$. Therefore the number of elements of $\mathscr{P}_n^+(g,\,l,\,l_1,\,m)$ is equal to $C(n;\,l_1,\,m)/2+Q(n;\,l_1,\,m)/2$. Clearly, we have $C(n;\,l_1,\,m)/2+Q(n;\,l_1,\,m)/2>0$, since $l_1+m\geq 2$.

(II) The case $l_1+m=0$. By (3), we see $g(X)=\{2g-2-(n-1)+2n\}/2n=(2g+n-1)/2n>0$. In the same way as in case (I), the number of elements of $\mathscr{S}_n^+(g, l, l_1, m)$ is equal to C(n; 0, 0)/2+Q(n; 0, 0)/2=(n-1+1)/2n+1/2=1.

(Sufficiency) The condition (1) is clearly the same as (a). Suppose that $l_1+m=1$. By (b) and (c), we have $(f,M)\in P_n(X,S)$, where $g(X)=\{2g-2-(n-1)+2n\}/2n=(2g+n-1)/2n>0$. In the same way, the number of elements of $\mathscr{P}_n^+(g,l,l_1,m)$ is equal to $C(n;l_1,m)/2+Q(n;l_1,m)/2=\{(n-1)-(n-1)\}/n=0$. Hence, we have $l_1+m\neq 1$. So we will prove the condition (3). If $l_1+m\geq 2$, then we get $g+n\times\min\{l_1+m,1\}-((n-1)/2)(l_1+m)-1=g+n-((n-1)/2)(l_1+m)-1$, which follows (3) from (b) and (c). If $l_1+m=0$, then $g+n\times\min\{l_1+m,1\}-((n-1)/2)(l_1+m)-1=g-1$ is a multiple of n, by (b). Hence $g-1\geq 0$ since $g\geq 0$. Hence the condition (3) is obtained.

THEOREM 4. Suppose that n=2. Then, we have $P_1^+(g, l, l_1, m) \neq \emptyset$ if and only if we have the following conditions;

- (1) $l-l_1\equiv 0 \pmod{2}$,
- (2) l_1+m is even,
- (3) $g+2\times\min\{l_1+m,1\}-(l_1+m)/2\geq 1$; odd.

Furthermore, the number of elements of $\mathscr{S}_{2}^{+}(g, l, l_{1}, m)$ is equal to 1.

PROOF. By (b'), l_1+m is even. Hence, in a similar way as in the proof of Theorem 3, we have Theorem 4.

In general, let n be a positive integer. We denote by $P_n^+(\tilde{g}, \tilde{l}, \tilde{m}, \tilde{l}, \tilde{m})$ a set of elements of $(f, M) \in P_n$ satisfying the following conditions;

- (1) M is a compact orientable surface of genus \tilde{g} with \tilde{l} boundary components $D_1, D_2, \dots, D_{\tilde{l}}$,
- (2) f is an orientation-preserving periodic map on M such that its singular set $\mathcal{S}(f)$ consists of \tilde{m} points $\tilde{S}_1, \tilde{S}_2, \dots, \tilde{S}_{\tilde{m}}$ in \mathring{M} ,

- (3) $\tilde{t} = (\tilde{t}_a)_{a|a}$ is a vector of non-negative integers \tilde{t}_a , where \tilde{t}_a is the number of elements of the set $D(a) = \{D_i; f^a(D_i) = \hat{D}_i \text{ and } f^b(D_i) \neq D_i\}$ for $1 \le b < a$ for each divisor a of n,
- (4) $\tilde{m} = (\tilde{m}_a)_{a=n}^{\alpha | n|}$ is a vector of non-negative integers \tilde{m}_a , where \tilde{m}_a is the number of elements of the set $S(a) = \{\widetilde{S}_j; f^a(\widetilde{S}_j) = \widetilde{S}_j \text{ and } f^b(\widetilde{S}_j) \neq \widetilde{S}_j \}$ for $1 \le b < a$ for each divisor a of n except n. We denote by $\mathscr{S}_n^+(\tilde{g}, \tilde{l}, \tilde{l}$ \widetilde{m} , \widetilde{i} , \widetilde{m}) a set of equivalence classes of $P_n^+(\widetilde{g}, \widetilde{l}, \widetilde{m}, \widetilde{l}, \widetilde{m})$.

