Local Topological Properties of Differentiable Mappings II

[Dedicated to Professor Morio Obata on his sixtieth Birthday]

Takuo FUKUDA

Chiba University
(Communicated by K. Kojima)

Introduction

In the preceding paper [2], it was shown that almost every C^{∞} mapgerm: $(R^n, 0) \rightarrow (R^p, 0)$, $n \leq p$, has rather good topological structures. In particular it was shown that they are topologically equivalent to the cones of topologically stable mappings of S^{n-1} into S^{p-1} , where the cone of a mapping $f: X \rightarrow Y$ is the mapping $Cf: X \times [0, 1)/X \times \{0\} \rightarrow Y \times [0, 1)/Y \times \{0\}$ defined by Cf(x, t) = (f(x), t). Here almost every is used in the rather strong sense that the complement of the set of these map-germs should have infinite codimension in the space of all C^{∞} map-germs.

This paper has two purposes. One is to show similar generic properties for the remaining case n > p. The other is to show, as an application of these generic properties, that for almost every mapping into the plane $f: (R^n, 0) \rightarrow (R^2, 0)$ a Poincare-Hopf type equality, in some cases the Morse inequalities as well, holds between the Betti numbers of the set $f^{-1}(0) \cap S^{n-1}_{\varepsilon}$ and the indices of the singular points of f appearing around the origin, where $S^{n-1}_{\varepsilon} = \{x \in R^n \mid ||x|| = \varepsilon\}$ and ε is supposed to be small. The index of a singular point of a mapping into the plane will be defined later in this section.

Let us explain these properties more precisely. $J^r(n, p)$ is the set of the r-jets of all C^{∞} map-germs: $(R^n, 0) \rightarrow (R^p, 0)$. For a positive number $\varepsilon > 0$, we set

$$D_{\varepsilon}^{m} = \{x \in R^{m} \mid ||x|| \leq \varepsilon\}$$
 , $S_{\varepsilon}^{m-1} = \{x \in R^{m} \mid ||x|| = \varepsilon\}$.

Theorem 1. For each positive integer r, there exists a closed

Received August 23, 1984

This work was partially supported by Australian Research Grant Committee No. 7, L20.205.

semi-algebraic subset $\Sigma_r(n, p)$ of $J^r(n, p)$ such that

- (1) codim. $\Sigma_r(n, p) \rightarrow \infty$ as $r \rightarrow \infty$,
- (2) if a C^{∞} mapping $f: R^n \to R^p$ represents an element of $J^r(n, p) \Sigma_r(n, p)$, then for any sufficiently small positive numbers ε and δ , the upper bound of ε depending on f and the upper bound of δ depending on ε and f, the following properties hold.
- (a) $D_i^n \cap f^{-1}(S_i^{p-1})$ is a C^{∞} manifold, in general with boundary, and its differentiable structure is independent of ε and δ .
- (b) The restricted mapping $f: D_i^n \cap f^{-1}(S_i^{p-1}) \to S_i^{p-1}$ is topologically stable (C^{∞} stable if (n, p) is a nice pair of dimensions in J. Mather's sense) and its topological type is independent of ε and δ .

REMARK. Moreover we can prove that (c) the topological type of $f: D_{\epsilon}^{n} \cap f^{-1}(S_{\epsilon}^{p-1}) \to S_{\epsilon}^{p-1}$ determines the topological type of the germ of f at the origin of R^{n} . The proof of this property is very similar to the proof of the corresponding property in the case $n \leq p$ given in [2], and we will not give it here.

REMARK. Combining with A. du Plessis's work [1], we can say that the germ at the origin of such f is topologically r-determined.

Now we explain our Poincare-Hopf equality and the Morse inequalities. From Theorem 1, if the jet $j^r f(0)$ of a C^{∞} mapping $f: R^n \to R^p$ belongs to $J^r(n, p) - \Sigma_r(n, p)$, then for sufficiently small ε and δ , the restricted mapping $f: D^n \cap f^{-1}(S^1_{\delta}) \to S^1_{\delta}$ is C^{∞} stable. In other words, defining a function $\theta: R^2 - \{0\} \to (R \mod 2\pi)$ by

$$x+iy\!=\!\sqrt{x^2\!+\!y^2}e^{i heta(x,y)}$$
 , $(x,\,y)\in R^2\!-\!\{0\}$,

the composed mapping $\theta \circ f: D_{\epsilon}^{n} \cap f^{-1}(S_{\delta}^{1}) \to (R \mod 2\pi)$ can be regarded as a Morse function. Although it is not a Morse function in the strict sense (it's values are not in R but in $R \mod 2\pi$), we can define the indices of critical points of $\theta \circ f: D_{\epsilon}^{n} \cap f^{-1}(S_{\delta}^{1}) \to (R \mod 2\pi)$ as usual. Now we set

 $m_i(f)\!=\!$ the number of critical points having index i of the Morse function $\theta\circ f\colon D_i^n\cap f^{-1}(S_i^1)\to R$ mod. 2π ,

 $b_i(M)$ = the *i*-th Betti number of a manifold M,

 $\chi(M) = \Sigma(-1)^i b_i(M)$ the Euler characteristic number of M.

Then we have

THEOREM 2. If $f: R^n \to R^2$ represents an element of $J^r(n, p) - \Sigma_r(n, p)$, then

(i) the number $m_i(f)$ and $b_i(f^{-1}(0) \cap S_i^{n-1})$ are independent of ε and

 δ provided that ε and δ are sufficiently small,

(ii) we have the following Poincare-Hopf type equality;

$$\sum_{i=0}^{n-1} (-1)^i m_i(f) + \chi(f^{-1}(0) \cap S_{\epsilon}^{n-1}) = \chi(S^{n-1})$$
 ,

and moreover

(iii) if 0 is an isolated point of $f^1(0)$, i.e. if $0 \notin \overline{f^{-1}(0) - \{0\}}$, and if $n \ge 3$, then we have the following Morse inequalities;

$$egin{aligned} &m_0(f) \geqq b_0(S^{n-1}) \ &m_1(f) - m_0(f) \geqq b_1(S^{n-1}) - b_0(S^{n-1}) \ & \cdots & \cdots \ & \sum_{i=0}^k {(-1)^{k-i} m_i(f)} \geqq \sum_{i=0}^k {(-1)^{k-i} b_i(S^{n-1})} \;, \quad k < n-1 \ &\sum_{i=0}^{n-1} {(-1)^i m_i(f)} = \chi(S^{n-1}) \;. \end{aligned}$$

REMARK. We will see that the numbers $m_i(f)$ and $b_i(f^{-1}(0) \cap S_{\epsilon}^{n-1})$ are not only independent of ϵ and δ , but also they are determined only by the singularities appearing around the origin. In particular we will see

- (iv) a point p of $D_{\epsilon}^{n} \cap f^{-1}(S_{\delta}^{1})$ is a critical point of $\theta \circ f \colon D_{\epsilon}^{n} \cap f^{-1}(S_{\delta}^{1}) \to (R \mod 2\pi)$ if and only if it is a singular point of $f \colon R^{n} \to R^{2}$, and
- (v) the index of a critical point p of $\theta \circ f$: $D_i^n \cap f^{-1}(S_b^1) \to (R \mod 2\pi)$ and the index of a critical point q of $\theta \circ f$: $D_i^n \cap f^{-1}(S_b^1) \to R \mod 2\pi$ agree if and only if the singular points p and q of f: $R^n \to R^2$ are C^∞ equivalent under diffeomorphisms which preserve the orientation of the target space R^2 : there exist diffeomorphic germs $h_1(R^n, p) \to (R^n, q)$ and $h_2: (R^2, f(p)) \to (R^2, f(q))$ such that the equality $f \circ h_1 = h_2 \circ f$ holds around p and such that h_2 preserve the orientation of R^2 .

Contents

- 1. Transversality theorem.
- 2. J. Mather's canonical stratification of jet bundles.
- 3. A stratification of $J^k(\mathbb{R}^n, \mathbb{R}^p \{0\})$.
- 4. Proof of Theorem 1.
- 5. Proof of the Poincare-Hopf equality and the Morse inequalities (Theorem 2).

Acknowledgement. The first version of this paper was completed during my stay in the Department of Pure Mathematics of University of Sydney. I would like to thank the people in the department for their kind hospitality. In particular to Tzee Char Kuo, Mike Field and James

Ward, I wish to convey my deep appreciation for the many helpful conversations we had together.

§ 1. Transversality theorem.

In this chapter we recall a transversality theorem which was proved in the preceding paper [2]. This theorem and J. Mather's canonical stratification of the jet spaces play major roles in this paper.

NOTATIONS. The notations used here are about the same as R. Thom's [7] and J. Mather's [4, 5]. $j^r f(x)$ denotes the r-jet of a smooth mapping f at a point x. $J^r(n, p)$ is the space of the r-jets of smooth map-germs: $(R^n, 0) \rightarrow (R^p, 0)$, and $J^r(R^n, R^p)$ is the r-jet bundle of the r-jets of smooth mappings of R^n into R^n . ${}_mJ^r(R^n, R^p)$ is the m-fold r-jet bundle of smooth mapping of R^n into R^p : ${}_mJ^r(R^n, R^p) = \{(j^r g_1(q_1), \cdots, j^r g_m(q_m)) \in (J^r(R^n, R^p))^m | (q_1, \cdots, q_m) \in (R^n)^{(m)}\}$, where for a set X, $X^{(m)} = \{(q_1, \cdots, q_m) \in X^m | q_i \neq q_j \text{ if } i \neq j\}$. For a mapping $f: R^n \rightarrow R^p$, ${}_mj^r f: (R^n)^{(m)} \rightarrow {}_mJ^r(R^n, R^p)$ denotes the m-fold r-jet extension of f defined by

$$_{m}j^{r}f(q_{1}, \cdots, q_{m})=(j^{r}f(q_{1}), \cdots, j^{r}f(q_{m}))$$
.

