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Introduction

In the theory of dynamical systems, there remains the open problem,
so called Seifert Conjecture: Has any sufficiently smooth flow on $S^{s}$ a
periodic orbit? This conjecture is based on Seifert’s paper [11] which
proved the following theorem.

THEOREM 1. Let $x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2})$ be points of $R^{2}$ and consider
the following equation in $R^{4}$

(1) $\dot{x}_{i}=y_{l},\dot{y}_{i}=-x_{i};i=1,2$ .
This system has $S^{8}=\{(x, y)\in R^{4};x_{1}^{2}+ae+y_{1}^{\epsilon}+y_{2}^{l}=1\}$ as an invariant set, $so$

we can consider the flow on $S^{8}$ induced by (1). Then any flow $C^{0}$ near
the above flow on $S^{s}$ has at least one periodic orbit.

The system (1) is the Hamiltonian system with Hamiltonian

$(2\rangle H(x, y)=\frac{1}{2}(y_{1}^{2}+y_{2}^{2})+\frac{1}{2}(x_{1}^{2}+d)$ ,

which describes the harmonic oscilaters.
More strongly, (2) is derived from the Lagrangian system

(3) $\frac{d}{dt}\frac{\partial}{\partial\dot{x}_{i}}(T-U)=\frac{\partial}{\partial x_{i}}(T-U);i=1,2$

where

(4) $T=\frac{1}{2}(\dot{x}_{1}^{2}+\dot{x}_{2}^{2})$ and $U=\frac{1}{2}(x_{1}^{l}+x\mathfrak{J}$ ,

with $y_{i}=(\partial T/\partial\dot{x}_{i})=\dot{x}_{i}(i=1,2)$ .
Received July 14, 1983
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For a Lagrangian system, Seifert also obtained the following result
[10].

THEOREM 2. Let $G$ be an open subset of $R^{n}$ and consider a Lagrangian
system of $n$ degrees of freedom

(5) $\frac{d}{dt}\frac{\partial}{\partial\dot{x}_{i}}(T-U)=\frac{\partial}{\partial x_{i}}(T-U);i=1,2,$ $\cdots,$ $n$

where $x=(x_{1}, x_{2}, \cdots, x_{n})eG$ and

(6) $T=\sum_{i.j=1}^{n}a_{j}(x)\dot{x}\dot{x}_{\dot{J}}$ , $a_{ij}:G\rightarrow R;C^{\infty}$-function
and $(a_{j}(x))$ is symmetric and positive definite for all $xeG$ , and
(7) $U:G\rightarrow R;C^{\infty}$-function.

Assume that, for some $eeR$ , the set $W=\{xeG;U(x)\leqq e\}$ is homeomor-
phic to the n-disk $D^{n}$ . Then there exists at least one periodic solution
of (5) with total energy $T+U=e$ .

[10] originally treated $C^{\omega}$-case, but it is not essential (See [9]). His
periodic solution is a so called brake orbit [91, which stops at the boundary
$\partial W=\{U=e\}$ . [4], [15] prove Theorem 2 under the assumption that $W$ is
any smooth compact manifold with boundary.

In a footnote of [10], Seifert stated that:

(8) In the situation of Theorem 2, there may be $n$ periodic orbits.

In this note, we give two theorems, stated in \S 1, one of which
generalizes Theorem 1 and another one answers the question (8) for special
type of Lagrangians including (4). See also [15]. Both of them give
periodic orbit(s) on an odd dimensional sphere.

\S 1. Statements of the theorems.

First we generalize Theorem 1. Let $\mu_{i},$ $i=1,2,$ $\cdots,$ $n$ , be arbitrary
positive numbers. We consider the following equation in $R^{2n}$ ,

(9) $\dot{x}=\mu y$ , $\dot{y}=-\mu x$ ; $i=1,2,$ $\cdots,$ $n$ .
This defines the dynamical system on $S^{2n-1}$ , which is derived from the
tangent vector field

(10) $\sum_{i=1}^{n}\mu_{i}(y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y_{i}})$ .
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In this case, there are at least $n$ periodic orbits on $S^{2n-1}$ .
Then we have

THEOREM 3. In the above situation, any flow on $S^{2n-1}$ generated a
tangent vector field $C^{1}$ near (10) has at least one periodic orbit.

