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Introduction.

A homeomorphism f: M—M of a space M onto itself is called a
periodic map on M with period n if f"=identity and f*#identity (1=
k<mn). We say that a periodic map f on M is equivalent to a periodic
map f/ on M’ if there exists a homeomorphism h: M—M' such that
fh=hsf'. In this paper, we will obtain classification of orientation-pre-
serving periodic maps on compact orientable surfaces. Classification of
orientation-reversing periodic maps on compact orientable surfaces and
periodic maps on compact non-orientable surfaces W111 be given in the
forthecoming paper [5].

We will consider a pair (f, M) where M is a compact connected
surface and f is a periodic map on M with period n. Let A=A(f)=
{xe M; fix)=2x, fi@)#r (1=i<k)} and FS=A(f)= Uit A ={xeM;
1<3k<n, fXx)=x}, say a singular set of f. Let P, be a set of (f, M)
satisfying the condition that S”(f) consists of finite points in M (may
be empty). For an element (f, M), we obtain its orbit space M/f from
M by the identification of x with f(x) for x e M.

PROPOSITION 1 (Whyburn [4]). The orbit space M/[f i3 a compact
surface. : .

Let p: M— M/f be a canonical map. Then p is an =n-fold cyclic
branched covering map of M/f with a branched set p(&"(f)) For a
compact connected surface X and a set S of finite points in X, we denote
by P,(X, S) a set of elements (f, M) of P, satisfying the following con-
ditions;

(1) the orbit space M/f is homeomorphic to X,

(2) the canonical map p: M — X is an n-fold cyclic branched covering
map with a branched set S. .

Suppose that (f, M) is equivalent to ( f', M’). Clearly there exists a
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homeomorphism g: M/f—M’[f" such that g(p(S2(f))) =0 (F(F") and gp=ph
where p': M’ — M'[f’ is a canonical map and h: M— M’ is a homeomorphism
satisfying fh=hf'. Let X=M/f and S=p(5”(f)). Then (f, M)e P,(X, S)
and (f', M")eP,(X,S). We denote by Z#(X,S) a set of equivalence
classes of P,(X,S). Then for classification of P,, we will determine a
complete set of equivalence classes of P,(X,S) (see Theorem 1), and
prove that:

THEOREM 2. Assume that X is a compact orientable surface of genus
g and that the boundary 0X consists of | components, and furthermore
that a set S comsists of m points in X. Let n= pipse - - - it be the prime
decomposition of n. Then the number of elements of ZP.(X, S) i3 given by;

(I) CF(n;l, m)=Cyn; I, m)/2+Qy(n; I, m)/2 if g=1,

dD  C¥(n;l, m) — 35, CF (/D 1, m) + Sgicics CE /D@5 1, m) + -+« +
(=1) Dz <tp<r<tjse CE/(DDy, - - D)3 L, M)+ -+« +(—1)'C¥m/(D, D, - - - D);
I, m) (=230, #(@C¥(n/g; 1, m)), if g=0, where p(q) is the Mobius function.
(Co(n; I, m) and Qy(n; 1, m) are given in §3 in detail.)

Let P} be a subset of P, such that M is an orientable surface and
S i8 an orientation-preserving periodic map. Then, we will obtain, as
a consequence, classification of P, (see Theorem 5 and Theorem 6).
Especially, assume that n is a prime number, and let Pj(g, 1,1, m) be a
set of elements (f, M) of P; satisfying the following conditions;

(1) M is a compact orientable surface of genus g and the boundary
0M consists of ! components,

(2) f is an orientation preserving periodic map on M such that its
singular set S”(f) consists of m points in M,

(8) the number of setwise fixed boundary components of M by f
is ..
Denote by Fif(g,l,1, m) a set of equivalence classes of Pj(g,l, 1, m).
Then we will prove that:

THEOREM 3. Suppose that n 18 an odd prime number. Then
Pig,l,l,m+*QD if and only if g, 1, I, and m satisfy the following
conditions (I), (II) and (III):

(I) 1—-1,=0 (mod n),

(II) I, +m=+1,

(III) g+nxmin{l,+m, 1}—(n—1)/2)(,+m)—1 18 a non-negative in-
teger and a multiple of n.

Furthermore, the number of elements of F;(g,l,1, m) is equal to
C(n; 1, m)/2+Q(n; I, m)/2. (C(n;l, m) and Q(n;l, m) are given in §4 in
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detail.)

THEOREM 4. Suppose that n=2. Then P;(g,1, 1, m)# @ if and only
wf g, 1, I, and m satisfy the following conditions (I), (II'), and (III);

(I) 1—1,=0 (mod 2),

(I l,4+m 18 even,

(III) g+2Xxmin{l,+m, 1}—({,+m)/2=1; odd.

Furthermore, the number of elements of F*(g,1, 1, m) is equal to 1,
that 8, an wnwvolution (f, M)e P;i(g,1,1,, m) is unique up to equivalence.

In case of m=0, Theorem 4 is given by Asoh [1].

In §1, we will give a model of (X, S) and reduce an equivalence
relation of P,(X,S). In §2, using the homeotopy group of (X, S), we
will determine the equivalence classes of P,(X,S) (see Theorem 1) and
in §3, we will prove Theorem 2. In §4, we will have classification of
orientation-preserving periodic maps.

The author will like to express his sincere gratitude to Prof. Sin’ichi
Suzuki, and especially, to his colleague Mr. Teruhiko Hilano for his helpful
conversation in § 3.

§1. A model for X and the reductions of equivalence relation

for P,(X, S).

