The Existence of Periodic Orbits on the Sphere

Kiyoshi HAYASHI

Keio University

Introduction

In the theory of dynamical systems, there remains the open problem, so called Seifert Conjecture: Has any sufficiently smooth flow on S^s a periodic orbit? This conjecture is based on Seifert's paper [11] which proved the following theorem.

THEOREM 1. Let $x=(x_1, x_2)$, $y=(y_1, y_2)$ be points of \mathbb{R}^2 and consider the following equation in \mathbb{R}^4

(1)
$$\dot{x}_i = y_i, \ \dot{y}_i = -x_i; \ i=1, 2.$$

This system has $S^3 = \{(x, y) \in \mathbb{R}^4; x_1^2 + x_2^2 + y_1^2 + y_2^2 = 1\}$ as an invariant set, so we can consider the flow on S^3 induced by (1). Then any flow C^0 near the above flow on S^3 has at least one periodic orbit.

The system (1) is the Hamiltonian system with Hamiltonian

(2)
$$H(x, y) = \frac{1}{2}(y_1^2 + y_2^2) + \frac{1}{2}(x_1^2 + x_2^2),$$

which describes the harmonic oscilaters.

More strongly, (2) is derived from the Lagrangian system

(3)
$$\frac{d}{dt} \frac{\partial}{\partial \dot{x}_i} (T - U) = \frac{\partial}{\partial x_i} (T - U); \ i = 1, 2$$

where

$$T = \frac{1}{2}(\dot{x}_1^2 + \dot{x}_2^2)$$
 and $U = \frac{1}{2}(x_1^2 + x_2^2)$,

with
$$y_i = (\partial T/\partial \dot{x}_i) = \dot{x}_i$$
 (i=1, 2).

Received July 14, 1983

For a Lagrangian system, Seifert also obtained the following result [10].

THEOREM 2. Let G be an open subset of \mathbb{R}^n and consider a Lagrangian system of n degrees of freedom

(5)
$$\frac{d}{dt} \frac{\partial}{\partial \dot{x}_i} (T-U) = \frac{\partial}{\partial x_i} (T-U); i=1, 2, \dots, n$$

where $x = (x_1, x_2, \dots, x_n) \in G$ and

(6)
$$T = \sum_{i,j=1}^{n} a_{ij}(x) \dot{x}_{i} \dot{x}_{j}, \quad a_{ij} : G \longrightarrow \mathbf{R}; C^{\infty} - function$$

and $(a_{ij}(x))$ is symmetric and positive definite for all $x \in G$, and

$$(7) U: G \longrightarrow \mathbf{R}; C^{\infty}\text{-function}.$$

Assume that, for some $e \in \mathbb{R}$, the set $W = \{x \in G; U(x) \leq e\}$ is homeomorphic to the n-disk D^n . Then there exists at least one periodic solution of (5) with total energy T+U=e.

[10] originally treated C^{ω} -case, but it is not essential (See [9]). His periodic solution is a so called brake orbit [9], which stops at the boundary $\partial W = \{U = e\}$. [4], [15] prove Theorem 2 under the assumption that W is any smooth compact manifold with boundary.

In a footnote of [10], Seifert stated that:

(8) In the situation of Theorem 2, there may be n periodic orbits.

In this note, we give two theorems, stated in § 1, one of which generalizes Theorem 1 and another one answers the question (8) for special type of Lagrangians including (4). See also [15]. Both of them give periodic orbit(s) on an odd dimensional sphere.

§ 1. Statements of the theorems.

First we generalize Theorem 1. Let μ_i , $i=1, 2, \dots, n$, be arbitrary positive numbers. We consider the following equation in \mathbb{R}^{2n} ,

(9)
$$\dot{x}_i = \mu_i y_i, \quad \dot{y}_i = -\mu_i x_i; \quad i=1, 2, \dots, n$$

This defines the dynamical system on S^{2n-1} , which is derived from the tangent vector field

(10)
$$\sum_{i=1}^{n} \mu_{i} \left(y_{i} \frac{\partial}{\partial x_{i}} - x_{i} \frac{\partial}{\partial y_{i}} \right).$$

In this case, there are at least n periodic orbits on S^{2n-1} . Then we have

THEOREM 3. In the above situation, any flow on S^{2n-1} generated a tangent vector field C^1 near (10) has at least one periodic orbit.