F. Fuller [2] treated the case $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=1$ , when all solutions
are periodic.

The system (9) is considered as a Hamiltonian system with Hamil-
tonian $H_{0}=(1/2)\sum_{=1}^{n}\mu(x_{i}^{2}+y_{i}^{2})$ . So the ellipsoid $H_{0}^{-1}(e),$ $e>0$ , is of course
an invariant set, but in Theorem 3, we take another invariant set $S^{2n-1}$ .

A. Weinstein [13] considered the Hamiltonian system with Hamiltonian
$H=H_{0}+$ [$higher$ order] and proved that for sufficiently small $\epsilon>0$ , there
exist at least $n$ periodic solutions on $H^{-1}(\epsilon^{2})$ . More general perturbation
theory of Hamiltonian systems is given in [14].

J. Moser [5] generalized Weinstein’s result replacing Hamiltonian
systems with systems having an integral. The proof of Theorem 3 is
based on the result of Moser.

Now we consider the Lagrangian system of $n$ degrees of freedom (5)
with $T=T(x,\dot{x})$ and $U=U(x)$ as (6) and (7).

DEFINITION. This Lagrangian system is called rotationally symmetric
if for all $R\in O(n),$ $x$ and $\dot{x}$ , we have

(11) $U(Rx)=U(x)$ ,

(12) $T(Rx, R\dot{x})=T(x,\dot{x})$ .
For example, $T=(1/2)|\dot{x}|^{2}$ and $U$ depends only on $|x|$ , or

$T=\frac{1}{2}(|\dot{x}|^{2}+(gradU(x),\dot{x})^{2})$ and $U=-(1-x_{1}^{2}-x_{2}^{2})^{1/2}$ ,

which describes a spherical pendulum.
Then we have

THEOREM 4. We consider a Lagrangian system (5) and assume that
the system is rotationally symmetric and for some $e\in R$ , which is a
regular value of $U,$ $W=\{x;U(x)\leqq e\}$ is homeomorphic to the n-disk. Then
any Lagrangian system $C^{2}$ near the above system has at least $n$ periodic
solutions with total energy $e$ .

The meaning of $C^{2}$ near” is clarified in the proof, \S 4.
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\S 2. The proof of Theorem 3.

The proof of Theorem 3 is based on the following Moser’s result [6].

PROPOSITION 1. Let $f=f(z),$ $zeR^{2n}$ , be a $C^{1}$ function defined on a
neighborhood of the origin $z=0$ in $R^{2n}$ satisfying

(13) $f(O)=0$ , $f.(O)=C$

where $C$ is defined by

(14) $C=\left\{\begin{array}{llllll}0 & \mu_{\iota} & & & & \\-\mu_{1} & 0 & & & & 0\\ & & 0 & \mu_{2} & & \\ & & -\mu_{2} & 0 & & \\0 & & & & 0 & \mu\\ & & & & -\mu & 0\end{array}\right\}$

where $\mu_{i},$ $i=1,$ $\cdots,$ $n$ , are arbitrary positive numbers.
Consider the following autonomous equation

(15) $\dot{z}=f(z)$ .
If there exists an integral $G=G(z)$ for the equation (15) defined on

a neighborhood of $z=0$ satisfying

(16) $G(O)=0$ , $G.(O)=0$ and G..(0): positive definite ,

then there exists $\delta>0$ such that for any $ee(0, \delta)$ , the integral surface
$G^{-1}(\epsilon^{2})$ contains at least one periodic orbit.

We define a domain $\Omega=\Omega_{.\delta}$, by

(17) $\Omega_{r.\delta}=\{(z, \epsilon)eR^{2n}\times R;|z|<r, |\epsilon|<\delta\}$ ,

where $|z|^{2}=z_{1}^{2}+\cdots+z_{2n}^{2}$ , and denote by $\mathfrak{B}_{0}$ the Banach space of all real
valued bounded continuous functions defined on $\Omega,.i$ with the norm
(18) $[u|_{0.,.\delta}=\sup\{|u(z, \epsilon)|;(z, \epsilon)e\Omega_{r.\delta}\}$ .

