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Introduction

In this paper we study some new invariant for Heegaard splittings
of 3-manifolds. Stabilizing them we obtain an invariant of 3-manifolds.
There are some similarities between our invariant and Reidemeister-Franz
torsion ([10], [7], [9]), Fox-Brody’s invariant ([6], [3]) and Turaev’s invari-
ant [12]. But the formulation is quite different and it is rather easy to
calculate our invariant (an EA-matrix) from a given Heegaard diagram
of a 3-manifold.

In one aspect our invariant can be thought as an extension of Birman’s
[2]. She assigned some matrix invariant to a Heegaard splitting of a
3-manifold $M$. It is an integer matrix while ours is a matrix over a
group ring $ZH_{1}(M)$ . Our invariant also can be thought as an extension
of the Alexander matrix of the finitely presented group $\pi_{1}(M)$ but it has
more informations than $\pi_{1}(M)$ . For instance it distinguishes lens spaces
up to homeomorphism.

In the forthcoming paper [8] the first author will show the further
development of this paper. He will give the necessary condition for a
homology lens space obtained from $S^{3}$ by surgery on a knot to be a
genuine lens space in terms of EA-matrices.

\S 1. Preliminaries.

We work in the $PL$ category. Every submanifold is assumed to be
locally flat and homeomorphism means $PL$ homeomorphism. Throughout
the paper, a 3-manifold means a closed connected orientable 3-manifold.
$\overline{A}$ denotes the closure of $A$ while int $A$ denotes the interior of $A$ .

We use some fundamental facts concerning with Heegaard splittings
of 3-manifolds and free differential calculus of Fox [5]. Let $T_{g}$ be a
3-dimensional orientable handle body of genus $g$ and $F_{g}=\partial T_{g}$ . We fix a
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2-disk $D_{0}$ embedded in $F_{g}$ and a point $p_{0}e\partial D_{0}$ and call them a preferred
disk and a preferred base point. Further we fix a reflection map $ r_{0}:D_{0}\rightarrow$

$D_{0}$ which has as a fixed point set an arc $l_{0}$ such that $p_{0}el_{0}$ . We call $r_{0}$ and
$l_{0}$ a preferred reflection and a preferred arc. Let $\hat{F}_{g}$ stand for $F_{g}$ -int $D_{0}$ .

DEFINITION 1. Suppose that $M$ is a 3-manifold. We call a pair of
embeddings $(i, j)$ a Heegaard splitting (or a H-splitting) of genus $g$ of
the 3-manifold $M$ if the following are satisfied:

(i) $i,$ $j;T_{g}\rightarrow M$ are embeddings,
(ii) $i(T_{g})\cup j(T_{g})=M$,
(iii) $i(T_{g})\cap j(T_{g})=i(F_{g})=j(F_{g})$ ,
(iv) $k=(j|F_{g})^{-1}\cdot(i|F_{g})$ is an orientation preserving homeomorphism

such that $k|D_{0}=id$ .
REMARK. The above definition of a Heegaard splitting is slightly

different from ordinary one. But it is obvious that every 3-manifold
admits a H-splitting in our sense.

DEFINITION 2. H-splittings $(i, j)$ of $M$ and $(i^{\prime}, j’)$ of $N$ are called
equivalent if there is a homeomorphism $f:M\rightarrow N$ which satisfies the
following:

(i) $f(i(T_{g}))=i^{\prime}(T_{g})-1$ and $f(j(T_{g}))=j^{\prime}(T_{\sigma})$ ,
(ii) $\iota$ . $f\cdot i|D_{0}=id_{D_{0}}$ or $r_{0}$ where $r_{0}$ is the preferred reflection.

The condition (ii) is not so strict because, by Disk Theorem, an
equivalence in usual sense can easily be deformed to an equivalence in
our sense.

Now we recall free differential calculus. For a group $G,$ $ZG$ always
denotes a group ring of $G$ over an integer ring $Z$. Let $F=F(x_{1}, \ldots, x_{n})$

be a free group of rank $n$ generated by $x_{1},$ $\cdots,$ $x_{n}$ . Then a free deriva-
tive is defined as follows (see Fox [5] or Birman [1] for more detail).
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DEFINITION 3. A map $\partial/\partial x_{j}:ZF\rightarrow ZF$ is called a free derivative with
respect to $x_{j}$ if the following are satisfied:

(i) $\partial x_{i}/\partial x_{j}=\delta_{ij}$ ,
(ii) $\partial(u+v)/\partial x_{j}=\partial u/\partial x_{j}+\partial v/\partial x_{j}$ for any $u,$ $v\in ZF$

and
(iii) $\partial uv/\partial x_{j}=(\partial u/\partial x_{j})v^{0}+u(\partial v/\partial x_{j})$ for any $u,$ $veZF$

where $v^{0}=\sum_{geF}n_{g}eZ$ for $v=\sum_{geF}n_{g}g$ .
By Fox [5] it is known that the free derivative exists and is unique.
The following lemma is also proved by Fox ([1], [5]).

LEMMA 1 (Chain rule). Suppose that $u$ be a word $u(y_{1}, \cdots, y_{n})$ of
$F(y_{1}, \cdots, y_{n})$ and $v_{i}(i=1, \cdots, n)$ be words of $F(x_{1}, \cdots, x_{m})$ . Let $w$ be a
word of $F(x_{1}, \cdots, x_{m})$ defined by the identity

$w(x_{1}, \cdots, x_{n})=u(v_{1}(x_{1}, \cdots, x_{m}), \cdots, v_{n}(x_{1}, \ldots, x_{n}))$ .
Then it follows that $\partial w/\partial x_{j}=\sum_{i=1}^{n}(\partial u/\partial y_{i})_{\nu k^{\Rightarrow v}k(x_{1},\cdots,x_{\#})}(\partial v_{i}/\partial x_{j})$ .