Let X be a compact connected orientable surface of genus g and let
the boundary 6.X consist of ! components d,, d,, ---,d,. For the sake of
convenience, we first take a model for X in the 8-dimensional Euclidean
space R® as shown in Fig. 1, and simple oriented loops a,, a,, ---, a,,

o6

FIGURE 1
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b, b, +++, b, dy,d,, -+, d; on X as shown in Fig. 1. Let S be finite points
8,8, ,8, 1in )2', and take simple oriented loops s, 8;, ---, s,, on X as
shown in Fig. 1.
To avoid a multiplicity of brackets, we refer to loops rather than
to homology classes. Then the first integral homology group of X—S
is given by; -
a,, blr a., bz; *ccy Ay, bgr
(Ll) H1(X""S)= du dzy ) dl’ ’
81,8, * ") 8m

d1+d2+".' +d; .
+8,+8+---+8,=0{

To determine equivalence classes of P, (X, S), the following is useful;

DEFINITION 1. Let [H(X—S); Z,]1* be a set of homomorphisms @ of
the first integral homology group H,(X—S) onto the cyclic group Z, of
order n such that w(s,)=0 for every s,e H(X—S). We say that two
elements @, and w, of [H(X—S); Z,]* are .s-equivalent, denoted by
®,~®,, if there exists a homeomorphism k of (X, S) onto (X, S) such
that w,h,=w,, where h, is the automorphism of H,(X—S) induced by
hlx_s-

To avoid a multiplicity of ,, we also use h as h,, if there is no
confusion.

Using a branched covering theory, we obtain the following, in a
similar way to P. A. Smith [2]:

PROPOSITION 2. There 18 a one-to-one correspondence between the set
of equivalence classes of P, (X, S) and the set of -equivalence classes of
[H(X—-S); Z,]*.

Let Z,(g;1, m) be a set of systems of inegers (a, 8, 8, )= (a,, B, s,
Bas * =+ s Ayy Bgy O1y O35 =+ +4 04y 04,0y, - -+, 8,,) satisfying the following conditions;

(0) O0=a;<n, 0=8:;<n, 0=9,;<m, and 1=6,<n (i=1, 2,--,8; 3=
1v2’ "';l; k=1r29 "'ym)!

(1) é6,+06,++--+06,+6,+6,+:--+6,=0 (mod n), :

(2) g'c°d° {au Bu (247 Bz, Tty &y, Bw 31; 32, % 31; 01, 02, * % 0m}El (mOd
n), where g.c.d. means the greatest common divisor.

REMARK. In case where an element of systems of integers (a, 8,
8,0) is not an integer satisfying the condition (0), we regard it as a
representative of Z,.

Now w is an element of [H (X S); Z,)*. If w(a)=a;, obd)=28,
w(d;)=90; and w(s,)=0, (1=1,2, ---,9; 7=1,2,---,1; k=1,2, ---, m), then
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® is represented by an element (a,, 8, &, B: ***y Qgy Bgy 01y 05y =+, 04y Oy
Gy +++, 0, of Z.(g;1, m), say 3(w). Conversely, for an element (a, 8,
3, 0) of Z,(g;1, m), there exist uniquely an element @ of [H(X~-S); Z,]*
such that S(w)=(a, B, 8§, #). So X is a one-to-one correspondence between
[H(X—S); Z,]* and Z,(g;1, m). We will define the equivalence relation
on Z,(g; 1, m) by the equivalence relation ~ on [H(X—S); Z_]*, as follows:

DEFINITION 2. We say that two elements (@, 8, §, 6) and (, 8, &, 6')
of Z(g;l, m) are equivalent, denoted by (@, 8,3, 6~ pg',¥,¥6), if
3 ((a, B, 8, 6)) is sv-equivalent to X' (o, B, &, 6')).

We have clearly that ¥ is a one-to-one correspondence between the
set of .v-equivalence classes of [H,(X—S); Z,]* and the set of equivalence
classes of Z,(g;1, m). ‘

§2. Determination of the equivalence classes of P,(X, S).

To determine the equivalence classes of P,(X, S), we use the following
result of S. Suzuki [3]:

PROPOSITION 3. There exist homeomorphisms O, Pius Ty ths 01 Of
(X, S) onto itself such that automorphisms of H,(X—S) induced by them
are given by:

p@)=aiu,,  EOb)=by., (=1,2,--+,9);

poula,)=a, , 0.:(b)=b, , pu(a)=a, , Pu(bt) =b, ;
(a)=a,—b, , 7.(b)=b, ;

#(a)=b, , (b)) =—a, ;

0.(a)=a,—a,, 0.5(b.)=b, , 0::(as) =@y » 6,5(b;) =b,+b, ;

where the remaining generators of (1.1) are unchanged.

LEMMA 1. For an element 3 (w)=(a, B, 8, 6) € Z,(g; 1, m), we have the
Jollowings:

Z(@P)=(Qsy Bay Asy By ** 5 Agy Bys X1y B1y 8, 6)
Z(00.) = (A, Biy sy Bay ***y Cicsy Bic1y Oy Biy Xty Bivry ***y Agy Boy 50,
Z(wt)=(0,— B By Qs Bay ** *» Cgy B4y 8, 6)
Z(@p)=(By — 0, Az By ***, Qgy B34, 8, 0)
Z(w0y,) = (ot;— Az, Biy Osy BaF By Csy By *** Oy, By, 8, 6) -

By these results, we have the following lemma:
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LEMMmA 2. (a, B, * -, a,, B,, 3, 6) ~ (0, % 0,:--,0,8, 68), where Y=
g-c°d' {an ﬁn a,, Bz, Tty &y, Bn}°