Using the orbit space M/f and the branched cover $p: M \rightarrow M/f$, we have the following:

Proposition 5. If $P_n^+(\tilde{g}, \tilde{l}, \tilde{m}, \tilde{l}, \tilde{m}) \neq \emptyset$, then we have

- (1) $\tilde{l} = \sum_{a|n} \tilde{l}_a$ and $\tilde{m} = \sum_{\substack{a|n \ a\neq n}} \tilde{m}_a$, (2) $\tilde{l}_a \equiv 0 \pmod{a}$ for each divisor a of n, and $\tilde{m}_a \equiv 0 \pmod{a}$ for each divisor a of n except n,
 - (3) $\sum_{\substack{a|n\\a\neq n}} (1-n/a)(\tilde{l}_a+\tilde{m}_a)$ is even,
- (4) $\widetilde{g} = 1 + (1/2) \sum_{\substack{a \mid n \\ a \neq n}}^{a \mid n} (1 n/a) (\widetilde{l}_a + \widetilde{m}_a) + n$ is a non-negative integer and is a multiple of n.

Under the conditions (1), (2), (3) and (4) in Proposition 5, we will determine the number of elements of $\mathscr{G}_n^+(\tilde{g}, \tilde{l}, \tilde{m}, \tilde{l}, \tilde{m})$. We take vectors $l=(l_a)_{a\neq n}^{a\mid n}$ of non-negative integers and $m=(m_a)_{a\neq n}^{a\mid n}$ of non-negative integers, where $l_a = \tilde{l}_a/a$ and $m_a = \tilde{m}_a/a$ for each divisor a of n except n. For $n_{i,j}$ and $m_{i,j}$ we take the set

$$D(n; l, m) = \begin{cases} (\delta_1, \delta_2, \cdots, \delta_{l^*}, \theta_1, \theta_2, \cdots, \theta_m); \\ (0) & \delta_i, \theta_j \in N, \\ (1) & 1 \leq \delta_1 \leq \delta_2 \leq \cdots \leq \delta_{l^*} < n, \\ (2) & 1 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_m < n, \\ (3) & \delta_1 + \delta_2 + \cdots + \delta_{l^*} + \theta_1 + \theta_2 + \cdots + \theta_m \equiv 0 \pmod{n}, \\ (4) & l_a \text{ is the number of elements of the set} \\ & \{\delta_i; \mathbf{g.c.d.} \{\delta_i, n\} = a\}, \\ (5) & m_a \text{ is the number of elements of the set} \\ & \{\theta_j; \mathbf{g.c.d.} \{\theta_j, n\} = a\}, \end{cases}$$

where $l^* = \sum_{\substack{a \mid n \\ a \neq n}}^{a \mid n} l_a$ and $m = \sum_{\substack{a \mid n \\ a \neq n}}^{a \mid n} m_a$. Then the number C(n; l, m) of elements of D(n; l, m) is given as follows:

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ be the prime decomposition of n, where p_i is a prime number and e_i is a positive integer, and put $a = p_1^{f_1} p_2^{f_2} \cdots p_s^{f_s}$, where $0 \le f_i \le e_i$. Without loss of generality, we assume that $0 \le f_i < e_i$, $0 \le f_2 < e_2, \cdots, 0 \le f_v < e_v, f_{v+1} = e_{v+1}, f_{v+2} = e_{v+2}, \cdots, f_s = e_s$ for some v $(0 \le f_v < e_v, f_v) = e_v < f_v$