\S 2. Extended Alexander matrix.

In what follows we abuse a notation $l$ for an element of a funda-
mental group represented by a loop $l$ . For a map $f:X\rightarrow Y,$ $f_{*}$ denotes
a homomorphism $\pi_{1}(X)\rightarrow\pi_{1}(Y)$ or $H_{1}(X)\rightarrow H_{1}(Y)$ induced from $f$. We also
abuse $f_{*}$ for a homomorphism of group rings $Z\pi_{1}(X)\rightarrow Z\pi_{1}(Y)$ or
$ZH_{1}(X)\rightarrow ZH_{1}(Y)$ .

We denote by $\alpha_{0}$ an abelianization homomorphism $\pi_{1}\rightarrow H_{1}$ or $ Z\pi_{1}\rightarrow$

$ZH_{1}$ . For an element $x$ of a group ring and a homomorphism $\phi$ we some-
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times use a notation $x^{\phi}$ for $\phi(x)$ , an image of $x$ by $\phi$ Also, for a matrix
$A=(a_{i\dot{g}})$ over a group ring, $A^{\phi}$ stands for $(a_{i\dot{g}}^{\prime})$ .

Let $a_{i},$ $b(i=1, \cdots, g)$ be simple loops on $\hat{F}_{g}$ described in Figure 2.
Note that they have $p_{0}$ as the base point.

DEFINITION 4. A system of loops $\{a_{i}, b_{i}^{\prime}\}_{i=1,\cdots,\sigma}$ on $\hat{F}_{\sigma}$ is called a
meridian-longitude system (or briefly a m-l system) of $T_{g}$ if there is a
homeomorphism $f:\hat{F}_{g}\rightarrow\hat{F}_{\sigma}$ which satisfies:

(i) $f$ extends to $\overline{f}:T_{g}\rightarrow T_{g}$ such that $\overline{f}|D_{0}=Id$ or $\overline{f}|D_{0}=r_{0}$ ,
(ii) for loops $a,$ $b(i=1, \cdots, g)$ as in Figure 2, $f(a)=ai$ and $f(b)=b’$ .

In particular a m-l system $\{a_{i}, b_{i}\}$ as in Figure 2 is called a standard
m-l system of $T_{g}$ .

Now we define the extended Alexander matrix. Suppose that $(i, j)$

is a H-splitting of a 3-manifold $M$. Let $h_{0}=(j|\hat{F}_{g})^{-1}\cdot(i|\hat{F}_{g_{\wedge}}):\hat{F}_{g}\rightarrow\hat{F}_{g}$ and
let $h:\hat{F}_{g}\rightarrow T_{g}$ be the composition of $h_{0}$ and an inclusion map $F_{\sigma}\subset\rightarrow T_{g}$ .

DEFINITION 5. Let $\{a_{i}, b_{i}\}_{i=1,\cdot\cdot,ff}$ be a m-l system and $\{x_{1}, \cdots, x_{g}\}$ be
a free basis of $\pi_{1}(T_{g})$ . Then $h(a_{i}),$ $h(b_{i})$ can be thought as words of
$\{x_{1}, \cdots, x_{\sigma}\}$ . Thus we obtain the following matrix over $ZH_{1}(M)$ :

$\left(\begin{array}{l}A\\B\end{array}\right)=\left(\begin{array}{l}(\frac{\partial h(a)}{\partial x_{\dot{f}}})\\(\frac{\partial h(b)}{\partial x_{j}})\end{array}\right)$

where $\alpha=j_{*}\cdot\alpha_{0}:Z\pi_{1}(T_{\sigma})\rightarrow ZH_{1}(T_{g})\rightarrow ZH_{1}(M)\alpha_{0}j_{*}$ .
We call the matrix $\left(\begin{array}{l}A\\B\end{array}\right)$ an extended Alexander matrix (or briefly an

EA-matrix) of the H-splitting $(i, j)$ with respect to the m-l system $\{a, b_{i}\}$

and the free basis $\{x_{1}, \cdots, x_{g}\}$ .
Now let us see how an EA-matrix changes when one chooses other

m-l system and free basis. Let $\{a_{i}, b_{i}\},$ $\{ai, b_{i}^{\prime}\}$ and $f$ be as in Definition
4. Then EA-matrices

$\left(\begin{array}{l}A\\B\end{array}\right)=\left(\begin{array}{l}(\frac{\partial h(a_{i})}{\partial x_{\dot{f}}})\\(\frac{\partial h(b_{i})}{\partial x_{\dot{f}}})\end{array}\right)$ and $\left(\begin{array}{l}A’\\B^{\prime}\end{array}\right)=\left(\begin{array}{l}(\frac{\partial h(a_{l}^{\prime})}{\partial x_{\dot{f}}})\\(\frac{\partial h(b^{\prime})}{\partial x_{\dot{f}}})\end{array}\right)$

are related as follows.

LEMMA 2.
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$\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)=\left(\begin{array}{l}(\frac{\partial f(a_{i})}{\partial a_{j}})(\frac{\partial f(a_{i})}{\partial b_{j}})\\(\frac{\partial f(b_{i})}{\partial a_{i}})(\frac{\partial f(b_{i})}{\partial b_{j}})\end{array}\right)\left(\begin{array}{l}A\\B\end{array}\right)$ .