AIso let $\mathfrak{B}_{1}$ be the Banach space of all $C^{1}$ functions in $\mathfrak{B}_{0}$ which have
bounded derivatives with the norm

(19) $|u|_{1,r,\delta}={\rm Max}\{|u|_{0.r.\partial}, |u_{*}|_{0.\prime,\delta}, |u_{*}|_{0_{r}.1}\}$ .
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We put

(20) $f(z, \epsilon)=\epsilon^{-1}f(\epsilon z)$ for $\epsilon\neq 0$ ,
$f(z, 0)=Cz$

and

(21) $p(z, \epsilon)=f(z, \epsilon)-Cz$ .
Then we have the following.

LEMMA 1. In Proposition 1, we assume that $G(z)=|z|^{2}$ and there
exists a constant $L\geqq 1$ such that for any small $\epsilon_{1}>0$ , we have

(22) $|p|_{1,2,e_{I}}\leqq L\epsilon_{1}$ .
Then the $\delta$ in Proposition 1 depends only on $C$ and $L$ .

The proof of this lemma is obtained by a similar fashion as Moser’s
proof, modifying slightly to suit our situations. So we omit the proof.

PROOF OF THBOREM 3. Let ac be the set of all $C^{1}$ tangent vector
field on $S=S^{2n-1}$ and $q\in ae$ . $q$ is the restriction to $S$ of a $C^{1}$ mapping $\overline{q}$

from an open neighborhood of $S$ into $R^{2n}$ . For $weS$, we denote by $q^{\prime}(w)$

the restriction of $\overline{q}^{\prime}(w):R^{2n}\rightarrow R^{2n}$ to $T.S\subset R^{2n}$ , which is independent of
the extension $\overline{q}$ . Also $|q’(w)|$ denotes the operator norm.

We put 4 $q|_{1}={\rm Max}\{{\rm Max}_{ves}|q(w)|, {\rm Max}_{weS}|q^{\prime}(w)|\}$ , then $(ae, | |_{\iota})$ is a Banach
space.

Put $p(z)=|z|^{8}q(z/|z|)$ and $f(z)=Cz+p(z)$ . $p(O)$ should be regarded as
$0$ automaticaUy and hereafter such a remark shall be omitted. $p=p(z)$

is of $C^{1}$ class on $|z|<\infty$ and

$p^{\prime}(\epsilon)\cdot h=|z|^{2}\{S\langle w, h)q(w)+\overline{q}^{\prime}(w)\cdot(h-(w, h)w)\}$

where $w=z/$) $z|$ and $h\in R^{2n}$ . Since $h-(w, h)w$ is the orthogonal projection
of $h$ onto $T.S$, we have

$|p^{\prime}(z)\cdot h|\leqq|z|^{2}(3|q(w)|+|q^{\prime}(w)|)|h|$ ,

hence $|p^{\prime}(z)|\leqq 4|z|^{2}|q|_{1}$ .
Now we consider any vector field $q\in \mathfrak{X}$ with $|q|_{1}=1$ . In this case

$p(z, \epsilon)=\epsilon^{-1}p(\epsilon z)$

$=(sgn\epsilon)\epsilon^{2}p(sgn\epsilon\cdot z)$ ,

so $p.=\epsilon^{2}p^{\prime}(sgn\epsilon\cdot x)$ and $p_{*}=2|\epsilon|p(sgn\epsilon\cdot z)$ .
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Thus we have $|p|_{1.2}..\iota\leqq 16\epsilon_{1}$ for small $\epsilon_{1}>0$ .
$f(z)$ satisfies the condition in Proposition 1 and we can take $G(z)=|z|^{2}$

as an integral. Thus, by Proposition 1 and Lemma 1, there exists $\delta>0$ ,
depending only on $C$, such that for any $ 0<\epsilon<\delta$ , the integral surface
$G^{-1}(\epsilon^{2})$ contains a periodic orbit.