F. Fuller [2] treated the case $\mu_1 = \mu_2 = \cdots = \mu_n = 1$, when all solutions are periodic.

The system (9) is considered as a Hamiltonian system with Hamiltonian $H_0=(1/2)\sum_{i=1}^n \mu_i(x_i^2+y_i^2)$. So the ellipsoid $H_0^{-1}(e)$, e>0, is of course an invariant set, but in Theorem 3, we take another invariant set S^{2n-1} .

- A. Weinstein [13] considered the Hamiltonian system with Hamiltonian $H=H_0+[\text{higher order}]$ and proved that for sufficiently small $\varepsilon>0$, there exist at least n periodic solutions on $H^{-1}(\varepsilon^2)$. More general perturbation theory of Hamiltonian systems is given in [14].
- J. Moser [5] generalized Weinstein's result replacing Hamiltonian systems with systems having an integral. The proof of Theorem 3 is based on the result of Moser.

Now we consider the Lagrangian system of n degrees of freedom (5) with $T = T(x, \dot{x})$ and U = U(x) as (6) and (7).

DEFINITION. This Lagrangian system is called rotationally symmetric if for all $R \in O(n)$, x and \dot{x} , we have

$$(11) U(Rx) = U(x) ,$$

(12)
$$T(Rx, R\dot{x}) = T(x, \dot{x}).$$

For example, $T=(1/2)|\dot{x}|^2$ and U depends only on |x|, or

$$T = \frac{1}{2} (|\dot{x}|^2 + (\operatorname{grad} U(x), \dot{x})^2)$$
 and $U = -(1 - x_1^2 - x_2^2)^{1/2}$,

which describes a spherical pendulum.

Then we have

THEOREM 4. We consider a Lagrangian system (5) and assume that the system is rotationally symmetric and for some $e \in \mathbb{R}$, which is a regular value of U, $W = \{x; U(x) \leq e\}$ is homeomorphic to the n-disk. Then any Lagrangian system C^2 near the above system has at least n periodic solutions with total energy e.

The meaning of " C^2 near" is clarified in the proof, §4.

§ 2. The proof of Theorem 3.

The proof of Theorem 3 is based on the following Moser's result [6].

PROPOSITION 1. Let f = f(z), $z \in \mathbb{R}^{2n}$, be a C^1 function defined on a neighborhood of the origin z = 0 in \mathbb{R}^{2n} satisfying

(13)
$$f(0)=0$$
, $f_{\epsilon}(0)=C$

where C is defined by

(14)
$$C = \begin{bmatrix} 0 & \mu_1 \\ -\mu_1 & 0 & 0 \\ & 0 & \mu_2 \\ & -\mu_2 & 0 \\ & & \ddots \\ 0 & & 0 & \mu_n \\ & & -\mu_n & 0 \end{bmatrix}$$

where μ_i , $i=1, \dots, n$, are arbitrary positive numbers. Consider the following autonomous equation

$$\dot{z} = f(z) .$$

If there exists an integral G=G(z) for the equation (15) defined on a neighborhood of z=0 satisfying

(16)
$$G(0)=0$$
, $G_s(0)=0$ and $G_{ss}(0)$: positive definite,

then there exists $\delta > 0$ such that for any $\varepsilon \in (0, \delta)$, the integral surface $G^{-1}(\varepsilon^2)$ contains at least one periodic orbit.

