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It is well-known that Newtonian mechanics is an approximation for
general relativity. However, mathematically, both mechanics can stand
independently without any subordination by each other. That means,
without experimental fact one cannot prove mathematically that general
relativistic mechanics is more adequate than Newtonian mechanics.

Nevertheless, beside physics, we insist in this paper that under the
group theoretical point of view, general relativistic mechanics is a more
closed system than Newtonian mechanics.

Introduction

Hamiltonian mechanics is a beautifully organized mathematical
expression of classical mechanics (ef. [1]) and is expressed as the triplet
(M, 2, H), where

(i) (M, Q) is a symplectic manifold, called a phase space. M is
even dimensional smooth manifold, and 2 a smooth symplectic structure
on it.

(ii) H is a smooth function on M, called a Hamiltonian. Mechani-
cal motions governed by the above Hamiltonian H are given by the
integral curve of the Hamiltonian vector field X,, where X, is defined
by '

Q- Xy=dH .

Let @,(x) be the integral curve of X, with an initial point ze M,
namely x,=@,(x) is the unique solution of the following equation:
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(1) < 2 =Xuw), =z
Now, in an idealized, dynamically closed system, the mechanical state
®,(x) must exist for all te R and x€ M. Thus, it is natural to assume
that X, is a complete vector field on M, hence ®, is a one parameter
transformation group on M.

It is widely known that the Hamiltonian equation (1) is equivalent
to the following Poisson’s equation: Let f be a smooth function on M,
called an observable, and set f(x)=f(@,(x)). Then, f, expresses the time
evolution of the observed quantities, which satisfies

d o =
(2) dtf‘_ H, 1}, fi=f,

where {f, g} is the Poisson bracket, defined by {f, g}=2(X,, X,). Obvious-
ly, (1) implies (2), and the converse is also true if every local coordinate
function is an observable, or equivalently if sufficiently many functions
are observables.

Now, remark that observables are, mathematically, non-defined con-
cept, but it seems to be natural to assume that if f and g are observa-
bles, then all linear combinations Mf+ g, \, 1€ R are observables. We
denote by ¢ the linear space of all observables in a mechanical system
(M, 2). Obviously, all possible Hamiltonians should be observables.
Moreover, every fe ¢ will be able to be a Hamiltonian. In such a
situation, it is plausible to assume that every Hamiltonian vector field
X, is complete whenever fe?, for fe can be a Hamiltonian. In
quantum mechanics, every observable A is assumed to be a self-adjoint
operator, and hence by Stone’s theorem it generates a unitary one
parameter subgroup e*4. This corresponds to the completeness of X,
fe?.

It is also natural to assume that every time-evolution f, of an
observable f is an observable, because otherwise one can not recognize
such unstable functions as observables. Since (1/8)(f;.,—f,) € & for every
0>0, it is also natural to assume that (d/dt)f,c . Since every fe &
can be a Hamiltonian, Poisson’s equation (2) shows that < must be closed
under the Poisson bracket, that is, < is a Lie algebra.

Let A, be the set of all Hamiltonian vector fields X,;, fe . %A, is
then a Lie algebra under the usual Lie bracket, because of the identity
a{f, 9}=—2[X,; X,]. Let exptX,; be the one parameter group
generated by X e9,. Since every time-evolution is an observable, we
have (exptX,;)*?=¢ for every fe ¢, and hence
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(3) Ad (eXp tXf)mg’:mp 9 er &);

where Ad (9)u is defined by (Ad (p)u)(x)=deu(p ).
By the above reasoning, we assume that < must have the following

properties:

(A1) ¢ is a Lie algebra under the Poisson bracket.
(A2) Each Hamiltonian vector field X, for fe & is complete.
(A8) (exptX,)*@=¢ for every fe ¢ and for all teR.

Note at first that (A1) and (A8) aren ot necessarily independent. If
¢ is closed under a suitable topology (for instance, the C* topology),
then d/dt|,-,(exp tX;)*g e & for every f, ge . However,

L | (exptX)g=X,0=~0X;, X)=10, f}
hence (A3) yields (Al). Although the converse is not necessarily true
(cf. [2] §0 and §2) it holds in many natural situations.

If M is a compact symplectic manifold without boundary, then the
space C~(M) of all smooth functions on M satisfies (Al)~(A83), and
N (7 =C=(M)) is the Lie algebra of the group of all canonical trans-
formations on M. In [4] p. 108, this group is known to be a strong
ILB-Lie group, and hence it is a regular Fréchet-Lie group (cf. §6 in
Th. 6.1 [7]).

However, if M is non-compact, the situation is quite different. For
instance, let us consider Newtonian mechanics on a configuration space N.
The cotangent bundle T*N has a natural symplectic structure £ such
that 2= —d»n, n=pdax’, where (z', ---, 2") is a local coordinate system
on N and (p, ---, p,) a linear coordinate system corresponding to the
basis (dx', ---, dx"). By (g,;) we denote a smooth riemannian metric on
N and by (g¢*) its inverse matrix. Now, Newtonian mechanics can be
understood as a Hamiltonian system {M, 2, H} with M= T*N, Hamiltonian
H(x, p)=(1/2)g“pp;+ V, where V is a smooth function on N, called a
potential function, which is naturally regarded as a function on M=T*N
through the projection 7: T*N—N. In Newtonian mechanics, potential
functions can be chosen almost arbitrarily, while, the riemannian metric
(g.;) is understood to be fixed. However, there exists the following

quite curious fact:

THEOREM A. Let & be a set of smooth functions on T*N satisfying
- (A1) and (A2), and containing a smooth function (1/2)g*p;p;+ V for some
VeCN). If feC(N)N¢ satisfies j:f=0 at a point x €N, then
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Jef=0 for all k=2, where j:f is the k-th jet of f at x.

PROOF. Assume there is fe C*(N)N ¢ such that j2f=0 but j%fo<0
for some £k=3. One may suppose that j4'f=0 without loss of generality.

Let (2!, ---, ") be a normal coordinate system at x with respect to
the given riemannian metric (g,;). We denote by ad (f)¢g the Poisson
bracket {f, g}. Denoting H=(1/2)g"p,p;,+ V, we set

W=(—1)*"ad (H)*'f .
Since {g, h}=(0h/dp.)(3g/dx*)—(3h/dx*)(3g/ap,), We obtain

W =gt ... gtk—1ik—1 .o ak—lf + @ (f)
=g g Di, Di, pi,,_lw k-2 ’
where @ is a linear combination of the terms containing the derivatives

of f up to order k—2. Since («', ---, 2") is a normal coordinate system
at x, we have

AW|T!N=I"*""%p, --- p,_da*

where [M1%=(9*f/o* - - - 0}¥)(0) and |T*N means the restriction. There-
fore the Hamiltonian vector field X, satisfies

0
Xy | TEN=T"""%p, ... P !
hence Xy |TIN is a tangent vector field on T*N. Let (5, ---, §,) be a
point at which the homogenous polynomial [ tp, -.. p, attains the

maximum under the restriction > pi=1. Since (p, ---, P,) is a stationary
point, we get

eetpin - 2.
I« ‘kpil s pik_ldpik=—k-)\‘pikdpik ’ AMER.