For integers r and s with s>r>0, $\pi_r^s: J^s(n, p) \to J^r(n, p)$ denotes the canonical projection defined by $\pi_r^s(j^sf(0)) = j^rf(0)$. $\pi_1: (R^n)^m \to R^n$ denotes the projection to the first factor: $\pi_1(q_1, \dots, q_m) = q_1$. For positive integers l and m with $l \le m$, we set

$$\Delta_l = \{(j^r g_1(q_1), \dots, j^r g_m(q_m)) \in {}_m J^r(R^n, R^p) | g_1(q_1) = \dots = g_l(q_l)\}$$
.

Then our transversality theorem can be stated as follows.

THEOREM 3 (Transversality). Let W be a semi-algebraic subset of $J^r(n, p)$ and let X be a semi-algebraic submanifold of $_mJ^k(R^n, R^p)$. Then there exists a closed semi-algebraic subset Σ_W of $(\pi_r^{r+m(k+1)})^1(W)$ having codimension ≥ 1 such that for any mapping $f: R^n \to R^p$ with $j^{r+m(k+1)}f(0) \in (\pi_r^{r+m(k+1)})^{-1}(W) - \Sigma_W$, there exists a neighborhood U of the origin of R^n such that

(1) $_{m}j^{k}f$ is transversal to X at every point of

$$(U - \{0\})^{(m)} = \{(q_{\scriptscriptstyle 1}, \; \cdots, \; q_{\scriptscriptstyle m}) \in (U - \{0\})^{\scriptscriptstyle m} | \; q_{\scriptscriptstyle i} \neq q_{\scriptscriptstyle j} \; \; if \; \; i \neq j\} \; ,$$

(2) if codim. X = mn, then $_{m}j^{k}f((U-\{0\})^{(m)}) \cap X = \emptyset$.

Moreover given a polynomial function $\mu: (J^k(R^n, R^p))^m \to R$ whose restriction on X, $\mu \mid X$, has no critical points and such that $\mu((\{0\} \times \{0\} \times J^k(n, p))^m) = 0$, where we regard $J^k(R^n, R^p) = R^n \times R^p \times J^k(n, p)$, then Σ_w and

U can be chosen so that

 $(3) \quad _{m}j^{k}f(U-\{0\})^{(m)} \text{ is } transversal to } X\cap \mu^{-1}(\varepsilon) \text{ for all } \varepsilon \in R.$

This was proved in [2].

§ 2. J. Mather's canonical stratification of jet bundles.

In this section we recall J. Mather's canonical stratification of jet bundles. Let $J^k(n, p)$ be the space of the k-jets of smooth map-germs: $(R^n, 0) \rightarrow (R^p, 0)$ and let $J^k(N, P)$ be the jet bundle of k-jets of smooth mappings of a manifold N into another P. Let $L^k(n)$ be the group of the k-jets of diffeomorphic germs: $(R^n, 0) \rightarrow (R^n, 0)$. Then $L^k(n) \times L^k(p)$ acts on $J^k(n, p)$ as a Lie transformation group: the action is defined by $(j^kh_1(0), j^kh_2(0))j^kf(0) = j^k(h_2 \circ f \circ h_1^{-1})(0)$. Now let A be a subset of $J^k(n, p)$ which is invariant under the action of $L^k(n) \times L^k(p)$. Then for manifolds N and P with dim. N=n and dim. P=p, there is a unique subbundle $A_{N,P}$ of the bundle $J^k(N, P)$ with fibre A which is invariant under the action on $J^k(N, P)$ of the group of pairs of diffeomorphisms of N and P. We call $A_{N,P}$ the subset of $J^k(N, P)$ corresponding to A. For a stratification $\mathscr S$ of an $L^k(n) \times L^k(p)$ -invariant subset A of $J^k(n, p)$ whose strata are also $L^k(n) \times L^k(p)$ -invariant, we set

$$\mathscr{S}_{N,P} = \{X_{N,P} | X \in \mathscr{S}\}$$
.

We call $\mathscr{S}_{N,P}$ the stratification of $A_{N,P}$ corresponding to \mathscr{S} .

THEOREM 2.1 (J. Mather [4, 5], see also [3]). For any pair (n, p) of positive integers, there exist a positive integer k=k(n, p), and $L^k(n) \times L^k(p)$ invariant closed semi-algebraic subset $\Sigma = \Sigma(n, p)$ of $J^k(n, p)$ and a Whitney stratification $\mathscr{S} = \mathscr{S}(n, p)$ of $J^k(n, p)$ satisfying the following conditions:

- (a) Strata of \mathcal{S} are all $L^k(n) \times L^k(p)$ invariant and they are semi-algebraic subsets of $J^k(n, p)$.
- (b) codim. $\Sigma(n, p) > n$ and $\Sigma(n, p)$ is a stratified subset of $J^k(n, p)$; i.e. if $X \cap \Sigma(n, p) \neq \emptyset$ and $X \in \mathcal{S}$, then $X \subset \Sigma(n, p)$.
- (c) Let N and P be manifolds with dim. N=n and dim. P=p. Let $\mathcal{S}_{N,P}$ be the stratification of $J^k(N,P)$ corresponding to \mathcal{S} . If a proper smooth mapping $f: N \to P$ is multi-transversal to $\mathcal{S}_{N,P}$, then f is topologically stable. (C^{∞} stable if the pair (n,p) is a nice pair in J. Mather's sense.).

Where we say that a mapping $f: N \to P$ is multi-transversal to $\mathcal{S}_{N,P}$ if for a sufficiently large integer m (m=p+1) is large enough), $mj^kf: N^{(m)} \to \mathbb{R}$

 $_{m}J^{k}(N, P)$ is transversal to every manifold of the form $(X_{1} \times \cdots \times X_{m}) \cap \Delta_{l}$, $l \leq m$ and $X_{i} \in \mathcal{S}_{N,P}$, where

$$N^{(m)} = \{(x_1, \dots, x_m) \in N^m | x_i \neq x_j \text{ if } i \neq j\},$$

$$\Delta_l = \{(j^k g_1(q_1), \dots, j^k g_m(q_m)) \in {}_m J^k(N, P) | g_1(q_1) = \dots = g_l(q_l)\}.$$

DEFINITION. We call $\mathcal{S}(n, p)$ and $\mathcal{S}_{N,P}$ the canonical stratifications of the jet spaces $J^k(n, p)$ and $J^k(N, P)$ respectively.

In the case where N is a compact manifold with boundary, as a corollary of the proof of Theorem 2.1, we have

COROLLARY 2.2. Let N be a compact manifold with boundary. Let $f: N \rightarrow P$ be a smooth mapping such that

- (1) the restricted mapping $f: \partial N \rightarrow P$ is a submersion,
- (2) $f(N-\partial N): (N-\partial N) \to P$ is multi-transversal to the canonical stratification $\mathcal{S}_{(N-\partial N),P}$.

Then f is topologically stable. (C^{∞} stable if (n, p) is a nice pair.).

§ 3. A stratification of $J^k(\mathbb{R}^n, \mathbb{R}^p - \{0\})$.

Let k=k(n-1, p-1), $\Sigma=\Sigma(n-1, p-1)$ and $\mathscr{S}=\mathscr{S}(n-1, p-1)$ be the integer, the closed semi-algebraic subset of $J^k(n-1, p-1)$ and the canonical stratification of $J^k(n-1, p-1)$ given by Theorem 2.1 respectively. Set

$$Q\!=\!\{j^k\!f\!(x)\in\!J^k\!(R^n,\;R^p\!-\!\{0\})\,|\,\mathrm{grad}(f_1^2\!+\cdots+f_p^2)\!(x)\!\neq\!0\}$$
 ,

where $f(x) = (f_1(x), \dots, f_p(x))$. Then

$$C = J^k(R^n, R^p - \{0\}) - Q$$

The purpose of this section is to construct a stratification induced in a way from the canonical stratification $\mathcal{S}(n-1,\,p-1)$ of $J^k(n-1,\,p-1)$. For a stratum X of $\mathcal{S}(n-1,\,p-1)$, we define a subset X(Q) of Q as follows. Take a jet $j^kf(x_0)\in Q$ and let $f\colon R^n\to R^p$ be a smooth representative of $j^kf(x_0)$. Since $j^kf(x_0)\in Q$, there is a neighbourhood U of x_0 such that $U\cap f^{-1}(S^{p-1}_{\delta})$ is a smooth hypersurface of U for every $\delta>0$, where S^{p-1}_{δ} is the (p-1)-sphere centered at the origin of R^p and with radius δ . Consider the restricted mapping $f\colon U\cap f^{-1}(S^{p-1}_{\delta})\to S^{p-1}_{\delta}$. Now we define that $j^kf(x_0)\in X(Q)$ if and only if $j^k(f\mid U\cap f^{-1}(S^{p-1}_{\delta}))(x_0)$ is contained in $X(U\cap f^{-1}(S^{p-1}_{\delta}),\, S^{p-1}_{\delta})$, where $X(U\cap f^{-1}(S^{p-1}_{\delta}),\, S^{p-1}_{\delta})$ is the subset of $J^k(U\cap f^{-1}(S^{p-1}_{\delta}),\, S^{p-1}_{\delta})$ corresponding to $X\subset J^k(n-1,\, p-1)$, which was defined in § 2.