We define a domain $\Omega = \Omega_{r,\delta}$ by

(17)
$$\Omega_{r,\delta} = \{(z, \varepsilon) \in \mathbb{R}^{2n} \times \mathbb{R}; |z| < r, |\varepsilon| < \delta\},$$

where $|z|^2 = z_1^2 + \cdots + z_{2n}^2$, and denote by \mathfrak{B}_0 the Banach space of all real valued bounded continuous functions defined on $\Omega_{r,\delta}$ with the norm

(18)
$$|u|_{0,\tau,\delta} = \sup\{|u(z,\varepsilon)|; (z,\varepsilon) \in \Omega_{\tau,\delta}\}.$$

Also let \mathfrak{B}_1 be the Banach space of all C^1 functions in \mathfrak{B}_0 which have bounded derivatives with the norm

(19)
$$|u|_{1,r,\delta} = \operatorname{Max}\{|u|_{0,r,\delta}, |u_s|_{0,r,\delta}, |u_s|_{0,r,\delta}\}.$$

We put

(20)
$$f(z, \varepsilon) = \varepsilon^{-1} f(\varepsilon z) \quad \text{for} \quad \varepsilon \neq 0 ,$$
$$f(z, 0) = Cz$$

and

(21)
$$p(z, \varepsilon) = f(z, \varepsilon) - Cz.$$

Then we have the following.

LEMMA 1. In Proposition 1, we assume that $G(z) = |z|^2$ and there exists a constant $L \ge 1$ such that for any small $\varepsilon_1 > 0$, we have

$$|p|_{1,2,\varepsilon_1} \leq L\varepsilon_1.$$

Then the δ in Proposition 1 depends only on C and L.

The proof of this lemma is obtained by a similar fashion as Moser's proof, modifying slightly to suit our situations. So we omit the proof.

PROOF OF THEOREM 3. Let \mathfrak{X} be the set of all C^1 tangent vector field on $S = S^{2n-1}$ and $q \in \mathfrak{X}$. q is the restriction to S of a C^1 mapping \overline{q} from an open neighborhood of S into R^{2n} . For $w \in S$, we denote by q'(w) the restriction of $\overline{q}'(w)$: $R^{2n} \to R^{2n}$ to $T_w S \subset R^{2n}$, which is independent of the extension \overline{q} . Also |q'(w)| denotes the operator norm.

We put $|q|_1 = \text{Max}\{\text{Max}_{w \in S} |q(w)|, \text{Max}_{w \in S} |q'(w)|\}$, then $(\mathfrak{X}, |\cdot|_1)$ is a Banach space.

Put $p(z)=|z|^3q(z/|z|)$ and f(z)=Cz+p(z). p(0) should be regarded as 0 automatically and hereafter such a remark shall be omitted. p=p(z) is of C^1 class on $|z|<\infty$ and

$$p'(z) \cdot h = |z|^2 \{3(w, h)q(w) + \overline{q}'(w) \cdot (h - (w, h)w)\}$$

where w=z/|z| and $h \in \mathbb{R}^{2n}$. Since h-(w,h)w is the orthogonal projection of h onto T_wS , we have

$$|p'(z) \cdot h| \leq |z|^2 (3|q(w)| + |q'(w)|)|h|$$
 ,

hence $|p'(z)| \leq 4|z|^2|q|_1$.

Now we consider any vector field $q \in \mathfrak{X}$ with $|q|_1 = 1$. In this case

$$p(z, \varepsilon) = \varepsilon^{-1} p(\varepsilon z)$$

= $(\operatorname{sgn} \varepsilon) \varepsilon^{2} p(\operatorname{sgn} \varepsilon \cdot z)$,

so $p_* = \varepsilon^2 p'(\operatorname{sgn} \varepsilon \cdot z)$ and $p_* = 2|\varepsilon| p(\operatorname{sgn} \varepsilon \cdot z)$.

Thus we have $|p|_{1,2,\epsilon_1} \leq 16\varepsilon_1$ for small $\varepsilon_1 > 0$.

f(z) satisfies the condition in Proposition 1 and we can take $G(z)=|z|^2$ as an integral. Thus, by Proposition 1 and Lemma 1, there exists $\delta>0$, depending only on C, such that for any $0<\varepsilon<\delta$, the integral surface $G^{-1}(\varepsilon^2)$ contains a periodic orbit.

The vector field on S corresponding to the vector field on $G^{-1}(\varepsilon^2)$ by the transformation

$$w = \varepsilon^{-1}z$$
 $(w \in S, z \in G^{-1}(\varepsilon^2))$

is $\varepsilon^{-1}f(\varepsilon w) = \varepsilon^{-1}(C\varepsilon w + \varepsilon^{3}q(w)) = Cw + \varepsilon^{2}q(w)$. This vector field on S has a periodic orbit and δ is independent of $q \in \{q \in \mathfrak{X}; |q|_{1} = 1\}$, hence any C^{1} vector field belonging to the δ^{2} -neighborhood of C in the Banach space \mathfrak{X} has a periodic orbit.