By a suitable linear change of coordinates one may assume that
D, -+, P)=Q1, ---,0), hence we have

o“f o°f .
0)=0 d ——=_(0)=0, =2.
a(xl)k( ) an a(xl)k-—laxi( ) t=
Therefore, Xy |(p, 0, - - -, 0)=cp*~(3/dp), c#0. Thus X, defines a tangent
vector field on a one dimensional linear subspace (p, 0, ---, 0), which is

not complete because k=3. Thus, X is not complete contradicting the
assumption (A2), because W e ~7. O
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The above result shows that there are few potential functions in 2.
Indeed, if N is a real analytic riemannian manifold, then

dim C*(N)N 0§—12—(n+2)(n+1) ,  n=dimN,

where C*(N) is the space of all real analytic functions on N.

The above curious fact is mainly caused by the assumption (A2).
However, if we give up assuming (A2) then we have to struggle again
to obtain reasonable criterions of observables and Hamiltonians without
any group-theoretical stand point. To resolve the above difficulty, we
have to consider relativistic Hamiltonians on (T*N, 2), which will be
discussed in the next section.

§1. Relativistic Hamiltonians and the statement of Theorem.

In general relativity, the free motion of a particle is given by a
timelike geodesic on an (n-+1)-dimensional Lorentzian manifold N’
regarded as the space-time or the universe. However, the universe N’
is not an arbitrary Lorentzian manifold, but is under certain restrictions
imposed by some cosmological reasons, such as the existence of a
universal time ¢, where ¢ is a C* function on N’ such that 0/t is a
timelike vector field.

Suppose the vector field grad ¢t/|grad t|* is complete. Then, it is not
hard to see that N’ is C~ diffeomorphic to Rx N, on which the given
Lorentzian metric is written in the form

(4) de*=c(t, ®)’dt’—h;(t, x)dx'dx? ,

where c(t, x) is a C~ positive function and %, ) is a C* riemannian
metric on N for every fixed te R.

In what follows, we impose the above restriction, and moreover we
assume N is compact without boundary.

Consider a free motion of a particle. Since it is a timelike geodesic,
it must be a solution of the variational equation 6 \ dz=0. Since every
timelike curve can be parametrized by ¢, the above variational problem
on RXN can be regarded naturally as that on N. Take the Legendre

transform and compute the Hamiltonian H(¢, x, ») ([1], [3]). Then, we
get easily

(5) H(t, x, p)=c(t, 2V 1+17(t, )p.p; -

The motions of a particle are described by integral curves of X, in T*N,
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where X, is a time-dependent vector field on T*N. Namely, the general
relativity in our situation is nothing but a Hamiltonian mechanics with
H in (5) as a Hamiltonian. The above H will be called a relativistic

Hamiltonian. :
Note that in our situation, ¢(¢, ) and k., ) can be chosen almost

arbitrarily just like potential functions in Newtonian mechanics. This
is because the gravitational forces are involved in ¢ and hk,; in general

relativity.
Let g,; be an arbitrarily fixed C~ riemannian metric on N and set
r=V'g"p,p;. We denote by S*N the unit cosphere bundle in T*N with

respect to g'.

LEMMA 1.1. Ewery relativistic Hamiltonian H,(x, p) has the follow-
ing asymptotic expansion:

(6) Hyz, p)~ar+a+a_r'+ - +a_n™™+---,
Jor >0, where a;’s are smooth functions on S*N.

PROOF. Set Gz, p)=h'pp;/9"p,p; on T*N—{0}. G is a positively
homogeneous function of degree 0, hence naturally identified with a C~
function on S*N. Since G>0 and

Hx, p)=rc(x, tV'GV'1+1/Gr*,
H, has an asymptotic expansion of type (6). O

Now, let 3*' be the space consisting of all smooth functions on T*N
which have asymptotic expansion of type (6) and let U;: be the set of
all Hamiltonian vector fields X, of fe 3'. Obviously, 3*' contains C=(N)
and all relativistic Hamiltonians for every fixed ¢. The purpose of this

paper is to show the following:

THEOREM B. 23'satisfies (Al)~(A3). Moreover, s is a Lie algebra
of a regular Fréchet-Lie group.

Remark that the above result shows that general relativity is more
closed system than Newtonian mechanics from the Lie group theoretical
point of view. '

§2. A compactification of T*N.

For the proof of Theorem B, we have to compactify the cotangent
bundle T*N. Fix a C= riemannian metric ¢ on N and we denote by
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M=D*N (resp. M=D*N) the unit open disk bundle (resp. the unit closed
disk bundle) in T*N. Points in T*N will be denoted by (x; &), x€ N,
g€ TxN, or

(x; &)=(x; r2) , rel0, =), 2zeS¥N,

where S*N is the fibre at = of the unit cosphere bundle S*N=0oM. Let
¢: S*XN—T*N be the inclusion mapping. Then, S*N carries canonically
a smooth contact structure

() o=, N=>, &dx" .

Note that T*N—{0} is diffeomorphic to R, xS*N, R,.=(0, ) and the
symplectic form 2 on T*N—{0} can be written in the form

(8) R=—d(rw)=—drAw+rdw) , r=(g"g.e,)"* .
Let z: M— T*N be the C~ diffeomorphism defined by
. . Y1)
(9) o(w; 02)=(w; (tan —Z_)z) ,

where 6el0,1), z€ S)N (cf. [6]). By using this diffeomozphism, every-
thing on T*N can be transferred to that on M, e.g., 2=7*Q2 is a C*
symplectic form on M, and we see

(10) g= ((tan —_)a))

=—%(;osl7r—_2"’7__—>zd0/\w (tan gg)dw
on M—{0}.

Let C=(JM) be the space of all C* functions on M=D*N, where a
function f on M is said to be C~ if f can be extended to a C* function
on a neighborhood of M. Denote by ¢(6) a non-decreasing C= function
on [0, o) such that

(0, 6el0,1/3)
(11) ¢(0)_{1, 6e[2/3, <) .

Every fe C*(S*N) can be naturally regarded as a C* function on M—{0},
and hence ¢fe C=(IM).

Recall that each element h of X' has the following asymptotic
expansion;
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(12) h(x; E)~a17'+a0+a_1'r"‘+ e AT,
r=(g"¢£,)"* for r>0.

LEMMA 2.1. 7*3'=(¢(0) tan (z0/2))C=(S*N)YPC=(M).

PrROOF. For every hel', we see easily that lim,_.. (1/r)h exists as
C~ function a, on S*N. Hence, setting z*k=1*h—(¢(0) tan (76/2))a,, k
has the asymptotic expansion:

k~ay+a_r~'4+- - 4+a_,r ™+--- (»>0).

Set r=tan76/2, and by the converse of the Taylor’s theorem at 6=1,
we get that t*keC=(M). Conversely, if t*keC<(M), then Taylor’s
theorem shows that k& has an above asymptotic expansion. This completes
the proof. O

From now on we treat the unit disk bundle M=D*N and the
symplectic structure 2.

Let =(M) be the group of all C~ diffeomorphisms of M onto itself.
Then, 2/(M) is a strong ILH-Lie group with the Lie algebra I'(TH),
where I'(TM) is the totality of C~ vector field u on M which is tangent
to the boundary oM=S*N. (Cf. [4] §II, [5] p. 279). Let =r; be the
identity component of the group {pe 2 (M); p*2=2 on M }. Then &3
is a closed subgroup of & (M). We set

(13) I'z={ueI'(TM); exptuec 23 for all te R}.

LEMMA 2.2. I'; has the following properties:
(i) Iz is a closed subalgebra of I'(TM).
(ii) Every wel's is a complete vector field.
(iii) Ad(exptu)'3=I3 for any uelz.

