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Introduction

In the preceding paper [2], it was shown that almost every C~ map-
germ: (R", 0)— (R?, 0), n<p, has rather good topological structures. In
particular it was shown that they are topologically equivalent to the
cones of topologically stable mappings of S** into S?~!, where the cone
of a mapping f: X—Y is the mapping Cf: Xx[0, 1)/Xx{0}—-Y %[0, 1)/Y %
{0} defined by Cf(x, t)=(f(x), t). Here almost every is used in the rather
strong sense that the complement of the set of these map-germs should
have infinite codimension in the space of all C* map-germs.

This paper has two purposes. One is to show similar generic properties
for the remaining case n>p. The other is to show, as an application of
these generic properties, that for almost every mapping into the plane
S (R, 0)— (R 0) a Poincare-Hopf type equality, in some cases the Morse
inequalities as well, holds between the Betti numbers of the set f~*(0)N
S?~* and the indices of the singular points of f appearing around the
origin, where S!'={x e R"|||z||=¢} and ¢ is supposed to be small. The
index of a singular point of a mapping into the plane will be defined
later in this section.

Let us explain these properties more precisely. J"(n, p) is the set of
the 7r-jets of all C~ map-germs: (R, 0)—(R? 0). For a positive number
e>0, we set

Dr={xeR"|||z||<¢},
Srt={x e R™|||x||=¢} .

THEOREM 1. For each positive integer v, there exists a closed
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semi-algebraic subset X.(m, p) of J"(n, p) such that

(1) codim. 3, (n, p)—  as r— o,

(2) tf a C° mapping f: R*— R? represents an element of J'(n, p)—
2.(n, p), then for any sufficiently small positive mumbers ¢ and 4, the
upper bound of & depending on f and the upper bound of o depending
on ¢ and f, the following properties hold.

@) DrNfSr™ is a C* manifold, in general with boundary, and
its differentiable structure is independent of € and o.

(b) The restricted mapping f: DN fY(SP')—SP 18 topologically
stable (C~ stable if (m, p) i8 a mice pair of dimensions in J. Mather’s
sense) and its topological type is independent of € and é.

REMARK. Moreover we can prove that (c) the topological type of
L2 DN (S — SP! determines the topological type of the germ of f at
the origin of R". The proof of this property is very similar to the proof
of the corresponding property in the case n<p given in [2], and we will
not give it here.

REMARK. Combining with A. du Plessis’s work [1], we can say that
the germ at the origin of such f is topologically r-determined.

Now we explain our Poincare-Hopf equality and the Morse inequalities.
From Theorem 1, if the jet 57f(0) of a C* mapping f: R*— R? belongs to
J (n, p)—2,.(n, p), then for sufficiently small ¢ and d, the restricted map-
ping f: D*N YS! — S} is C~ stable. In other words, defining a function
6: R*—{0} — (R mod. 27) by

z+iy=V'o*+ye?*v , (x,y)e R*—{0},

the composed mapping 6 o f: DN f~(S;) — (R mod. 27) can be regarded as
a Morse function. Although it is not a Morse function in the strict sense
(it’s values are not in R but in R mod. 27), we can define the indices of
critical points of 6 o f: DN f~'(S;)— (R mod. 27) as usual. Now we set

m(f)=the number of critical points having index % of the

Morse function 6 o f: DN f~*(S}) —» Rmod. 2z ,

b(M)=the i-th Betti number of a manifold M,

X(M)=3(—1)b,(M) the Euler characteristic number of M .
Then we have

THEOREM 2. If f: R*— R? represents an element of J*(n, p)—3,.(n, p),
then

(i) the number m,(f) and b;(f~*(0)NS?™) are independent of € and
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0 provided that ¢ and 6 are sufficiently small,
(ii) we have the following Poincare-Hopf type equality;

S (DM +AFO) N S =X

and moreover ‘
(iii) 4f 0 is an isolated point of f0), i.e. if 0¢ F~(0)—{0}, and if
n=3, then we have the following Morse inequalities;

Mo(f) Zby(S"7)
Mmy(f) —mo(f) 2 by (S"™) —by(S™ )

oooooooooooooo

3, (-~ )2 B (DS, k<n
S (—Dm(H)=XE" .

REMARK. We will see that the numbers m,(f) and b,(f*(0)N S 1)
are not only independent of ¢ and &, but also they are determined only
by the singularities appearing around the origin. In particular we will see

(iv) a point p of DN f7X(S}) is a critical potnt of 6 o f: DN f~Y(SL) —
(R mod. 27) 2f and only if it is a singular point of f: R*— R, and

(v) the index of a critical point p of 6 o f: DN £~*(S}) — (R mod. 2r)
and the index of a critical point q of 6 o f: DN £~*(Si)— R mod. 27 agree
if and only if the singular points p and q of f: R*— R* are C* equivalent
under diffeomorphisms which preserve the orientation of the target space
R’: there exist diffeomorphic germs h,(R", p)—(R" q) and h,: (R f(p))—
(R? f(@)) such that the equality fo h,=h, o f holds around p and such that
h, preserve the orientation of R.
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§1. Transversality theorem.

In this chapter we recall a transversality theorem which was proved
in the preceding paper [2]. This theorem and J. Mather’s canonical strati-
fication of the jet spaces play major roles in this paper.