PROPOSITION 3.1. (1) For each straum X of $\mathcal{S}(n-1, p-1)$, X(Q) is a semi-algebraic submanifold of Q.

(2) $\mathscr{S}(Q) = \{X(Q) \mid X \in \mathscr{S}(n-1, p-1)\}$ is a Whitney stratification of Q.

Before prove this we state its corollary whose proof will be given after the proof of the proposition.

COROLLARY 3.2. Let $f: V \rightarrow R^p$ be a smooth mapping of an open subset V of R^n into R^p . Suppose that

- (a) $j^k f(V-f^{-1}(0)) \subset Q$,
- (b) for a positive number δ and for any integer m with $m \leq p+1$, $_{m}j^{k}f$; $(V-f^{-1}(0)) \rightarrow_{m}J^{k}(R^{n}, R^{p}-\{0\})$ is transversal to the submanifolds of $_{m}J^{k}(R^{n}, R^{p}-\{0\})$ of the form

$$\Delta_m \cap (X_1(Q) imes \cdots imes X_m(Q)) \cap \mu_1^{-1}(\delta^2)$$
 ,

where $X_i(Q) \in \mathcal{S}(Q)$, $\Delta_m = \{(j^k g_1(x_1), \cdots, j^k g_m(x_m) \in {}_m J^k(R^n, R^p) \mid g_1(x_1) = g_2(x_2) = \cdots = g_m(x_m)\}$ and $\mu_1(j^k g_1(x_1), \cdots, j^k g_m(x_m)) = ||g_1(x_1)||^2$.

Then the following properties hold.

- (1) $f^{-1}(S_b^{p-1})$ is a smooth hypersurface of V.
- (2) The restricted mapping $f: f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is multi-transversal to the canonical stratification $\mathcal{S}(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ of $J^{k}(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ corresponding to $\mathcal{S}(n-1, p-1)$.
 - (3) If $f: f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is proper, then it is topologically stable.

PROOF OF PROPOSITION 3.1. We prove the proposition by showing that Q is covered by a finite number of semi-algebraic open subsets Q_1, \dots, Q_l such that for each $i, i=1, \dots, l$, there is a rational submersion $g_i \colon Q_i \to J^k(R^{n-1}, R^{p-1})$ such that for each stratum X of $\mathscr{S}(n-1, p-1)$ we have $Q_i \cap X(Q) = g_i^{-1}(X(R^{n-1}, R^{p-1}))$, where $X(R^{n-1}, R^{p-1})$ is the subset of $J^k(R^{n-1}, R^{p-1})$ corresponding to X. Here we call a mapping $q = (q_1, \dots, q_m)$ of an open subset of a euclidean space into R^m a rational mapping if each component q_j is a rational function, i.e. $q_j = p_j/r_j$ for some polynomials p_j and r_j .

Now take a jet $j^k f(x_0) \in Q$, then we have $f(x_0) = (f_1(x_0), \dots, f_p(x_0)) \neq 0$ and $\operatorname{grad}_{\cdot}(f_1^2 + \dots + f_p^2)(x_0) \neq 0$. Then operating linear transformations of R^n and R^p if necessary, we may suppose that $f_1(x_0) \neq 0, \dots, f_p(x_0) \neq 0$ and $\partial/\partial x_1(f_1^2 + \dots + f_p^2)(x_0) \neq 0$. Hence to prove the proposition, it is enough to prove that for the set

$$Q_{1,1} = \{ j^k f(x) \in Q \mid f_1(x) \neq 0, \cdots, f_p(x) \neq 0, \ \partial/\partial x_1(f_1^2 + \cdots + f_p^2)(x) \neq 0. \}$$

there is a rational submersion $\tilde{\pi}: Q_{1,1} \to J^k(\mathbb{R}^{n-1}, \mathbb{R}^{p-1})$ such that for each $X \in \mathcal{S}(n-1, p-1)$ we have

$$Q_{1,1}\cap X(Q)=\widetilde{\pi}^{-1}(X(R^{n-1},R^{p-1}))$$
.

We define $\tilde{\pi}$ as follows. Let $j^k f(x^0) \in Q_{1,1}$ and let $\delta = ||f(x^0)||$. Since $\partial/\partial x_1(f_1^2 + \cdots + f_p^2)(x^0) \neq 0$, from the implicit function theorem, there is a neighbourhood U of x^0 and a smooth function $h(x_2, \dots, x_n)$ defined in an open subset W of R^{n-1} such that we have

$$U \cap f^{-1}(S_{\delta}^{p-1}) = \{(h(x_2, \dots, x_n), x_2, \dots, x_n) | (x_2, \dots, x_n) \in W\}$$
.

Define $\widetilde{h}: W \to U$ by $\widetilde{h}(x_2, \dots, x_n) = (h(x_2, \dots, x_n), x_2, \dots, x_n)$ and $\pi: R^p \to R^{p-1}$ by $(y_1, \dots, y_p) = (y_2, \dots, y_p)$. Then we define $\widetilde{\pi}$ by $\widetilde{\pi}(j^k f(x^0)) = j^k (\pi \circ f \circ \widetilde{h})(x_2^0, \dots, x_n^0)$.

Now, to prove the proposition it is enough to prove

LEMMA. (1) $\tilde{\pi}: Q_{1,1} \to J^k(\mathbb{R}^{n-1}, \mathbb{R}^{p-1})$ is a rational submersion.

(2) For each stratum X of $\mathcal{S}(n-1, p-1)$, we have

$$Q_{1,1}\cap X(Q) = \widetilde{\pi}^{-1}(X(R^{n-1}, R^{p-1}))$$
.

PROOF OF LEMMA. (1) Let $j^k f(x^0) \in Q_{1,1}$ and let U, W, h and h be those ones constructed just before lemma. Since $(f_1^2 + \cdots + f_p^2)h(x_2, \cdots, x_n) = \delta^2 = \text{constant}$, we have

$$0 = \partial/\partial x_i (f_1^2 + \cdots + f_p^2) \circ h$$

= $\sum_{k=1}^p 2f_k \circ \widetilde{h}((\partial f_k/\partial x_1) \circ \widetilde{h} \cdot \partial h/\partial x_i + \partial f_k/\partial x_i \circ h)$.

Hence

$$egin{aligned} \partial h/\partial x_i &= -\sum_{k=1}^p \left(f_k \circ \widetilde{h}\right) \left((\partial f_k/\partial x_i) \circ \widetilde{h}\right) \middle/ \sum_{k=1}^p \left(f_k \circ \widetilde{h}\right) \left(\partial f_k/\partial x_1 \circ h\right) \ &= -\left(\partial/\partial x_i (f_1^2 + \cdots + f_p^2)\right) \circ \widetilde{h} \left/ \left(\partial/\partial x_1 (f_1^2 + \cdots + f_p^2)\right) \circ \widetilde{h} \end{aligned} .$$

Therefore $j^k h(x_2, \dots, x_n)$ is given by a rational function of the variables $j^k f(x_1, x_2, \dots, x_n)$.

Now for the point $x^0 = (x_1^0, \dots, x_n^0)$ we set $x^{0\prime} = (x_2^0, \dots, x_n^0)$. Then for $i, j \ge 2$, we have

$$\partial^2(f_i \circ \widetilde{h})/\partial x_j(x^{0'}) = \partial f_i/\partial x_j(h(x^{0'})) + (\partial f_i/\partial x_1)(\widetilde{h}(x^{0'}))(\partial h/\partial x_j(x^{0'})) \;, \ \partial^2(f_i \circ h)/\partial x_jx_l(x^{0'}) = \partial^2 f_i/\partial x_j\partial x_l(h(x^{0'})) + \partial^2 f_i/\partial x_1^2(h(x^{0'}))(\partial h/\partial x_j(x^{0'}))\partial h/\partial x_l(x^{0'}) + \partial^2 f_i/\partial x_lx_1(h(x^{0'}))\partial h/\partial x_j(x^{0'}) + \partial f_i/\partial x_1(h(x^{0'}))\partial^2 h/\partial x_jx_l(x^{0'}) = \partial^2 f_i/\partial x_jx_l(x^0) + \partial^2 f_i/x_1^2(x^0)\partial h/\partial x_j(x^{0'})\partial h/\partial x_l(x^{0'}) + \partial^2 f_i/\partial x_1\partial x_l(x^0)\partial h/\partial x_j(x^{0'}) + \partial f_i/\partial x_l(x^0)\partial^2 h/x_ix_l(x^0) \;.$$

In general $\partial^m(f_i \circ \widetilde{h})/\partial x^\omega(x^{0'})$ is a polynomial of the variables $(j^m f_i(x^0), j^m h(x^{0'}))$ which contains the term $\partial^m f_i/\partial x^\omega(x^0)$. Thus $\widetilde{\pi}\colon Q_{1,1} \to J^k(R^{n-1}, R^{p-1})$: $j^k f(x^0) \mapsto j^k (\pi \circ f \circ \widetilde{h})(x^{0'}) = (j^k (f_2 \circ \widetilde{h})(x^{0'}), \cdots, j^k (f_p \circ \widetilde{h})(x^{0'}))$, is a rational submersion.