This completes the proof of Theorem 3.

§ 3. Mini-max principle with involution.

The n solutions of Theorem 4 are obtained as critical points of a function which is invariant under an involution reflecting the reversibility of the system.

Let X be a Hausdorff space and $\xi: X \to X$ be a continuous involution, that is, $\xi \circ \xi = \mathrm{id}$. We denote by $(S^{\infty} \times X)_{\Pi}$ the orbit space of $S^{\infty} \times X$ under the involution $(\zeta, x) \mapsto (-\zeta, \xi x)$. For an invariant subset $A \subset X$, we define the equivariant (co)homology groups by $H^{\Pi}_{*}(X, A) = H_{*}((S^{\infty} \times X)_{\Pi}, (S^{\infty} \times A)_{\Pi})$ and $H^{*}_{\Pi}(X, A) = H^{*}((S^{\infty} \times X)_{\Pi}, (S^{\infty} \times A)_{\Pi})$. The coefficient field \mathbb{Z}_{2} is always understood.

Then we have the following equivariant version of Mini-Max Principle [5].

LEMMA 2. Let Λ be a complete Hilbert manifold and $f: \Lambda \rightarrow [0, \infty)$ a smooth function satisfying the condition (C) of Palais-Smale. Assume that there is a smooth involution $\xi: \Lambda \rightarrow \Lambda$ satisfying

- (i) $f \circ \xi = f$,
- (ii) ξ is isometric,
- (iii) for small $\varepsilon > 0$, Λ^0 is a deformation retract of Λ^* and the homotopy using there is equivariant $(\Lambda^a = f^{-1}[0, a])$,
- (iv) if $df(\lambda)=0$ and $f(\lambda) \ge \varepsilon$, then $\xi \lambda \ne \lambda$.

Then the equivariant version of pairwise subordinated homology classes [5] give critical points of f. That is, if there exist $b \in H_*^r(\Lambda, \Lambda^s)$ and $\theta_1, \dots, \theta_r \in H_H^*(\Lambda - \Lambda^0)$ with $\deg \theta_i > 0$ and $(\theta_1 \cup \dots \cup \theta_r) \cap b \neq 0$, then there exist at least r+1 critical points with $f \geq \varepsilon$. (In counting critical

points, we identify λ and $\xi\lambda$).

PROOF. We put $\widetilde{\Lambda} = (S^{\infty} \times \Lambda)_{\pi}$ and define $\widetilde{f} : \widetilde{\Lambda} \to [0, \infty)$ by $\widetilde{f}[\zeta, \lambda] = f(\zeta, \lambda)$, where $[\zeta, \lambda]$ is the element of $\widetilde{\Lambda}$ represented by (ζ, λ) . Define

$$c = \inf_{z \in b} \operatorname{Max} \widetilde{f}(|z|) ,$$

where $|z| = \bigcup_i \operatorname{Im} \sigma_i$ if $z = \sum_i \sigma_i$. As in [5], since $b \in H_*(\widetilde{\Lambda}, \widetilde{\Lambda}^i)$, where $\widetilde{\Lambda}^i = (S^{\infty} \times \Lambda^i)_{\pi}$, we have $c \ge \varepsilon$.

First we claim that

(24) c is a critical value of f.

Let $\phi_s: \Lambda \to \Lambda$, $0 \le s < \infty$, be the deformation generated by $-\operatorname{grad} f$ and put

$$K_{c} = \{\lambda \in \Lambda; f(\lambda) = c \text{ and } df(\lambda) = 0\}$$
.

In the proof of 2.1.2. in [5], the following fact is given.

(25) Let U be an open neighborhood of $K_{\sigma}(c \ge 0)$ and $\rho > 0$ be sufficiently small. Then for every $\lambda \in \Lambda^{\sigma + \rho}$, there exists a neighborhood U_{λ} of λ and $s_{\lambda} \ge 0$ such that $\phi_{\bullet}U_{\lambda} \subset U \cup \Lambda^{\sigma -}$ for $s \ge s_{\lambda}(\Lambda^{\sigma -} = f^{-1}[0, c])$.