NoTATIONS. The notations used here are about the same as R.
Thom’s [7] and J. Mather’s [4, 5]. j"f(x) denotes the r-jet of a smooth
mapping f at a point x. J"(n, p) is the space of the r-jets of smooth
map-germs: (R", 0)— (R?, 0), and J"(R", R?) is the r-jet bundle of the r-jets
of smooth mappings of R" into R*. ,J"(R", R?) is the m-fold r-jet bundle
of smooth mapping of R" into Rr*: . J"(R", R?)={(379.(q.), ***, J79n(@w)) €
(J7(R", R?))™|(qs ***, qn) € (R")"™}, where for a set X, X"™={(q, *+*, qn) €
X™|q,#q; if 1#j}. For a mapping f: R"—R?, ,j°f: (R")"™ —  J"(R", R?)
denotes the m-fold r-jet extension of f defined by

mjrf(qu M) qm)=(jrf(q1)’ M) j'f(q‘m)) .

For integers r and s with s>r>0, xi:J*(n, p)—J"(n, p) denotes the
canonical projection defined by =:(5°f(0))=3"f(0). =.:(R")™— R" denotes
the projection to the first factor: m,(q, -, ¢.)=¢;. For positive integers
! and m with [=<m, we set

4,={(379:(q.), ***5 77 9n(@) € nJ (R, R?)|9.(q) ="+ =g:q:)} -

Then our transversality theorem can be stated as follows.

THEOREM 3 (Transversality). Let W be a semi-algebraic subset of
J7(n, p) and let X be a semi-algebraic submanifold of ,J*(R", R*?). Then
there exists a closed semi-algebraic subset 3, of (wii™**"YWW) having
codimension =1 such that for any mapping f: R*— R* with j*t™**"f(0) e
(rptm )" (W) — 3, there exists a meighborhood U of the origin of R
such that

(1) .7%f 1is transversal to X at every point of

(U—{0H™ ={(gs **» qw) € (U—{O)"|q.5q; if i#7},

(2) if codim. X=mn, then J*f(U—{0)"™)NX=02.

Moreover given a polynomial function p: (J*R", R?))»— R whose
restriction on X, p|X, has no critical points and such that p(({0}x {0}
J*(n, p))™)=0, where we regard J*(R", R*)=R"X R* X J*(n, p), then Xy and
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U can be chosen so that
(8) L AAU—-{0H™ 4is transversal to XNy '(e) for all e€R.

This was proved in [2].

§2. J. Mather’s canonical stratification of jet bundles.

In this section we recall J. Mather’s canonical stratification of jet
bundles. Let J*(n, p) be the space of the k-Jets of smooth map-germs:
(R*, 0)—(R?, 0) and let J* XN, P) be the jet bundle of k-jets of smooth
mappings of a manifold N into another P. Let L*(n) be the group of
the k-jets of diffeomorphic germs: (R", 0)—(R" 0). Then L*(n)x L*(p)
acts on J*n, p) as a Lie transformation group: the action is defined by
(7*Rh,(0), 3%h,(0))7*f(0)=j*(h, o f o h7*)(0). Now let A be a subset of J*(n, p)
which is invariant under the action of L*(n)x L*(p). Then for manifolds
N and P with dim. N=n and dim. P=p, there is a unique subbundle 4y, »
of the bundle J*(N, P) with fibre A which is invariant under the action
on J¥ N, P) of the group of pairs of diffeomorphisms of N and P. We call
Ay p the subset of J¥(N, P) corresponding to A. For a stratification &
of an L*(n) X L*(p)-invariant subset A of J*(nm, p) whose strata are also
L*(n) x L*(p)-invariant, we set

e r={ Xy r|lXeF}.
We call & » the stratification of Ay » corresponding to S~

THEOREM 2.1 (J. Mather [4, 5], see also [3]). For any pair (n, p)
of positive integers, there exist a positive integer k=k(n, p), and L*(n) X
L*(p) invariant closed semi-algebraic subset 3¥=23(n, p) of J*(n, p) and a
Whitney stratification ¥ =.7(n, p) of J*(n, p) satisfying the following
conditions:

(a) Strata of & are all L¥(n)x L¥(p) invariant and they are semi-
algebraic subsets of J*(n, p).

(b) codim.X(n, p)>n and 3(n, p) is a stratified subset of J*(n, p);
ie. if XNZn, p)*=D and Xe.&# then XCX(n, p).

(¢) Let N and P be manifolds with dim. N=n and dim.P=p. Let
S.p be the stratification of J (N, P) corresponding to * If a proper
smooth mapping f: N— P is multi-transversal to S p, then f is topologi-
cally stable. (C> stable if the pair (n, p) is a nice pair in J. Mather’s
sense.).

Where we say that a mapping f: N— P is multi-transversal to . p
if for a sufficiently large integer m (m=p-+1 is large enough), ,j*f: N™ —
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»J*(N, P) is transversal to every manifold of the form (X,X -+ x X,)N4,,
l=m and X, € . p where

N™={(x,, -+, x,) € N* |z, 2, if 15},
4,={(5%9(av), * -, 3°9m(2a)) € J*(N, P)|gi(q)="-=gi(q)} .

DEFINITION. We call &#(n, p) and %, the canonical stratifications
of the jet spaces J*(m, p) and J*(N, P) respectively.

In the case where N is a compact manifold with boundary, as a
corollary of the proof of Theorem 2.1, we have

COROLLARY 2.2. Let N be a compact manifold with boundary. Let
S N— P be a smooth mapping such that

(1) the restricted mapping f: oON— P is a submersion,

(2) f(N—0N):(N—oN)—P is multi-transversal to the canomical
stratification Fy_sn) pe
Then f 1is topologically stable. (C= stable if (m, p) i8 a mice pair.).