ProOF. By 1.4.1 Theorem in [g] or Lemma 1.4 in [8], we see that
I'; is a closed Lie algebra of I'(TM). Note that

I's={ueI'(TM); <£,2=0 on M}.
Then, we get easily (iii) (ef. [2]). ]

Our first purpose is to get the following, which will be proved in
§§4, 5 and 6.

THEOREM 2.3. ;5 i8 a regular Fréchet-Lie group. (For the de-
finition of regular Fréchet-Lie group, see [7].)
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Let A be the set of all Hamiltonian vector fields X, of fe2*, i.e.,
QoX;=df, fe3'. We translate this Lie algebra to dz '¥s;. For the
proof of Theorem B, we shall show the following in §3:

THEOREM 2.4. dz7'Us: s a closed ideal of I'; of codimension
dim HY(N;-R)+1, where H'N, R) is the first cohomology group of N
over R. ’

Before proving the above theorems, we shall show at first how to
obtain Theorem B by Theorems 2.3 and 2.4.

PrROOF OF THEOREM B. We shall prove Theorem B under Theorems
2.8 and 2.4. At first, we shall show that 3* satisfies (A1)~(A3). Since
dz7'9; is a Lie algebra, so is %;: and hence 3' is a Lie algebra under
the Poisson bracket. Since every uwcI'; is a complete vector field, we
see that dzu is also a complete vector field on T*N.

Set w(t)=Ad (exptv)w for v, wedrUn. Then w(t) satisfies
(d/dtyw(t)=[v, wt)], and hence by Lemma 4.5 [7], we have
Ad (exp tv)dt ' Un=d7T'Us1. Since dzr(Ad (exp tv)w)=Ad (exp tdzv)drw,
the above equality shows that Ad (exp tu)Uz;=%Us: for all ue Az, Now,
remark that 2 —Ad (exptu)X,=d(exp —tu)*f. Since Ad (exp tu)X,e UAn
we have (exp tu)*f+const. € 3* and hence (exp tu)*fe 3*. Thus 3" satisfies
(Al1)~(A3).

As &; is a regular Fréchet-Lie group and dz '%; is a finite
codimensional subalgebra of I', Theorem 4.2 in [8] shows that there is
a locally flat FL-subgroup G:: of &5 having dc™'%; as its Lie algebra.
By Corollary 2.4 in [8], G; is a regular Fréchet-Lie group.

Now, using the C= diffeomorphism z: M— T*N, we put

- DW(T*N),=t=2377",
' (TT*N)=dzl'; ,
Gon=1Gur".

Obviously =2,(T*N), is a regular Fréchet-Lie group and G is an FL-
subgroup. The Lie algebra of Gy is given by ;. O

§3. Proof of Theorem 2.4.

First of all, we explain the structures on the closed unit disk bundle
M=D*N which will be useful through this paper. Remark that M has
two geometrical structures, that is, it is a symplectic manifold with
symplectic structure £ and also is a manifold with boundary S*N=oM
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on which there is a canonical contact structure w (cf. (7)).

In the following, we will omit M or TM in the notations for Lie
subgroups or Lie subalgebras of </(M) or I'(TM), respectively, e.g.,
;5 is a subgroup of 2(M).

For the contact manifold (S*N, w), define the C~ vector field X, on
S*N defined by

(14) do—X,=0, @—A,=1.

X, is called the characteristic vector field of the contact form w. Denote
by E, the distribution

E,={Xe TS*N; w—-X=0},

and by E*(cT*S*N) the anihilator of X,. E, (resp. E}) is a smooth
subbundle of the tangent (resp. the cotangent) bundle of S*N of
codimension one. It is obvious that

TS*N=RX.DE., , T*S*N=RwPE} .

The linear mapping dw|;,: X+—dw—X, defines an isomorphism of E, onto
E*. So, its inverse will be denoted by dw™. The following fact is
well-known in Hamiltonian mechanics (ef. [1] and [4] 8.3.1. Lemma):

LEMMA 3.1. A wvector field w on S*N is a contact vector field if
and only if there is a smooth function f on S*N such that u can be
written in the form u=fX,—{f}, where {f}=do™(df—X.f/)w).

Since M—{0} is diffeomorphic to (0, 1]xS*N, X,, E, and E* stated
above can be naturally extended to M —{0}. We use the same notations
for the extended ones. It is again obvious that

5 TH—{0)= R2ORLOE.
T*M—{0}=RdOPRoDE? .

For every vector field v on M=D*N, we set

(16) bw)=2 —u .

Also, for a smooth function f on M, define #fe I's by
17 §r=b"ds .

Let 9;: be the set of all Hamiltonian vector fields X,, fe 3'. By the
diffeomorphism ¢ in (9), it is not hard to see that dr 'Us=p~'d(z*2").
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In accordance with the decomposition (15), we shall compute the com-
ponents of ue dz='Us. Given fer*3', there exists uniquely a, € C*(S*N)
and g e C~(M) such that

(18) =(tan 2 )p(0)as+ ,

because of Lemma 2.1. Since each vector field w on D*N—{0} can be
written in the form

(19) =\ (; az)aa—0+ ww; 02X, +a, ael(E),

if df=Q —wu, then we get by (10) and (19)

Ma; 62)= ——p(ﬁ)(sm z0)X, a,—_(cos ——)2(Xa,g)
(20) Jp(x; 0z)= (qH—L sin 76— a¢ a,+ (cos lzdi-> _a_g_
= —g(60){a.) @a——ym,

where {g}=dw(d'g—(X.g)®) and d’g is the derivative of g regarding ¢
as an arbitrarily fixed parameter.

LEMMA 3.2. #(z*3") is a closed subspace of I's.

PrROOF. Let fbe an element of z*3*'. Then u=*% f can be expressed
by (19) and (20). If =1, then %f becomes a,X,—{a,}. Hence, #f induces
a smooth vector field on S*N. Therefore, #f e I'(TM). Since F=
d(@ —w)=db(w), we see easily that £f e Is.

Now, suppose that a sequence {%f,,,}, fmeT*2', converges to an
element weI's in the C> topology on M. On [1/3,1]xS*N, the above
convergence means those of each component of 4/08, X,, and E,. Thus,
using (20) we have that there are smooth functions a;cC*(S*N), ¢'e
C=([1/3, 1] x S*N) such that

lim £f, = #((tan —>¢(0)a1) +Eg'

m—o0

on [1/3, 1] x S*N. Choose an arbitrary extension of g’ onto M and denote
it by the same notation ¢g’. Define f'eC*(M) by
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fi= (tan —>¢(0)a1+g

Thus, we have u—ﬁf on [1/3 11X S*N, hence #(f,— —f') converges to 0
on [1/3 11X S*N. Therefore $(1— )N Sfm—f" ) converges in I'. Recall that
#h—b“‘dh and remark that the mapping b induces a linear homeomor-
phism of I'(TD(2/3)) onto I’'(T*D(2/3)), where D(2/8) is the closed 2/3-
neighborhood of zero-section of M= D*N. Therefore, there exists h'e

C~(M) such that supp K cD(2/3) and lim, .. #(1 — )N fr— f')—#h'. Thus,
we have

lim ££, =&+ lim §(fu— )+ 1’ .

Note that the second term of the right hand side converges to O.

