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A Complex Continued Fraction Transformation
and Its Ergodic Properties

Shigeru TANAKA
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Introduction

In this paper we introduce a continued fraction algorithm 7 of
complex numbers and investigate metrical properties of this algorithm. T
is defined on the domain X={z=za+ya; —(1/2)<z, y=1/2)} (a=1+1) by
Tz=(1/z)—[1/z],, where [2], denotes [z+(1/2)]a+[y+(1/2)]& for a complex
number z=2a+ya&. This map T induces a continued fraction expansion
of ze X,

N S Y U
la, la, |as
where each a, is of the form na+ma for some integers n and m. We
give fundamental definitions and properties of this continued fraction
algorithm 7T in §1.
To investigate approximation properties of continued fractions, the
dual continued fraction
ST B OO Y Y|
Ian |an—1 |a2 lal
plays an important role. In §2, we define the algorithm S which induces
T-dual continued fraction. By using this algorithm S, we show that
§1/ 2
||

|z_£n_
q-

for each z€e X and n=1, where p,/q, denotes the mn-th approximant
introduced by T, and we also show that the value V2 is the best
possible constant.

In §3 we construct the natural extension map R of T by combining

Received September 30, 1983
Revised May 24, 1984




192 SHIGERU TANAKA

T with S and introduce an absolutely continuous invariant measure for
R. And in §4 we determine exact forms of absolutely continuous
invariant measures for 7 and S by using this natural extension. This
method of the dual algorithm and the natural extension was intro-
duced by H. Nakada, Sh. Ito and the author [5] and has been used in
several works which treat number theoretical transformations, for one-
dimensional cases [7], [11], [14] and for multi-dimensional cases [3], [4],
[9], [10]. ,

A number of complex continued fraction algorithms are considered
to discuss approximation theorems of complex numbers. Among them
the most essential types of algorithms are that of A. Hurwitz [1] and
that of R. Kaneiwa, I. Shiokawa and J. Tamura [2]. But it seems to be
difficult to construct dual algorithms of these continued fraction
algorithms, since Markov structures of these algorithms are very com-
plicated. Our algorithm 7T has simple Markov structure, so we can
construct dual algorithm.

Metrical properties of algorithms of Hurwitz and Kaneiwa, Shiokawa
and Tamura were treated by H. Nakada [6] and I. Shiokawa [12]. Since
these algorithms satisfy “Renyi’s condition”, we can apply the general
theory of F-expansion in M. Waterman [15] and show that these
algorithms have absolutely continuous invariant measures with bounded
density functions and that they are exact with respect to these invariant
measures.

On the contrary, our algorithms 7 and S do not satisfy “Renyi’s
condition”, and so the density functions of the invariant measures
become unbounded. This fact makes hard to investigate metrical
properties of T and S. In §5, we show the ergodicity of T'and S. Our
method of proof is based on “local Renyi’s condition”, which was firstly
considered in Schweiger [8]. But we can not apply the general theory
of Schweiger, since it seems to be hard to verify the conditions of
Schweiger. So we give our own proof. In §5 we also show several
limit properties of T and S

In concluding these introductly remarks, we would like to thank
Professors Shunji Ito, Michiko Yuri, Yuji Ito and Hitoshi Nakada for
their interest on problem and valuable advice.

§1. Definition of a complex continued fraction transformation.

Every complex number z can be uniquely written in the form z=xa +ya
for some real numbers z and y, where a=1+4. Define the sets I and
I by
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I={na+ma@; n and m are integers} ,
I=T—{0}.

For any complex number z, let [2], be the nearest point of I from z,
that is,

e teelye L

when z is written in the form za+ ya.
The fundamental set X and the transformation 7 on X are defined
by

X={z=xa+yc‘r; ——;-éx, yé-é—} ’

Tz=l—[-1-] for ze X.
2 z .

If T*z0 for all k<n—1, then z is expanded in the form

L 1], 1] 1 |
z=~+__ oo-—'—_____’
la, |a, la,+ T"z

where a,=a,(2) eI (n=1) are defined by

a,,=a,,(z)=[ 1 :L.

i,

As usual, we define p, and ¢, €T | (n=—1) inductively by
pu=a, =0, p,=a,p,+p._, (n=1),
9-.=0, q=a, ¢=0,49..+¢_. (n=1),

and obtain the following formulae for all n>1:

ann—l_ann—lzz'i(_l)n ’
po_ 10, 10, 1]

% la, |la.  a,’
1 z o pn+ Tnzp'n—l ,
(1) q,+T"2q,_,
A T W U
¢ la, la,., |a,

We call p,/q, the n-th approximant of z with respect to T.
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FiGURE 1. Fundamental T-cells X(a) of rank 1

Now we define the set A(n) of T-admissible sequences by
A(n)={a,(2)ax(2)- - -a.(2); z€ X} .