 $(2) \quad j^k f(x^0) \in Q_{1,1} \cap X(Q) \hookrightarrow j^k f(x^0) \in Q_{1,1} \quad \text{and} \quad j^k (f \mid U \cap f^{-1}(S^{p-1}_{\delta}))(x^0) \in X(U \cap f^{-1}(S^{p-1}_{\delta}), \ S^{p}_{\delta}) \hookrightarrow j^k f(x^0) \in Q_{1,1} \quad \text{and} \quad j^k (\pi \circ f \circ \widetilde{h})(x^{0'}) \in X(R^{n-1}, \ R^{n-1}) \hookrightarrow j^k f(x^0) \in \pi^{-1}(X(R^{n-1}, \ R^{p-1})). \quad \text{Q.E.D. of lemma and hence of Proposition 3.1.}$

PROOF OF COROLLARY 3.2. Let $f: V \to R^p$ be a smooth mapping, V being an open subset of R^n . Suppose that

- (a) $j^k f(V f^{-1}(0)) \subset Q$, and
- (b) for any integer m, $_mj^kf$: $(V-f^{-1}(0))^{(m)} \rightarrow _mJ^k(R^n, R^p-\{0\})$ is transversal to the submanifolds of the form

$$\Delta_m \cap (X_1(Q) \times \cdots \times X_m(Q)) \cap \mu_1^{-1}(\delta^2)$$
, where $X_i(Q) \in \mathscr{S}(Q)$.

Then to prove the corollary we have to prove that

- (1) $f^{-1}(S_{\delta}^{p-1})$ is a smooth hypersurface of V,
- (2) $f|f^{-1}(S_{\delta}^{p-1}):f^{-1}(S_{\delta}^{p-1})\to S_{\delta}^{p-1}$ is multi-transversal to the canonical stratification $\mathscr{S}(f^{-1}(S_{\delta}^{p-1}),S_{\delta}^{p-1})$ of $J^k(f^{-1}(S_{\delta}^{p-1}),S_{\delta}^{p-1})$ corresponding to $\mathscr{S}(n-1,p-1)$, and
- (3) if $f: f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is proper, then it is topologically stable. (3) is trivial from (2) and Theorem 2.1.

Proof of (1). Since $j^k f(V-f^{-1}(0)) \subset Q$, we have $\operatorname{grad}_{\cdot}(f_1^2+\cdots+f_p^2)(x) \neq 0$ at any point $x \in V-f^{-1}(0)$. Hence $f^{-1}(S_{\delta}^{p-1})=(f_1^2+\cdots+f_p^2)^{-1}(\delta^2)$ is a smooth hypersurface of $V-f^{-1}(0)$.

Proof of (2). Let $f: V \to R^p$ be a smooth mapping satisfying (a) and (b). First we show that

(c) $j^k(f | f^{-1}(S_{\delta}^{p-1})): f^{-1}(S_{\delta}^{p-1}) \to J^k(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ is transveral to the stratification $\mathcal{S}(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ of $J^k(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ corresponding to $\mathcal{S}(n-1, p-1)$.

Take any point x^0 of $f^{-1}(S^{p-1}_{\delta})$. We will show that $j^k(f | f^{-1}(S^{p-1}_{\delta}))$ is transversal to $\mathcal{S}(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta})$ at $x^0 = (x^0_1, \cdots, x^0_n)$. We may assume that $j^k f(x^0) \in Q_{1,1}$, where $Q_{1,1}$ is the set constructed in the proof of Proposition 3.1, i.e. $Q_{1,1} = \{j^k g(x) \in Q \mid g_1(x) \neq 0, \cdots, g_p(x) \neq 0, \ \partial/\partial x_1(g_1^2 + \cdots + g_p^2)(x) \neq 0\}$. Now consider the following diagram:

$$R^{n-1} \supset W \xrightarrow{\widetilde{h}} f^{-1}(S^{p-1}_{\delta}) \ \downarrow^{\pi \circ f \circ \widetilde{h}} \qquad \downarrow^{f} \ , \ R^{p-1} \xleftarrow{\pi} S^{p-1}_{\delta}$$

,where W, \widetilde{h} and π are the ones constructed in the proof of Proposition 3.1. Then we see that

(d) $j^k(f|f^{-1}(S_{\delta}^{p-1}))$ is transversal to $\mathcal{S}(f^{-1}(S^{p-1}), S_{\delta}^{p-1})$ at $x^0 = (x_1^0, \dots, x_n^0)$ if and only if $j^k(\pi \circ f \circ \tilde{h})$ is transversal to $\mathcal{S}(R^{n-1}, R^{p-1})$ at $x^{0'} = (x_2^0, \dots, x_n^0)$.

Now consider the following diagram.

$$W \xrightarrow{\widetilde{h}} f^{-1}(S^{p-1}_{\delta}) \subset V = \bigcup_{\delta'} f^{-1}(S^{p-1}_{\delta'}) \ \downarrow j^k(\pi \circ f \circ \widetilde{h}) \qquad \downarrow j^kf \qquad \downarrow j^kf \ J^k(R^{n-1},\ R^{p-1}) \xleftarrow{\widetilde{\pi}} Q_{1,1} \cap \mu^{-1}(\delta^2) \subset Q_{1,1}$$

where $\mu: J^k(R^n, R^p) \to R$ is defined by $\mu(j^k g(x)) = \|g(x)\|^2$. Since, from (b), $j^k f$ is transversal to $X(Q) \cap \mu^{-1}(\delta^2)$ for every stratum X of $\mathscr{S}(n-1, p-1)$, $j^k f \mid f^{-1}(S^{p-1}_{\delta}): f^{-1}(S^{p-1}_{\delta}) \to Q_{1,1} \cap \mu^{-1}(\delta^2)$ is transversal to $X(Q) \cap \mu^{-1}(\delta^2)$ in $Q_{1,1} \cap \mu^{-1}(\delta^2)$. Hence noticing that the restriction of $\widetilde{\pi}$ to $Q_{1,1} \cap \mu^{-1}(\delta^2)$ is also a submersion into $J^k(R^{n-1}, R^{p-1})$, we see, from the commutativity of the above diagram, that $j^k(\pi \circ f \circ \widetilde{h})$ is transversal to $X(R^{n-1}, R^{p-1})$. Therefore from (d), we see that $j^k(f \mid f^{-1}(S^{p-1}_{\delta}))$ is transversal to $\mathscr{S}(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta})$. This completes the proof of (c).

Now, since $_{m}j^{k}f:(V-\{0\})^{(m)}\rightarrow_{m}J^{k}(R^{n},R^{p}-\{0\})$ is transversal to $\Delta_{m}\cap(X_{1}(Q)\times\cdots\times X_{m}(Q))\cap\mu_{1}^{-1}(\delta^{2})$ for any integer $m\leq p+1$ and any strata $X_{1}(Q),\cdots,X_{m}(Q)$ of $\mathscr{S}(Q)$, we see that the images of $(j^{k}f)^{-1}(X_{1}(Q))\cap f^{-1}(S_{\delta}^{p-1})$, and $(j^{k}f)^{-1}(X_{2}(Q)),\cdots,(j^{k}f)^{-1}(X_{m}(Q))$ under f meet transversally in R^{p} , which means $f((j^{k}f)^{-1}(X_{1}(Q)))\cap S_{\delta}^{p-1}$ and $f((j^{k}f)^{-1}(X_{2}(Q)))\cap S_{\delta}^{p-1},\cdots,f((j^{k}f)^{-1}(X_{m}(Q))\cap S_{\delta}^{p-1})$ meet transversally in S_{δ}^{p-1} . Hence the images $f((j^{k}f)^{-1}(X_{1}(Q))\cap f^{-1}(S_{\delta}^{p-1})),\cdots,f((j^{k}f)^{-1}(X_{m}(Q))\cap f^{-1}(S_{\delta}^{p-1}))$ meet transversally in S_{δ}^{p-1} .

Therefore, since $(j^k f)^{-1}(X(Q)) \cap f^{-1}(S^{p-1}_{\delta}) = (j^k (f \mid f^{-1}(S^{p-1}_{\delta}))^{-1}(X(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta}))$ for any stratum X of $\mathscr{S}(n-1, p-1)$, we see that

(f) $f((j^k(f | f^{-1}(S^{p-1}_{\delta}))^{-1}(X_{\mathbf{1}}(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta})), \cdots, f((j^k(f | f^{-1}(S^{p-1}_{\delta}))^{-1}(X_{\mathbf{m}} \times (f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta})))$ meet transversally.

Therefore $_{m}j^{k}(f|f^{-1}(S_{\delta}^{p}))$ is transversal to

$$\Delta_m \cap (X_1(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta}) \cdot \cdot \cdot X_m(f^{-1}(S^{p-1}_{\delta}), S^{p-1}_{\delta}))$$
.

Thus $f|f^{-1}(S_{\delta}^{p-1}): f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is mutitransversal to $\mathscr{S}(f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$. Q.E.D. of Corollary 3.2.

§4. Proof of Theorem 1.