§ 3. A stratification of J*(R", R?—{0}).

Let k=k(n—1, p—1), ¥=3(n—1, p—1) and ¥=(n—1, p—1) be
the integer, the closed semi-algebraic subset of J*(n—1, p—1) and the
canonical stratification of J*(n—1, p—1) given by Theorem 2.1 respec-
tively. Set

Q={j"f(x) e JAR", R*—{0})| grad(fi+ - - - +/5)(w)#0} ,

where f(z)=(fi(%), -, f,(%)). Then
C=J%R", R*—{0})—Q

is a closed semi-algebraic subset of J*(R", R?—{0}) having codimension n.

The purpose of this section is to construct a stratification induced in
a way from the canonical stratification #(n—1, p—1) of J¥(n—1, p—1).
For a stratum X of $(n—1, p—1), we define a subset X(Q) of Q as
follows. Take a jet j*f(x,) € Q@ and let f: R*— R? be a smooth representa-
tive of j*f(x,). Since j*f(x,) € @, there is a neighbourhood U of z, such
that UN f£7(S?™!) is a smooth hypersurface of U for every 6>0, where
S?~' is the (p—1)-sphere centered at the origin of R? and with radius 6.
Consider the restricted mapping f: UN f~4(S?!)—S?~'. Now we define
that j*f(x,) € X(Q) if and only if 7% f|UN f%(S?™))(x,) is contained in
X(UN (S, St7), where X(UN £7%(S?™Y), S?™) is the subset of JY(UN
S8 ™), S corresponding to XcJ*(n—1, p—1), which was defined in
§ 2.
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PROPOSITION 3.1. (1) For each straum X of F(n—1, p—1), X(Q)
18 a semi-algebraic submanifold of Q.

(2) FA)={XQ)|XeFn—1, p—1) is a Whitney stratification
of Q.

Before pfove this we state its corollary whose proof will be given
after the proof of the proposition. ‘

COROLLARY 3.2. Let f: V—R? be a smooth mapping of an open
subset V of R" into R?. Suppose that

(@) J*A(V—-r40)cQ,

(b) for a positive number 6 and for any integer m with m<p-+1,
wJ¥ s (V—£750)) > J*(R", R*—{0}) is tramsversal to the submamnifolds of
nJ “(R", R*—{0}) of the form

4, N(X(Q)X ++ + X X (@) N 17 (67)

where X,(Q) e F(Q), dn={F"0:(x), +*, 7°Gu(®n) € J*(B", R?)|g\(x,) =
Go(Xo) =+ + * =gu(@w)} and p,(5%9.(@), -+, 7°Gn(@n)) =lg.(@)]*

Then the following properties hold.

(1) f7Y(S?™) is a smooth hypersurface of V.

(2) The restricted mapping f: f2(S?*)— 82 18 multi-transversal
to the canonical stratification F(f~(S?™), S of J*(F~(S2™), S2™) cor-
responding to (n—1, p—1).

(8) If f: f7Y(S3™")— S~ is proper, then it is topologically stable.

PROOF OF PROPOSITION 3.1. We prove the proposition by showing
that @ is covered by a finite number of semi-algebraic open subsets
Q,, -+, Q such that for each 7, =1, ---, [, there is a rational submersion
g.: Q,— J*(R"', R*™') such that for each stratum X of &(n—1, p—1) we
have Q,NX(Q)=g:(X(R"*, R*™")), where X(R"™, R*™) is the subset of
J¥R"*, R*™') corresponding to X. Here we call a mapping ¢=(q,, - -+, q,,)
of an open subset of a euclidean space into R™ a rational mapping if
each component g; is a rational function, i.e. ¢;=p;/r; for some polynomials
p; and r;.

Now take a jet j*f(x,) € @, then we have f(x,)=(fi(%), * -+, [p(%)) =0
and grad.(fi+ .-+ 2(,)#0. Then operating linear transformations of
R™ and R* if necessary, we may suppose that fi(x,)+#0, ---, f,(x,)#0 and
0/0x,(f2+ -+ (xw,) 0. Hence to prove the proposition, it is enough to
prove that for the set

Q. ={7"f(x) € Q| fi(x) #O0, - - -, f,(x)+0, ‘alaxl(ff+ -+ -+ (@) #0.}
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there is a rational submersion #:Q,,—J*R"™, R*™*) such that for each
Xe F(n—1, p—1) we have
Q. N X(Q)=A"Y(X(R", R*™)) .

We define @ as follows. Let j*f(x")e€@,, and let 6=|f(x")||. Since
0/0x,(fi+ -+ +f2)(x°)#0, from the implicit function theorem, there is a
neighbourhood U of z° and a smooth function h(x,, :--, x,) defined in an
open subset W of R™*' such that we have

Un f—l(Sg—l)____{(h(mz, Y x’n)’ Loy **°, xn)l(xzy ct Y xn) € W} .

Define h: W— U by Rz, -+, ) =(h(Xsy *++, X,), Xoy +++,x,) and 7w R?—
R*™ by (¥ =+ Yp)=(¥» ***» ¥p)- Then we define # by #(G*fa")=
jk(n— °f° E)(xg’ °* % x?&)*

Now, to prove the proposition it is enough to prove

LEMMA. (1) #:Q,,—J*R", R*™) is a rational submersion.