For each a,a,---a, € A(n), define the subset X(a,a.---a,) of X, which will
be called a fundamental T-cell of rank =, by

X(a,a, - -a,)={z€ X; a,(z)=a, for 1=k=n}.

For each =, the family of all fundamental T-cells of rank n becomes a
partition of X, that is

X= U X(a,---a,) .

G1°ocay € A(R)

The fundamental T-cells of rank 1 are given in Fig. 1.
Let us define U; 1<j=4) by

= el V2
Ul—{zeX, |z+ 2 |z—2 } ’
U2=—1:X Ul, U3=—iX Uz, U4=—i>< Ua,
and define U(a) for each a€l by

Ua)=U,, va="0,, U(~a)=U,, U(-x)=U,,
Ul)=X if a+#a, @ —a, —a. |

Then we have
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FiGuRE 2. X and X != Uaer(a+ Ula)

A
g

S
S

FiGure 8. U, and U= Uaer, (a+ Ula))
X1t= U (a+ Ua)) ,

where A‘1 means the set {1/z;ze A} for each subset AcX. | Moreover,
if we define subset I, (1<j=<4) of I by

IL={na+ma; m=0},
L=v%x1,, Li=ix1,, IL=vx1,,

then we obtain

Uit= U (e+U) (A=j=9).

These relations are shown in Fig. 2, 3. From these relations, it follows
that

(2) T X(a,05+ - a,) = Ua,) ,
(3) An)={a,a. - - a,; 0@+, € A2) for 1<k=n-—1)} (n=23),
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(4) A2)={a,as; if a,=a; then a.e I; 1=j5=<4)},

where we denote a,=a, a,=a&, a,=—a, a,=—a. From the relation (1)
and (2), we see that the inverse map ..., Of T"|x(,...a iS @ 1-1 map
of U(a,) onto X(a,- - a,) given by

N D tZDpy
aperag(2) =2 =tnsl
Verea(®) qn+2q._,

where T"|zq,....,, means the restriction of 7" on X(a,--+a,). Since each
U(a,) contains 0, we have that, for each a,---a,€ A(n),

Do —py....ay(0) € X(a,0 - -@2,)

n

§2. The dual trahsforn@ation of T.

In this section we define the dual transformation S of 7. Let us
define the fundamental set Y and subsets V; (1= _7 §_8) of Y by

Y={weC;|w|=1},

V,=(weY; |lw+al=1},

V2=—'iX Vl’ V3=—’iX V2 9 4='—'l:X V8’

V5=Vln V., Ve=—iX,V5, Vi=—ix Vs, Ve=—aXV,;.

~ Define a partition {J;1=j <8} of I by

J,={na; n>0}, Jo=—1xd,, Jy=—1ixd,, J=—1xds,
J5={’na+ma; n, m>0} ’ J3=_iXJ5 ’ J7=""7:XJ° ’ J3=—iXJ7 ’

and define V{(a) for each a e I by

Y if a=0,

V(a)={Vj if aed;, (=js9),

then we have the following partition of C:

C=U_(a+ V(o)) . (See Fig. 4.)

acl

The transformation S on Y is defined by

so=yLwl

where [w], is the point of I defined by
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1N
_/

FIGURE 4. C= U7 (a+ Wa))
[w]l.=a if wea+ Via).

In the same manner as for T, if we define b,=b,(w)e I and r,, s,€l by

bo=bw=[i—] @21,

S 1w
r=a, 7,=0, =0 s +7 e (=1),
s-—1=0 ’ soza ’ sn=bnsn—1+sn—2 (ngl) 4

then we have the expansion of we Y

1|

1], 1]
=._..+__.._-+. PR +____ .
YT T h, 5.+ 5w
We have also the following formulae:
8T ne1 — T8y =21(—1)" ,
r 1], 1] 1|
n_— + + oo + ,
sn ' bl I b2 Ibn
w=TaES W, ’
8,+S"ws,_,
Sp—1 _ 1 l 1 I 1 |
Al — =L
P T Ty