Proor. (I) We will prove that (ay, g, -- s Ogy Byy 8, 0)~(0,7, 0,
Yo +*+, 0,7, 8,6), where v,=g.c.d. {a,, B8}. First it will be shown that
(au By Xy Loy ** *, gy By 5, 6)~(0, 7, sy Bey *** 4 Ay, Bas 8) 6). If a,=0, there
is nothing to do. If 8,=0, we have merely to apply ¢'. So we may
assume that «,8,#0. Then we have the following;

3¢, ,€ N such that «a,=¢,8,+7,, 0<r,<B,,
3¢, 7€ N such that B,=qr,+7r,, 0< r, <7, ,
3¢, 7s€ N such that »r =g+, 0<r <y,

ooooooooooooooooo

3¢, r.,€N such that Pes=Qe o5t 75, 07, _, <7 ,,
3¢,,, 7., € N such that Tes=qQ 1 Te sty , 0<7r,_,<7._,,
3¢, 7€ N such that »,_,=gqu»,_,+r,, »r=0.

Let b=t 'croeprs - -« {00 e L -0ttt Then, @~ wh,.
2(wh)=(0, 7, &, B, -+, ,, B,, 8, 8) is equivalent to 2(w). By the same
way, we have an automorphism h, of H(X—S) induced by the composi-
tion of homeomorphisms 7, and g, such that (wh,0,h,)=(0, 7,, 0, 7., a,
Bs, =+, Ay, By, 8, 6) is equivalent to I(w). Repeating the same procedures,
we have an automorphism & of H,(X—S) induced by the composition of
homeomorphisms z,, ¢, and p,, such that 2(wh)=(0,7,0,7, :--,0,7,,8, 8)
is equivalent to 3(w).

I If v,=v,=...=7,=0, there is nothing to do. So we may assume
that 7,7, --- 7,#0. Applying Oi; if necessary, we may assume that v,
is the smallest positive integer in {Yy 7e +++,7,}. Then there are non-
negative integers ¢, and », such that Ti=q7,+71 (2=2i=g) and 0=7r,<7,.
Let h{=31_212(pmpwpmﬂ;zqapupmom) cee (pmpxgpmal;q’pupwpm)- Then, we have
@ wh;.  Z(wh)=(0,7,0,7,0,7, -0, 75, 6, 0) is equivalent to I(w).
If », is the smallest positive integer in {v,, 7, 7y, ---, r,}, then we apply
©.; and by the same way, we have an automorphism #; of H,(X—S)
induced by the composition of homeomorphisms p,, and 6,, such that
2(wh,P,,h2)=(0, 7,, 0, 7,0, 74, -+ -, 0, 77, 8, 6) is equivalent to S(w). Repeat-
ing the same procedures, we have an automorphism A" of H,(X—S) induced
by the composition of homeomorphisms O and 6, such that X(wh')=
©,~,0,0,---,0,0, 8, 6) is equivalent to 3(w), where v =g.c.d. {7, 7, -
7.}, completing the proof.

?

We use some more typical homeomorphisms of surfaces.
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DEFINITION 3. Let A'={(r, 6); r<6}, A={(r, 0); r<5}, A,={(r, 6); r=<
1}, B.={(r, 0); (r cos 6 —8)*-+r*sin*0=<1}, B_={(r, 6); (r cos 8 +3)*+*sin* =<
1} be subsets in R? as shown in Fig. 2. We define a homeomorphism

@: A’— A’ by putting
o(r, ))=(r,0+n) if r<5,
o((r, D)=, 0+6—r)r) if b5=r=<6,
and define a homeomorphism «: A—A,—»A—A, by putting

¥((r, ))=(r, 0+2(r—Dx) if 1sr=<2,

FIGURE 3
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,

——y

Ficuse 4
W(r; O)=(r, 0+26—rr) if 4srsb,
¥((r, 0))=(r, 0) if 2<r<4,

which are the same maps as p;, and J,,, in S. Suzuki [3], as shown in
Fig. 38 and Fig. 4. '

(1) 9,(2=<i=l): Lethbe anembedding of A'—(B,U B_)in X—S such
that h(A'—(B, UB_)N8X=h(@B,) Uk@B.)=d,Ud, and R(A’'—(B,UB.)N
{a, by, a, b, d,dy---,d}={d,, d}. Then we have a homeomorphism 9,
of (X, S) onto itself defined by d,=hph™ on h(A'—(§+U3_)) and by o,=
the identity on X—h(A'—(B+UI?_)); see Fig. 5.

FIGURE &

(2) o; (2=j=m): Let h be an embedding of A’ in X such that
k(AN S=h((8, 0)) Uk((—38, 0))=5,U8; and h(A")N{a,, b, as, b,, -+, @, by, 81,
8, *++, 8,}={8, 8;}. Then we have a homeomorphism o¢; of (X, S) onto
itself defined by o;=hyh™ on h(A') and by o;=the identity on X—h(4’);
see Fig. 6. o ' '

(8) 4. We take a 2-cell A and identify dA with a component d,
of 6X. We obtain the surface XUA of genus g with [—1 boundary
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FiGure 7

components. Let ¢ be a simple loop on XU A passing through the center
of A such that cn {alp ccty G, ba’ dly dz, °e dl’ 81y 83y * sm} cn {al’ 1}
and ¢ intersects transversally at one point W1th a,; see Fig. 7. Let h
be an embedding of A— A4, in XU A —S satisfying the following conditions;
1) h(@)=ec, (2) h(A— A) is a regular neighborhood of ¢, (8) h(A— Al)n
{a'u 1y "%y Gy, bﬂ’ dl: dz, . l} h(A Al)n{a'u 1} and (4) h(B+)=A ‘where
¢={(r, 8); r=38}. Then, We have a homeomorphism 4, of (X, S) onto itself
defined by d,=h+yh™ on h(A—A,) and by 9,=the identity on X— h(A Al),
see Fig. 7. : :