First we state Theorem 1 in a slightly different form. For positive

integers s and r with s > r, let $\pi_r^s : J^s(n, p) \to J^r(n, p)$ denote the canonical projection defined by $\pi_r^s(j^s f(0)) = j^r f(0)$.

THEOREM 1'. Suppose n > p. Then for any semi-algebraic subset W of $J^r(n, p)$, there exists an integer s, greater than r and depending only on r, n and p, and there exists a closed semi-algebraic subset Σ_w of $(\pi_r^s)^{-1}(W)$ with dim. $\Sigma_w < \dim.(\pi_r^s)^{-1}(W)$ such that every smooth mapping $f: \mathbb{R}^n \to \mathbb{R}^p$ with $j^s f(0) \in (\pi_r^s)^{-1}(W) - \Sigma_w$ satisfies either the following I) (i)—(iv) or II) (v)-(vi).

Case I) If the origin 0 is not an isolated point of $f^{-1}(0)$, i.e. $0 \in \overline{f^{-1}(0)-\{0\}}$, then there exist a positive number ε_0 and a strictly increasing smooth function $\delta: [0, \varepsilon_0] \to [0, \infty)$ with $\delta(0)=0$ such that for every ε and δ with $0<\varepsilon \leq \varepsilon_0$ and $0<\delta <\delta(\varepsilon)$ the following properties (i)-(iv) hold

- (i) $f^{-1}(0) \cap S_{\epsilon}^{n-1}$ is an (n-p-1)-dimensional manifold and it is diffeomorphic to $f^{-1}(0) \cap S_{\epsilon_0}^{n-1}$.
- (ii) $D_{\epsilon}^n \cap f^{-1}(S_{\delta}^{p-1})$ is a smooth manifold with boundary and it is diffeomorphic to $D_{\epsilon_0}^n \cap f^{-1}(S_{\delta(\epsilon_0)}^{p-1})$.
 - (iii) $\partial(D_{\varepsilon}^n \cap f^{-1}(D_{\delta}^{p-1}))$ is homeomorphic to S_{ε}^{n-1} .
- (iv) The restricted mapping $f: D_{\varepsilon}^n \cap f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is topologically stable (C^{∞} stable if (n, p) is a nice pair) and its topological type is independent of ε and δ .

Case II) If 0 is an isolated point of $f^{-1}(0)$, i.e. $0 \notin \overline{f^{-1}(0)} - \{0\}$, then there exists a positive number ε_0 such that for every ε with $0 < \varepsilon \le \varepsilon_0$ the following properties (v) and (vi) hold.

- (v) $f^{-1}(S_{\varepsilon}^{p-1})$ is diffeomorphic to S^{n-1} .
- (vi) The restricted mapping $f: f^{-1}(S_{\varepsilon}^{p-1}) \to S_{\varepsilon}^{p-1}$ is topologically stable $(C^{\infty} \text{ stable if } (n, p) \text{ is a nice pair})$ and its topological type is independent of ε .

This theorem implies the following corollary and hence Theorem 1 stated in the introduction.

COROLLARY. For any positive integer r, there exists a closed semi-algebraic subset Σ_r of $J^r(n, p)$ such that codim. $\Sigma_r \to \infty$ as $r \to \infty$ and such that every smooth mapping $f: R^n \to R^p$ with $j^r f(0) \in (J^r(n, p) - \Sigma_r)$ satisfies either I) (i)-(iv) or II) (v)-(vi) above.

PROOF OF COROLLARY. Set $W_1=J^1(n, p)$. Then from Theorem 1', there exist an integer s_1 and a closed semi-algebraic subset Σ_{W_1} of $(\pi_1^{s_1})^{-1}(W_1)=J^{s_1}(n, p)$ satisfying the conditions in Theorem 1'. Now set $W_2=\Sigma_{W_1}$. Then again from Theorem 1', there exist an integer s_2 and a closed semi-algebraic subset Σ_{W_2} of $(\pi_{s_1}^{s_2})^{-1}(W_2)$ satisfying the conditions in

Theorem 1'. Thus we obtain inductively increasing integers s_i and closed semialgebraic subsets Σ_{w_i} in $J^{s_i}(n, p)$. Set $\Sigma_r = \bigcap_{s_i \leq r} (\pi^r_{s_i})^{-1}(\Sigma_{w_i})$. Then Σ_r is the desired one.

Construction of Σ_w .

Let (n, p) be a pair of positive integers with n > p and let W be a semi-algebraic subset of $J^k(n, p)$. Let k = k(n-1, p-1), $\Sigma = \Sigma(n-1, p-1)$ and $\mathcal{S}(n-1, p-1)$ be the integer, the closed semi-algebraic subset of $J^k(n-1, p-1)$ and the canonical stratification given in J. Mather's theorem stated in § 2 respectively. Let Q and $\mathcal{S}(Q)$ be the semi-algebraic open subset of $J^k(R^n, R^n-\{0\})$ and its stratification constructed in § 3. Let $V = \{j^k f(x) \in J^k(R^n, R^p) \mid f(x) = 0\}$. Then from Theorem 3 stated in § 1, we have

LEMMA 4.1. There exists a closed semi-algebraic subset Σ_W of $(\pi_\tau^s)^{-1}(W)$, where s=r+(p+1)(k+1), with dim. $\Sigma_W < \dim.(\pi_\tau^s)^{-1}(W)$ such that for any smooth mapping $f\colon R^n\to R^p$ with $j^sf(0)\in (\pi_\tau^s)^{-1}(W)-\Sigma_W$, there exists a neighbourhood U of the origin of R^n satisfying the following conditions (1)-(4).

- (1) $j^k f(U-f^{-1}(0)) \subset Q$. (Note that Q is semi-algebraic and codim. $(J^k(R^n, R^p-\{0\})-Q)=n$.).
- (2) $j^k(f \mid U-\{0\})$ is transversal to $V \cap \mu_{1,R^n}^{-1}(\varepsilon)$ for every $\varepsilon > 0$, where $\mu_{1,R^n}: J^k(R^n, R^p) \to R$ is defined by $\mu_{1,R^n}(j^kf(x)) = ||x||^2$.
- (3) For any positive number δ and for any positive integer m with $m \leq p+1$, $_{m}j^{k}f: (U-\{0\})^{(m)} \rightarrow _{m}J^{k}(R^{n}, R^{p}-\{0\})$ is transversal to the submanifolds of $_{m}J^{k}(R^{n}, R^{p}-\{0\})$ of the form

$$\Delta_m \cap (X_1(Q) imes \cdots imes X_m(Q)) \cap \mu_{1,Rp}^{-1}(\delta)$$
 ,

where $X_1(Q), \dots, X_m(Q) \in \mathcal{S}(Q)$ and $\mu_{1,R^p}: {}_mJ^k(R^n, R^p) \to R$ is defined by $\mu_{1,R^p}(j^kf_1(x_1), \dots, j^kf_m(x_m)) = ||f_1(x_1)||^2$.

(4) For any stratum X of $\mathcal{S}(Q)$ and for any positive number ε , $j^k f: U - f^{-1}(0) \to J^k(R^n, R^p - \{0\})$ is transversal to $X \cap \mu_{1,R^n}^{-1}(\varepsilon)$, where $\mu_{1,R^n}: J^k(R^n, R^p) \to R$ is defined by $\mu_{1,R^n}(j^k f(x)) = ||x||^2$.

PROOF OF CASE I).

PROOF OF (i). Let ε_0 be a so small number that $S^{n-1}_{\varepsilon_0} \subset U$. Let $\mu_{R^n}: R^n \to R$ be the canonical metric function on R^n defined by $\mu_{R^n}(x_1, \dots, x_n) = x_1^2 + \dots + x_n^2$. Let f be a smooth mapping with $j^*f(0) \in (\pi_r^*)^{-1}(W) - \Sigma_W$. We define a mapping $f \times \mu_{R^n}: R^n \to R^p \times R$ by $(f \times \mu_{R^n})(x) = (f(x), \mu_{R^n}(x))$. Then from (2) in Lemma 4.1, we see that

(5) $f \times \mu_{\mathbb{R}^n}$ has no singular points on $f^{-1}(0) \cap (U - \{0\})$. Hence for any positive number ε with $\varepsilon < \varepsilon_0$ we see that

(6) $f^{-1}(0) \cap S_{\varepsilon}^{n-1}$ and $f^{-1}(0) \cap S_{\varepsilon_0}^{n-1}$ are diffeomorphic, where the one parameter group of diffeomorphisms generated by the gradient vector field of the function $\mu_{\mathbb{R}^n}$: $f^{-1}(0) \cap (U - \{0\}) \to R$ gives a diffeomorphism between $f^{-1}(0) \cap S_{\varepsilon}^{n-1}$ and $f^{-1}(0) \cap S_{\varepsilon_0}^{n-1}$. This proves (i).

PROOF OF (ii). From (5) we see that

- (7) there exists a tubular neighbourhood N of $f^{-1}(0) \cap (U-\{0\})$ in $U-\{0\}$ such that the restricted mapping $f \times \mu_{\mathbb{R}^n} : N \to \mathbb{R}^p \times \mathbb{R}$ is a submersion. Hence and since ε_0 is so small that $D_{\varepsilon_0}^n \subset U$,
- (8) There is a strictly increasing smooth function $\delta: [0, \varepsilon_0] \to [0, \infty)$ with $\delta(0) = 0$ such that for every ε and δ with $0 < \varepsilon \le \varepsilon_0$ and $0 < \delta < 2\delta(\varepsilon)$ we have $S_{\varepsilon}^{n-1} \cap f^{-1}(D_{\delta}^{p-1}) \subset N$ and hence S_{ε}^{n-1} and $f^{-1}(S_{\delta}^{p-1})$ meet transversally in R^n .