We call r,/s, the n-th approximant of w with respect to S.
Define the set B(n) of S-admissible sequences and the fundamental
S-cell Y(b,b,---b,) of rank n by

B(n)={b,(w)b,(w) « +b,(w); we Y},
Y(b,--+b,)={weY;b,(w)=b, for 1<k=<n},
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FIGURE 5. Fundamental S-cells Y(a) of rank 1

then we have the following partition of Y:

Y= U Y(b,---b,) .

byeeeby € B(n)

The fundamental S-cells of rank 1 are given in Fig. 5.
If we define subsets J; (1=<5=8) of I by

Ji=I—-{—a}, Ji=1xdJ;, s=1Xd;, J=1xds,
Ji=JiNJd;, Ji=1x Js , r=1XdJg , a=1xdJ7,
then we have

Y7=U (a+ V),

Vit= U @+V@) (A<i<8).

These relations are shown in Fig. 6, 7, 8. So we obtain

FiGurRe 6. Y and Y !=Uqer (a+ Via)
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FIGURE 7. Vi and Vi™'=Uaes](a+ Via)
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FiGure 8. Vy and Vi™'=Uaesj(a+ Via)

%
2

"
8

S Y (b, - +b)=V(b,) ,
(5) B(n)={b,* + -b,; bubs+, € B2) for 1sks=n—1} (n=3),

(6) | B(2)={b.b,; if b,eJ; then b, eJ; (1=5=8)},

and the inverse map ¢,,..,, of S”|y4,..s,) is @ 1—1 map of V(b,) onto
Y(,---b,) given by

rn + w’r'n—-l

(W)=
Bo,.-5, (W) s tws. .

Since V(b,) contains 0, we have

Lo =g1,.0,0) € Yoy b,) -

n

Now we can show the duality of T and S.

LEMMA 1. Let a,-:--a, be a sequence of points of I. Then a, :-a,
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18 T-admissible if and only if a,---a, i8 S-admissible.

Proor. From (3) and (5), it is sufficient to show the assertion in
the case n=2. But from (4) and (6) it is easy to show that a,a,c A(2)
if and only if a.a,€ B(2). So we complete the proof.

From Lemma 1, we obtain the following two lemmas concerning
the approximation by continued fraction expansions.

LEMMA 2. Let a,a;::-a, -+ be a T-admissible sequence obtained from
z€ X and let p,, q, be obtained from this sequence, then we have

(7) - lezv2(n+1)
(8) o 2e |V 2,

q. |q.|
(9) diam X(a,- - -a,) gz‘g'? :

Proor. If a,a.-:--a, is T-admissible, then by Lemma 1, it follows
that a,a,_,---a, is S-admissible. In term of r,, s, associated with this
S-admissible sequence, we have

Qoo 11 L1 f 1 Ty,
¢ la, |a.., la, s,

so it follows |q,._,|=l|q.|. If we define the subset N of Y by
N={weY;|w=1 or lw—a;|=1 for some j (1=5=<4)},

then it is easy to show that (q,/q.+,) € N implies (q,_,/9.) € N. By induc-
tion on n, it follows that (g¢,._,/q.) € N, that is, |g._,/q.|]<1, for each n.
Since |q,|* is even number, we can show inductively that |q,]>*=2(n+1).
Thus we prove (7). From the relation (1) we have

D, __ 20(—1)"T"z
4. 4.(9,+T"zq,_,)

And from the following equality

z_

q.+ Tnzq'n—l = -11—,;1—1—z(qn—1 + Tn_lzqn-d) ’

we obtain inductively that
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(10) z— D, _ 2i(—1) ﬁ T*z
: a, 4.9 k=0

which leads to (8). From (8) it is easy to show (9), so we complete the
proof,

In the same manner, we can show the following

LEMMA 8. Let bb,-++b, - be a S-admissible sequence obtained from
weY and let r,, s, be obtained from this sequence, then we have

s./2V2(n+1) ,

lw__a vz
s, |8,
diam Y(b,---b)<2V 2 .

s,

REMARK. The estimate (8) is the best possible one, since in the
case z=1, —1, 4, —7 we have |g,+ T"2q,_,|=2 for each =.

There are several works which treat such estimates. L. Ford [16]
showed the estimate

1
<
V'3 g,

Iz_ Dy
2,

for the continued fraction algorithm of Hurwitz. In this case p, and ¢,
are taken from the set ,

{n+mi; » and m are integers} .