The vector field on $S$ corresponding to the vector field on $G^{-1}(\epsilon^{2})$ by
the transformation

$w=\epsilon^{-1}z$ $(weS, zeG^{-1}(\epsilon^{2}))$

is $\epsilon^{-1}f(\epsilon w)=\epsilon^{-1}(C\epsilon w+\epsilon q(w))=Cw+\epsilon^{a}q(w)$ . This vector field on $S$ has a
periodic orbit and $\delta$ is independent of $qe\{q\in \mathfrak{X};|q|_{1}=1\}$ , hence any $C^{1}$

vector field belonging to the $\delta^{2}$-neighborhood of $C$ in the Banach space ee
has a periodic orbit.

This completes the proof of Theorem 3.

\S 3. Mini-max principle with involution.

The $n$ solutions of Theorem 4 are obtained as critical points of a
function which is invariant under an involution reflecting the reversibility
of the system.

Let $X$ be a Hausdorff space and $\xi;X\rightarrow X$ be a continuous involution,
that is, $\xi\circ\xi=id$ . We denote by $(S^{\infty}\times X)_{\Pi}$ the orbit space of $S^{\infty}\times X$ under
the involution $(\zeta, x)\mapsto(-\zeta, \xi x)$ . For an invariant subset $A\subset X$, we define
the equivariant (co)homology groups by $H_{*}^{\Pi}(X, A)=H_{*}((S^{\infty}\times X)_{\Pi}, (S^{\infty}\times A)_{\Pi})$

and $H_{\Pi}^{*}(X, A)=H^{*}((S^{\infty}\times X)_{\Pi}, (S^{\infty}\times A)_{\Pi})$ . The coefficient field $Z_{2}$ is always
understood.

Then we have the following equivariant version of Mini-Max Principle
[5].

LEMMA 2. Let $\Lambda$ be a complete Hilbert manifold and $ f:A\rightarrow[0, \infty$ ) $a$

smooth function satisfying the condition $(C)$ of Palais-Smale. Assume
that there is a smooth involution $\xi;\Lambda\rightarrow\Lambda$ satisfying

(i) $f\circ\xi=f$ ,
(ii) $\xi$ is isometric,
(iii) for small $\epsilon>0,$ $\Lambda^{0}$ is a deformation retract of $A^{\iota}$ and the homotopy

using there is equivariant $(\Lambda^{a}=f^{-1}[0, a])$ ,
(iv) if $df(x)=0$ and $ f(\lambda)\geqq\epsilon$ , then $\xi\lambda\neq\lambda$ .

Then the equivariant version of pairwise subordinated homology classes
[5] give critical points of $f$. That is, if there exist $beH_{*}^{\pi}(\Lambda, \Lambda)$ and
$\theta_{1},$

$\cdots,$
$\theta,$ $eH_{\Pi}^{*}(\Lambda-\Lambda^{0})$ with deg $\theta_{i}>0$ and $(\theta_{1}\cup\cdots\cup\theta,)\cap b\neq 0$ , then there

exist at least $r+1$ critical points with $ f\geqq\epsilon$ . (In counting critical
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points, we identify $\lambda$ and $\xi\lambda$).

PROOF. We put $\tilde{\Lambda}=(S^{\infty}\times\Lambda)_{\pi}$ and define $\tilde{f}:\tilde{\Lambda}\rightarrow[0, \infty$ ) by $f[\zeta, x]=f(\zeta, x)$ ,
where $[\zeta, \lambda]$ is the element of $\tilde{\Lambda}$ represented by $(\zeta, x)$ . Define

(23) $c=inf$ Max $\tilde{f}(|z|)$ ,

where $|z|=\bigcup_{i}{\rm Im}\sigma$ if $z=\sum_{i}\sigma_{i}$ . As in [5], since $b\in H_{*}(\tilde{\Lambda,}\tilde{\Lambda})$ , where
$\tilde{\Lambda}=(S^{\infty}\times\Lambda)_{\Pi}$ , we have $ c\geqq\epsilon$ .

First we claim that

(24) $c$ is a critical value of $f$ .
Let $\phi.;\Lambda\rightarrow\Lambda,$ $ 0\leqq s<\infty$ , be the deformation generated by $-gradf$

and put
$K_{0}=$ {$\lambda\in\Lambda;f(x)=c$ and $df(x)=0$}.