Hence, we have lim,,_. #f,,, #( S'+h’). This implies the closedness of
B(c*3). O

LEMMA 3.3. #z*3)=dz U5 is an ideal of I'z.
PROOF. Since bAd (P)u=p* ' (@*2)—u) for every ¢ e (M), we see

Ad (e f=%o*f, fer*s,
for every o e =3;.
We shall show at first that @*r*3'=7*3' for any pe 23. To do
this, it is enough to show that @*(tan 76/2)e7*3", because of the ex-
pression in Lemma 2.1. Let s=cotx§/2. Then [0, e) XS*N can be

naturally identified with an e-neighborhood of S*N in M. By this
identification, @ can be written as

{§= 3(s, 2)

21) z=2(s, 2)

(8,2)e[0,e)xS*N .
Since @(S*N)=S8*N, we see §(0,2)=0 and F=g(s, 2)s on a sufficiently
small neighborhood of S*N, where g(s, z) is a smooth positive function.
Note that @*(tan 76/2)=5"", hence it is contained in (tan 0/2)C>(M) on
a sufficiently small neighborhood of S*N, but this shows immediately
@*(tan wd/2) € T*3".

The above result shows especially

Ad (exp —tu)§7*3 = 'd(exp tw)*c* I = h-'d(z*3") ,

for every weI';. Since #z‘*Z" is closed in I'y, we see that #z'*Z“ is an
ideal of I'; by taking the derivative at ¢=0. O
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Let I' (TS*N) be the Lie algebra of all smooth contact vector fields

on S*N. By Lemma 3.1 and by (20), it is clear that I"( TS*N) E(2* 3 gun-
However, we have in fact the following:

LEMMA 3.4. Every ueI'; induces a contact vector field on S*N.

PROOF. For every ueI'; denote by @, the one parameter subgroup
generated by u. For the proof of u|syc I',(TS*N), it is enough to show
that @,|s.y is a contact transformation. For an element pe 25 we set

P=@|swy. On a neighborhood of the boundary S*N of M, @ can be
written in the form (21). Since p*@?=0 and 2= —d(s'w), we have

S AP*w=38"dsN\w ,

Pro={5) |

Since §=g(s, 2)s, g0 because of 5(0, z)=0, we see that

hence

P*w=9(0, 2)w ,
hence & is a contact transformation. ]

Now, let p: I'; —>I' (TS*N) be the restriction mapping p(u)=u|sy. P
is surjective, because I'; D#(z*3") and #c*3Y)|sy=T,(TS*N). We denote
by Fa,b the kernel of p. By a standard diagram chasing, we see easily

I5/8(c*30) =T /T, N ¥z*3") .

On the other hand, by (20), we see Fa,bﬂﬁ(z’*zl):ﬁC”(M). Thus, we
have

L3/de™Un=T3,/T'3,0#c*3)=p '3,/dC~I) .
Let Z(M) be the space of all smooth closed 1-forms on M. Then we

have
 LemMa 3.5. p(I';,)=Z(D*N)+ Rd(s log tan 76/2) .

PROOF. For every uely,, b(w) is a closed 1-form on M. First,

we show that h(I'3,) is contained in Z(I)PRd(slog tanz6/2). Given
uel';,, put u=\(0/26)+pX,+% in accordance with the decomposition
(19). Since u|ay=0, one may set

A=(cos 6/2)X , p=(cos m/2)f , #=(cos ®6/2)% ,
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on (2/3,1]xS*N, where X, Z and & are C* functions and a C* vector
field on (2/3,1]1xS*N. Thus, on (2/3, 1]xS*N we have

Q = —d((tan 76/2)®)—u

=£( pag o )—(sin 76/2)dw —il .
2\ coswh/2 cosmlO/2 .

Set a=X|s.y, b=f|s:x and regard these as functions on (2/3, 1]x S*N.
Then, X—a and Z—b can be devided by cos 76/2, and hence
b(w)=92—u

T b a
—_ dé — p
2 ( cos 0/2 " cos wd)2 “’) tan,

where a is a smooth 1-form on (2/3, 1] < S*N.
Since d(@ —u)=0, especially d(Z—u) has no singularity on (2/8, 1] x
S*N, we see easily that a=0 and b=const.. Thus,

b(w) =Ld0 +a=Cd(¢ log tan 76/2) + o’ ,
cos wh/2

where C is a constant and a’ is a smooth 1- form on M.
Conversely, assume that

2 _wu=Cd(s log tan 76/2)+3 , BeZM).

Then, d(2 —u)=0 on M, hence we only prove that u|ey=0. On (2/3, 1] %
S*N, the right hand of the above equality can be written as

C —
0+ 5 'eI'(T*M) .
cos h/2 th g ( )
Hence, by using (20), we see easily that u|qay=0. ]

PROOF OF THEOREM 2.4.

By Lemma 3.2 and Lemma 3.3, dz7'U;: is a closed ideal I'z. Since
I"a/dz-‘lmzxzB(I’a,,)/dC”(M), Lemma 3.5 shows that it is isomorphic to
H(M; RY®Rd(s log tan 76/2). Since H'Y(N; R)=H'D*N; R), we have the
desired results. ]

§4. A reduction of Theorem 2.3.

To complete the proof of Theorem B, it remains proving only that
25 is a regular Fréchet-Lie group (cf. Theorem 2.3 in §2). In this
section, we shall show how the proof will be done. Put
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(22) D3.,={p € Dp; play=identity} .
We start with the following remark.

LEMMA 4.1. 273,18 a closed mormal subgroup of 2 and D3/ D3,
18 naturally isomorphic to the identity component of Z,(S*N), the group
of the C> contact transformations.

ProoF. Obviously, =273, is a normal subgroup of =£3. By the
same proof as in Lemma 3.4, we see that 23/ 23, Z,(S*N). To prove
that 25/=25,, is isomorphic to the identity component of Z,(S*N), we
remark at first that &2,(S*N) is a strong ILH-Lie group (cf. [4], 8.3.6
Theorem). Hence, for every element ¢ in that identity component there
is a smooth curve @, joining between the identity and ¢=¢,. Define u,
by (de,/dt)-p;*. Then w,eI',(TS*N) and by Lemma 3.1, u,=g,X.—{g.},
g. € C°(S*N).

Now, #(8) being as in §2, (9), f,=(tan 70/2)¢(f)g, is an element of
t*3!, hence #f,eI'; and %f‘tlS*N:ut' Setting X,-t=§f,, we solve the
equation

_d@_'t"’l#j:Xft"\kt, ’wozid. .

Then, it is easy to see +, € &3, for &5 is a closed subgroup of = (M).
Since X; |sy=wu, (cf. (20)), 4 |sy satisfies the same equation as #,. Hence
by the uniqueness, we have ,|ay=a,. ]

For the proof of Theorem 2.3, we shall show the following theorem
in §6.

THEOREM 4.2. =3, is an FL-subgroup of 2(M).

In this section, we shall show the above theorem yields the desired
result.

ProOF oF THEOREM 2.3. Using Theorem 4.2, we will prove that
5 is a regular Fréchet-Lie group. Since &/ (M) is a regular Fréchet-
Lie group, the above theorem and Proposition 2.4 [8] show that =5, is
a regular Fréchet-Lie group.

Let &: U— Z2,(S*N) be a C~ local coordinate system at the identity
such that £(0)=e (the identity), where U is an open convex neighborhood
of 0 in I',(TS*N). For each uwec U, we set k(u, t)=(de@tu)/dt) - £(tu)™".
Then, «£(u, t)e I' (TS*N)cI'(TS*N) and x: UX[0,1]>I ,(TS*N) is a C~
mapping. By Lemma 3.1, x(u, t) can be written in the form
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IC(’U/, t)=0‘(u, t)Xa,—{G(u, t)} ’

where o is a C~ mapping of U X][0, 1] into C*(S*N).
Let X, . be the Hamiltonian vector field defined by the C* function
(tan 76/2)¢(6)o(u, t) on M i.e.,

2 X, »=d((tan 78/2)¢(8)a(u, t)) .

We see easily that the mapping (u, t)— X, ., is a C* mapping of U x|[0, 1]
into dz~Us(cI'(TM)). Set

t

¢(u’ t)=]._o.[ (1+X(u,c))ds .