(2) For each stratum X of ¥ (n—1, p—1), we have

Q. NX(Q)=T(X(R"™, R*™)) .

PrROOF OF LEMMA. (1) Let j*/(2°)€@,, and let U, W, b and & be
those ones constructed just before lemma. Since (f2+---+/Dh(z,, -« -, x,)=
0’=constant, we have

0=0/0x,(fi+ -+ D ch
=3 2f, o h((3f,/02.) o b -0h/aw,+f /0%, o h) .
Hence -
Ohjon,=—3, (fu o BX@Filoz) o B[S, (£ = B@Afow, o B)

=—(0/0x(fi+ -+ +I3) o h[@)ox,(fi+ - +fD) o I .
Therefore j*h(x,, ---, x,) is given by a rational function of the variables

jkf(xu Loy * xn)'
Now for the point «’=(x), ---, 2) we set x¥=(x), ---, 22). Then for
%, =2, we have

([ o h)[ox (") =0af /ox(h(=")) + (3f /ox,) (k(a”))(oh/ox (=) ,
0*([f; © h)[ox;x, (")
- =0f/ox;02,(h(x*)) + 0°f /03 (h(x™))(Oh/dx ;(") )oh o2, (2")
+ 0*f./0x 2, (h(2*))oh[0x (") + Of [0, (h(x""))3*h /o jo0,(x*")
=0%f,/ox jx,(x") + 0°f /i (x")oh[ox (x* )oh/ox,(x")
+ 0°f /0%, 0%, (x")oh[ox ;(x"") + of ;/0x:,(x°)o%h /2 ;2 (") .
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In general o™(f, o k)/ox“(x”) is a polynomial of the variables (I™f (),
J"h(x")) which contains the term o™f,/oz“(¢°). Thus #: Q,,—J*(R"™, R*™):
FE) = G4 o f o B)@)=(58(F, o R)@™), « -+, §*(f,  R)(®")), is a rational sub-
mersion.

(2) Jf@)e@,NX@Q=7"f=")eQ, and F(fIUNFHSIHNE)e
X(UNFHSI™, S =5"f*)eQ,, and jmofoh)a")e X(R", R" )=
J*f(x") e i~ X(R", R*™Y)). Q.E.D. of lemma and hence of Proposition 3.1.

PrROOF OF COROLLARY 3.2. Let f: V—R? be a smooth mapping, V
being an open subset of R". Suppose that

(@) J*AAV—f0))cQ, and :

(b) for any integer m, ,7*f: (V—f%0))"™ — ,J*(R", R*—{0}) is trans-
versal to the submanifolds of the form

A, N X(Q) X+« X X, (@) N (6% , where X, (Q)e ~(Q).

Then to prove the corollary we have to prove that

(1) F7%S:™) is a smooth hypersurface of V,

(2) FINSE™: £7Y(S?)— S? 158 multi-transversal to the canonical
stratification F(f7Y(S?™), 81 of JHFTU(S?Y), SPY)  corresponding to
F(n—1, p—1), and

(8) af f: f7Y(S?™)—>S?! 4s proper, then it 13 topologically stable.
(3) is trivial from (2) and Theorem 2.1.

Proof of (1). Since j*AV— f(0))CQ, we have grad.(f2+ - - - +f2)(x) =0
at any point x € V— £7%(0). Hence f (S )=(f2+---+f2)7(% is a smooth
hypersurface of V— £%(0).

Proof of (2). Let f: V— R? be a smooth mapping satisfying (a) and
(b). First we show that

(e) FFILHSE™): fF7HUSE ) - JH(FH(SPY), SP7Y) 48 tramsveral to the
stratification F(f7Y(S?™), S27Y)) of J¥FYSPY), S?Y) corresponding to
F(n—1, p—1).

Take any point 2° of f~(S?™"). We will show that 7% f|f%(S?™)) is
transversal to SZ(f~(S?™), S?™) at 2°=(af, ---, 22). We may assume that
J*f(x°) € Q,,, where Q,, is the set constructed in the proof of Proposition
3.1, i.e. Q,={"9(x)eQ|g.(x)#0, -, g,(x)#0, 9/ox,(gi+ -+ g3)(x) = 0}.
Now consider the following diagram:

R0 WL sy
Jnofoﬁ jf o,
T S;’_I

Rp"l ——
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,where W, h and = are the ones constructed in the proof of Proposition
3.1. Then we see that :

@) LIS ™) 18 transversal to F(f(S*™Y), S at °=(a?, - - -,
22) if and only if j%mwo foh) is transversal to SP(R*, R*™Y) at x”=
(xgr ) x?u)-

Now consider the following diagram.

-~

W —"—s f(SI)C V =y F(S17)
1j*<nofo;‘w ) lj*f lj‘f ,

JYR™, R*Y) —— Q. Np~(0)CQ,,

where p: J¥(R", R*)— R is defined by p(j*g(x))=]g(x)||>. Since, from (b),
J*f is transversal to X(Q)N p1'(¢*) for every stratum X of F(n—1, p—1),
SIS £ (S ) —Q,Np (0% is transversal to X(Q)N g (8% in
Q.. N ¢~ (0*). Hence noticing that the restriction of # to Q,,N g™ is
also a submersion into J*(R"™, R*™'), we see, from the commutativity of
the above diagram, that j*(z o fo k) is transversal to X(R*, R*™"). There-
fore from (d), we see that 7*(f|f~(S?™)) is transveral to SZ(f%(S?™), S?-).
This completes the proof of (c). .