 $v \leq s$). Let $g_a(x, y_a, z_s) = g_a(x, y, z) = \prod_{j=1}^{n/a-1} (1 + yx^{ja} + y^2x^{2ja} + \cdots)(1 + zx^{ja} + z^2x^{2ja} + \cdots)$ be a formal power series, and $f_a(x, y_a, z_a) = f_a(x, y, z) = g_a(x, y, z)$ $(\prod_{i=1}^v g_{p_ia}^{-1}(x, y, z)) (\prod_{1 \leq i < j \leq v} g_{p_ip_ja}(x, y, z)) \cdots (\prod_{1 \leq j_1 < j_2 < \cdots < j_i \leq v} g_{p_{j_1} p_{j_2} \cdots p_{j_i} e}^{(-1)^t}(x, y, z)) \cdots (g_{p_1 p_2 \cdots p_{j_i} e}^{(-1)^t}(x, y, z))$ Let $y = (y_a)_{a \neq n}^{a \mid n}$, $z = (z_a)_{a \neq n}^{a \mid n}$ be vectors of variables y_a , z_a , respectively, for each divisor a of n except n, and put $F(x, y, z) = \prod_{a \neq n}^{a \mid n} f_a(x, y_a, z_a)$. Then we have F(x, y, z) as a generating function. Let d be a divisor of n, and ζ be a primitive dth root of unity. Then, $C(n; b, m) = (1/n) \sum_{d \mid n} \varphi(d) C_d(n; b, m)$, where $C_d(n; b, m)$ is the coefficient of the term $\prod_{a \mid n}^{a \mid n} y_a^{la} z_a^{ma}$ of $F(\zeta, y, z)$.

Let Q(n; l, m) be the number of (δ, θ) of the subset of D(n; l, m) satisfying that $(\delta, \theta) = (\delta_1, \delta_2, \dots, \delta_{l^*}, \theta_1, \theta_2, \dots, \theta_m) = (n - \delta_{l^*}, n - \delta_{l^*-1}, \dots, n - \delta_2, n - \delta_1, n - \theta_m, n - \theta_{m-1}, \dots, n - \theta_2, n - \theta_1)$. Clearly, Q(n; l, m) is equal to

$$\begin{cases} \prod_{\substack{\alpha \mid n \\ 0 < a < n/2}} \left\langle \frac{\varphi(n/a)}{2} + \frac{l_a}{2} - 1 \right\rangle \left\langle \frac{\varphi(n/a)}{2} + \frac{m_a}{2} - 1 \right\rangle, & \text{if } l_a \text{ is even and } m_a \text{ is even} \\ \frac{l_a}{2} & \frac{m_a}{2} & \text{such that } 0 < a < n/2, \end{cases}$$

We take an integer $q=p_{i_1}\,p_{i_2}\cdots p_{i_t}$, where $1\leq i_1< i_2<\cdots< i_t\leq s$. Then we consider the subset $D(n,\,q;\,l,\,m)$ of $D(n;\,l,\,m)$ satisfying that q is a divisor of g.c.d. $\{\delta_1,\,\delta_2,\,\cdots,\,\delta_{l^*},\,\theta_1,\,\theta_2,\,\cdots,\,\theta_m,\,n\}$. If a divisor a of n is not a multiple of q, then we have $l_a=0$ and $m_a=0$ in $D(n,\,q;\,l,\,m)$. Let a is a multiple of q. We take $l_a^{(q)}=l_a$ and $m_a^{(q)}=m_a$; and let us consider a vector $l_a^{(q)}=(l_a^{(q)})_{a'\neq n'}^{(n')}$ and $l_a^{(q)}=(m_a^{(q)})_{a'\neq n'}^{(n')}$, where $l_a'=a/q$ and $l_a'=a/q$. Then, the one-to-one correspondence from $l_a'=(l_a',m)$ to $l_a'=(l_a',m)$ is given by; $l_a'=(l_a,m)$ and $l_a'=(l_a,m)$ and $l_a'=(l_a,m)$ to $l_a'=(l_a,m)$ to $l_a'=(l_a,m)$ is equal to $l_a'=(l_a,m)$. Hence the number of elements of $l_a'=(l_a,m)$ is equal to $l_a'=(l_a,m)$. Therefore, we have;

THEOREM 5. (I) If $\tilde{g}-1+(1/2)\sum_{\stackrel{a|n}{a\neq n}}(1-n/a)(l_a+m_a)\geq 0$ is valid, then the number $C^*(n;l,m)$ of elements of $\mathscr{F}_n^*(\tilde{g},\tilde{l},\tilde{m},\tilde{l},\tilde{m})$ is equal to C(n;l,m)/2+Q(n;l,m)/2, where $l=(l_a)_{\stackrel{a|n}{a\neq n}}$ is a vector of non-negative integers $l_a=\tilde{l}_a/a$ and $m=(m_a)_{\stackrel{a|n}{a\neq n}}$ is a vector of non-negative integers $m_a=\tilde{m}_a/a$.