On the other hand, from (3) in Lemma 4.1., we see that

- (9) $\mu_{R^p} \circ f: U f^{-1}(0) \to R$ has no critical points, where $\mu_{R^p}: R^p \to R$ is defined by $\mu_{R^p}(y) = ||y||^2$. And from (7), we see that
 - (10) $\mu_{\mathbb{R}^n} \times (\mu_{\mathbb{R}^p} \circ f)$: $N f^{-1}(0) \to \mathbb{R} \times \mathbb{R}$ has no singular points.

From (8), (9) and (10) we see that if $0 < \varepsilon \le \varepsilon_0$ and $0 < \delta < \delta(\varepsilon)$, then $D^n_{\varepsilon} \cap f^{-1}(S^{p-1}_{\delta}) = \mu^{-1}_{R^n}([0, \varepsilon^2]) \cap \mu_{R^p}f)^{-1}(\delta^2)$ is a differentiable manifold with boundary and it is diffeomorphic to $D^n_{\varepsilon_0} \cap f^{-1}(S^{p-1}_{\delta(\varepsilon_0)}) = \mu^{-1}_{R^n}([0, \varepsilon^2]) \cap (\mu_{R^p} \circ f)^{-1}(\delta(\varepsilon_0)^2)$. This completes the proof of (ii).

PROOF OF (iii). Consider the gradient vector field of $(\mu_{R^p} \circ f)$. Define a map $h \colon \partial(D_{\epsilon}^n \cap f^{-1}(D_{\delta}^p)) \to S_{\epsilon}^{n-1}$ as follows: For a point x of $\partial(D_{\epsilon}^n \cap f^{-1}(D_{\delta}^p))$, let h(x) be the point where the integral curve of $\operatorname{grad}.(\mu_{R^p} \circ f)$ passing through x meets S_{ϵ}^{n-1} . Then h is a homeomorphism between $\partial(D_{\epsilon}^n \cap f^{-1}(D_{\delta}^p))$ and S_{ϵ}^{n-1} . This proves (iii).

PROOF OF (iv). Let $0 < \varepsilon < \varepsilon_0$ and $0 < \delta < \delta(\varepsilon)$. Then from (1) and (3) and from Corollary 3.2, we see that the restricted mapping $f: f^{-1}(S_{\delta}^{p-1}) \cap U \to S_{\delta}^{p-1}$ is multi-transversal to the canonical stratification $\mathscr{S}(f^{-1}(S_{\delta}^{p-1}) \cap U, S_{\delta}^{p-1})$ of $J^k(f^{-1}(S_{\delta}^{p-1}) \cap U, S_{\delta}^{p-1})$. Hence $f: D_{\varepsilon}^n \cap f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is multi-transversal to the canonical stratification $\mathscr{S}(D_{\varepsilon}^n \cap f^{-1}(S_{\delta}^{p-1}), S_{\delta}^{p-1})$ of $J^k(f^{-1}(S_{\delta}^{p-1}) \cap D_{\varepsilon}^n, S_{\delta}^{p-1})$. On the other hand, from (6) we see that $f: \partial(D_{\varepsilon}^n \cap f^{-1}(S_{\delta}^{p-1})) \to S_{\delta}^{p-1}$ is a submersion. Therefore from Corollary 2.2, the restricted mapping $f: D_{\varepsilon}^n \cap f^{-1}(S_{\delta}^{p-1}) \to S_{\delta}^{p-1}$ is topologically stable, and moreover it is C^{∞} stable if (n, p) is a nice pair.

Now let's prove that for any two pairs $(\varepsilon_i, \delta_i)$, i=1, 2, with $0 < \varepsilon_i < \varepsilon_0$ and $0 < \delta_i < \delta(\varepsilon_i)$, $f: D_{\varepsilon_1}^n \cap f^{-1}(S_{\delta_1}^{p-1}) \to S_{\delta_1}^{p-1}$ and $f: D_{\varepsilon_2}^n \cap f^{-1}(S_{\delta_2}^{p-1}) \to S_{\delta_2}^{p-1}$ are topologically equivalent. (C^{\infty} equivalent if (n, p) is a nice pair.). It is enough to prove it for the case where ε_1 and ε_2 are sufficiently close to

each other and so are δ_1 and δ_2 . In this case, let $h_2\colon S_{\delta_1}^{p-1}\to S_{\delta_2}^{p-1}$ be the diffeomorphism defined by $h_2(y)=(\delta_2/\delta_1)y$. From (ii), there exists a diffeomorphism $h_1\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to D_{\epsilon_2}^n\cap f^{-1}(S_{\delta_2}^{p-1})$. Then from the proof of (ii), we see that we may choose h_1 so that $h_2^{-1}\circ f\circ h_1\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to S_{\delta_1}^{p-1}$ is sufficiently close to $f\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to S_{\delta_1}^{p-1}$ in the Whitney topology. Since $f\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to S_{\delta_1}^{p-1}$ is topologically stable $(C^\infty$ stable if (n,p) is a nice pair), $h_2^{-1}\circ f\circ h_1$ is topologically equivalent to $f\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to S_{\delta_1}^{p-1}$. Therefore $f\colon D_{\epsilon_2}^n\cap f^{-1}(S_{\delta_2}^{p-1})\to S_{\delta}^{p-1}$ is topologically equivalent $(C^\infty$ equivalent if (n,p) is a nice pair) to $f\colon D_{\epsilon_1}^n\cap f^{-1}(S_{\delta_1}^{p-1})\to S_{\delta_1}^{p-1}$. Q.E.D. of Case I.

THE PROOF OF CASE II. The proof of (v) can be found in [2]. (vi) can be proved in the same way as (iv). Q.E.D. of the proof of Theorem 1.

§ 5. Proof of the Poincare-Hopf equality (Theorem 2).

Let W be a semi-algebraic subset of $J^r(n, p)$. Let Σ_w be the corresponding closed semi-algebraic subset of $(\pi_r^*)^{-1}(W)$ constructed in the proof of Theorem 1'. We will prove that if a C^{∞} mapping $f: R^n \to R^2$ represents an element of $(\pi_r^*)^{-1}(W) - \Sigma_w$, then f has properties (i), (ii) and (iii) in Theorem 2. By an argument similar to the proof of corollary in § 4, we see that this implies Theorem 2.

Now let $f: R^n \to R^2$ be a C^{∞} mapping with $j^*f(0) \in (\pi_r^*)(W) - \Sigma_W$. Let U be a neighbourhood of the origin of R^n satisfying conditions (1)-(4) in Lemma 4.1.

5.1. Proof of (i).

Let ε_0 and $\delta: [0, \delta_0] \to [0, \infty)$ be the positive number and the strictly increasing function respectively given in (8) in the proof of Theorem 1 in 4. In the case where 0 is an isolated point of $f^{-1}(0)$, we may choose the function δ so small that $f^{-1}(S^1_{\delta(\epsilon)})$ is contained in D^n . Let ε and δ be any positive numbers with $0 < \varepsilon < \varepsilon_0$ and $0 < \delta < \delta(\varepsilon)$. Then we see that

- (a) if $0 \in \overline{f^{-1}(0) \{0\}}$, then $f^{-1}(S_{\delta}^1) \cap D_{\epsilon}^n$ is a C^{∞} manifold with boundary, and $\partial(D_{\epsilon}^n \cap f^{-1}(D_{\delta}^2))$ is homeomorphic to S_{ϵ}^{n-1} , and if $0 \notin \overline{f^{-1}(0) \{0\}}$, then $f^{-1}(S_{\delta}^1) \cap D_{\epsilon}^n = f^{-1}(S_{\delta}^1)$ is diffeomorphic to S_{ϵ}^{n-1} ,
- (b) the restricted mapping $f: D_{\epsilon}^{n} \cap f^{-1}(S_{\delta}^{1}) \to S_{\delta}^{1}$ is a C^{∞} stable mapping and $S_{\epsilon}^{n-1} \cap f^{-1}(D_{\delta}^{2})$ contains no singular points of f.

From (4) in Lemma 4.1, we see that

(c) $f: U-\{0\} \to R^2$ has only C^{∞} stable singularities of codimension less than n which, in this case where the dimension of the target space is 2, are "fold type" singularities; a point p of R^n is a fold singularity of $f: R^n \to R^2$ if there exist coordinate systems (ξ_1, \dots, ξ_n) around p and

 (η_1, η_2) around f(p) such that $\eta_1 \circ f = \xi_1$ and $\eta_2 \circ f = \xi_2^2 \pm \xi_3^2 \pm \cdots \pm \xi_n^2$.

Since fold singularities are of codimension n-1, letting S(f) be the set of singular points of f, we see that

(d) $S(f) \cap U = \{0\}$ or $S(f) \cap U$ is the union of a finite number of smooth curves, say $s_i(t)$, $0 \le t < 1$ and $s_i(0) = 0$, $i = 1, \dots, k$, which meet S_i^{n-1} and $f^{-1}(S_i^1)$ transversally (see (2) and (4) in Lemma 4.1).