Now by (i) and (ii), we can define $\tilde{\phi}_{\bullet}: \tilde{\Lambda} \to \tilde{\Lambda}$ by $\tilde{\phi}_{\bullet}[\zeta, \lambda] = [\zeta, \phi_{\bullet}(\lambda)]$. To prove (24), we assume c is not a critical value, that is $K_{\bullet} = \emptyset$.

By the definition of c, there is a chain $z \in b$ such that $|z| \subset \widetilde{\Lambda}^{o+\rho}$, where $\rho > 0$ is in (25) when we take $U = \emptyset$.

For any $[\zeta, \lambda] \in |z|$, $\pi(S^{\infty} \times U_{\lambda})$ is an open neighborhood of $[\zeta, \lambda]$, where $\pi: S^{\infty} \times \Lambda \to \Lambda$ is the projection, and $\tilde{\phi}_{s}(\pi(S^{\infty} \times U_{\lambda})) \cup \tilde{\Lambda}^{s-}$ for $s \geq s_{\lambda}$ by (25).

Since |z| is compact, $\phi_{s'}(|z|) \subset \Lambda^{s-}$ for some s' > 0, but $\phi_{s'*}(z) \in b$.

This contradiction gives (24).

Now $\theta \in H^*(\widetilde{\Lambda} - \widetilde{\Lambda}^0)$, deg $\theta > 0$, and let $a = \theta \cap b$ be the nonzero element of $H_*(\widetilde{\Lambda}, \widetilde{\Lambda}^{\epsilon})$. This cap product can be taken by (iii) as in [5].

Let c' be the critical value defined by (23) replacing b with a. Then we have $\varepsilon \leq c' \leq c$ as in [5].

Finally we give

(26) if c'=c, then there exist infinitely many critical points in $f^{-1}(c)$. To prove (26), assume that there are only finite critical points

$$\lambda_1, \lambda_2, \dots, \lambda_k; \xi \lambda_1, \dots, \xi \lambda_j$$

in the level f=c $(df(\lambda)=0$ implies $df(\xi\lambda)=0$ and $\lambda_j\neq\xi\lambda_j$ by (iv)). We can choose contractible neighborhoods U_j of λ_j in $\Lambda-\Lambda^0$ so that

 $U_1, \dots, U_k; \xi U_1, \dots, \xi U_k$ are all disjoint.

Put $U = \bigcup_{j=1}^k (U_j \cup \xi U_j)$ and $W = \pi(S^{\infty} \times U)$. Then $W \approx S^{\infty} \times (U_1 \cup \cdots \cup U_k)$, hence $H^{\text{deg}\theta}(W) = 0$.

For $\rho > 0$ in (25), there is $z \in b$ such that $|z| \subset \Lambda^{e+\rho}$. As in the proof of (24), we have $\tilde{\phi}_{s'}(|z|) \subset W \cup \tilde{\Lambda}^{e-}$ for some $s' \geq 0$. This derives a contradiction, as in the proof of 2.1.10 in [5], proving (26).

These arguments yield the lemma as in [5].

Q.E.D.

Using Lemma 2, we have

LEMMA 3. Let V be an open subset of a Riemannian manifold such that for any x and y in V, there exists the unique shortest geodesic whose length equals to d(x, y), the Riemannian distance, and $f(x, y) = d(x, y)^2$ is smooth in x and y. Then for any compact submanifold N in V, there exist at least dim N+1 nonconstant geodesics starting from and ending at N orthogonally.

In [3], the same result, replacing V by the Euclidian space with complete Riemannian metric, is given. Theorem 1 in [3] is based on [8], but Lemma 2 in this note also give the theorem.

PROOF OF LEMMA 3. We apply Lemma 2 for $\Lambda = N \times N$, f = f(x, y) and $\xi(x, y) = (y, x)$. Critical points of f with f > 0 gives the desired geodesics.