In the proof of 2.1.2. in [5], the following fact is given.

(25) Let $U$ be an open neighborhood of $K_{\theta}(c\geqq 0)$ and $\rho>0$ be sufficiently
small. Then for every $\lambda\in\Lambda^{o+\rho}$ , there exists a neighborhood $U_{\lambda}$ of
$\lambda$ and $s_{\lambda}\geqq 0$ such that $\phi.U_{\lambda}\subset U\cup\Lambda^{0-}$ for $s\geqq s_{\lambda}(\Lambda^{0-}=f^{-1}[0, c))$ .

Now by (i) and (ii), we can define $\tilde{\phi}_{l}:\tilde{\Lambda}\rightarrow\tilde{\Lambda}$ by $\tilde{\phi}.[\zeta, \lambda]=[\zeta, \phi.(\lambda)]$ . To
prove (24), we assume $c$ is not a critical value, that is $ K_{0}=\emptyset$ .

By the definition of $c$ , there is a chain $z\in b$ such that $|z|\subset\tilde{\Lambda}^{o+\rho}$ , where
$\rho>0$ is in (25) when we take $ U=\emptyset$ .

For any $[\zeta, x]\in|z|,$ $\pi(S^{\infty}\times U_{\lambda})$ is an open neighborhood of $[\zeta, x]$ , where
$\pi:S^{\infty}\times\Lambda\rightarrow\Lambda$ is the projection, and $\tilde{\phi}.(\pi(S^{\infty}\times U_{\lambda}))\cup\tilde{\Lambda^{\iota-}}$ for $s\geqq s_{\lambda}$ by (25).

Since $|z|$ is compact, $\phi.’(|z|)\subset\Lambda^{\iota-}$ for some $s^{\prime}>0$ , but $\phi.’\iota(z)eb$ .
This contradiction gives (24).
Now $\theta\in H^{*}(\tilde{\Lambda}-\tilde{\Lambda^{0}})$ , deg $\theta>0$ , and let $a=\theta\cap b$ be the nonzero element

of $H_{*}(\tilde{\Lambda,}\tilde{\Lambda^{e}})$ . This cap product can be taken by (iii) as in [5].
Let $c^{\prime}$ be the critical value defined by (23) replacing $b$ with $a$ . Then

we have $\epsilon\leqq c\leqq c$ as in [5].
Finally we give

(26) if $c^{\prime}=c$ , then there exist infinitely many critical points in $f^{-1}(c)$ .
To prove (26), assume that there are only finite critical points

$\lambda_{1},$ $\lambda_{2},$

$\cdots,$ $\lambda_{k};\xi\lambda_{1},$ $\cdots,$ $\xi\lambda_{j}$

in the level $f=c$ ($df(x)=0$ implies $df(\xi\lambda)=0$ and $\lambda_{j}\neq\xi\lambda_{j}$ by (iv)).
We can choose contractible neighborhoods $U_{j}$ of $\lambda_{j}$ in $\Lambda-\Lambda^{0}$ so that
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$U_{1},$
$\cdots,$ $U_{k};\xi U_{1},$ $\cdots,$

$\xi U_{k}$ are all disjoint.
Put $U=\bigcup_{i=1}^{k}(U_{j}\cup\xi U_{\dot{f}})$ and $W=\pi(S^{\infty}\times U)$ . Then $ W\approx S^{\infty}\times(U_{1}\cup\cdots\cup$

$U_{k})$ , hence $H^{d\epsilon g\theta}(W)=0$ .
For $\rho>0$ in (25), there is $zeb$ such that $|z|\subset \mathcal{X}^{+\rho}$ . As in the proof

of (24), we have $\tilde{\phi}_{l^{\prime}}(|z|)\subset W\cup\tilde{A}^{0-}$ for some $s^{\prime}\geqq 0$ . This derives a contra-
diction, as in the proof of 2.1.10 in [5], proving (26).

These arguments yield the lemma as in [5]. Q.E.D.