Now, since ,j*f: (V—{0}))™ — . J*(R", R*—{0}) is transversal to 4,N
(X @)X+ x X, (@Q)Nur'(d*) for any integer m<=p+1 and any strata
X(Q), + -+, X\(Q) of F(Q), we see that the images of (F*/) (X Q)N
F(SE™), and (F)(X(@)), - -+, (F*)U(XL(Q)) under f meet transversally
in R?, which means f((7*/)™(X(@))NS?™* and AG*H(X(QNHNSE, .-,
AENHXL(@)NS?! meet transversally in S?~'. Hence the images
AG*OHH(X@)NFHSE™), - - -, AG)(XW(Q) N F7(S?™)) meet transversal-
ly in S?1.

Therefore, since (3*f)™(X(Q) N f~(SI™)=G*(F | F~(ST™H)(X(fH(Sz™),
S?~) for any stratum X of <“(n—1, p—1), we see that

(£) AGS1SHSTN XSS, 827Y), -« G FHSE)) (X, X
(f(S2™), S27Y)) meet transversally.

Therefore ,7*(f| f~*(S?)) is transversal to

A N(X(FTHSF™), 877« - - XW(F7HS3, 837

Thus f£|f7(S?™): £7(S?™")—S?~* is mutitransversal to 7(f~%(S?™), SPY).
Q.E.D. of Corollary 38.2.

§4. Proof of Theorem 1.

First we state Theorem 1 in a slightly different form. For positive
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integers s and » with s>», let =i: J*(n, p) > J"(n, p) denote the canonical
projection defined by xi(5°f(0))=37£(0).

THEOREM 1’. Suppose n>p. Then for any semi-algebraic subset W
of J*(n, p), there exists an integer s, greater than r and depending only
on r, n and p, and there exists a closed semi-algebraic subset X, of
(7)Y (W) with dim.ZY,<dim.(z})"(W) such that every smooth mapping
f: R*—> R? with 7°f(0) € ()" (W)—23, satisfies either the following I) (i)-
@iv) or II) (v)-(vi). '

Case I) If the origin 0 is not an isolated point of f~'(0), i.e. O€
F(0)—{0}, then there exist a positive number &, and a strictly increasing
smooth function 0: [0, &]—[0, o) with 6(0)=0 such that for every & and
o with 0<e<e, and 0<6<d(e) the following properties (i)—-(iv) hold
(1) FOYNSrt is an (n—p—1)-dimensional manifold and it s
diffeomorphic to f~*(0)N S

(ii) DN f(S™) s a smooth mamnifold with boundary and it is
diffeomorphic to DN f~(S3w5).

(iii) a(DrN fF~Y(D?™) is homeomorphic to S .

(iv) The restricted mapping f: DN fF(S7™")—82™ s topologically
stable (C> stable if (n, p) is a nice pair) and its topological type is inde-
pendent of ¢ and 6.

Case II) If O is an isolated point of f~*(0), i.e. 0¢ f7(0)—{0}, then
there exists a positive number ¢, such that for every ¢ with 0<e=e¢, the
following properties (v) and (vi) hold.

(v) F7YSP™) is diffeomorphic to S™.

(vi) The restricted mapping f: f(SP™")—S?™* is topologically stable
(C= stable if (n, p) is a mice pair) and its topological type is independent

of e.

This theorem implies the following corollary and hence Theorem 1
stated in the introduction.

COROLLARY. For any positive integer r, there exists a closed semi-
algebraic subset X, of J'(n, p) such that codim. 3, — o as r— oo and such
that every smooth mapping f: R*— R? with 37f(0) e (J"(n, p)—2,) satisfies
either 1) (i)-(iv) or II) (v)-(vi) above.

PROOF OF COROLLARY. Set W,=J%n, p). Then from Theorem 1’,
there exist ‘an integer s, and a closed semi-algebraic subset X, of
(w)" (W) =J*(n, p) satisfying the conditions in Theorem 1’. Now set
W,=2%y,. Then again from Theorem 1’, there exist an integer s, and a
closed semi-algebraic subset X, of (i)~ (W,) satisfying the conditions in
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Theorem 1’. Thus we obtain inductively increasing integers s; and closed
semialgebraic subsets Xy, in J*(n, p). Set X.=nN, . (77)*(Zw,). Then Z,
is the desired one.

Construction of X,.

Let (n, p) be a pair of positive integers with n>p and let W be a semi-
algebraic subset of J*(n, p). Let k=k(n—1, p—1), ¥=3(n—1, p—1) and
F(n—1, p—1) be the integer, the closed semi-algebraic subset of J*(n—1,
p—1) and the canonical stratification given in J. Mather’s theorem stated
in §2 respectively. Let Q and .¥(Q) be the semi-algebraic open subset
of J*(R", R*—{0}) and its stratification constructed in § 3. Let V={5*f(z) ¢
J¥(R", R*)| f(x)=0}. Then from Theorem 3 stated in §1, we have

LEMMA 4.1. There exists a closed semi-algebraic subset 3, of
(7)Y (W), where s=r+(p+1)(k+1), with dim. Y, <dim.(z:) (W) such that
for any smooth mapping f: R*— R? with 7°f(0) € (x})"(W)—2y, there exists
a netghbourhood U of the origin of R" satisfying the following conditions
(1)-(4).

(1) 7 (U—fF0)CQ. (Note that Q 1is semi-algebraic and
codim.(J*(R", R*—{0})—Q)=mn.).