And Kaneiwa, Shiokawa and Tamura [13] showed the estimate

—_ pn s 1
E g, | =By

for their continued fraction algorithm, here p, and g, are taken from
the set

r=1+tV'8i ) .

{nC-}—mf; n and m are integers} ( >

Our estimate is weaker than these estimates, but it should be noted that
in our case p, and ¢, are restricted in the smaller set I.
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§3. The natural extension of 7.

In this section we define the natural extension of T by combining

the transformation 7 and S.
Define the set Z and the transformation R on Z by

Z={w, 2)e YxX; b(way(z) € A2)}
R(w’ Z) = (¢a1(z)(w)9 Tz)

a1 1_
_<a1(z)+w’ . al(z)) .
Then we have the following

THEOREM 1. R 18 the matural extension of T and the function
h(w, z) defined by
1

S e

is the density function of a finite absolutely continuous invariant
measure of R.

PrROOF. From the definition of Z and Lemma 1, we obtain the
following two partitions of Z:
Z= U V(a)x X(a)= U Y(@)x U@ .

ael

For each acl, Rlyuxzxw=0XTlxw i a 1-1 map of V(a)x X(a) onto
Y(a) x U(a). - Consequently we have that R is a 1-1 map of Z onto Z
and that R is the natural extension of T. For each (w, z) € V(a)x X(a),
we have ‘

d 1 |*|d/1 2
D = 2
|DE(w, 2) |dw a—l—wl dz\z a)
=1
la+wl|‘|2|*

where DR means the Jacobian of R. So h(w, z) satisfies

1 1

la +wl|*|z|* 1+ 1 (l—a)
atw\z

|DR(w, 2)| h(R(w, 2))=

4

1
|1+wzl|*

=h(w, 2)
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FIGURE 9. Partition X=U%_, X;

on each V(a)x X(a), which means that h(w, z) is the density function of
an R-invariant measure. It remains to show the finiteness of this
invariant measure. Since Z has the following partition

Z= G VjXXj
j=1
where X; (1=7<8) are defined by
X;,= U X(a) (See Fig. 9.),

aeJJ-
it is sufficient to show

(11) | how, pdm@)ame)

for each j, where m is the Lebesgue measure on C. In the following,
we prove the case of =2 and 5 only, since the other case can be proved
in the same manner. To prove them, we prepair the following

LEMMA 4. Let {(z)=1/(1+wz), then for each measurable set ECX,
we have

[, ntw, am(z)=2EED
: ]

PrROOF. It is easy to show that

et
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S0 we obtain

|, nw, Dam@={  Ldm@="4E)
E «E |w| jw|

In the following we denote z=2+yi and w=u-+vi
O(B, r) the disc of center B and radius 7.
£(0@1/2,1/2)) is the disec of radius
|lw|/2(1+u), we have

. We denote by
Because X,c0(1/2, 1/2) and
|(1/2)w]/(|11+ 1/2)w|*~|(1/2)w[*) =

(12) SV _ hw, z)dm(w)dm(z)_s_s

11
=SV5 'n'l,(c<0|(’u‘:_,‘|2 2 ))) dm(w)=sn _4_21_71_de(w) )

Divide the last integral of (12) into integrals on V,N{u<0} and on
Vi:N{u=0}, then we have

h(w, 2)dm(w)dm(z)

VX 0(1/2,1/2)

T _z 0 du §1— YI—a+wi
vamu<o) I ray S W)=3 §

d
-1 (1+u)* Jo v
=1r_§° 1-yI-—+tufy, .o
2 Q4w 2’
Svun(uzm 4(1+u){d’m(W)Sz SV,n(uSOl dm(w)==—

Thus we obtain (11) for the case j=S5.

(13)

In the same manner we have

SV o h(w, z)dm(w)dm(z)ss

0(0,1)X Xy

h(w, z)dm(w)dm(z)
-{., e -

Let us divide the last integral of (13) into three integrals, those over
X.N{e>@1/2)}, X:Nn{y>@1/2)} and X,N{x=(1/2), y=(1/2)}, respectively.
Since 1—|z*=22(1—2z) on X,N {x>(1/2)}, it follows that

1 dx 1—-2
Sx,m»u/m 1- |z|2)2 dm()S 4 Sx/z (1 —x)* S

_—x_ —_ (-
Vz=(-3)
=74_Sm Z(1—ay %S S8 =5

In the same manner we can show

dy

Y2 — (2~ (1/2))2— (1/2)
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T T

—_ <Xt
L’,nuxm (1—1z]7? am(z) < 2’

and also we can show

T .
———dm(z
Sx,masu/m,vsu/zn (1—|2z?)? @

sS4z S dm()Zx .