The assumptions (i), (ii) and (iv) are easily seen. As in the proof of Theorem 8.48 in [12], the following estimate gives (iii).

(27) For some $\varepsilon > 0$, $f(x, y) \le 2| \operatorname{grad} f(x, y)|^2$, if $x, y \in N$ and $f(x, y) \le \varepsilon$.

This is given since grad f(x, y) has order d(x, y) and N is compact. Therefore Theorem 2 in [3] and the naturality of the (co)homology theory give the lemma. Q.E.D.

§ 4. Proof of Theorem 4.

Consider the system written in Theorem 4. By (11), U=U(x) can be written as $U(x)=U_1(|x|)$ for some smooth function $U_1=U_1(r)$, and since $W\approx D^n$, U_1 satisfies

(28)
$$U_1(r) < e \text{ for } 0 \le r < r_0, U(r_0) = e \text{ and } U_1'(r_0) > 0 \text{ for some } r_0 > 0.$$

Therefore there are $\rho > 0$ and $\delta > 0$ with

(29)
$$U_1 \leq e - 2\delta$$
 on $[0, r_0 - \rho], U_1 \geq e + 2\delta$ on $[r_0 + \rho, r_0 + 2\rho]$ and $U_1' \geq 2\delta/r_0$ on $[r_0 - 2\rho, r_0 + 2\rho]$.

Put $W' = \{x \in \mathbb{R}^n; |x| < r_0 + 2\rho\}$ and denote by $\mathfrak{B}^k(W', \mathbb{R}^j)$ the set of C^k -functions $u: W' \to \mathbb{R}^j$ with

$$||u||_k = \underset{0 \le k' \le k}{\operatorname{Max}} \left\{ \sup_{x \in W'} |D^{k'}u(x)| \right\} < \infty.$$

For notations used in this section, see [1].

Then there is a neighborhood \mathcal{U} of U in $\mathfrak{B}^{1}(W', \mathbf{R})$ such that for any \widetilde{U} in \mathcal{U} , e is a regular value of \widetilde{U} and there is a smooth function

$$\widetilde{B}$$
: $\partial W \rightarrow (1 - \rho/r_0, 1 + \rho/r_0)$

such that $\widetilde{W} = \{x \in W'; \ \widetilde{U}(x) \leq e\}$ is written as $\{\alpha b \in W'; \ b \in \partial W \ \text{and} \ 0 \leq \alpha \leq \widetilde{\beta}(b)\}$. Furthermore the mapping $\widetilde{U} \mapsto \widetilde{\beta}$ from \mathscr{U} into $C^1(\partial W, R)$ is continuous. This is given by the implicit function theorem applied to the function $F = F(\widetilde{U}, b, \alpha) = e - \widetilde{U}(\alpha b)$, which is C^1 by Theorem 10.3 in [1]. \widetilde{W} is also diffeomorphic to the n-disk D^n .

The system (5) is characterized by the functions U(x) and $a_{ij}(x)$, $1 \le i \le j \le n$. We put $Z = (U, a_{ij})$, then $Z \in \mathfrak{B}^2(W', \mathbb{R}^{1+n(n+1)/2}) \equiv \mathfrak{B}^2$.

" C^2 near" in Theorem 4 means "near with respect to the norm of \mathfrak{B}^2 ".

For sufficiently small neighborhood \mathscr{W} of Z in \mathfrak{B}^2 , $\widetilde{Z} = (\widetilde{U}, \widetilde{\alpha}_{ij}) \in \mathscr{W}$ implies $\widetilde{U} \in \mathscr{U}$ and $(\widetilde{\alpha}_{ij})$ is positive definite.

For $b \in \partial W = \{x; |x| = r_0\}$ and $\tilde{Z} \in \mathcal{W}$, let $\Phi(\tilde{Z}, b, t)$ be the solution of (\tilde{b}) , the system which is given by replacing Z with \tilde{Z} in (\tilde{b}) , with

$$\Phi(\widetilde{Z}, b, 0) = \widetilde{\beta}(b)b$$
 and $\frac{\partial}{\partial t}\Phi(\widetilde{Z}, b, 0) = 0$.