(2) Mf1U—{0}) s transversal to VN pk(e) for every €>0, where
Uzt JYR", R?)— R 1is defined by p, xn(5*(2))=||z||*.

(3) For any positive number 6 and for any positive integer m with
mZp+1, .7 (U—{0h)"™ — J*(R", R*—{0}) is transversal to the submani-
folds of J*(R", R*—{0} of the form

A N(X(Q) X+« + X X (@) N 5 k5(0)

where X,(Q), -+, X.(Q) e F(Q) and p pv: J*R", R?) >R 1is defined by
L (31D, <) G (@) = |1fi() |

(4) For any stratum X of #(Q) and for any positive number e,
3 U—f0)—J*R", R*—{0}) 1s transversal to XN prks(e), where Y ga:
J*R", R*)—R 1is defined by , za(5"f(x))= ||

PrROOF OF CASE I).

PROOF OF (i). Let ¢ be a so small number that Si*cU. Let
Urn: BR"— R be the canonical metric function on R™ defined by fzs(z,, - -,
x,)=xi+--+-+x%. Let f be a smooth mapping with 5°f(0) € (z:)"*(W)—23.
We define a mapping fX g R*—R*XR by (f X pen)(@)=(f(x), ttan(x)).
Then from (2) in Lemma 4.1, we see that

(5) fXprn has no singular points on f~(0)N(U—{0}). Hence for
any positive number ¢ with ¢<g, we see that
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(6) fO)NS:™ and f0)NS%™ are diffeomorphic, where the one
parameter group of diffeomorphisms generated by the gradient vector
field of the function pga: f(0)N(U—{0})—R gives a diffeomorphism
between f~(0)NS** and F*(0)NS:~'. This proves (i).

ProoOF OF (ii). From (5) we see that

(7) there exists a tubular neighbourhood N of f~*(0)N(U—{0}) in U—
{0} such that the restricted mapping fX ttzg: N>R*XR 15 a submersion.
Hence and since ¢, is so small that D;C U,

(8) There is a strictly increasing smooth function o: [0, &) — [0, =)
with 8(0)=0 such that for every ¢ and 6 with 0<e=e¢, and 0<<0<2d(¢)
we have S*'( f(D? ) N and hence S and f~(S;™) meet transversally
wn R

On the other hand, from (8) in Lemma 4.1., we see that

(9) fzoof: U—f"%0)— R has mo critical points, where fipp: R*—R
is defined by ftz(¥)=|ly|>. And from (7), we see that

(10)  ftan X (fgo o £): N—f0)—> R X R has no singular points.

From (8), (9) and (10) we see that if 0<e=e, and 0<0<d(e), then
DN FS2™) = pi([0, €21) N trs f)~(6?) is a differentiable manifold with bound-
ary and it is diffeomorphic to D:N f(S7c) = t=x([0, ) N (tre o f)7(0(&0)%).
This completes the proof of (ii).

PROOF OF (iii). Consider the gradient vector field of (£¢z» o f). Define
a map h: o(D* N f(D?))— S as follows: For a point « of (D N f~4(D7)),
let h(x) be the point where the integral curve of grad.(¢z» o f) passing
through 2 meets St~'. Then & is a homeomorphism between a(D! N f “}(D?)
and S*~'. This proves (iii).

PROOF OF (iv). Let 0<e<e, and 0<6<d(¢). Then from (1) and (3)
and from Corollary 3.2, we see that the restricted mapping f: f~(S;™)nN
U—> S?~* is multi-transversal to the canonical stratification Z(f~(S;™)n U,

»-1) of JHSYSPH)NU, S?™). Hence f:DrNf(S;™)—SP™ is multi-
transversal to the canonical stratification Z(DrNf(S?™), S~ of
JYf XS NDr; S?™. On the other hand, from (6) we see that
f:9(D*N f~Y(S?1)— 8P is a submersion. Therefore from Corollary 2.2,
the restricted mapping f: D*N f~4(S?™)— S?™! is topologically stable, and
moreover it is C= stable if (n, p) is a nice pair.

Now let’s prove that for any two pairs (¢, 8,), t=1, 2, with 0<e,;<g,
and 0<6,<d(e), f:DiNSf(Sy*)—S;* and DN fH(Si ) — 8y are
topologically equivalent. (C~ equivalent if (n, p) is a nice pair.). It is
enough to prove it for the case where ¢, and ¢, are sufficiently close to
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each other and so are 4, and 6,. In this case, let h,: p7'—Sp~' be the
diffeomorphism defined by h,(y)=(5,/,)y. From (ii), there exists a diffeo-
morphism h;: DN f~(SE™)—D2Nf(SZ™"). Then from the proof of (ii),
we see that we may choose h, so that h;'o foh;: DiNf(SE)—S;™ is
sufficiently close to f: DN f~(S#")— Sf~* in the Whitney topology. Since
2 DN f(SE)— Skt is topologically stable (C* stable if (n, p) is a nice
pair), h;'ofoh, is topologically equivalent to f: DN f(SEH—-8Si.
Therefore f: DN f~(S%™*)—S?~* is topologically equivalent (C* equivalent
if (n, p) is a nice pair) to f: DN fX(SE™)—8SE. Q.E.D. of Case I.

THE PROOF OF CASE II. The proof of (v) can be found in [2]. (vi)
can be proved in the same way as (iv). Q.E.D. of the proof of Theorem 1.