XN {zs(1/2),yS(1/2)}

So we obtain (il) for the case j=2. Thus we complete the proof.
If we define the constant C by

C=L h(w, 2)dm(w)dm(z) ,

then (1/C)h(w, z) is the density function of an absolutely continuous R-
invariant probability measure.

§4. Density function of invariant measure of T and S.

From Theorem 1, the density function f(z) of an absolutely continu-
ous invariant probability measure of T is given by

fay=2\ ko, Ddm@w) i zeX, A5is8).

In the following, we caleculate explicitly the form of this function f(2).

LEMMA 5. If A and B are discs of radii r and s, boundaries of
which intersect orthogonally with each other, then m(AN B) is equal to

d(r, s)=r*tan' Z + g tan—* L —ps .
r s
ProOF. Let O, and O, be centers of A and B, respectively, and let
P and @ be points of intersection of boundaries of A and B. From the
assumption of lemma, it follows that £0,PO,= £0,Q0,=(n/2), L PO,Q=
2 tan™ (s/r) and £ PO,Q=2tan"'(r/s). So we obtain that m(4 N B)=d(r, 8).

If we extend the definition of d(r, s) as

d('r, s)='r[‘r| tan"1_§_+slsl tan—t _”'_____,rs ,

|7 |s|

then we can extend Lemma 5 to the case that one of » and s is negative
or . Here the disc of negative radius » means the complement of the
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disc of radius |r|, and the disc of radius - means the half plane of C.
The function tan—! takes its value on [0, #) as in Fig. 11, and we assume
that ?tan(a/~)—ac =0 and tan~ (co/a)=(x/2).

Define functions f;(z) (0=j=4) by

_1 T
&= T |

_1. 1 1 e
f&=5d=m |z-a,.|2—1) 1=5=9).

Then we have the following

THEOREM 2. The density function f(z) of an absolutely continuous
invariant probability measure of T 18 given by

Jo(2)—fi(2) zeX;(1=5=4),
@) —fix)—fi(z) zeX;,
(14) Sf(z) =1 fo(2) — fo(2) — [5(2) zeX,,

Jo(2)—fi(z) — fi(2) zeX,,
\fo()—=fi(2)—fi(2) zeX,,

PROOF. Let {(w)=1/Q1+wz). Since {(Y) is the disc of radius
|z|/(1—|z|*), we obtain from Lemma 4 that

.(1:_ SY h(w, 2)dmw)=f(z) .

For each j 15j5=<4), Y-V,;=YNO(—a;, 1), {(O(—a;, 1)) is the disc of
radius |2|/(|]1—a;z|*—|2]>)=|?|/(z—a;?—1) and the boundaries of {(Y) and
(O(—a;, 1)) intersect orthogonally. So from Lemma 5 we have

% ‘

FIGURE 10. Partition Y= U;L=o Y_f
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7

n/2

)
FiGURE 11. Graph of tan~'z

SY-V, k(w, 2)dm(w)=F(z) | 1=j<4).

From these relations we can show (14).

In the same manner we can obtain the density function of an
absolutely continuous invariant probability measure of S. Define subsets
Y; of Y (0=j=4) by

Y,=Y(), Y.=Y@, Y=Y-a), Y.=Y-a),
Y=Y-UY,, (SeeFig.10)

then Z has another partition
Z=0 Y,xU,.
=0
We define g,(w) (0=<5=4) by
g,~<w>=—é-d<r,-, ) (A=i=4),
) ,
go(w) =JZ=1 g,-(w)—-%{dm. 72) +d(7y, 75) +d(rg, r)+d(r, r)},

where 7; and 7; (1=j<4) are given by

_ V2
ri=——,
lw—a;*—1

. 1—|aw—1) °
Then we have the following
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THEOREM 3. The density function g(w) of an absolutely continuous
imvariant probability measure of S 18 given by

go(w) weY,,

gtwr= {ao(W)—y,-(w) weY; 1=j=4 .

PROOF. In the same manner as in the proof of Theorem 2, we can
show .
1

o Sx_ h(w, z)dm(z)=g,(w) (1§j =4),

= L\, hw, Ddm(z)= 0uw) .
So we obtain Theorem 3.