Since the system corresponding to Z is rotationally symmetric, $\Phi(Z, b, t)$ can be written as

(31)
$$\Phi(Z, b, t) = h(t)b$$
, $0 \le t \le K_0$, for some $K_0 > 0$,

where h = h(t) is a smooth function with

(32)
$$h(0)=1$$
, $\ddot{h}(0)=0$, $h(0)<0$, $\dot{h}(t)<0$ for $0< t \le K_0$ and $h(K_0)=0$.

The solution $\Phi(\tilde{Z}, b, t)$ is a geodesic w.r.t. the metric

(33)
$$ds^2 = (e - \tilde{U}(x))\tilde{\alpha}_{ij}(x)dx_idx_j,$$

after a time change.

The following fact is obtained by the standard way.

(34) There are $r_1>0$ and a neighborhood $\mathcal{W}_1\subset\mathcal{W}$ of Z in \mathfrak{B}^2 such that for any $\widetilde{Z}\in\mathcal{W}_1$, the set $V=\{x\in R^n; |x|<2r_1\}$ has the property of V in Lemma 3 w.r.t. the metric (33).

We take K_1 , $0 < K_1 < K_0$, so that $h(K_1) = r_1$. Let S_1 be the length of the curve $\Phi(Z, b, t)$, $0 \le t \le K_1$, w.r.t. (33) for Z and, for $\tilde{Z} \in \mathcal{W}_1$ and $b \in \partial W$, let $t_1 = t_1(\tilde{Z}, b)$ be the time satisfying

[the length of the curve $\Phi(\tilde{Z}, b, t)$, $0 \le t \le t_1$, w.r.t. (33)]= S_i .

Then $t_1(Z, b) = K_1$ for all $b \in \partial W$. And put $Q(\widetilde{Z}, b) = \Phi(\widetilde{Z}, b, t_1(\widetilde{Z}, b))$. We claim

(35) There is a neighborhood $\mathcal{W}_2 \subset \mathcal{W}_1$ of Z in \mathfrak{B}^2 such that for any $\tilde{Z} \in \mathcal{W}_2$, $Q(\tilde{Z}, \cdot)$ is an embedding from ∂W into V.

This is also given by the implicit function theorem.

The image of the embedding $\tilde{N} = \{Q(\tilde{Z}, b); b \in \partial W\}$ is a compact submanifold of V with dimension n-1. So, by Lemma 3, there exist n geodesics w.r.t. the metric (33), starting from and ending at \tilde{N} orthogonally.

This proves the Theorem as [10] or [4].

Q.E.D.

References

- [1] R. ABRAHAM and J. ROBBIN, Transversal Mapping and Flows, Benjamin, New York, 1967.
- [2] F. FULLER, An index of fixed point type for periodic orbits, Amer. J. Math, 89 (1967), 133-148.
- [3] K. HAYASHI, Double normals of a compact submanifold, Tokyo J. Math., 5 (1982), 419-425.
- [4] K. HAYASHI, Periodic solution of Classical Hamiltonian systems, Tokyo J. Math., 6 (1983), 473-486.
- [5] W. Klingenberg, Lectures on Closed Geodesics, Springer, Berlin-Heidelberg-New York, 1978.
- [6] J. MOSER, Periodic orbits near an equilibrium and a Theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727-747.
- [7] P. RABINOWITZ, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
- [8] A. RIED, Lot Geodetische, Arch. Math., 19 (1968), 103-112.
- [9] O. Ruiz, Existence of brake orbits in Finsler mechanical systems, Lecture Notes in Math. 597, Geometry and Topology, Springer, Berlin-Heidelberg-New York, 1976, 542-567.
- [10] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197-216.

- [11] H. Seifert, Closed integral curves in 3-space and isotropic two-dimensional deformations, Proc. Amer. Math. Soc., 1 (1950), 287-302.
- [12] J. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York-London-Paris, 1969.
- [13] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47-57.
- [14] A. Weinstein, Bifurcations and Hamilton's Principle, Math. Z., 159 (1978), 235-248.
- [15] H. GLUCK and W. ZILLER, Existence of periodic motions of conservative system, Seminar on Minimal Submanifolds, Princeton University Press, 1983, 65-98.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU
YOKOHAMA 223