PROOF. Since $f(a_{i})=a_{i}$ are represented by words of $a_{k},$ $b_{k}(k=1,$ $\cdots$ ,
$g)$ , set $a_{i}=w_{i}(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g})$ . Also set $h(a_{i})=u_{i}(x_{1}, \cdots, x_{g})$ and $h(b_{i})=$

$v_{i}(x_{1}, \cdots, x_{g})$ . Then $h(a’)=w_{i}(u_{1}(x_{1}, \cdots, x_{g}),$ $\cdots,$ $u_{g}(x_{1}, \cdots, x_{g}),$ $v_{1}(x_{1}, \cdots, x_{g})$ ,
, $v_{g}(x_{1}, \cdots, x_{g}))$ . Hence by Lemma 1

$\frac{\partial h(a_{i})}{\partial x_{j}’}=\sum_{k=1}^{g}(\frac{\partial w_{i}}{\partial u_{k}})_{u_{m}--u_{m}(x_{1},\ldots,xff) ,v--v(x_{1},\ldots,xff)}\frac{\partial u_{k}}{\partial x_{j}}+$$\sum_{k=1,nn}^{g}(\frac{\partial w_{l}}{\partial v_{k}})_{u_{m}=u_{m}(x_{1},\ldots,xff) ,v_{n}=v_{l}(x_{1},\ldots,xff)}\frac{\partial v_{k}}{\partial x_{j}}$

$=\sum_{k=1}^{g}(\frac{\partial f(a_{i})}{\partial a_{k}})^{h_{*}}\frac{\partial h(a_{k})}{\partial x_{\dot{f}}}+\sum_{k=1}^{g}(\frac{\partial f(a_{i})}{\partial b_{k}})^{h}\frac{\partial h(b_{k})}{\partial x_{\dot{f}}}$ .
Similarly we obtain

$\frac{\partial h(b_{i}^{\prime})}{\partial x_{j}}=\sum_{k=1}^{g}(\frac{\partial f(b_{i})}{\partial a_{k}})^{h_{*}}\frac{\partial h(a_{k})}{\partial x_{j}}+\sum_{k=1}^{g}(\frac{\partial f(b_{i})}{\partial b_{k}})^{h}\frac{\partial h(b_{k})}{\partial x_{\dot{f}}}$ .
Mapping these identities to $ZH_{1}(M)$ by $\alpha$ , we obtain Lemma 2.

Next we see how an EA-matrix changes when a free basis of $\pi_{1}(T_{g})$

is replaced.

LEMMA 3. Suppose that $\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A’\\B’\end{array}\right)$ are EA-matrices with respect
to free bases $\{x_{i}, \cdots, x_{g}\}$ and $\{x_{1}, \cdots, x_{g}\}$ of $\pi_{1}(T_{g})$ (and with respect to the
common m-l system). Then there is a $g\times g$ matrix $G$ over $ZH_{1}(M)$ such
that $\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)=\left(\begin{array}{l}A\\B\end{array}\right)G$ and det $G\in\pm H_{1}(M)$ .

PROOF. Let $\{a_{i}, b_{i}\}$ be a m-l system. Then $h(a_{i})$ and $h(b)$ can be
represented by word $u_{i}$ and $v_{i}$ of $\{x_{1}, \cdots, x_{g}\}$ . Further $x_{j}$ can be repre-
sented by words $w_{j}$ of $\{x_{1}, \cdots, x_{\sigma}^{\prime}\}$ . That is $h(a_{i})=u_{i}(w_{1}(x_{1}, \cdots, x_{\sigma}^{\prime}),$ $\cdots$ ,
$w_{g}(x_{1}, \cdots, x_{g}^{\prime}))$ and $h(b_{i})=v_{i}(w_{1}(x_{1}, \cdots, x_{g}^{\prime}), \cdots, w_{g}(x_{1}^{\prime}, \cdots, x_{g}^{\prime}))$ .

Then by Lemma 1 we obtain

$\frac{\partial h(a_{i})}{\partial x_{j}}=\sum_{k=1}^{g}(\frac{\partial u_{i}}{\partial x_{k}})_{x_{*}=w_{n}(x_{1}^{\prime},\cdots,x^{\prime}ff)}\frac{\partial w_{k}}{\partial x_{j}}=\sum_{k=1}^{g}\frac{\partial h(a_{t})}{\partial x_{k}}\frac{\partial w_{k}}{\partial x_{\dot{f}}^{\prime}}$

and

$\frac{\partial h(b_{i})}{\partial x_{j}^{\prime}}=\sum_{k=1}^{\sigma}(/\frac{\partial v_{\ell}}{\partial x_{k}})_{x_{\hslash}=w_{n}(x_{1}^{\prime},\cdots,x^{\prime}ff)}\frac{\partial w_{k}}{\partial x_{\dot{f}}^{\prime}}=\sum_{k=1}^{g}\frac{\partial h(b)}{\partial x_{k}}\frac{\partial w_{k}}{\partial x_{\dot{f}}^{\prime}}$
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Mapping these identities to $ZH_{1}(M)$ by $\alpha$ and setting $G=(\partial w_{i}/\partial x_{\dot{f}})^{\alpha}$ we
obtain $\left(\begin{array}{l}A’\\B\end{array}\right)=\left(\begin{array}{l}A\\B\end{array}\right)G$ . Since $(\partial w/\partial x_{f}:)^{\alpha_{0}}$ is invertible, $\det(\partial w/\partial x_{\dot{f}}^{\prime})^{\alpha_{0}}e\pm H_{1}(T_{g})$ .
Hence det $Ge\pm H_{1}(M)$ . This completes the proof.

\S 3. Equivalence classes.

In this section we study the relation between equivalence classes of
H-splittings and EA-matrices.