§5. The ergodicity of T and S.

Let A (n) be the set of T-admissible sequences a.a,:---a, which
satisfy one of the following conditions:

(a) a,*a, &, —a, —&, 2, 21, —2, —21i,
(b-1) @,.,=2 and a,*—-2, —a, —a,
®b-2) a,.,=-—2 and ¢,#2, a, @,

(b-3) @a,.,=2¢t and a,+21, a, —@,
(b-4) @,.,=—2¢ and a,*—21, —a, &,
(c-1) a,.,=a and a,#*a, —a,

(c-2) a,.,=—a and a,*a, —a,

(c-8) a,_,=a& and a,#*a, —a,

(c-4) a,.,=—a and a,#a, —a,

d-1) a.,.=a, a,,=xa and a,#*—a,
a-2 a,.=—a, a,_,==+a and a,#*a,
d-38) a,.=a, a,_,==+a and a,*—a,
(d-4) a,_.,=—a&, a,_,=*a and a,#*a.
Then we have the following

LEMMA 6. For each a,a,::-a, € A((N), ¥4 ,-q, Satisfies the following
“Renyt’s condition’:

(15) Sup [Vae,. .,,(z)IZS5‘ mf I«lral., )] i

teUlay,)

ProOOF. From the fact (q,_./¢.)=1/(a,+(q,_./2.-)), We can show
|9.-1/9.] <(2/8) for each case (a)~(d-4) in the following manner: In the
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case (a) we have |g, ./q.|=1/(|a.]—|¢. 2/¢.-.)S1/(2V 2 -1)<(2/8). If
a,,=2, then it follows that (g, ./q._)=1/(2+(g._s/q._5)) € 0(2/3, 1/3), so
we have |q,_,/q,|=1/(la,+(2/3)|—(1/3)). In addition, if a,+#—2, —a, —a,
then |a,+(2/8)|=(1784/3). So we obtain |g,_,/q,|<3/(1'34—1)<(2/3) in the
case (b-1). If @, ,=a, then it follows that (q._./q,_,)€O@, 1), so we
have that |q,_./q.|<1/(la,+& —1). But in the case a,_,=a we have a, € [,
80 if @, *+a then |a,+@& =21"2. Thus we obtain |g,_,/q.|<1/(2V 2 —1)<
(2/3) in the case (c-1). If a,_,=« and a,_,= *a, then (g,_,/q,_,) € 0(2/3, 1/3)
or O((2/3)%, (1/3)) according as a,_,=a or —a, respectively. So if a,# —a,
we have l|g,_,/q.|=8/(1"34—1)<(2/3), which show the assertion for the
case (d-1). In the remaining cases, we can establish the assertion in the
same manner.
From the relation

1
1+z qn—l
q

n

l’l}";laz...an(Z)P =

s ?

lg.]*

it follows that, in each case (a)~(d-4),

, . 1
zesjl}]zg,) ["l"al"'an(z)i = |q |4<1_—2~>4 ’
B " 3
(16) A
inf |y )z

1
zelU(ay) 2 ¢
a.l(1+2)

which means (15).
We call a fundamental T-cell X(a,---a,) for a,---a,c A,(n) a Renyi-

cell.

LEMMA 7. Any fundamental T-cell is modulo a set of Lebesgue
measure zero a disjoint union of Renyi-cells.

PROOF. Define sets C(n) inductively by
Cn)={a, - -a, € A(n); a,- - -a, & A(k) for 1<ks<n-—1},
and define X, and X. by

X.=X2, -2,2, -2, .--)U X(21, 29, 21, 21, - - -) U X(—2¢, — 27, —2¢, —21, - - )
UX(a’ @, —a, —a, ¢ ')UX(&r a, —a, —Q, "') ’

X.=U TX", .
n=0
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Then for each T-cell X(a,::-a,), we can take some X'c X. which satisfies

X(a,l...an)= G U X(al-..a”bl...bm)UX’ .

m=1 bye-by €C(m)

From (9) we have m(X.)=0, so we obtain Lemma 7.

THEOREM 4. T 1is ergodic with respect to the invariant measure
given in Theorem 2.