Now parametrize S^1_{δ} by angle θ , $S^1_{\delta} = \{\delta e^{i\theta}\}$, as we did so in the introduction. Since $f: D^n_{\epsilon} \cap f^{-1}(S^1_{\delta}) \to S^1_{\delta}$ is C^{∞} stable, we may regard the composed mapping $\theta \circ f: D^n_{\epsilon} \cap f^{-1}(S^1_{\delta}) \to R \mod 2\pi$ as a Morse function, though $\theta \circ f$ is not a function in the strict sense that its values should be in R. Then we see that

(e) if $p \in S(f) \cap D_{\epsilon}^n f^{-1}(S_{\delta}^1)$ and $q \in S(f) \cap D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1)$ are in the same curve $s_i(t)$ given in (d), then the index of the critical point p of $\theta \circ (f \mid D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))$ and the index of the critical point q of $\theta \circ (f \mid D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))$ are the same.

PROOF OF (e). Since $\theta \circ (f \mid D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))$ is a Morse function for every ϵ and δ , it does not bifurcate as ϵ and δ vary. This proves (e).

Now from (i) of Theorem 1', we see that

(f) the Betti numbers $b_i(S_{\epsilon}^{n-1} \cap f^{-1}(0))$ are independent of ε provided that $0 < \varepsilon \le \varepsilon_0$.

This completes the proof of (i).

5.2. Proof of Remark stated below Theorem 2 in introduction.

Let f and ε and δ be as in 5.1. Then

(g) the set of critical points of $\theta \circ (f \mid D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))$ is equal to $S(f) \cap (D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))$.

PROOF OF (g). If $p \in f^{-1}(S^1_{\delta})$ is not a singular point of $f: R^n \to R^2$, then p is not a singular point of $f: f^{-1}(S^1_{\delta}) \to S^1_{\delta}$. Therefore it is not a critical point of $\theta \circ f: f^{-1}(S^1_{\delta}) \to R \mod 2\pi$.

On the other hand, since $\mu_{R^2} \circ f$ has no critical points in $U-f^{-1}(0)$, if a point p is not a critical point of $\theta \circ f$: $f^{-1}(S_{\delta}^1) \to R$ mod. 2π , then p is not a singular point of f; precisely, from (9) in § 4, $\mu_{R^2} \circ f$: $U-f^{-1}(0) \to R$ has no critical points, hence there exists a coordinate system (ξ_1, \dots, ξ_n) around p with $|\xi_1 = \mu_{R^2} \circ f$. On the other hand, there exists a coordinate system (η_1, η_2) around f(p) with $\eta_1 = \mu_{R^2}$. Since p is not a critical point of $\theta \circ f$: $f^{-1}(S_{\delta}^1) \to R$ mod. 2π and since $\eta_1 = \mu_{R^2}$, we see that p is not a critical point of $\eta_2 \circ (f \mid f^{-1}(S_{\delta}^1))$. From this and from the fact that $\eta_1 \circ f = \xi_1$, we see that p is not a singular point of f. Q.E.D. of (g).

Let $p_i \in S(f) \cap D_{\epsilon_i}^n \cap f^{-1}(S_{\delta_i}^1)$, i=1, 2, with $0 < \delta_i < 2\delta(\varepsilon_i)$. Then

(h) the indices of the critical points p_i of $\theta \circ f$: $D_{i_i}^n \cap f^{-1}(S_{i_i}^1) \to R$ mod. 2π are equal to each other if and only if the singular points p_1 and p_2 are C^{∞} equivalent under target-orientation-preserving diffeomorphisms, i.e., there exist diffeomorphic germs $h_1: (R^n, p_1) \to (R^n, p_2)$ and $h_2: (R^2, f(p_1)) \to (R^2, f(p_2))$, h_2 preserving the orientation of R^2 , such that $f \circ h_1 = h_2 \circ f$.

PROOF OF (h). Let the pair (μ_{R^2}, θ) be the so-called polar coordinate system on $R^2 - \{0\}$. Let λ_i be the indices of the critical points p_i . Then from the Morse lemma there exists a local coordinate system $(\bar{\xi}_2, \dots, \bar{\xi}_n)$ around p_1 in $f^{-1}(S_{\bar{i}_1})$ such that

$$heta \circ f \mid D_{\epsilon_1}^n \cap f^{-1}(S_{\delta_1}^1) = heta \circ f(p_1) - \bar{\xi}_2^2 - \cdots - \bar{\xi}_{\lambda_1+1}^2 + \bar{\xi}_{\lambda_1+2}^2 + \cdots + \bar{\xi}_n^2$$
 .

From the Morse lemma for functions with parameters, we see that $\bar{\xi}_2, \dots, \bar{\xi}_n$ can be extended to functions ξ_2, \dots, ξ_n defined in a neighbourhood of p_1 in D^n such that

$$\theta \circ f = \theta(f(p_1)) - \xi_2^2 - \cdots - \xi_{\lambda_1+1}^2 + \xi_{\lambda_1+2}^2 + \cdots + \xi_n^2$$
.

Let $\xi_1 = \mu_{R^2} \circ f - \delta_1$. Then (ξ_1, \dots, ξ_n) is a local coordinate system around p_1 under which f is of the form

$$(*) \qquad \begin{array}{c} \mu_{R^2} \circ f = \xi_1 + \delta_1 \\ \theta \circ f = -\xi_2^2 - \cdots - \xi_{\lambda_1 + 1}^2 + \xi_{\lambda_1 + 2}^2 + \cdots + \xi_n^2 + \theta(f(p_1)) \ . \end{array}$$

For p_2 also, with the same argument, there exists a local coordinate system (ξ'_1, \dots, ξ'_n) around p_2 such that

$$(**) \qquad \begin{array}{c} \mu_{R^2}f \!=\! \xi_1' \!+\! \delta_2 \\ \theta \circ f \!=\! -\xi_2'^2 \!-\! \cdots \!-\! \xi_{\lambda_2+1}'^2 \!+\! \xi_{\lambda_2+2}'^2 \!+\! \cdots \!+\! \xi_n'^2 \!+\! \theta(f(p_2)) \;. \end{array}$$

Now it is clear that $\lambda_1 = \lambda_2$ if and only if the singularities (*) and (**) are C^{∞} equivalent under target-orientation-preserving diffeomorphisms.

Q.E.D. of (h).

- (g) and (h) complete the proof of Remark stated below Theorem 2 in the introduction.
 - 5.3. Proof of the Morse inequalities (iii).

Before we prove the Euler-Poincare equality (ii), we prove (iii) whose proof is much shorter. Let $f: R^n \to R^2$ be the mapping under consideration. Suppose that 0 is an isolated point of $f^{-1}(0)$. Suppose also that $n \ge 3$. Let δ be a sufficiently small positive number. Then from (a) and (b) in 5.1, we see that $f^{-1}(S_{\delta}^1)$ is diffeomorphic to S^{n-1} and the restricted func-

tion $\theta \circ f : f^{-1}(S_{\delta}^1) \to R \mod 2\pi$ is a Morse function. Since $f^{-1}(S_{\delta}^1)$ is homeomorphic to S^{n-1} and $n \geq 3$, we see that the fundamental group of $f^{-1}(S_{\delta}^1)$ is trivial. Hence we can lift $\theta \circ f : f^{-1}(S_{\delta}^1) \to R \mod 2\pi$ to a function $\tilde{\theta} \circ f : f^{-1}(S_{\delta}^1) \to R$

where we regard R as the universal covering space of R mod. 2π . Then $\theta \circ f$ is a Morse function in the usual sense. A point p of $f^{-1}(S_{\delta}^{1})$ is a critical point of $\theta \circ f$ with index i if and only if it is a critical point of $\theta \circ (f | f^{-1}(S_{\delta}^{1}))$ with index i. Therefore the number of critical points of $\theta \circ f$ with index i, which we denote by $\mu_{i}(\theta \circ f)$, is equal to the number of critical points of $\theta \circ (f | f^{-1}(S_{\delta}^{1}))$ with index i, which we denote by $m_{i}(f)$.

Now from the ordinary Morse inequality for the function $\widetilde{\theta \circ f}$, we have

$$m_{0}(f) = \mu_{0}(\widetilde{\theta \circ f}) \geq b_{0}(f^{-1}(S_{\delta}^{1})) = b_{0}(S^{n-1})$$

$$m_{1}(f) - m_{0}(f) = \mu_{1}(\widetilde{\theta \circ f}) - \mu_{0}(\widetilde{\theta \circ f}) \geq b_{1}(f^{-1}(S_{\delta}^{1})) - b_{0}(f^{-1}(S_{\delta}^{1})) = b_{1}(S^{n-1}) - b_{0}(S^{n-1})$$

$$\vdots$$

$$\sum (-1)^{i} m_{i}(f) = \sum (1)^{i} \mu_{i}(\theta \circ f) = \chi(f^{-1}(S_{\delta}^{1})) = \chi(S^{n-1}).$$

This completes the proof of (iii).