Using Lemma 2, we have

LEMMA 3. Let $V$ be an open subset of a Riemannian manifold smeh
that for any $x$ and $y$ in $V$, there exists the unique shortest geodesic whose
length equalI to $d(x, y)$ , the Riemannian distance, and $f\langle x,$ $y$) $=d(x, y)^{2}$ is
smooth in $x$ and $y$ . Then for any compact submanifold $N$ in $V$, there
exist at least dim $N+1$ nonconstant geodesics starting from and ending
at $N$ orthogonally.

In [3], the same result, replacing $V$ by the Euclidian space with
complete Riemannian metric, is given. Theorem 1 in [3] is based on $I8$],
but Lemma 2 in this note also give the theorem.

PROOF OF LEMMA 3. We apply Lemma 2 for $\Lambda=N\times N,$ $f=f(x, y)$

and $\xi(x, y)=(y, x)$ . Critical points of $f$ with $f>0$ gives the desired geo-
desics.

The assumptions (i), (ii) and (iv) are easily seen. As in the proof of
Theorem 8.48 in [12], the following estimate gives (iii).

(27) For some $\epsilon>0,$ $f(x, y)\leqq 2|$ grad $f(x, y)|^{2}$ , if $x$ , yeN and $ f(x, y)\leqq\epsilon$ .
This is given since grad $f(x, y)$ has order $d(x, y)$ and $N$ is mmpact.

Therefore Theorem 2 in [3] and the naturality of the $(co)homoloey$ theory
give the lemma. Q.E.D.

\S 4. Proof of Theorem 4.

Consider the system written in Theorem 4. By (11), $U=U(x)$ can be
written as $U(x)=U_{1}(|x|)$ for some smooth function $U_{1}=U_{1}(r)$ , and sinoe
$W\approx D^{n},$ $U_{1}$ satisfies

(28) $U_{1}(r)<e$ for $0\leqq r<r_{0},$ $ U(r_{o})=\ell$ and
$U_{1}^{\prime}(r_{0})>0$ for some $r_{0}>0$ .

Therefore there are $\rho>0$ and $\delta>0$ with
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(29) $ U_{1}\leqq e-2\delta$ on $[0, r_{0}-\rho],$ $ U_{1}\geqq e+2\delta$ on $[\gamma_{0}+\rho, r_{0}+2\rho]$ and
$U_{1}^{\prime}\geqq 2\delta/r_{0}$ on $[r_{0}-2\rho, r_{0}+2\rho]$ .

Put $W^{\prime}=\{xeR^{n};|x|<r_{0}+2\rho\}$ and denote by $\mathfrak{B}^{i}(W’, R^{j})$ the set of $C^{k}-$

functions $u:W’\rightarrow R^{j}$ with

(30) $||u\Vert_{k}={\rm Max} 0\leq k\leq k\{\sup_{xet\gamma}|D^{k^{\prime}}u(x)|\}<\infty$

For notations used in this section, see [1].
Then there is a neighborhood $\mathcal{U}$ of $U$ in $\mathfrak{B}^{1}(W’, R)$ such that for any

$\tilde{U}$ in $\mathcal{U},$ $e$ is a regular value of $\tilde{U}$ and there is a smooth function
$B;\partial W\rightarrow(1-\rho/r_{0},1+\rho/r_{0})$

such that $\tilde{W}=\{x\in W’;\tilde{U}(x)\leqq e\}$ is written as {$\alpha beW^{\prime}$ ; be $\partial W$ and $ 0\leqq\alpha\leqq$

$\tilde{\beta}(b)\}$ . Furthermore the mapping $\tilde{U}\vdash\rightarrow\tilde{\beta}$ from $\mathcal{U}$ into $C^{1}(\partial W, R)$ is conti-
nuous. This is given by the implicit function theorem. applied to the
function $F=F(\tilde{U}, b, \alpha)=e-\tilde{U}(\alpha b)$ , which is $C^{1}$ by Theorem 10.3 in [1].
$\tilde{W}$ is also diffeomorphic to the n-disk $D^{n}$ .