For a group ring $ZG$ let –: $ZG\rightarrow ZG$ be an involution defined by
$\overline{\sum_{\sigma eG}n_{g}g}=\sum_{geG}n_{g}g^{-1}$ . Suppose that $A=(a_{ij})$ is a matrix over $ZG$ . Then
let $\overline{A}$ denote $(\overline{a}_{ij})$ and $*A$ denote ${}^{t}\overline{A}$ .

DEFINITION 6. For $g\times g$ matrices $A,$ $B,$ $A^{\prime}$ and $B$’ over $ZG,$ $\left(\begin{array}{l}A\\B\end{array}\right)$ and
$\left(\begin{array}{l}A’\\B’\end{array}\right)$ are called equivalent if there are $g\times g$ matrices $U,$ $W$ and $G_{0}$ over
$ZG$ such that det $U$, det $G_{0}\in\pm G$ and the identity

$\left(\begin{array}{ll}U & 0\\W & *U^{-1}\end{array}\right)\left(\begin{array}{l}A\\B\end{array}\right)G_{0}=\left(\begin{array}{l}A^{\prime}\\B^{\prime}\end{array}\right)$ or $\left(\begin{array}{ll}U & 0\\W & -*U^{-1}\end{array}\right)\left(\begin{array}{l}A\\B\end{array}\right)G_{0}=\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$

holds. We deonte $\left(\begin{array}{l}A\\B\end{array}\right)\sim\left(\begin{array}{l}A^{\prime}\\B^{\prime}\end{array}\right)$ when they are equivalent.

One of our main results is the following.

THEOREM 1. Let $f:M\rightarrow N$ be an equivalence from a H-splitting
$(i, j)$ of $M$ to a H-splitting $(i’, j’)$ of N. Suppose that $\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A^{\prime}\\B\end{array}\right)$

are EA-matrices of $(i, j)$ and $(i’, j^{\prime})$ respectively. Then $\left(\begin{array}{l}A\\B\end{array}\right)\sim\left(\begin{array}{l}A’\\B^{j}\end{array}\right)$ .
The following is the key lemma to prove Theorem 1.

LEMMA 4. Let $f:\hat{F}_{g}\rightarrow\hat{F}_{\sigma}$ be a homeomorphi $\epsilon m$ which extends to a
homeomorphism $f:T,\rightarrow T$, such that $\overline{f}|D_{0}=id$ or $\overline{f}|D_{0}=r_{0}$ . Let $\beta:Z\pi_{1}(\hat{F}_{g})\rightarrow$

$ZH_{1}(T_{g})$ be a composition of an abelianization $\alpha_{0}:Z\pi_{1}(\hat{F}_{g})\rightarrow ZH_{1}(\hat{F}_{\sigma})$ and
a homomorphism $ZH_{1}(\hat{F}_{g})\rightarrow ZH_{1}(T_{\sigma})$ induced from the inclusion map
$\hat{F}_{\sigma}\subset T_{g}$ .

Consider a m-l system $\{a_{i}, b_{i}\}_{i=1,\cdots,g}$ and set

$\left(\begin{array}{l}(\frac{\partial f(a_{i})}{\partial a_{\dot{f}}})(\frac{\partial f(a_{i})}{\partial b_{\dot{f}}})\\(\frac{\partial f(b_{l})}{\partial a_{\dot{f}}})(\frac{\partial f(b_{i})}{\partial b_{\dot{f}}})\end{array}\right)=\left(\begin{array}{ll}U_{11} & U_{12}\\U_{21} & U_{22}\end{array}\right)$ .
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Then the following hold:
(i) $U_{12}=0$ ,
$(iI)$ $U_{22}=*U_{11}^{-1}$ or $-*U_{11}^{-1}$ according as $f$ is orientation preserving

or not.

PROOF. First we will prove (i). Since $f$ extends to a homeomorphism
$\overline{f}:T_{g}\rightarrow Tff,$ $f(a)$ is a product of coniugates of $a_{1},$ $\cdots,$ $a_{\sigma}$ and their inverses.
Let $f(a_{i})=\prod_{k=1}^{n}g_{k}a_{i_{k}}^{\epsilon_{k}}g_{k}^{-1}(\epsilon_{k}=\pm 1)$ . Since $(\partial g_{k}a_{i_{k}}^{e_{k}}g_{k}^{-1}/\partial b_{j})^{\beta}=(1-g_{k}a_{i_{k}}^{e_{k}}g_{k}^{-1})^{\beta}\times$

$(\partial g_{k}/\partial b_{j})^{\rho^{-}}=0$ , we obtain

(1)
$(\frac{\partial f(a_{l})}{\partial b_{j}})^{\beta}=0$ .

This means (i).
Next we will prove (ii). Throughout the proof $G$ stands for $H_{1}(T_{g})$ .

Let $\pi:\tilde{F}_{g}\rightarrow\hat{F}_{g}$ be a covering space associated with $\beta:\pi_{1}(\hat{F}_{g})\rightarrow H_{1}(\hat{F}_{g})\alpha_{0}\rightarrow$

$H_{1}(T_{\sigma})=G$ (where $H_{1}(\hat{F}_{g})\rightarrow H_{1}(T_{g})$ denotes the homomorphism induced from
the inclusion $\hat{F}_{g^{\subset}}\rightarrow T_{g}$). Let $\partial\tilde{F}_{\sigma}$ denote $\pi^{-1}(\partial\hat{F}_{g})$ .