Then, by the second fundamental theorem of regular Fréchet-Lie groups
(cf. [7]), we see that @: Ux[0,1]—><=2(M) is a C~ mapping. Since
Xunlsev=k(u, t), we see @(u, t)|s.x=~(tu) by the same reasoning as in the
proof of the above lemma.

Set U=¢(U), and let V be an open neighborhood of ¢ in <,(S*N)
such that V'=V and V:cU. For every ge U, we define ¥(g) by

7(9)=0(¢7(9), 1) .

Obviously, ¥ is a C* mapping of U inf;o 2 (M) such that Y(g)ley=9.
Moreover, since X, c€l's, we have 7(U)C 225 because 25 is a closed
subgroup of (M) (cf. §2). Define

(g, h)="(gh)™¥(g)¥(h) for g, heV.

Then 7/(g, h) € 25, and 7;: VxV—-<2) is a C* mapping. Thus, by
the assumed theorem we see that »,: Vx V— 273, is a C* mapping (cf.
Lemma 2.3 (ii) [8]).

For ne 23, we set

a(g)n=7(g)"'n7(g) , ge V.

It is obvious that a;(g)ne =23, because~@'5,,, is a normal subgroup of
25 by Lemma 4.1. Also, the map a;: VX <23 ,— D3, is a C* mapping
by the same reasoning as above. Consider the following exact sequence:

(23) 1— D5, — D5 — D,(S*N)— 1 .

(23) has a local section v which satisfies (Ext. 1)~(Ext. 3) in [8] §6,
that is, (23) is an FL-extension. Hence, by Proposition 5.2 and Theorem
5.8 in [8], we have that =5 is a regular Fréchet-Lie group. Taking
the derivative of a smooth family ¢, =3 at the identity, we get
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Z2=0, where u=(dp,/dt),.,, Therefore, we see that the Lie algebra
of @23 is I';. |

§5. Subgroups 2, and =2, of Z(M).

Let M, @ be the closed unit disk bundle over N and the symplectic
structure on M defined by (10). Recall that =/(M) is a strong ILH-Lie
group with the Lie algebra I'(TM) (cf. §2), hence it is a regular
Fréchet-Lie group (cf. [7] §6). Set

(24) D,={pe D(M); Play=1d.} .

By recalling how a local coordinate system on 2/(M) was given in §II.
4 in [4], we easily see that = is a locally flat FL-subgroup of < (J).
Indeed, =2, has a structure, which one may call a strong ILH-Lie
subgroup (cf. [4] I. 4 or [5]). =25, (cf. (22)) is by definition a subgroup
of &,. However, by the certain reason which will be mentioned in this
section, it is convenient to regard this as a subgroup of the following
subgroup 2;:

(25) Dy={pec 2,; p*@—2 can be extended to
a smooth 2-form on M} .

To prove Theorem 4.2, we shall show at first the following, which is
indeed the goal of this section.

THEOREM 5.1. Z, 18 a closed FL-subgroup of =;.

REMARK. The proof which will be given in this section shows also
that =, has the structure which one may call a strong ILH-Lie subgroup
of =2,.

To prove Theorem 5.1 we shall have some steps as below. First,
we get the following lemma.

LEMMA 5.2. =, is a closed subgroup of =,.

PROOF. We use the notations in_the proof of Lemma 3.3. Near
the boundary S*N=0M every @ € 2(M) can be written in the form (21).
We write o € &, in the form

{§ =3(s, 2)

(28) 7=%(s, 2) ,

s=cot ©6/2, (s, 2)e[0,e)xS*N,

where 5(0, 2)=0 and Z(0, 2)=z2. Put
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1)) P*w=z2*w-+a.ds ,

where a, is a smooth function on [0, &) xS*N. Recall that Q= —d(w/s)
and also remark by (26) and (27),

(28) ¢*(%’-)—%=%(E*“;—“’+%’ds+l—_f—/3)w) :

Since @ € (M), s/ is smooth on [0, &) XS*N and never vanishes. As
Pley=id., we see (z*w—w)|s.y=0. Hence (1/8)F*w—w) is a C* 1-form
on [0, ) xS*N. Also, the third term of the right hand side of (28) is
smooth on [0, &) x S*N because §/s=1 on S*N. Compute d(P*(w/s)—(®@/s)).
Thus, (1/s)da,Ads must be smooth on [0, ¢)xS*N, hence we see that
a,|ssy=const.. It is now not to hard to see that ¢ € =, is an element of
<7, if and only if §/s=1 on S*N and a,=®—d®(3/ds) is constant on S*N.
Obviously, these are closed conditions and hence &7, is a closed subgroup
of . O

Set
I'y={ueI'(TM); exp tu € Z,} .

By Lemma 1.4 [8] we see that I', is a closed Lie algebra of r'(TM).

LEMMA 5.8. An element u of I'(TM) is contained in I', if and only
if it satisfies the following:

(1) uls;zv:O- _

(ii) d(2 —u) can be extended to a smooth 2-form on M.

PROOF. For every uweI'y, (exptu)*@— is a smooth 2-form on M.
Take the derivative with respect to ¢t at ¢=0 and use .£2=d(2—u),
where &2, is the Lie derivation. Then, we see d(2 —u) can be extended
to a smooth 2-form on M. Obviously, u|sy=0.

To get the converse, remark that

(exp tu)*@— Q2= St (exp su)* <~ 2ds .
0
Since <%,2=d(2 —u) is extended to a smooth 2-form on M and exp tu € Z,
we have (exp tuw)*2—@ is a smooth 2-form on M. M

Now, recall the notation b: I'(TM)— I'(T*M) defined by b(w)=92 —u
(ef. §2) and also use the notation (19) and (20) for u e I'(TM).

LEMMA 5.4. E(F4)=F(T*M)+Rd(¢ lgg tan 76/2). Moreover, wel 4 if
and only if mear the boundary S*N=0M, u can be written in the form
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u=(cos 77:0/2)20,’%+ (c cos wh/2+(cos wh/2)*g")X, + (cos wh/2)%' ,

where a’, g’ are smooth functions on M, ¢ a real constant anci 4 is a
smooth section of K, regarded naturally as a subbundle of T(M—{0}).

ProoF. Use (19) and compute 2 —(\(8/08)+ pX,+ %), 2= —d((tanz8/2)
®) by putting x=%\,+X\, cos w/2+ N\, (cos £d/2)*+ - - -, ete.. The first state-
ment follows immediately from the second one, and second one is obtained
by the same proof as in Lemma 8.5. O

Now, recall that b(I’g »)=2Z(D*N)+ Rd(s log tan m9/2) and that it is
naturally contained in b(I",).

To prove Theorem 5.1, we shall recall how we define a structure of
a strong ILH-Lie group (cf. [4], [6]). Put a smooth riemannian metric
on M such that the boundary S*N=0M is a totally geodesic. We denote
by Exp the exponential mapping with respect to the metric on M. For
every ue I'(TM), put &u)(x)=Exp, w(®). If u is in a sufficiently small
neighborhood U of 0 in the C'-topology, then £(u) is a smooth diffeomor-
phism on M. The mapping & UNI'(TM)— = (I) gives a local coordinate
system at the identity which satisfies the axioms (N. 1)~(N. 7) in §6
of [7] (cf. [4] §1 and [5] chap. 3). Set :

I'y={ueI'(TM); u|,z=0} .
Then, it is obvious that
sUnry=eU)n=z,M),

hence &: UNT,— 2,(M) gives a local coordinate system of <, which also
satisfies (N. 1)~(N. 7) in 8§86 of [7]. Sinece UNTI, is linearly imbedded
in I'(TM), one may call &, a strong ILH-Lie subgroup of < (if).