(II) If $\tilde{g}-1+(1/2)\sum_{\stackrel{a|n}{a\neq n}}(1-n/a)(l_a+m_a)+n=0$ is valid, then the number of elements of $\mathscr{S}_n^+(\tilde{g}, \tilde{l}, \tilde{m}, \tilde{l}, \tilde{m})$ is given by;

$$C^*(n; b, m) - \sum_{i=1}^{s} C^*\left(\frac{n}{p_i}; b^{(p_i)}, m^{(p_i)}\right) + \sum_{1 \le i < j \le s} C^*\left(\frac{n}{p_i p_j}; b^{(p_i p_j)}, m^{(p_i p_j)}\right) + \cdots \\ + (-1)^t \sum_{1 \le j_1 < j_2 < \dots < j_t \le s} C^*\left(\frac{n}{p_{j_1} p_{j_2} \cdots p_{j_t}}; b^{(p_{j_1} p_{j_2} \cdots p_{j_t})}, m^{(p_{j_1} p_{j_2} \cdots p_{j_t})}\right) + \cdots$$

$$\begin{split} &+ (-1)^{s} C^{*} \Big(\frac{n}{p_{1} \ p_{2} \cdots p_{s}}; \, b^{(p_{1} \ p_{2} \cdots p_{s})}, \, m^{(p_{1} \ p_{2} \cdots p_{s})} \Big) \\ &\Big(= \sum_{q \mid n} \mu(q) C^{*} \Big(\frac{n}{q}; \, b^{(q)}, \, m^{(q)} \Big) \Big) \; . \end{split}$$

Finally we will obtain the following:

THEOREM 6. There exists an algorithm for determining whether two elements of P_n^+ are equivalent or not.

If $D_i \in D(n)$, then we define $\delta_i = 0$. If $D_i \in D(a)$ $(a \neq n)$, then we take a point x_i on D_i . Then, a set $A = \{x_i, f^a(x_i), f^{2a}(x_i), \cdots, f^{(n/a-1)a}(x_i)\}$ consists of distinct n/a points on D_i . Starting at x_i and proceeding along D_i in the direction of the orientation of D_i , let $f^{\delta a}(x_i)$ be the point which first encounters A, after leaving x_i . Then, we set $\delta_i = \delta a$. For S_j , we take a point y_j on S_j and in the same way, we define θ_j . Then we have a system of integers $(\delta, \theta) = (\delta_1, \delta_2, \cdots, \delta_l, \theta_1, \theta_2, \cdots, \theta_m) \in Z_n(0; l, m)$. Also, for $(f', M') \in P_n^+(\widetilde{g}, \widetilde{l}, \widetilde{m}, \widetilde{l}, \widetilde{m})$ we have a system of integers $(\delta', \theta') = (\delta'_1, \delta'_2, \cdots, \delta'_l, \theta'_1, \theta'_2, \cdots, \theta'_m) \in Z_n(0; l, m)$. Hence, by Theorem 1, we determine whether (f, M) and (f', M') are equivalent or not. Hence we have Theorem 6.

References

- [1] T. Ason, Classification of free involutions on surfaces, Hiroshima Math. J., 6 (1976), 171-181.
- [2] P. A. Smith, Abelian actions on 2-manifolds, Michigan Math. J., 14 (1967), 257-275.
- [3] S. Suzuki, On homeomorphisms of 3-dimensional handlebody, Canad. J. Math., 29 (1977), 111-124.

- [4] G. T. WHYBURN, Analytic Topology, Amer. Math. Soc. Colloquim Publ., 28, Amer. Math. Soc., 1942.
- [5] K. YOKOYAMA, Classification of periodic maps on compact surfaces II, preprint.

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOI-CHO, CHIYODA-KU, TOKYO 102