We choose a preferred base point $\tilde{p}_{0}\in\pi^{-1}(p_{0})$ and consider liftings
$\tilde{a}_{i},$ $b_{i}\sim(i=1, \cdots, g)$ of $a_{i},$ $b_{i}$ which have $\tilde{p}_{0}$ as starting points. Note that
$\tilde{a}_{i}$ become loops again while $ b_{i}\sim$ become paths which start from $\tilde{p}_{0}$ and
end at points in $\partial\tilde{F}_{\sigma}$ . We abuse the symbols $\tilde{a}_{i},$

$ b_{i}\sim$ as the elements of
$ H_{1}(\tilde{F}_{g}, \partial\tilde{F}_{g})which\sim$ are represented by $\tilde{a},$

$ b_{i}\sim$ . $\tilde{a}_{i}$ are also regarded as ele-
ments of $H_{1}(F_{g})$ . Note that $H_{1}(\tilde{F}_{g}, \partial\tilde{F}_{g})$ and $H_{1}(\tilde{F}_{\sigma})$ can be thought as left
ZG-module naturally.

Now let us consider the intersection pairing

$\langle$ , $\rangle:H_{1}(\tilde{F}_{g})\otimes H_{1}(\tilde{F}_{g}, \partial\tilde{F}_{g})\rightarrow ZG$

which is defined by $\langle x, y\rangle=\sum_{geG}g(gx, y)$ where
$(, );H_{1}(\tilde{F}_{g})\otimes H_{1}(\tilde{F}_{\sigma}, \partial\tilde{F}_{g})\rightarrow Z$

denotes the ordinary intersection pairing. Then it follows immediately
that the pairing $\langle$ , $\rangle$ has the properties:

(2) $\langle x+x’, y\rangle=\langle x, y\rangle+\langle x’, y\rangle$ , $\langle x, y+y^{\prime}\rangle=\langle x, y\rangle+\langle x, y’\rangle$ ,
$\langle gx, y\rangle=g^{-1}\langle x, y\rangle$ and $\langle x, gy\rangle=g\langle x, y\rangle$ .

It is also obvious that

(3) $\langle\tilde{a}_{i}, b_{\dot{f}}\rangle\sim=\delta_{ij}eZG$ and $\langle\tilde{a}_{i},\tilde{a}_{j}\rangle=0$ .
Now we recall the formula of free differential calculus. Let $w$ be a

loop on $\hat{F}_{g}$ with the base point $p_{0}$ then the lifting $\tilde{w}$ of $w$ with starting



114 SHINJI FUKUHARA AND JINKO KANNO

point $\tilde{p}_{0}$ can be thought as an element of $H_{1}(ff_{g}, \partial ff_{g})$ . On the other hand
$w$ is represented by a word of $\{a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\}$ and we can consider
$\partial w/\partial a$ and $\partial w/\partial b$ . It is known that among these there is a following

relation (Fox [5]):

(4) $\tilde{w}=\sum_{=1}^{g}(\frac{\partial w}{\partial a})^{\prime}\tilde{a}+\sum_{=1}^{g}(\frac{\partial w}{\partial b_{i}})^{l}b\sim$ .

Let $\tilde{f}:F_{\sigma}\rightarrow ff_{g}$ be a lifting of $f$ such that $f(\tilde{p}_{0})=\tilde{p}_{0}$ . Since 7is a homeo-
morphism and 7commutes with covering transformations it follows that

$(g\tilde{a}_{i}, b_{\dot{f}})=\sim\pm(\tilde{f}(g\tilde{a}_{i}), f(b_{\dot{f}}))=\sim\pm(gf(\tilde{a}), f(b_{\dot{f}}))\sim$ for any $geG$ ,

where the sign depends on whether $f$ preserves orientation or not. From
this we obtain

(5) $\langle f(\tilde{a}_{i}), f(b_{\dot{f}})\rangle=\pm\langle\tilde{a}, b_{\dot{f}}\rangle=\pm\delta_{ij}\sim\sim$ .
From (4) and (1) it follows that

$\tilde{f}(\tilde{a}_{i})=f(a)=\sum_{\dot{g}=1}^{g}\sim(\frac{\partial f(a_{i})}{\partial a_{\dot{f}}})^{\beta}\tilde{a}_{j}+\sum_{\dot{g}--1}^{g}(\frac{\partial f(a_{i})}{\partial b_{\dot{f}}})^{\prime}b_{j}=\sum_{j=1}^{g}\sim(\frac{\partial f(a_{i})}{\partial a_{j}})^{\prime}\tilde{a}_{j}$

and

$\tilde{f}(b_{i}\sim)=f(\sim b_{i})=\sum_{\dot{g}\vee 1}^{g}(\frac{\partial f(b_{i})}{\partial a_{\dot{f}}})^{\prime}\tilde{a}_{j}+\sum_{j=1}^{g}(\frac{\partial f(b_{i})}{\partial b_{j}})^{l}b_{j}\sim$ .

Hence from (5) and the identities above we have

$\pm\delta_{j}=\langle\sum_{k=1}^{g}(\frac{\partial f(a_{i})}{\partial a_{k}})^{\beta}\tilde{a}_{k},\sum_{k^{--1}}^{g}(\frac{\partial f(b_{j})}{\partial a_{k}})^{\beta}\tilde{a}_{k}+\sum_{k=1}^{g}(\frac{\partial f(b_{\dot{f}})}{\partial b_{k}})^{\rho}b_{k}\sim\rangle$ .

Further from (2), (3) and above we have

$\pm\delta_{ij}=\sum_{k-1}^{\sigma}(\frac{\leftarrow()}{\partial a_{k}})^{\prime}(\frac{\partial f(b_{\dot{f}})}{\partial b_{k}})^{\prime}$ .