REMARK. We have not necessary to use an exponential mapping.
By an inverse mapping theorem in [4] §III or [5] Chap. 1, it may be
replaced by any smooth mapping & of a neighborhood of zero-section
of TM into Mx M satisfying the following:
(*1) For yeM, YeT, M, #y, Y)=(y, £,(Y)) and &, is a smooth
diffeomorphism of a neighborhood of 0 on T,M onto a neighborhood of
y in T*N.
(*2) If yeS*N and Ye T,S*N, then &,(Y)e S*N.

Recall that M—{0} is diffeomorphic to (0, 1]xS*N. We fix a smooth
riemannian metric on M such that on (1/2, 1]x S*N, it is a direct product
of (1/2,1] and S*N. Then for 1/2<e=<1, {e}xS*N is a totally geodesic
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submanifold. Let Exp be the exponential mapping with respect to the
above riemannian metric. Note that there is a §-neighborhood W, of 0
in T,M for every ye M such that Exp, is a smooth diffeomorphism of
W, onto a é-neighborhood of y in T*N. If y is near to S*N, vy is
written as (4, z), z€ S*N, and a tangent vector Y e T,M is written as

(29) Y= 0‘%4- Y, Y'eTS*N.
By this expression, if y is near to S*N, we see
(30) Exp, Y=(0+6, Exp,Y"), y=(, z) ,

for small Ye T,M.

Let E, is the extended distribution on T*N—{0} defined by w (cf.
(14), (15)). For an arbitrarily fixed y € M—{0}, we define a smooth non-
involutive distribution E, on the above W, by

E,(Y)=(d Exp;)¢E.(Exp, Y), YeW,,

where E,(y) (resp. E,(Y)) is the fiber of E, (resp. E,) of y (resp. Y).
Since T,M= R(3/30)+ RX,+ E.(y) (cf. (15)), we may use (4,X, Y¥), Ye E,,,
as coordinate system on T,M. Suppose § is sufficiently small and y is
sufficiently near to S*N. Then the fiber E.4, X, Y) of E, at Y=
@, X, Y)e W, does not depend on g and there is a smooth mapping A\, Y)
of W, into the dual space E}(y) of E,(y) such that

E,0, %, Y)={(A\, Y)Z)Xu(¥)+Z, VZ e E,(y)}

because of (30).

Now, solve the equation dx(t)/dt=A((t),tY)Y, X(0)=0, for an
arbitrarily fixed small Y e E,(y). The solution will be denoted by X(¢, Y).
X, Y) is smooth with respect to (¢, ¥), and by definition d(X(¢, Y)X.(¥)+
tY)/dt=ax¢, ¥),tY)YX.(y)+ Y is an element of E.(4, X(t, Y¥),tY). Set
e,(Y)=Exp, X1, Y)X,(¥)+Y). Then, ¢, is a diffeomorphism of W, N E.(¥)
into T*N such that de, (tY)/dt e E (e, (tY)) for every 0<t=<1, where y is
assumed to be near to the boundary S*N.

Let _#Z(t)(z) be the integral curve of ¥, with the initial point
ze M—{0}, i.e.,

L AO@=1(FOE) ,  FO@D=7.
Since &4 w=0, we see that d _7,(t)E,=E,. Especially, if y is suf-

ficiently close to S*N, then d.7(t)(de,(tY)/dt) e E (Zt)(e,(tY))). For
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Z=0(0/00)+ X, (y)+ Y e T, M, we set

(31) EUD) =BXDr 0,y

If we use a coordinate system y=(4, z), ze€ S*N, then
(32) Llo,0(Z)= (040, F(X)(e(Y))) .

Therefore, ¢, is a diffeomorphism of a neighborhood of 0 in T,M onto
a neighborhood of y in T*N such that &,(Z)e S*N if ye S*N, Ze W, N
T,S*N and ¥,(Z)=y if Z=0.

Let ¢ be the smooth function on [0, =) defined by (9). Since M—{0}
is diffeomorphic to (0, 1]xXS*N, ¢ can be regarded as a smooth function
on M. Thus, we set

33) g(X)=&(s(X), 2z=Exp, 1—g¢¥))X.

Then, &, is a diffeomorphism of a neighborhood of 0 in T,M onto a
neighborhood of v in T*N. If y is sufficiently near to S*N, then
L X)=&,(X). Set &(y, X)=(y, £,(X)). Then, & is a smooth mapping
satisfying (x1) and (x2) mentioned as above.

LEMMA 5.5. Set &(w)(y)= &,(w(y)). Then, there is a meighborhood
U of 0 of I'(TM) in the C* topology such that &: UNI(TM)— <=(M)
defines a local coordinate system such that if wue UNI,; (resp. UNT,),
then &'(u) e &£, (resp. =Z,).

ProOOF. By the inverse mapping theorem [4] §III, we see that ¢
gives a local coordinate system of a strong ILH-Lie group </(M). For
uel, we set v,=(d&'(tu)/dt)e’(tu)~'. We shall prove at first that v, eI,
for te[0,1]. For the proof, we have only to consider a sufficiently small
neighborhood of the boundary. Using the diffeomorphism M —{0}~(0, 1] X
S*N, we may assume ¥ € (1/2, 1] x S*N.

Set y=(0, 2), 2 S*N and

w8, 2)=4(8, z)%+i(0, 218, 2)+ 06, 2) ,

where (0, z) € E,((6, 2)). Therefore, using the direct product structure
on (1/2, 11X S*N, we set

L 5leotu0, D)=(806, 2), (0, Aol Fio (0, 2))



238 H. OMORI, Y. MAEDA, A. YOSHIOKA AND O. KOBAYASHI
+d 7 (EN(, z))ditew,,,(ta(o, z))) :

Remark that d_Z(tN(8, 2))(d/dt)eq.,tR(O, 2)) € B.(£!, ., (t0(6, 2))) and this
quantity is zero if #=1 because u|s.y=0. Since 4(1, 2)=2X(, 2)=0, we
have easily v,/.y=0, hence &'(u) € Z;.

If wel',, then using the above equality, we see v,00,z2)=
@@, M@X(0, 2)+d A AEND))(/dt)e;(¢A(T))), where F=¢(tu)"'(d, z). On
the other hand, by Lemma 5.4, we see easily that w e I', if and only if

@, 2)=0, —g%(l,z)EO, a1, 2)=0,

r(1, 2)=0, %(1, z)=const. .