PROOF. By the absolute continuity of this invariant measure, it is
sufficient to show the ergodicity of T with respect to the Lebesgue

measure. Let E satisfy T-'E=FE. Then for each Renyi-cell X(a,:--a,)
we have

m(ENX(a,---a.)=m(T"EN X(a,* - -a,))
I(T*z)dm(z)

=, T W @A)
=5"*m(U(a,) N E)m(X(a,---a,)) .
Since U(a,) satisfies
U(a,) N ED 4 (X) N T E=q ()

for either a=2 or —2, whichever is suitable, we have

mUe)NE)Z|_Wildm@)zs-mE) .
So it follows that |

an m(EnNX(a,: - -a,)=15"*m(E)m(X(a,---a,)) .

By using Lemma 7, we obtain (17) for any fundamental T-cell. So we
have

m(ENF)Z15"*m(E)m(F")

for all measurable sets F. If we take FF=E°, we obtain that m(Z)=0
or m(E°)=0, which completes the proof.

Since the natural extension of S is R, we have the following

COROLLARY 1. S is ergodic with respect to the invariant measure
given in Theorem 3.
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In the rest of this section, we give several limit properties. From
the definition of f(2) we can easily show that log |z| is integrable with
respect to the measure dy(z)=r(z)dm(z). If we define

= —-SX log |z du(2) ,
then from the ergodicity of 7T it follows, for almost all z,
(18) lim L ¥ log T4 = —
n—o P, k=0

PROPOSITION 1. For almost all ze X, we have

(19) lim .717 log |g,(2)|=E
(20) lim — logl — Pa(2) =-—2F

e 2.(2)
ProOF. Since p,,,(T2)=q,(z), we obtain

a_ _ 17 2(T""*2)
q.(2) =t (T *2)

from which it follows that

1 pk(1 kz)
21 m — 10 Dl=—1im — 10 I ol A S

From (10) we have

2 _ql< V2
Pa(2) Ipn(Z)l
q.(2)

| so we can take such an absolute constant v that

llog |zl—-log| P.(2) , [ <

Then we obtain

DPai(T*2) H
qn- k(Tkz)

1 n—1 1 n—1
l-z, log [T*z|—-L % 1og
N k=0 N k=0

1& v
<= _—
-nkgfl/k
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So from (18) and (21) we can show (19), and from (10) we obtain (20).

THEOREM 5. For almost all z€ X, we have

lim L
n—oo 1,

log p(X(a,(2)- - - a.(2)))

=lim 7];. log m(X(a,(z): - -a,(z)))

n—o0

=—4F .
Thus the entropy of (T, pt) is equal to 4E.

ProoF. By Shanon-McMillan-Breiman’s Theorem, the limit of
—(1/n)log i(X(a,(z)- - -a,(2))) exist for almost all ze X and is equal to the
entropy of (T, ). Let z#1, —1, ¢, —1 and define d(z) by

o0(z)=min {|z—1|, |z+1|, |z—1|, |z+1|} .

Then for sufficiently large n (n>(4/6(2))?), each element 2’ of X(a,(2): - -a,(2))
satisfies 0(z')=(0(2)/2), so we can choose 0<C,<C, which satisfy C,<
J(Z)ZC, for each 2’ € X(a,(z):--a,(2)). Thus we obtain

lim %log (X (2)" - -a,(2))

n—+0

=lim %log m(X(@,(2)" - - a,(2)))
for almost all z€ X.

Now let ze X., then from the definition of X., it follows that for
infinitely many n, X(a,(2)- - -a.(z)) becomes Renyi-cell. So from the Renyi’s

condition (16), we obtain

m( Ua,.(z)) m( Ua,.m)
at(1+2) gt(1-2)’

for infinitely many n. Thus we can show that —(4/n) log |q.(z)| and
(1/n) log m(X(a,(z)- - -a,(2))) have the same limit for almost all z € X, which
complete the proof.

—=m(X(a,(2): - -a.(2)) =

If we set dy'(w)=g(w)dm(w) and define

E'=— SY log (w|dg(w) ,
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then we can show the same assertions for‘S. On the other hand, since
the entropy of (8, #) must be the same as that of (T, ), we can conclude
that E=E’. So we have the following

PROPOSITION 2. For almost all w e Y, we have

lim L log |s,(w)|=E ,

n—+00

,lim-l—log ’w—’r—"(ﬂl =—2F .
[ moo Su(w)

THEOREM 6. For almost all we Y, we have
lim % log #/(Y(by(w)- - - b,(w)))

=lim % log m(Y(by(w)- + +b,(w)))

=—4F .
Thus the entropy of (S, 1) is equal to 4E.
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