This means $\overline{U}_{11}{}^{t}U_{22}=\pm E_{g}$ completing the proof.

PROOF OF THEOREM 1. Suppose that $\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ are obtained from

m-l systems $\{a_{\ell}, b_{i}\},$ $\{af, b’\}$ and free bases $\{x_{1}, \cdots, x_{g}\},$ $\{x_{1}, \cdots, x_{g}^{\prime}\}$ . Let
$f_{0}=(i^{j}|\hat{F}_{g})^{-1}\cdot(f|\hat{F}_{g})\cdot(i|\hat{F}_{g}):\hat{F}_{g}\rightarrow\hat{F}_{g}$ and set $\overline{a}=f_{0}(a_{i})$ and $\overline{b}=f_{0}(b)(i=1,$ $\cdots$ ,

$g)$ . Further set $\overline{x}=(j^{-1}\cdot f\cdot j)_{*}(x_{i})$ . Let $\left(\begin{array}{l}A^{\prime\prime}\\B^{\prime}\end{array}\right)$ be an EA-matrix of a H-

splitting $(i^{\prime}, j’)$ with respect to $\{\overline{a}_{i},\overline{b}_{i}\}$ and $\{\overline{x}_{1}, \cdots,\overline{x}_{g}\}$ .
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First we will show that $\left(\begin{array}{l}A\\B\end{array}\right)=\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ . To see this let $h$ and $h$ ’ be
maps $h,$ $h^{\prime}:\hat{F}_{g}\rightarrow T_{g}$ which correspond to $h$ in Definition 5 with respect to
the H-splittings $(i, j)$ and $(i^{\prime}, j’)$ . Let $h(a_{i}),$ $h(b_{i})$ be represented as

$h(a_{i})=u_{i}(x_{1}, \cdots, x_{g})$ and $h(b)=v_{i}(x_{1}, \cdots, x_{g})$ .
Then corresponding to them $h’(\overline{a}_{l})$ and $h^{\prime}(\overline{b}_{i})$ are represented as

$h’(\overline{a}_{i})=u_{i}(\overline{x}_{1}, \cdots,\overline{x}_{g})$ and $h’(\overline{b}_{i})=v_{i}(\overline{x}_{1}, \cdots,\overline{x}_{g})$ .
Thus noticing that $f_{*}\cdot\alpha(x_{i})=\alpha(\overline{x}_{i})$ we obtain

$((\frac{\partial h(a_{i})}{\partial x_{\dot{f}}})^{\alpha})^{f}=(\frac{\partial h’(\overline{a}_{i})}{\partial\overline{x}_{j}})^{\alpha}$

and

$((\frac{\partial h(b_{i})}{\partial x_{j}})^{\alpha})^{f_{*}}=(\frac{\partial h^{\prime}(\overline{b}_{i})}{\partial\overline{x}_{j}})^{\alpha}$ .

This means $\left(\begin{array}{l}A\\B\end{array}\right)=\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ .
Next let us consider an EA-matrix $(_{B’}^{A^{\prime}’},,,)$ of $(i’, j^{\prime})$ with respect to

$\{\overline{a}_{i},\overline{b}_{i}\}$ and $\{x_{1}^{\prime}, \cdots, x_{g}\}$ . Then by Lemma 3 there is a matrix $G$ such that
det $G\in\pm H_{1}(M)$ and $\left(\begin{array}{ll}A & ,\\B^{\prime}’ & \end{array}\right)=\left(\begin{array}{ll}A & \cdots\\ B & \cdots\end{array}\right)G$ .

Further let us compare $\left(\begin{array}{ll}A & \cdots\\ B’ & \prime\end{array}\right)$ with $\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ . Note that they are EA-
matrices with respect to m-l systems $\{\overline{a}_{i},\overline{b}_{i}\}$ and $\{a_{i}^{\prime}, bi\}$ and the common
free basis $\{x_{1}, \cdots, x_{g}^{\prime}\}$ . Between these m-l systems there is a homeomor-
phism, say $f’$ , such as $f$ in Definition 4. Then by Lemma 2 it follows
that, by setting

$F=\left(\begin{array}{l}(\frac{\partial f^{\prime}(a_{\ell})}{\partial a_{j}})(\frac{\partial f’(a_{i})}{\partial b_{j}})\\(\frac{\partial f^{\prime}(b_{i})}{\partial a_{j}})(\frac{\partial f’(b_{i})}{\partial b_{j}})\end{array}\right)$ , $\left(\begin{array}{ll}A & \cdots\\ B’ & \prime\end{array}\right)=F^{h\alpha}\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ .

Since by Lemma 4 $F^{\beta}$ has a form $\left(\begin{array}{ll}U & 0\\W & \pm^{*}U^{-1}\end{array}\right)$ where $\det U\in\pm H_{1}(T_{g})$ ,
$F^{\beta i^{\prime}}$. has also such a form (Note that $i_{*}$ is a homomorphism $ ZH_{1}(T_{g})\rightarrow$

$ZH_{1}(M)$ induced from the map $i’:T,\rightarrow M$). But, by the definition of $\alpha$ ,
$\beta,$ $h_{*}^{\prime}$ and $i_{*},$ $i_{*}\cdot\beta=\alpha\cdot h_{*}^{\prime}$ holds. Thus $F^{h_{*}^{\prime}\alpha}$ has the form $(_{W}^{U}$ $\pm^{*}U^{-1)}0$ .