Hence, remarking &'(tu) € =2;, we get v, e I'; from the fact weI',. Since
(d/dt)e (tu) =v,&'(tu), we have

g F—F= § £(tu)* 2, Qdt e (U (T*ID)) ,
hence ¢&'(u) € 2. ]

PROOF OF THEOREM 5.1. Notations being as above, &:UNI'(TM)—
(M) is a local coordinate system at the identity such that &(UNTI,)cC.<,
and &(UNI')c=2; Thus, it is enough to show that ¢'(UNIW(TM))=
FUNZ, and &(UNT)=£(U)NZD,;. The first equality is trivial, be-
cause &, is a local diffeomorphism. Thus, we have only to show the
second one. Remark that “c” is given by Lemma 5.5. We concern
only “>7”,

Let (z, -+, 2,), m=dim M—1, be a local coordinate system of S*N
at z. Then, putting 7=1-6, (7,2, ---, 2,) is a local coordinate system

of M at z. For uw=7%(3/07)+ 3 2,0/0%,), E (eep, - e(W) 18 expressed in the
form

{‘Z" =7+7

2,=2T,%2, -, Zm; T, %y~ ", %) -

Then, we see easily that (7,%, ---, Z.)=(z, 2, -, 2,) if and only if
(%, %2, -+, 2,)=(0,0, ---,0). Moreover, it is not hard to see by the

definition of &, ..., that

((ar/am 0 )
(0%,/32) | (0Z/025) ) 3,2 2= coreeer

=identity .
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Now, let ¢ e&'(U)N=,;. Then, @ can be written in the form

{%-:@0(7, Zy 0y Zm)
—z-'t:@i(z.; zl, "',zm) ?::1~m ’

where if =0, then 7=0 and Z,=z; because € Z;. By the proof of
Lemma 5.2, we get @ e =, if and only if @€ =, and (67/07)|.==1 and

S W2, ***, 2n)(0%/07)=const. on S*N, where w,; are the components of
w, i.e., =, wdz,.
Since 7=7+% and %, =3%,(%, 2, -+, Z2u; T, 2, ***, %m), W€ obtain

(0%/07) | =0 and 3 w,(0%Z,/d7) = 3, @ ((0%,/07)(0T/0T) + (az /02;)(0%;/07)) is
constant on S*N. As o|S*N=identity, we have (9Z,/0%;)|.-,=identity,
and hence 3 w,(0%,/0r)=const. on S*N. Hence by Lemma 5.4, we get
that uw=7%(8/d7) + >, 2,(0/02,) is contained in I',. Thus, we see gunry-s
g'(U)N =2y, hence the desired equality. O

REMARK. It is not hard to see that &: UNI',— 2, satisfies (N. 1~7)
in [7] §6. Therefore 2, has a structure of a strong ILH-Lie group.
See also the next section for the modeled Sobolev chain.

§6. An implicit function theorem and Z73.

Remark that &, acts naturally on t~he space gf smooth 2-forms on
M. We denote by Ej; the affine space 2+dI'(T*M).

LEMMA 6.1. Suppose @ is an element of the identity component of
,. Then o*E;=FEj3;.

PROOF. Let @, be a smooth curve in =, such that @,=e and @,=®.
Set v,=(d®,/dt) - p7*. Then v,eI'y. Therefore

<p*§—§=§l¢;".%,t§dtedl"(T*M), ie., p*fcEj;.
1}

It follows immediately @*E;=E3. O

Let <) be the totality of @ ¢ =, such that @*Ez=Es. By the
above lemma, <&, is an open subgroup of &, and 23 C@A Set o3(p)=
@*@. Then by identifying E3 with the Fréchet space dI'(T*M), @3:
! —Es is a smooth mapping. The derivative ddz at the identity is
given by (d0z)u=d(@ —u)edl(T*M). Remark that Lemma 5.4 shows
also dI'(T*M)={d(2 —u); we I's}. Therefore

dds: I',—dI'(T*M)
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is a surjection, and the kernel of d®; is given by I';. We are going
to apply the implicit function theorem in [4] to the mapping @3. If it
were done without any obstruction, then ;=03 Y2) would be a strong
ILH-Lie subgroup of <,. However there is an obstruction, and hence
we can get only a weaker conclusion, which is stated as follows and
indeed this is the goal of this section:

THEOREM 6.2. 23 is an FL-subgroup of <.

REMARK. Since =7; is an FL-subgroup of =, and <, is also an FL-
subgroup of & (M), the above theorem gives the proof of Theorem 4.2,
and hence Theorem B.

Let <, )&y k=0, be an inner product on I'(TM) defined by

w =3 T, rod@ave) ,

where /*u is the s-times covariant derivative of » with respect to the
riemannian connection on M given in the previous section, {, > inside
the integration sign is the fiberwise inner product on ®* T*MQQTM and
dV is the volume element on M. Let ||u|, be the norm given by
V' {u, uy, . We denote by I'*(TM) the completion of I'(TM) with respect
to the norm || ||,. We define also a norm || ||, on the space I'(A? M)
of smooth p-forms on M by the similar manner. Let T'*(A? M) be the
completion of I'(A? M). By Sobolev’s imbedding theorem, if k=k,=
[(1/2) dim M]+1, then every we I'*(TM) is a C** vector field on I7.
Let I'% be the closure of I', in I'*(TM). Then, &, is in fact a strong
ILH-Lie group modeled on an ILH-chain {I",, I'*, k=dim M+ 5} (cf. [4] SII).

Let b: I'y—I'(T*M )DRd(¢log tan 6/2) be the isomorphism defined by

b(u) @ _y. The inverse mapping b~ is sometimes regarded as a mapping
of I'(T*M) into I', by restriction.

LEMMA 6.3. b~ I'(T*M)—T, satisfies the Jollowing imequalities:

Cillalli—=1b" @) =C|lally+ Dy |allseyy *=2, where C., C, D, are positive
constants such that C does not depend on k.

REMARK. There is no inequality such as C'|a|,—D;|lali.=|[b~ ()|,

Therefore, b gives only an isomorphism of Fréchet spaces. It can not
be extended to an isomorphism of ILH-chains.

PROOF OF LEMMA 6.3. Note that for every ye M, the mapping
X—2 X is a linear 1somorph1sm of T,M onto T*M. The inverse
mapping will be denoted by 2-'. Let ¢ be a smooth function on [0, 1]
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such that ¢=1 on [2/3,1],=0 on [0,1/3] and ¢=0 on [0,1]. For every
ael'(T*M), set a=g¢a+(1—¢)a. We see easily

b ((1—g)a)=1—¢)b (@) =2 ((1—p)a) .
Since 1—¢=0 on a neighborhood of S*N, we have
b (A - =C ||+ Dillallis, k=1,

where C’i Dy are positive constants and C’ does not depend on k.
On M—{0}, every «a can be written in the form

hence on M —{0}

~b“(a) = 72r <cos ﬂ) g 3‘% — %(cos —-) fX,+ (cot 447 )olco'1

Note that ~b”l(nga):ngb‘l(a) and that ¢=0 on [0, 1/3]. Hence we get

5-6a) [, =C"{|| 89l + |65 1ls + | 6&] |1} + Dy (|| 69l e—s
+loflims+ 108} » k=1

Since df, w, E} are linearly independent at every y e M—{0}, we have
loglle+ll¢flle+l¢@l=Cligell+ Dillgetllis , k=1
and hence
b=l =Cligallu+Diligatlles , k2L

Thus, by using ||b‘1(a)||,,<||b’1(¢a)||,,+]]b‘1((1 #)a)|l, we obtain the second
inequality.

Now, we shall prove the first inequality. If b~(a)=wu, then £ —
1—@d)u=1—¢)a. Since 1—¢=0 on an neighborhood of S*N, we see that
there is a positive constant C, such that

12 =L —p)ul, <Cr||A—p)ulls, k=0.
Especially
b A—p)) L =Cr |1 —pallse, k2.

Since 9/06, X,, E, are linearly independent on M—{0}, there is a posutlve
constant C, such that
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(cos Ezi)ngg ‘(cot %0>¢& k} .