The system (5) is characterized by the functions $U(x)$ and $a_{j}(x),$ $ 1\leqq$

$i\leqq j\leqq n$ . We put $Z=(U, a_{ij})$ , then $Z\in \mathfrak{B}^{2}(W’, R^{1+n\{n+1)/2})\equiv \mathfrak{B}^{2}$ .
$C^{2}$ near” in Theorem 4 means “near with respect to the norm of

$\mathfrak{B}^{2}’$ .
For sufficiently small neighborhood $\mathscr{C}^{\rightarrow}$ of $Z$ in $\mathfrak{B}^{2},$ $Z=(U,\tilde{\alpha}_{j})e\ovalbox{\tt\small REJECT}$

implies $\tilde{U}\in \mathcal{U}$ and $(\tilde{\alpha}_{ij})$ is positive definite.
For be $\partial W=\{x;|x|=r_{0}\}$ and $Ze\ovalbox{\tt\small REJECT}$, let $\Phi(\tilde{Z}, b, t)$ be the solution of

$(5)\sim$ , the system which is given by replacing $Z$ with 2 in (5), with

$\Phi(\tilde{Z}, b, O)=\tilde{\beta}(b)b$ and $\frac{\partial}{\partial t}\Phi(\tilde{Z}, b, 0)=0$ .
Since the system corresponding to $Z$ is rotationally symmetric, $\Phi(Z, b, t)$

can be written as
(31) $\Phi(Z, b, t)=h(t)b$ , $0\leqq t\leqq K_{0}$ , for some $K_{0}>0$ ,

where $h=h(t)$ is a smooth function with

(32) $h(O)=1$ , $\ddot{h}(0)=0$ , $h(O)<0$ ,
$h(t)<0$ for $0<t\leqq K_{0}$ and $h(K_{0})=0$ .

The solution $\Phi(Z, b, t)$ is a geodesic w.r. $t$ . the metric
(33) $ds^{2}=(e-\tilde{U}(x))\tilde{a}_{ij}(x)dxdx_{j}$ ,
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after a time change.
The following fact is obtained by the standard way.

(34) There are $r_{1}>0$ and a neighborhood $\ovalbox{\tt\small REJECT}_{1}\subset\ovalbox{\tt\small REJECT}$ of $Z$ in $\mathfrak{B}^{2}$ such that
for any $Ze\ovalbox{\tt\small REJECT}_{1}$ , the set $V=\{xeR^{n};|x|<2r_{1}\}$ has the property of $V$

in Lemma 3 w.r. $t$ . the metric (33).

We take $K_{1},0<K_{1}<K_{0}$ , so that $h(K_{1})=r_{1}$ . Let $S_{1}$ be the length of
the curve $\Phi(Z, b, t),$ $0\leqq t\leqq K_{1}$ , w.r.t. (33) for $Z$ and, for $\tilde{Z}e\ovalbox{\tt\small REJECT}_{1}$ and
$b\in\partial W$, let $t_{1}=t_{1}(\tilde{Z}, b)$ be the time satisfying

[the length of the curve $\Phi(Z,$ $b,$ $t),$ $0\leqq t\leqq t_{1}$ , w.r.t. (33)] $=S_{1}$ .
Then $t_{1}(Z, b)=K_{1}$ for all $be\partial W$. And put $Q(\tilde{Z}, b)=\Phi(Z, b, t_{1}(\tilde{Z}, b))$ . We
claim

(35) There is a neighborhood $\mathscr{C}_{2}^{\wedge}\subset\ovalbox{\tt\small REJECT}_{1}$ of $Z$ in $\mathfrak{B}^{2}$ such that for any
$Ze\ovalbox{\tt\small REJECT}_{2},$ $Q(Z, )$ is an embedding from $\partial W$ into $V$.

This is also given by the implicit function theorem.
The image of the embedding $\tilde{N}=\{Q(Z, b);be\partial W\}$ is a compact sub-

manifold of $V$ with dimension $n-1$ . So, by Lemma 3, there exist $n$

geodesics w.r. $t$ . the metric (33), starting from and ending at $\tilde{N}$ orthog-
onally.

This proves the Theorem as [10] or [4]. Q.E.D.
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