(4) o, We take a 2-cell A in X such that ADs,, An{aq, 1ty Gy,
b,, 81, 85, -+ s,,,} {s.} and ANS= {sl} Let ¢ be a sumple loop on X passing
through 3, such that ¢nf{a,b, ---,a;, b, d,d, --+,dy, s, 8, -, 8,)}=cN
{a,, 8,} and that ¢ intersects transversally at one point with a, (see Fig.
8). Let & be an embedding of A—A, into X :satisfying the conditions;
(1) h(@)=c, (2) (A—A,) is a regular neighborhood of ¢, (8) h(A—A4)N
{a'u bl’ ) aa; bw 81y 82y * ¢ ;’ sm}:h’(A—Al) N {aly 81} and (4) h(B+)=A' Then’
we have a homeomorphism g, of (X, S) onto itself defined by o,=hvyh* on
h(A—A,) and by o,=the identity on X—h(A—A4,); see Fig. 8.
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i ,-':
i v 7
d; d 5T 85 Sn
FIGURE 9

(5) 7: For the sake of convenience, we take a model for X in the
3-dimensional Euclidean space R® as shown in Fig. 9. Let 7 be a homeo-
morphism of (X, S) defined by 7(z, ¥, 2)=(z, ¥y, —2).

Then, by S. Suzuki [3] and in an elementary way, we have the
followings:

PROPOSITION 4. The homeotopy group of (X, S) is gemerated by p,
Ou (2=51=9), Ty th, 01, 0; RSJ=D), 00 (2Zk=EMm), ., 0, and 7).

LEMMA 8. (1) The automorphisms of H(X—S) induced by them are
given by;
o(d)=d,, od)=d, ;
0y(3,)=8;, a8)=8, ;
d(a)=a,—d, ;
a.(a,)=a,—8, ;
Na)=—a, (1=i=5g9), n@y)=-d; (A=j=D,
N =—38, (A=k=m).

(2) For an element J(@w)=(a, B, 3, &) of Z,(g;1, m), we have
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2(0)3;)=(a, 8, o, 03y 33, vy O¢yy Oy 314—1: ] 81, )
2(wo,)=(a, B, 8,0, 0, 0y +-+,0,,,0, Oivry ** ) Om)
2(@0,)=(at;— 8, By, Asy Bay ***, Ay, Byy 8, )
2(wo,)=(a,~0,, B, sy Bsy ***, @y, By, 8, 0)
(on)=(—ay, B —ay B, * -+, —Qyy Bgy — 01y —0yy =+, =0
_01’ _..02’ cee, —0“) .

By using the Lemmas 1 and 8, we have the following lemma:

LEMMA 4. (0,7, 0,0, -+-, 0,0, 8, & ++-, 8, 6, Gy +++, 8,) ~(0, 1, 0,
0’ "'vO’ O’ 519 32, ) 51: 019 02’ % 0m)'

ProOF. Since g.c.d.{v,4,0, -+, 8,60, 8, -, 0,}=1 (mod n), there
exist integers 2,2, :--,%, 2, %, -+, %a Such that 2,7+ 20,4+ 20,4+~ +
2101 +2:0,+20,+ - - +2n0p=1 (mod n). Let h=1770;1(3,07%3,) - - - (0,0;%0;)
0:.°(0,0;%0,) - -+ (0,0:°»0,), then @~ wh. Hence X(wh)=(1,7,0,0, ---,
0, 0,8, 6) is equivalent to J(w). I(whpzi p2)=(0,1,0,0, -- »0,0,8,0) is
equivalent to J(w).

Since the symmetric group &, (u=1! or m) is generated by the set
of transpositions {(1, i)}i.,, we have the following:

LEMMA 5. For any permutation \ of {1,2, ---, 1} and \’ of {1, 2, s,
m}’ we have (a’ B, 619 829 *t 0y 319 0)"’(“9 B, 62(1); 82(2); Tty 82(1)9 6), and (a, B,
89 0., 02; Tty 0»)”(“; B: 8’ 01’(1); 02’(2)9 Ty 02'(m))-

To determine a complete set of equivalence classes of Z.(g; 1, m),
we will define an equivalence relation - as follows:

DEFINITION 4. (I) An element (3,68)=(5,, d,, -+, 8, 6, 6,, <+, 06,) of
Z,(0; I, m) is n-equivalent to an element (&', 6')=(5}, &}, - -, o1 0y, 6z, « -+, 6o)
of Z,(0;1, m), denoted by (3, 6)+ (%, 6, if (i) (3, 8)=(¥, &) or (ii) (a) if
31=52:: ‘o =6i=0<85+1 and a':a;: .o :6;.,:0<6;.,+1’ then g':j" (b) n—
0;= 0711, M0, =074 ** M= 0;_ 441 =054y, ** Nn~—0;,,=0;, and (c) n—0,=

M= 0p_ 1 =0, -, B—0p =0}, -+, n—0,=0,.

(I) An element (0,1,0,0,---,0,0,3,0) of Z,(g;1, m) is N-equivalent
to an element (0,1,0,0,.-+,0,0,%,0") of Z(g;1, m), denoted by (0, 1, 0,
0,:--,0,0,8,6)50,1,0,0,-+-,0,0,&, 6, if (3, 6)~(¥, 6.