Hence we have proved that there is a matrix of the form $(_{W}^{U}$ $\pm^{*}U^{-1)}0$
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such that det $Ue\pm_{f}H_{1}(M)$ and $(_{B}^{A’},)=(WU$ $\pm^{*}U^{-1)\left(\begin{array}{l}A^{\prime}\\B^{\prime}\end{array}\right)}0$ . As the conclu-
sion, we have $\left(\begin{array}{l}A\\B\end{array}\right)\sim\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ as required.

The similar argument is available to prove the following theorem.

THEOREM 2. Let $\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)$ be EA-matrices of a H-splitting of
$M$ with respect to possibly diferent m-l systems and free bases of $\pi_{1}(T_{g})$ .
Then it follows that $\left(\begin{array}{l}A\\B\end{array}\right)\sim\left(\begin{array}{l}A’\\B^{\prime}\end{array}\right)$ .

\S 4. Connected sum and $EA\cdot matrices$ .
In this section we will study EA-matrices of a H-splitting obtained

by connected sum. We understand the connected sum of H-splittings as
follows.

Let $(i, j)$ and $(i^{\prime}, j^{\prime})$ be H-splittings of $M$ and $N$ of genus $m$ and $n$

respectively. Let $D_{+},$ $D_{-}$ be “half disks” in $T_{n}$ such that $D_{+}\cup D_{-}=D_{0}$

and $D_{+}\cap D_{-}=l_{0}$ as described in Figure 3. Similarly consider “half disks”
$D_{+}^{\prime}$ , $D_{-}^{\prime}$ in a preferred disk D\’o of $T_{n}$ . Let $B$ and $B$‘ be 3-balls in $T_{n}$ and
$T_{n}$ such that $B\cap\partial T_{n}=D_{-}$ and $B’\cap\partial T_{n}=D_{+}$ . Set $T=\overline{(T_{*}-B}$) $\cup(T_{n}-B^{\prime})$

where $\overline{T_{l*}-B}$ and $\overline{T_{n}-B}^{\prime}$ are attached along $\overline{\partial B-D_{-}}$ and $\overline{\partial B’-D_{+}}$ such
that $l_{0}$ and $l_{0}$ are identified naturally.

Let $\{a, b_{i}\},$ $\{a_{i}^{\prime}, b_{i}\}$ and $\{a_{i}^{\prime\prime}, bf^{\prime}\}$ be standard m-l systems of $T_{n},$ $T_{n}$ and
$T_{n\cdot+n}$ respectively. Then $\{a_{i}, b_{i}\}\cup\{a_{i}^{\prime}, b_{i}\}$ is thought as a system of loops
on $T$ and there is a natural homeomorphism $t:T_{n+n}\rightarrow T$ such that $t(a^{\prime})=$

$a,$ $t(b_{i}^{\prime})=b_{i}(i=1, \cdots, m)$ and $t(a_{i}^{\prime})=a_{i-n},$ $t(b_{i}^{\prime})=b_{i-n}(i=m+1, \cdots, m+n)$ .
Further we can assume that, for a preferred disk $D_{0}’\subset T_{m+n},$ $t(D_{0}^{\prime})=$

$(D_{+}\cup DL)\subset T$ holds. Then using $t$ we can easily construct a genus $m+n$

H-splitting on $M\# N$, which we denote by $(i, j)\#(i^{\prime}, j^{\prime})$ .
Let free bases $\{x_{1}, \cdots, x_{s}\},$ $\{x_{1}, \cdots, x_{n}^{\prime}\}$ and $\{x_{1}^{\prime\prime}, \cdots, x_{+n}^{\prime}\}$ be defined

so that $x,$ $xt,$ $x_{i}^{\prime}$ are images of $b_{i},$ $b_{i},$ $b_{i}^{\prime\prime}$ by inclusions.
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Suppose that $h,$ $h^{\prime}$ and $h$“ are maps which correspond to $h$ as in

Definition 5 with respect to $(i, j),$ $(i’, j’)$ and $(i, j)\#(i’, j’)$ .
Let $h(a)=u_{i}(x_{1}, \cdots, x_{m}),$ $h(b_{i})=v_{i}(x_{1}, \cdots, x_{f\hslash})$ and $h^{\prime}(ai)=u_{i}^{\prime}(x_{1}, \cdots, x_{n})$ ,

$h^{\prime}(b_{i}^{\prime})=v_{i}^{\prime}(x_{1}^{\prime}, \cdots, x_{n})$ be representations by words in $\pi_{1}(T_{m})$ and $\pi_{1}(T_{n})$ .
Then by the construction of connected sum of H-splittings $h$’ can be
represented as

$h^{\prime}’(a_{i}^{\prime})=u(x_{\iota}^{\prime\prime}, \cdots, x_{n}^{\prime\prime})$ $(i=1, \cdots, m)$ ,
$h^{\prime\prime}(b_{i}^{\prime\prime})=v_{i}(x_{1}^{\prime}’, \cdots, x_{f\hslash}^{\prime})$ $(i=1, \cdots, m)$ and
$h^{\prime\prime}(a_{i}^{\prime}’)=u_{i}^{\prime}(x_{m+1}^{\prime\prime}, \cdots, x_{m+n}^{\prime\prime})$ $(i=m+1, \cdots, m+n)$ ,
$h^{\prime}’(b_{i}^{\prime}’)=v_{i}(x_{m+1}^{\prime}, \cdots, x_{m+n}^{\prime})$ $(i=m+1, \cdots, m+n)$ .