§5. Proof of the Poincare-Hopf equality (Theorem 2).

Let W be a semi-algebraic subset of J"(n, p). Let X, be the cor-
responding closed semi-algebraic subset of (72)~*(W) constructed in the
proof of Theorem 1. We will prove that if a C* mapping f: R*— R?
represents an element of (7;)"(W)—2y, then f has properties (i), (ii) and
(iii) in Theorem 2. By an argument similar to the proof of corollary in
§4, we see that this implies Theorem 2.

Now let f: R*— R* be a C~ mapping with j°f(0) € (z2)(W)—23,. Let
U be a neighbourhood of the origin of R" satisfying conditions (1)-(4) in
Lemma 4.1.

5.1. Proof of (1i).

Let ¢, and 4: [0, §,] [0, ) be the positive number and the strictly
increasing function respectively given in (8) in the proof of Theorem 1
in 4. In the case where 0 is an isolated point of f~'(0), we may choose
the function § so small that f~%(S},) is contained in D*. Let ¢ and &
be any positive numbers with 0<e<e, and 0<5<d(e). Then we see that

(@) if 0ef(0)—{0}, then fX(SHND? is a C° manifold with bound-
ary, and o(D} N f~(D;j)) ts homeomorphic to SP™*, and if 0¢ f(0)— {0},
then f(S;)NDr=f"YS}) s diffeomorphic to S*,

(b) the restricted mapping f: DN f~(S})— S} is a C* stable mapping
and SN fY(D?) contains no singular points of f.

From (4) in Lemma 4.1, we see that

(¢) f: U—{0}—R* has only C= stable singularities of codimension
less than n which, vn this case where the dimension of the target space
18 2, are “fold type” simgularities; a point p of R" is a fold singularity
of f: R"— R* if there exist coordinate systems (¢, ---, &) around p and
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(1, M,) around f(p) such that 7, o f=¢ and 9, o f=& &+ +£L.

Since fold singularities are of codimension n—1, letting S(f) be the
set of singular points of f, we see that

@ SHONU={0} or S(AHYNU 1is the union of a finite number of
smooth curves, say s,t), 0=t<l and s,0)=0, 72=1, -+, k, which meet
St and f7YSY) transversally (see (2) and (4) in Lemma 4.1).

Now parametrize S by angle 4, S:={de”}, as we did so in the
introduction. Since f: DN f%(S})— S is C~ stable, we may regard the
composed mapping 0o f: D*Nf(S;))— R mod. 27 as a Morse function,
though 4 o f is not a function in the strict sense that its values should
be in R. Then we see that

(e) if peS(HNDYSE and qeS(fYNDENFYS;) are in the same
curve s,(t) given in (d), then the index of the critical point p of
8o (fID*NfUSY)) and the index of the critical point q of 6 (f| D>
FSY) are the same.

PROOF OF (e). Since 6o (f|D*n f%8S})) is a Morse function for every
¢ and ¢, it does not bifurcate as ¢ and 6 vary. This proves (e).

Now from (i) of Theorem 1’, we see that

(f) the Betti numbers b(S**N f0)) are independent of € provided
that 0<e=s,.
This completes the proof of (i).

5.2. Proof of Remark stated below Theorem 2 in introduction.

Let f and ¢ and 0 be as in 5.1. Then

(g) the set of critical points of 6 o (f| DN f7(SY)) is equal to S(f)N
(DN fHSH)).

ProoF OF (g). If pe f(S: is not a singular point of f: R*— R?
then p is not a singular point of f: f~(S;)—S;. Therefore it is not a
critical point of @ o f: f~(S;) — R mod. 27.

On the other hand, since fz:of has no critical points in U—f7%0),
if a point p is not a critical point of 4o f: f7(S})— R mod. 2z, then p
is not a singular point of f; precisely, from (9) in §4, ptge o f: U—fY(0)— R
has no critical points, hence there exists a coordinate system (&, ---, &,)
around p with '&, =gz o f. On the other hand, there exists a coordinate
system (7, 7,) around f(p) with 7,=pz.. Since p is not a critical point
of o f: f%(S})— R mod. 2r and since 7,=pz:, We see that p is not a
critical point of 7, o (f|f~%(S). From this and from the fact that », o f=
&, we see that p is not a singular point of f. Q.E.D. of (g).

Let p,e S(/)ND2NfS;), 1=1, 2, with 0<0,<2d(¢;). Then
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(h) the imdices of the critical points p, of 6o f DiNf(S;)—R
mod. 27 are equal to each other if and only if the singular points p, and
., are C” equivalent under target-orientation-preserving diffeomorphisms,
i.e., there exist diffeomorphic germs #&,: (R", p,) — (R"*, p,) and h,: (R?, f(p,)) —
(R? f(py), h, preserving the orientation of R? such that fo h,=h,o f.

ProOF OF (h). Let the pair (gtz:, ) be the so-called polar coordinate
system on R*—{0}. Let \, be the indices of the critical points p,. Then
from the Morse lemma there exists a local coordinate system (§,, ---, &,)
around p, in f7'(S;)) such that

0o fID,’;ﬂf_l(Sél)=0 ° f(p1)—§§— cee —E§,+1+§§1+2+ s '|‘5-3. .
From the Morse lemma for functions with parameters, we see that
&, +++, &, can be extended to functions &, ---, ¢, defined in a neighbour-

hood of p, in D" such that
0o f=0(f(p))—&— &t 8t - +& .