THEOREM 1. A complete set of equivalence classes on Z.(g;l, m) s
represented by
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(Oy 1"0:’ .09. "% 0"0’ 815 62; ** ',,8;, 0n a2y‘ .".u_’ om) ’
g Oé;alsazst",é51<'n_, - , L
1) =le;l,m)= SREIEASE
(v @GLM= <0< -gu<n,. - 7
31+62+.' v +6l+01+02+."-' ~+6,=0 (mod n)

-. < L . wf g=1.
(51, 32, <o, 31, 0., Gy -+, 6.) ;ﬁ -
.\ gecd.{6,0, -, 0,0, 0, -+, 0:)}=1 (modmn)f
(2)  2,0;lL,m={ 0=8<8<---=8<n, . Lin
. ol 1sege,s g0<my o 7

| S48t 80,48, 4 - +6,=0 (modn) /|

PrROOF.. By ‘Lemmas 4 and 5, any element ' J(w)=(a, B, 3, ) of
,,(g,l m) is equivalent to an element of a set: 27,(g; !, m).  Hence it ‘is
sufficient ‘to prove that two distinct elements of the set 2’ “(g; I, m) are
not equivalent. :
Let Z((O) (0’ 19 '0; '09 Tt 0) 09 81, 32,' ° "’ 511 01’ 0., -- "’ 01») and S(Q’)g
©,1,0,0,---,0,0,8,8, -+, 8,006, -+, 6,) be equivalent elements of
Z.(g;1l, m). Then, by Proposition 4, there exists a homeomorphism h of
(X, S) onto itself which is a composition of elements in' {0, 0y, 71, £ B
d;, Oy, 04y 0., 7} such that o'=wh,, where h, is the automorphism of
H,(X—S8) induced by hlx_s. By Lemmas 1 and 3, we note (i) {0, 0, -,
Bl} {31; 0z, o } and {0, 0y, - - ) m} {61, 65, - 0;} or (11) {01, 0z - -+ 3l}—
{—08), —&, - -'o"} and {6, 0,, -, 0.}={—01, —6:, -+, — ,,.} Hence We
have (8 0)~(8' 6’), since 0<9,<9, S <6<, 053'332 SBZ<n, 1<
p.<0,=--:56,<n, and 1<60,<6;<.--=0.<n.
Let Z'(a)) (8, ) and Z(w")=(¥, 6’) be equivalent elements of Z,,(O l, m).
By the same way, we have (3, 6)~ (¥, 0).

§ 3. Proof .of Theorem 2.

To determme the number of elements of (X S), we. W1ll ﬁrst take
the set Dy,(n; !, m)= {(31, 8y - ° -, 0y, 0y, 02, -+-,0,); 0, 0;€N,0<6,50,<-
o<n, 1=6,50,<- cS0,.<m, 8+5+ +6;+01+02+ +0 =0 (modn)}
and compute the number Ci(n; 1, m) of elements of Dy(n; 1, m). _

! ‘Let. Silzx, ¥)= e,y be a formal power series, and F,(z, )=
135 fi(@, ¥), Fw, 2)=I13=1 fi(=, 2) and F(z, y, 2)=F,(x, y)F.(x, 2). Then,
we have Fl(zx, y,2) as a generating function. Hence Cy(n;l, m) is equal
to the sum. 3tr' K(i) of the coefficients K(¢) of the terms. a"y'z™ in
F(x, y,2). Therefore, Cy(n; 1, m) is equal to the coefficient of the term
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y'z™ in (3, F(&, v, 2))/n, where {,=cos 277:/n+z sin 2z/n and {,=Ci: If d
is a divisor of n, and if C is a pr1m1t1ve d-th root of unity ({=¢, for
some %), then F({, y, 2)=(1—y* 1 —2)(1— z")“', where d’ is the natural
number #/d. Hence the coeﬁiclent of the term Y Iz™ in F(C y, ) is equal to

/- -1\ a1\ R T
* /d + ) if ls_o (rnqd n) e,nd m=0, (mod n) ..
@'—1 &—1 o

{11 N\/m=1 ., LR e

— -1\ =——=4d'—1 : , . :

d +d d +. ) if 1=0 (mod#) and m=1 (mod n),
d—1 -\ d ~1. } FEE
0. o o ‘otherwise ,

Where (a) ~a Y ((a—b)! b ')
L Therefore, 0(n,l m) is given as follows: T
Let: d, d;, - , d, be all common d1V1sors of 7, m and 'n except 1 and

d,—n/d (z—l 2,---,8). Alsoec,e, -, cs be every common d1v1sor ‘of 1T,
m— 1 and " exbept 1 and c,~—n/c (g 1 2, -, 0). Then, we have

s

<z+n 1)(m+n 2)+>3 (d»( it )(Z+.di 1)

('n, l m)——-
‘ n

-1,
_Z ¢(0,)( +0,—1)( C; +cj—1)} ’

where o(d) is the Euler function.