Under these notations it follows immediately that:

LEMMA 5. Let $\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A’\\B’\end{array}\right)$ be EA-matrices of $(i, j)$ and $(i^{\prime}, j’)$ with
respect to m-l systems $\{a_{i}, b_{i}\},$ $\{a_{i}^{\prime}, b_{i}\}$ and free bases $\{x_{1}, \cdots, x_{m}\},$ $\{x_{i}, \cdots, x_{n}\}$ .
Then the EA-matrix $\left(\begin{array}{l}A’\\B\end{array}\right)$ of $(i, j)\#(i^{\prime}, j’)$ with respect to $\{a_{i}’, b:\}$ and
$\{x_{1}’, \cdots, x_{m+n}\}$ is represented as

$\left(\begin{array}{l}A^{\prime}\\B’\end{array}\right)=\left(\begin{array}{l}A^{f}\oplus A^{\prime_{ff}}\\B^{f}\oplus B^{g}\end{array}\right)$

where $f:ZH_{1}(M)\rightarrow ZH_{1}(M\# N)$ and $g:ZH_{1}(N)\rightarrow ZH_{1}(M\# N)$ are canonical
homomorphisms.

The proof is straightforward and we omit it.

\S 5. Stabilization.

First we consider the standard H-splitting of genus $g$ of a 3-sphere
$S^{8}$ as in Figure 4. We denote this H-splitting by $(i_{g}, jff)$ .

Let $\{a_{i}, b_{i}\}$ be the standard m-l system and $\{x_{1}, \cdots, x_{g}\}$ the free basis

(where $m_{1},$ $\cdots,$ $m_{g}$ denote boundaries
of meridian disks of $j(T_{g}))$

FIGURE 4
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of $\pi_{1}(T_{g})$ such that each $x_{i}$ are images of $b_{i}$ by the inclusion map. Then
we obtain $h(a_{i})=x_{i}$ and $h(b)=1$ . Thus by easy computation we obtain:

LEMMA 6. The EA-matrix of $(i_{g}, j_{g})$ with respect to $\{a_{i}, b_{i}\}$ and
$\{x_{1}, \cdots, x_{g}\}$ is $(_{0_{g}}^{E_{g}})$ where $E_{g}$ is the $g\times g$ unit matrix and $O_{g}$ is the $g\times g$

zero matrix.

Now we will compare EA-matrices of H-splittings of two manifolds
$M$ and $N$ which are homeomorphic each other. Let $(i, j)$ and $(i^{\prime}, j^{\prime})$ be
H-splittings of $M$ and $N$. The following is proved by Reidemeister [10],
Singer [11] and Craggs [4].

THEOREM (R-S-C). For some $m,$ $n\in N(i, j)\#(i_{n}, j_{n})$ and $(i‘, j’)\#(i_{n}, j_{n})$

are equivalent as H-splittings.

Combining Theorem 1, Lemma 5, Lemma 6 and Theorem (R-S-C) we
obtain the following:

THEOREM 3. Suppose that there is a homeomorphism $f:M\rightarrow N$. Let
$\left(\begin{array}{l}A\\B\end{array}\right)$ and $\left(\begin{array}{l}A’\\B^{\prime}\end{array}\right)$ be EA-matrices of H-splittings of $M$ and N. Then there
are $m,$ $neN$ such that

$\left(\begin{array}{l}A\oplus E_{n}\\B\oplus O_{n}\end{array}\right)\sim\left(\begin{array}{l}A’\oplus E_{n}\\B^{\prime}\oplus O_{n}\end{array}\right)$ .

This theorem means that the stable equivalence class of EA-matrices
is an invariant of a 3-manifold.

\S 6. Examples.

Here we present some simple examples of EA-matrices. First we
consider a lens space $L(p, q)$ and its standard H-splitting. In Figure 5
$m_{1}$ denotes a boundary of a meridian disk of $j(T_{g})$ . Then $m_{1}$ goes $q$ times

FIGURE 5
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around a meridian of $i(T_{g})$ while going $p$ times around a longitude of
$i(T_{g})$ . Since the loop $a_{1}$ meets $m_{1}p$ times and the loop $b_{1}$ meets $m_{1}q$ times,
we obtain $h(a_{1})=x_{1}^{p}$ and $h(b_{1})=x_{1}^{q}$ with some basis $\{x_{1}\}$ of $\pi_{1}(T_{1})$ . Let $\alpha(x_{1})=t$

then the EA-matrix is presented by $(_{1+t}^{1+t}I$ . : $:+t^{q-1)}+t^{p-1}$ .

REMARK. Comparing stabilized EA-matrices of $L(p, q)$ and $L(p, \gamma)$ we
can show famous Reidemeister [10], Franz [7] and Brody’s [3] Theorem
that they are homeomorphic if and only if $q=\pm\gamma^{\pm 1}(mod p)$ . But we
shall not prove it here because more general version of this theorem will
be presented in [8].

Next we consider a 3-manifold obtained from $S^{\epsilon}$ by O-framed surgery
on a knot $k$ . We denote this manifold by $M(k)$ . Then an EA-matrix
$\left(\begin{array}{l}A\\B\end{array}\right)$ of $M(k)$ has a form

$A=\left(\begin{array}{ll}0 & 0\\0 & A(k)\end{array}\right)$ and $B=(*1$ $0*)$

where $A(k)$ denotes the Alexander matrix of $k$ . More generally, since
$(x_{1}, \cdots, x_{g}|h(a_{1}), \cdots, h(a_{g}))$ is a presentation of $\pi_{1}(M),$ $A$ coincides with the
Alexander matrix of the finitely presented group $\pi_{1}(M)$ . This is a reason
why we call our matrix an EA-matrix.

In [8] the first author will calculate the EA-matrices for 3-manifolds
which are obtained from $S^{3}$ by Dehn surgery on knots. This and the
further consideration will give us necessary conditions that these mani-
folds are homeomorphic to lens spaces.
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