5.4. Proof of the Poincare-Hopf equality (ii).

Let $M_{\epsilon,\delta}(f)$ be the manifold obtained from two copies of $D^n_\epsilon \cap f^{-1}(S^1_\delta)$ by identifying their boundaries by the identity mapping of the boundary $S^{n-1}_\epsilon \cap f^{-1}(S^1_\delta)$ (See the figure below): Namely let $(D^n_\epsilon \cap f^{-1}(S^1_\delta))^+$ and $(D^n_\epsilon \cap f^{-1}(S^1_\delta))^-$ be the two copies of $D^n_\epsilon \cap f^{-1}(S^1_\delta)$ and for a point x of $D^n_\epsilon \cap f^{-1}(S^1_\delta)$ let x^+ and x^- denote the corresponding points of $(D^n_\epsilon \cap f^{-1}(S^1_\delta))^+$ and $(D^n_\epsilon \cap f^{-1}(S^1_\delta))^-$ respectively. Then $M_{\epsilon,\delta}(f)$ is defined as the quotient space

$$M_{\epsilon,\delta}(f) = (D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^+ \cup (D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^-/\sim$$

where $x^+ \sim y^-$ if and only if x = y and $x = y \in S_{\epsilon}^n \cap f^{-1}(S_{\delta}^1)$. Then $M_{\epsilon,\delta}(f)$ has a unique smooth structure compatible with those of $D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^+$ and $(D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^-$.

FIGURE

Now we define a function $F: M_{t,\delta}(f) \to S^1$ by

$$F(x^{+})=f(x)$$
 and $F(x^{-})=f(x)$.

Then the composed function $\theta \circ F : M_{\epsilon,\delta}(f) \to (R \mod 2\pi)$ is a Morse function in the sense that it has no degenerate critical points. And it is obvious that

(j) x^+ (resp. x^-) is a critical point of $\theta \circ F$ if and only if the corresponding point x of $D^n \cap f^{-1}(S^1)$ is a critical point of $\theta \circ (f | D^n f^{-1}(S^1))$ and the index of x^+ (resp. x^-) is equal to the index of x.

Hence we have

(k) $\mu_i(\theta \circ F) = 2\mu_i(\theta \circ f \mid D_i^n \cap f^{-1}(S_i^1))$ (=2 $m_i(f)$), where $\mu_i(g)$ denotes the number of critical points of a function g with index i.

Now consider the gradient vector field of $\theta \circ F$ with respect to any Riemannian metric of $M_{\epsilon,\delta}(f)$. Then

(1) $p \in M_{i,i}(f)$ is a singular point of the gradient vector field grad. $\theta \circ F$ if and only if p is a critical point of $\theta \circ F$. Moreover p is a critical point of $\theta \circ F$ with index i, then the index of p as a singular point of grad. $\theta \circ F$ is $(-1)^i$.

LEMMA 5.1. (Poincare-Hopf, see [6]). Let ξ be a smooth vector field on a closed manifold M whose singular points are isolated. Then the sum of the indices of the singular points of ξ is equal to the Euler characteristic number $\chi(M)$ of M.

From Lemma 5.1 and (l) we have

(m) $\chi(M_{i,i}(f)) = \sum (-1)^i \mu_i(\theta \circ F) = \sum (-1)^i 2m_i(f)$. Hence to prove (ii) it remains to prove

LEMMA 5.2. (n)
$$\chi(M_{\epsilon,\delta}(f)) = -2\chi(S_{\epsilon}^{n-1} \cap f^{-1}(0)) + 2\chi(S^{n-1})$$
.

PROOF OF LEMMA 5.2. First, from the property (iii) given in Theorem 1', note that

- (o) $(D^n_{\epsilon} \cap f^{-1}(S^1_{\delta})) \cup (S^{n-1}_{\epsilon} \cap f^{-1}(D^2_{\delta}))$ is homeomorphic to S^{n-1} .
- (p) Therefore $D^n_{\epsilon} \cap f^{-1}(S^1_{\delta})$ is homeomorphic to $S^{n-1}_{\epsilon} f^{-1}(\mathring{D}^2_{\delta}) \cap S^{n-1}_{\epsilon}$, and from (7) in § 4, $f^{-1}(D^2_{\delta}) \cap S^{n-1}_{\epsilon}$ is homeomorphic to $(S^{n-1}_{\epsilon} \cap f^{-1}(0)) \times D^2$.

Now apply the Mayer-Vietoris exact sequence

$$\longrightarrow H_{i-1}(X_1 \cup X_2) \xrightarrow{\delta_*} H_i(X_1 \cap X_2) \longrightarrow H_i(X_1) \bigoplus H_i(X_2) \longrightarrow H_i(X_1 \cup X_2)$$

$$\xrightarrow{\delta_*} H_{i-1}(X_1 \cap X_2) \longrightarrow \cdots$$

to the pair of $X_1=D^n_{\epsilon}\cap f^{-1}(S^1_{\delta})$ and $X_2=S^{n-1}_{\epsilon}\cap f^{-1}(D^2_{\delta})$. Since $X_1\cup X_2$ is homeomorphic to S^{n-1}_{ϵ} , $X_1\cap X_2$ is homeomorphic to $(S^{n-1}_{\epsilon}\cap f^{-1}(0))\times S^1$ and $X_2=S^{n-1}_{\epsilon}\cap f^{-1}(D^2_{\delta})$ is homeomorphic to $(S^{n-1}_{\epsilon}\cap f^{-1}(0))\times D^2$, we have

$$\begin{array}{ll} \text{(q)} & b_0(D_{\epsilon}^n\cap f^{-1}(S_{\delta}^1))\!=\!1,\\ & b_i(D_{\epsilon}^n\cap f^{-1}(S_{\delta}^1))\!=\!b_{i-1}(S_{\epsilon}^{n-1}\cap f^{-1}(0)),\ 1\!\leq\! i\!\leq\! n\!-\!3,\\ & b_{n-2}(D_{\epsilon}^n\cap f^{-1}(S_{\delta}^1))\!=\!b_{n-3}(S_{\epsilon}^{n-1}\cap f^{-1}(0))\!-\!1,\\ & b_{n-1}(D_{\epsilon}^n\cap f^{-1}(S_{\delta}^1)\!=\!0. \end{array}$$

Applying again the Mayer-Vietoris exact sequence to the pair of $X_1 = (D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^+$ and $X_2 = (D_{\epsilon}^n \cap f^{-1}(S_{\delta}^1))^-$, where note that $X_1 \cup X_2 = M_{\epsilon,\delta}(f)$ and $X_1 \cap X_2$ is homeomorphic to $(S_{\epsilon}^{n-1} \cap f^{-1}(0)) \times S^1$, we have

$$\begin{array}{ll} (\mathbf{r}) & b_0(M_{\epsilon,\delta}(f)) \! = \! 1, \\ & b_1(M_{\epsilon,\delta}(f)) \! = \! b_0(S_{\epsilon}^{n-1} \cap f^{-1}(0)) \! = \! 1, \\ & b_i(M_{\epsilon,\delta}(f)) \! = \! 2b_{i-1}(S_{\epsilon}^{n-1} \cap f^{-1}(0)), \ 2 \! \leq \! i \! \leq \! n \! - \! 3, \\ & b_{n-2}(M_{\epsilon,\delta}(f)) \! = \! 2b_{n-8}(S_{\epsilon}^{n-1} \cap f^{-1}(0)) \! - \! 1, \\ & b_{n-1}(M_{\epsilon,\delta}(f)) \! = \! 1. \end{array}$$

From (r), we have

$$\begin{split} \chi(M_{\epsilon,\delta}(f)) &= \sum_{i=0}^{n-1} (-1)^i b_i(M_{\epsilon,\delta}(f)) \\ &= 1 - 1 + \sum_{i=2}^{n-2} (-1)^i b_i(M_{\epsilon,\delta}(f)) + (-1)^{n-1} \\ &= (-1)^{n-1} + \sum_{i=2}^{n-2} 2(-1)^i b_{i-1}(S_\epsilon^{n-1} \cap f^{-1}(0)) + (-1)^{n-8} \\ &= -2\chi(S_\epsilon^{n-1} \cap f^{-1}(0)) + 2(-1)^{n-1} + 2 \\ &= -2\chi(S_\epsilon^{n-1} \cap f^{-1}(0)) + 2\chi(S^{n-1}) \ . \end{split}$$

References

- [1] A. DU PLESSIS, On the genericity of topologically finitely-determined map-germs, Topology, 21 (1982), 131-156.
- [2] T. Fukuda, Local topological properties of differentiable mappings, I. Invent. Math., 65 (1981/82), 227-250.
- [3] C. G. Gibson, K. Wiithmuller, A. A. Du Plessis and E. J. N. Looijenga, Topological stability of smooth mapping, Lecture Notes in Math., 552, Springer, Berlin-Heidelberg-New York, 1976.
- [4] J. MATHER, How to stratify mappings and jet spaces, Lecture Notes in Math., 535, Springer, Berlin-Heidelberg-New York, 1976, 128-176.
- [5] J. Mather, Stability of C mappings I, Ann. of Math., 87 (1968), 89-104; II Ann. of Math., 89 (1969), 254-291; III Publ. Math. Inst. HES, 35 127-156; IV Publ. Math. Inst. HES, 37 (1970), 223-248; V Advances in Math. 4 (1970), 301-335; VI Lecture Notes in Math., 192, Springer, 1971, 207-253.
- [6] J. MILNOR, Topology from the Differentiable Viewpoint, the University Press of Virginia, Charlottesville, 1965.
- [7] R. Thom, Local topological properties of differentiable mappings, differential analysis (Papers presented at the Bombay Colloquium), Oxford Univ. Press, London, 1964, 191-202.

Present Address:
DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY
O-OKAYAMA, MEGURO-KU, TOKYO 152