Let Qy(n; I, m) be the number of elements (3, 6). of Do('n,l m). -satis-
fying that {(8’ 0')eD°('n l, m); (¥, 0")~+(8, 0))={(, 0)} Then, Qo('n,, I, m) is
equal to ’

n]+[m] ‘ I:-—]-I_,: ] if - (1) m is "even: ‘orv (2) n 'Al‘s even:
l:_:l I:—:l o m IS odd and l21 e
. o B otherwxse -

— -

Where [c/2] is the larg'est 1nteger not greater than c/2

THEOREM 2. (1) The mumber C¥(n;l, m)of elements of F(X, S)
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18 given by
C3(m; 1, m)=-3Cilm; L m)+3Qumil,m) if 921,
(2) Suppose g=0. Let n=p p32 .- pi*, where p; 18 a prime num-

ber and e, i3 a positive imteger (i=1,2, ---,8). Then, the number of
clements of (X, S) is given by

Cs(m; 1, ’m)—‘Z;ll C&"(g;; L, m)+ls‘§<}’_s‘ C:,“( .1, m)+ cee

D:D;

- 5 Ol m)

15“1((’("'<¢."S. p‘l p" e p‘j

s V% n N —_— x n .
1708 (-2 bom) (=3 m@cs (St m)).

PROOF. (1) By Theorem 1, C¥(n;l, m) is equal to the number of
elements of Dy(n;l, m)/n. Hence C¥(n;l, m)={Cy(n;l, m)—Qyn;l, m)}/2+
Qu(n; 1, m)=Cy(n; I, m)[2+Qy(n; I, m)/2.

(2) We take an integer ¢=p;, D¢, * * * Dq;» where 1514,<1, <+ - <1;=58.
Then we consider the subset Dy(n, q;1, m) of Dy(n;l, m) satisfying that
g is a divisor of g.c.d. {8, 8,, -+, &, 0, O, -+, O, m}. The correspondence
(31’ 82, *t %y 3;, 0., 0y + - 0m)""(61/q9 32/‘1; “t % 81/Q, 0,/(1, 02/q’ A 0:/Q) defines
a bijection from Dy(nm, g;l, m) to Dy(n/g;l, m). Hence C¥(n/q;1l, m) is
equal to the number of elements of Dy, g;l, m). We have Theorem
2 (2).

§ 4. Classification of orientation-preserving periodic maps on com-
pact orientable surfaces.

For a compact orientable surface M, we will determine the number
of equivalence classes of periodic maps with period » on M.

For brevity, we first assume that n is a prime number. Let
Pi(g, 1,1, m) be a set defined in Introduction. For (f, M)e Pi(g,l,1, m)
its orbit space M/f is a compact orientable surface of genus {29—2—
(n—1)(1, + m) + 2n}/2n with (I—1)/n+l, boundary components, and a
canonical map p: M— M/f is a branched covering of M/f with branched
set p(5”) consisting of m points. Hence we have (f, M)e P, (X, S),
where the genus of X is {29—2—(n—1)({,+m)+2n}/2n, the boundary
X consists of (I—1,)/n+1, components, and S consists of m points in
X.

It is necessary for Pi(g,l, l,, m)#= @ that
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(a) 1—1,=0 (mod n),

(b) g—1—((n—-1)/2)(l,+m)=0 (mod n),
and (¢) g—1—((n-1)/2)(,+m)=0, if n+2;

@), (") 2g—2—(,+m)=0 (mod 4),
and (¢) 29—2—(,+m)+4=0, if n=2.

To determine the number of elements of (g, I, l,, m), we will take
the subset D(n; 1, m) of Dyn;l,, m) satisfying that 1<4,. In the same
way as in §8, the number C(n; !, m) of elements of D(n;l,, m) is given
by;

_1_{<ll+n 2) (m+n——2) _1} if 1,=0, m=0 (modm) or
n l,=1, m=1 (modn),
_1__{<ll+n 2)('m+n 2) +1} if 1,=0, m=1 (modn) or
n l,=1, m=0 (mod n),

1/L+n—-2\/m+n—2 .
— otherwise .
n\ n—2 n—2

<

Let Q(n;l,, m) be the number of elements of D(n;l,, m) satisfying
that (8, 8y, +++, 81, 0, 0, -+, 0,) =(M—08yy, n—04y—yy *++, B—0y, B—0;, N — O,
N—0p_yy »+, n—0, n—0,). Clearly, Q(n;l,, m) is equal to;

——-—]+ I: ]+——1

2 2
0 ' otherwise .

if I, and m is even,
P,

THEOREM 3. Suppose that n i3 an odd prime number. Then we
have P}(g,1,1, m)*=@ if and only if we have the following conditions
1), (2) and (3);

(1) 1—1,=0 (mod n),

(2) lLi+m=1,

(8) g+nxmin{l,+m, 1}—({(n—1)/2)(,+m)—1 is a non-negative inte-
ger and 18 a multiple of n.

Furthermore, the number of elements of Z,(g,1,1, m) 18 equal to
C(n; 1, m)/2+Q(n; I, m)/2.

PrOOF. (Necessity) (I) The case I,+m=2. By (1) and (3), we have
(f, M)e P,(X, S), where X is a compact surface of genus g(X)={2g—2—
(n—1)+2n}/2n with ({—1)/n+1, boundary components and S is m points



90 KAZUO YOKOYAMA

in X. If 9(X)>0, then Fr(g, 1,1, m) is a one-to-one correspondence to
the subset of 27,(¢9(X), (I—1,)/n+1,, m) satisfying that §,=d,= - ... -—6(,,_,1,/,
0<du ipmrs-- cSoacipme,<n. If 9(X)=0, then ZHe, 1, lu m) is a one-
to-one correspondence to the subset of 2%(0, I—1)/n+1,, m) satisfying
that (i) g'c°d' {31’ 32’ % 3(!—11)/154-119 biy 0,y + '7-,01-}',5 1' a'nd (li) 31=-32=.' RS
Ouipm=0<0u 1p/mi1 =<7+ Sdu_tpm+r;<n. But the condition (i) is always
satisfied, since l,4+m=2 and » is prime. Hence P(g,, l,, m) is a one-
to-one correspondence to D(n;l,, m)/7. Therefore the number of elements
of &#j(g,1, 1, m)is equal to C(n;l, m)/2+Q(n, l, m)/2. Clearly, we have
C(n; 1,, m)/2+Q(n; 1,, m)/2>0, since l,+m=2.