Remark that (cos @8/2)/(1—6) is a smooth function on (0,1]. Hence we
may set

(o2

|1T7-1(¢a)||kgék{ k+

(cos m0/2)*pg =(1—06)’dg
(cos w0/2)'¢f =(1—0)¢f
(cot ®0/2)pd =(1—0)J& ,

where ¢, ¢ are smooth functions in 6 such that =0 on a neighborhood
of zero. Set (1—8)&=7A and denote by (8, z) a point in M—{0}, where
2€ S*N. Then it is easy to see that

3R, 2)= — S g—§(0+(1 —0)t, 2)dt .

Therefore
Co[|6&i-1=||Bll=l(cot 78/2)¢&x -
Similarly, we get

Ci||Bg|lx—.= || (cos 6/2)*pg]|s
VDA =||(cos 0/2Y6f11. , k=2

By the above three inequalities, there are positive constants, C",,, C’,,
such that -

b (#e)1s 2 Cull1B0lle-s+ 18] le2+ |5 s}
ZC{ll69le—o+ @SNzt 9@} -

The reason of the last inequality is in the fact that #/¢ and $/grare
positive on [1/3, 1]. Note that there is C,>0 such that

11211 P S 1 PR | 4 | = R -3 | P
Thus, using ||¢&]|s_.=<||¢&l._, We get |
Ib~*(600) | =Ci I getl]— -
Note that there is a constant C; >0 such that

Ib~@ L =C{lIb™ (A — @)l + b (ga)|ls} -
Then, we get
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15~ @) 2 Cil || (L — Pt sz + [l ]}
>C, ||l - -

Now, we define a new series of norms {||-||.} on I'; by putting ||lu|,=
Ilb‘l(u)llk, where we put ||d(¢ log tan 6/2)||,=1 for all k, and F(T*M) and
Rd(glog tan 70/2) are assumed to be orthogonal. Denote by % the com-
pletion of I', with respect to | |- {I’A,F k>dim M+17} is then an
ILH-chain.

REMARK. 9’4 is in fact a strong ILH-Lie group modeled on an
ILH-chain {I',, kao} for every k,=dim M+5. However, it may not
be modeled on {I’A, It k=dim M +7} In fact, a group can have many
strong ILH-Lie group structures modeled on various ILH-chains. It is
very likely that =, is a strong ILH-Lie group modeled on {I', Ie k=
dim M+7}. However, at this moment this is only a conjecture. This
is the reason why we could not conclude that =5 is a strong ILH-Lie
subgroup. To apply an implicit function theorem in [4] §III, we have
to use the ILH-chain {I',, I'%, k=dim M+1T}.

Now, let U be an open neighborhood of 0 in I'%, k,=dim M+5, such
that ¢': UNI,— <2, defined in Lemma 5.5 gives a local coordinate system
of =, at the identity e. Since

b1 Tt T* M RA(¢ log tan 18/2) — Ik

is bounded there is an open neighborhood U’ of 0 in the source space
such that b~(U’)cU. Define ¥;: U'NI(T*M)— E5 by

(@) =05 (b)) .

Then, we have

LEMMA 6.4. U5:U' NI (T*M)—E; is a CILB C*-normal mapping
(cf. [4] SIII), namely

(1) Tz can be extended to a smooth mapping of U'NT*(TM) into
E** for every k=dim M+8.

(2) There are a positve constant C independent of k and a poly-

nomial P,(t) with positive coefficients depending on k such that for every
k=k,+1,

1@ %)l = Cllllle | Bl + 1B} + Pl exlle-2) | 8]t

1 @TZ)a(Bry B lr-1=Clllallic|Bulli 1 Belleg + 1B1lle Nl Bellxy
+11Billio 18211} + Pellletlle-l| Bill—1 || Bel 1 -
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PROOF. It is known that ¥"(x)=03(¢'(u)) is a C~ILB C’-normal
mapping of UNTI, into E5=02@dI'(T*M) (cf. [4] Lemma 2.5.3). By the
second inequality in Lemma 6.3, b=: U'NI'(T*M)—UNI'(TM)is a C~ILB
C*-normal mapping. Hence so is the composition ¥Tz3=0"-b~ (cf. [5]
Chap. I). O

For simplicity of notations, we set

F=I'(T*M)®Rd(¢ log tan 76/2)
F*=TI*T*M)PRd(s log tan To/2) .

Note that F'* is isomorphic to %, and that (d¥3),; F— dI'(T*M) is given
by (d¥3),8=dB for BeI'(T*M) and (d¥3).d(¢ log tan 76/2)=0. Thus, to
apply the implicit function theorem (cf. Theorem 8.8.1 in [4] or [5] §6 in
Chap. I), we have only to see the following:

LEMMA 6.5. For every k=1, dI'*(T*M) is a closed subspace of
I'**(A*M), and there is a right inverse B of d: I'(T*M)— dI'(T*M) such
that for k=2,

1BBlli=Cl|Blle-1+ D || Bl

where C, D, are positive constants, and C does not depend on k.

ProOOF. The above fact is an immediate consequence of Hodge theory
on a compact manifold with boundary, and rather widely known.
Roughly speaking it is proved by using Stokes’ theorem and a regularity
theorem in [5] combined with Garding’s inequality in [5]. ]

PROOF OoF THEOREM 6.2. U’ was an open neighborhood of 0 in
F*, Ik, =k,+2, and T3 was a C~ILB C’*normal mapping of U'NF into
2@®dr(T*M). By the above lemma (d¥3),: F—dI'(T*M) has a right
inverse B satisfying the inequality stated in the above lemma. Let

Z=2Z(M)+ Rd(¢ log tan 76/2) .
Using B, we have the following splitting:
F=Z®BIr(T*M), a=(a—Bda)+Bda.

Let Z* be the closure of Z in F*. For aeZ, 8ec BAI'(T*M), we consider
a mapping F(a+B)=(a, Fs(a+A)) of U'NF into ZOE3. By Lemma 6.4,
7 is a C~ILB C*normal mapping, and by Lemma 6.5, (d¥): F—Z®
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dI'(T*M) has the inverse A satisfying

|Ala+dB)i=Clllal+dBli-}+ Dlllelli+dBlli-} ,  °=2.

Thus, rewriting the suffix k—1 by % in the ILH-chain {dI'(T*M),
dI'*(T*M), k=k,}, one can apply the inverse mapping theorem of [4] §III.
Hence, there are open neighborhoods W,, W, of zeros in Z%, dI'(T*M),
respectively and a C~ILB C*-normal mapping A=+, of W.NZPW.N
dl(T*M) into F=Z@BAII(T*M) such that

T (n(a, ©)+M(a, )=(a, 2+o)

i.e., M(a, w)=a, Tla+ra, w)=2+w. Now, for acZ, ge Bdl(T*I),
we set v(a+pR)=a+(\(a, 0)+3). Then, v is a C~ ILB C*-normal dif-
feomorphism at the origin, namely v and v are C= ILB C?3normal
mappings.

Note that B‘1ZA=F5, I;F=1"4, and that ¢: UNI,— <, can be regarded
as a local coordinate system at e of regular Fréchet-Lie group <,.
Through the linear mapping b, v defines a smooth change of coordinates.
Namely, v'=p~'wp is a smooth diffeomorphism of a neighborhood W of 0
in I'y onto another neighborhood of 0. Remark that ¢"=¢g': W— <z,
is a local coordinate system of &, at e. Since the above implicit func-
tion theorem shows that

g'W)nzz="(Wnrly),

g"|\WNI'; gives an FL-subgroup structure on &5. This completes the
proof of Theorem 6.2. .
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