(II) Thecasel,+m=0. By (3), we see g(X) ={29—2—"(n*—-1)-»|{2?n}/2n=
(2g+n—1)/2n>0. In the same way as in. case (I), the -number of ele-
ments of (g, I, l,, m) is equal to C(n, 0, 0)/2+Q(n, 0, 0)/2=(n— 1+1)/2n+
1/2=1. ‘

(Sufficiency) The condition (1) is clearly the same as (a) Suppose
that I,+m=1. By (b) and (c), we have (f, M)e P,(X, S), where g(X)=
{29 —2—(n—1)+2n}/2n=(29+n—1)/2n>0. In the same way, the number
of elements of Ai(g,l, 1, m) is equal to C(n;l, m)/2+Q(n;. L, m)/2=
{(n—1)—(n— 1)}/n 0. Hence, we have [,+m=#1. So we ‘will prove the
condition (3).° If I,+m=2, then we get g+ xmin {i, +m, 1}~ ((n— 1)/2)
(li+m)—1=g+n—((n—1)/2)(,+m)—1, which follows (38) from (b)‘and (c).
If I,+m=0, then g+xnxmin{l,+m, 1}—((n—1)/2)(,+m)—1=g—1 is a
multiple of », by (b). Hence g—1=0 since g=0. Hence the condition
(8) is obtained. ’ o

THEOREM 4. Suppose that n=2. Then, we have P;(g,l, 1, m)~Q
if and only if we have the following conditions;
(1) 1—14,=0 (mod 2),
(2) lL+m is even,
(8) g+2xmin{l,+m, 1}—(,+m)/2=1; odd. :
Furthermore, the number of elements of F+ (g,l L, m) 18 equal to 1.

Proor. By (b’), l,+m is even. Hence, in a similar Way_as in the
proof of Theorem 3, we.have Theorem 4...

. In general, let » be a positive integer. We denote by P; (g, I, m, 1, @)
a set of elements of (f, M) P, satisfying the following conditions;”
(1) M is a compact orientable surface of genus § with 7 boundary
components D, Dz, «eoy Dy - - »
(2) fis an orlentatlon-preservmg perlodlc map on M such that 1ts
smgular set y(f) consists of # points S, §,, -- -, S; in M,
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©¢8). §=(1,).,. is'a vector of non-negative integers.l,, where 7, is
‘the number of elements of the set D(a)= {D,, fD)= D, and f b(D,);ﬂD,
for 1=b<a} for each divisor a of m; .~ :

- (4) W=(i,)eln i8-a vector of - non-negatlve 1ntegers Mgy . Where s
is the number of elements of the set S(a)= {S,, f*8)=S; and f ‘(S;)#S
for 1=b<a} for each divisor a of n except n. We denote by .7*(@’,.
i, §, %) a set of equivalence classes of Pr@, 1,1, ). .

Usmg the orbit space M/f and the branched cover M —+M/f , We
have the following:

PROPOSITION 5. If. P+(g, 1, m,7%, m);& @, then we have

(1) l_Zaln l ‘and m= 2“'" ma’ .

(2) 1,=0 (mod a) for each “divisor a of n, and m,,—O (mod a) fo'r
each divisor a of n except n,

(3) Zaln a- 'n/a,)(l +,) 18 e'ven,

(4) g— 1+(1/2) Zam (1—nfa)(l,+M)+n 48 a mon-negative 'mteger
and is a multiple of n.

Under the conditions (1), (2), (3) and (4) in Proposxtlon 5, we will
determine the number of elements of </ (g, 1, @, %, m). We take vectors
1=, )amn of non-negatlve integers and m= (m )am‘ of non-negative inte-
gers, where [ —l,,/a, and m, mala for each d1v1sor a of n except n.
For n,, 3 and ™, We take the set

(@ By -y B0y 0y Oy ey O) R N\
) (0) 06,0;eN, | ‘ ; -
(1) 1S8,56,<--=0<n, | 1
2t (2) 156,<6,<---=0,<n, |
D(n; 3, m)={ (8) &+8+-+++8.+6,+0,+++++0,=0 (modn),
- (4) I, is the number of elements of the set
o Paged (o, n)=a}, oo

1 (5) "m, is the number of elements of the set .
\ {85 ged. {0, n}=a}, -
where l* Zaln 1, and m=ein m,. Then the number C('n, 3, m) of ele-
ments of D(n, Z m) is given as follows:

Let m=pi:ps --- pi* be the prime. decomposition of n, where p, is a
prime number and e, is a positive integer, and put a=p{tpft--. pls,
where 0< f,<e,, Without loss of generality, we assume that 0= f,<e,
0§f2‘<iez; cecy O§f0‘<ev’ fv+1=é§+u Sore=6yis, +++y fo=e, for some v (0=

.
s o .
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v=3). Let g.(z, ¥, %.) = 9., ¥, 2) = [I757" (1 + yx?*+ y*x 9+ - - - )L + 227 +
2'¢**+ - - -) be a formal power series, and f,(x, ¥., 2.)=/f.(z, Y, 2)=9.(, ¥, %)

(Ht 1yp‘a(x Yy, Z)) (HIS¢<:’S' gp;p,a(x Y, Z)) (II1531<3,< <:'¢$'gp;1’n ﬁj‘o(w’ Y, Z))

e (G5 pep,s(®, ¥, 2). Let ¥=Wa)eln, £=(2.)ei» be vectors of variables
Yeo» 2., Tespectively, for each dnnsor aofn except n, and put F(z, y, z)=
IIz» fo(®, Yoy 2.)- Then we have F(z,y,2) as a generating function.
Let d be a divisor of », and { be a primitive dth root of unity. Then,
C(n; 3, m)=(1/n) X, P(d)Cs(n; 3, m), where C,(n; 3, m) is the coefficient of
the term JJai» yo22+ of F(, y, 2).

Let Q(n; 3%, m) be the number of (§,68) of the subset of D(n;1, m)
satisfying that (3,0)=(,,d,, -+, 0p, 0,0, -+, 0,)=(n—0,, M—0Op_yy **+,
N—0; N—0y, N—0py W—0p_,, -+, n—0,, n—0,). Clearly, Q(n;3, m) is equal to

r 2(—";’ﬁi)+%“—1 &"2"/-92+—"—2"£—1 if [, is even and m, is even
l m ’ for each divisor a of =
_21 2' such that 0<a<n/2,
0 otherwise .

A

ain
0<a<n/2

We take an integer ¢=p, p,,:-- P, Where 154, <4,< .- <4,Z£8. Then
we consider the subset D(n, ¢; 3, m) of D(n;1, m) satisfying that qgis a
divisor of g.c.d. {5,0, -+, 8..,0,8, ---,0,,n). If a divisor a of n is
not a multiple of ¢, then we have [,=0 and m,=0 in D(n, q; 1, m). Let
a is a multiple of ¢. We take 1{=1, and m!? =m,; and let us consider
a vector X“"—(l“”)a'ln' and m'?=(m{)s;», where a’=a/q and n’=a/q.
Then, the one-to-one correspondence from D(n, g;3, m) to D(n'; 39 m @)
is glven byr (81: az’ ° 8!‘) 0., 02’ e n)"’(al/qQ az/q, 51‘/qy l/q’ 2/q)
, 0./q9). Hence the number of elements of D(n,q; X, m) is equal to
C(n/q; 39, m@). Therefore, we have;

THEOREM 5. (I) Ifg—1+(1/2) Slala (1— n/a)(l +m,) =0 8 valid, then
the mumber C*(m;3%, m) of elements of Prg, T, m, 5, m) is equal to
C(n, 1, m)/24+Q(n; 3, m)/2, where L= (La)ain 48 @ vector of non-negative integers
l.=1,/a and m= (m,)sin 18 a vector of non-negative integers m,=mi./a.

an If §—1+@1/2) Xain (L—n/a)ls+m,)+n=0 is wvalid, then the
number of elements of .?*(6, T, m, % ) is given by;

C*(n; b, m)~ 33 C*( L5170, mo0)+ 57 (2
i=1 p‘ 15i<jss DD;

*( n : 3(,;1”2---95‘)’ m"i1’i2""5t))+ P
1541<43 <0 <fyse D Pjy - Py,

. ;) )
s t(p", ’ m("" )+ LI Y

+(-1)
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+(—1)'C*(_Zﬁ_; §oirepa) g trmee ,.))
v Ds D,

—_ *( M. 1@ @
(——ﬂZﬂ#(q)C (q,%“,m")) :
Finally we will obtain the following:

THEOREM 6. There exists an algorithm for determining whether two
elements of P; are equivalent or mot.

Let (f, M) e P}, I, m, §, m), that is, M is a compact orientable sur-
face of genus § with I boundary components D,, D, ---, D;, and S(f)
consists of # points S, S, ---,8;. Let U(S;) be a sufficiently small
neighborhood in M homeomorphic to a disk, and let S; be the boundary
aU(§,-). Then S; is a simple loop in M—<. We give orientations to
D,D,---,D,8S,S,, ---, Sisuch that D,+D,+---+D;+8,+8;+ - - +Sz=
0 in HI(M S”). Without loss of generarity, we may assume that (a)
fYD)Y)=#D; if 1=b<n and 1<i<j<l, (b) for each k (1+1<k<T), there
exist p031t1ve integers ¢ and b (1=<1<l!, 1=b<m) such that f*(D,)=D,, (¢)
FiS)=8S,if 1=sb<n and 1=i<j=m, (d) for each k (m+1=<k=), there
exist positive integers ¢ and b (1=i=<m, 1=<b<n) such that FuS)= S,.
Then, we will define an integer §, for each D, (1=<+=<l) and an integer
0; for each S; (1<j=<m) as follows:

If D,e D(n), then we define 6,=0. If D, e D(a) (a#n), then we take
a point 2, on D,. Then, a set A={x,, fo(x.), f*,), * -+, f™*%=x,)} consists
of distinct »/a points on D,  Starting at z, and proceeding along D, in
the direction of the orientation of D,, let f%(x, be the point which first
encounters A, after leaving x,. Then, we set §,=da. For S;, we take a
point y; on S; and in the same way, we define #;, Then we have a
system of integers (3, 6)=(d,, 0, * -, 01, 0y sy ---, 0 w) € Z,(0; I, m). Also,
for (f/, M')eP*(g,l m, L, m) we have a system of integers (&, 6)=
01, 03, <+, 01,605 ---,00)€Z,0;1, m). Hence, by Theorem 1, we de-
termine whether (f, M ) and (f’, M’) are equivalent or not. Hence we
have Theorem 6.
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