Let &, =ptpe o f—0,. Then (&, --+, &,) is a local coordinate system around
p, under which f is of the form

Hr2 © f=51+31

6of= _fg_ *t _§§1+1+$§1+2+ °cc +E§.+0(f(p1)) .

For p, also, with the same argument, there exists a local coordinate
system (&, ---, &) around p, such that

(*)

tref =& +0,
0of=—&"— - —Ehnt&ht - +Er+0(f(py) .
Now it is clear that \,=), if and only if the singularities (*) and (**)

are C~ equivalent under target-orientation-preserving diffeomorphisms.
Q.E.D. of (h).

**)

(g) and (h) complete the proof of Remark stated below Theorem 2 in
the introduction.

5.3. Proof of the Morse inequalities (iii).

Before we prove the Euler-Poincare equality (ii), we prove (iii) whose
proof is much shorter. Let f: R"— R? be the mapping under consideration.
Suppose that 0 is an isolated point of f~(0). Suppose also that n=8.
Let 6 be a sufficiently small positive number. Then from (a) and (b) in
5.1, we see that f~(S}) is diffeomorphic to S** and the restricted func-
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tion 6 o f: f%(S}) — R mod. 2x is a Morse function. Since f~'(S} is homeo-
morphic to S** and =8, we see that the fundamental group of JHSY
is trivial. Hence we can lift 6o f: f%(S)—R mod. 27 to a function

8o f: fUSH—R

R
| / l  /
7 (s?) : - R mod. 27

8o f

where we regard R as the universal covering space of R mod.27. Then
7~ . .
6 of is a Morse function in the usual sense. A point p of S7(SY) is a

critical point of 0/?? with index < if and only if it is a critical point of
0 o (f1f7*(S;)) with index 7. Therefore the number of critical points of
I~ .

6 o f with index ¢, which we denote by (6 o f), is equal to the number
of critical points of 6o (f|f%(SY)) with index 4, which we denote by
m(S).

I~
Now from the ordinary Morse inequality for the function 8 o f, we have

Mo(F) =18 o )2 bo(f ~(SD) =by(S™) |
M) =)= 148 © F)— 16 © ) Zb,(F ~(SD)) —Bu(F (L) =b,(S™) — by (S

oooooooooooooooooooooooo

Vo
2 (—D'm()=3 )6 o )=X(F(SH)=A(S*™) .
This completes the proof of (iii).

5.4, Proof of the Poincare-Hopf equality (ii).

Let M, ,(f) be the manifold obtained from two copies of DN f~(SY)
by identifying their boundaries by the identity mapping of the boundary
SN SF7(8S;) (See the figure below): Namely let (DN f-%(S:))* and
(DFNSF(S5))~ be the two copies of DN f(S}) and for a point z of
DN f7Y(S}) let x* and 2~ denote the corresponding points of (DN f~*(Sy)+
and (DN f7%(S}))" respectively. Then M, (f) is defined as the quotient
space :

M.(H)=(Dr N fHSH* U D20 £HSH) )/~
where #*~y~ if and only if x=y and 2=y e S*n f “%(S3). Then M, ,(f) has

a unique smooth structure compatible with those of Drn f(SH)* and
DrNf1(SH)~.
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FIGURE :

‘Now we define a function F" M.,,,(f)——»S‘ by
F*)=f(x) and F(x7)=f(z) .

Then the composed function 8 o F': M, ,(f)— (R mod. 2x) is a Morse function
in the sense that it has no degenerate critical points. And it is obvious
that ,

(3) =«* ('resp x ) is a critical point of 0 o F if and only zf' the cor-
responding point x of DN f(S;) 18 a critical point of 6 o (f|D>f “(S‘))
and the index of x* (resp. x~) 18 equal to the index of x.

Hence we have

(k) (0 o F)=2p,6 o £ D} N F(S35) (=2m(f)),
where p,(g) denotes the number of critical points of a funection ¢ with
index 1.

Now consider the gradient vector field of 8 o F' with respect_ to any
Riemannian metric of M, ,(f). Then - |

(1) peM,,(f) is a singular point of the gradient vector field
grad. § o F' if and only if p is a critical point of # - F. Moreover p is a
critical point of @ o F' with index %, then the index of » as ‘a singular
point of grad.@ o F is (—1)%.

LEMMA 5.1. (Poincare-Hopf, see [6]). Let ¢ be a smooth vector field
on a closed manifold M whose singular points are isolated. Then the
sum of the indices of the singular points of & 18 equal to the Euler
characteristic number X(M) of M.
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From Lemma 5.1 and (1) we have

(m) XM, ()= (—1)'s6 o F)=3. (—1)2m(f) .

Hence to prove (ii) it remains to prove
LEMMA 5.2. (n) X(M, (f)=—2X(S*7 N £7(0)) +2X(S ™).

PROOF OF LEMMA 5.2. First, from the property (iii) given in Theorem
1’, note that

(0) DrNSLHSHUSN L YDY) 18 homeomorphic to S:“l.

(P) Therefore Dr N f7(8S}) is homeomorphic to Sr~*— f~(D%) N S, and
SJrom (7) in §4, f~(DHN S is homeomorphic to (Sr N fY0)) x D=,

Now apply the Mayer-Vietoris exact sequence

— H,_,(X,UX,) LN H(X.NX,) — H(X,)PH(X,) — H(X,UX,)
Ox
— H (X,NnX;)—> -

to the pair of X,=DrNf(S}) and X,=S N f-YD%. Since X UX, is
homeomorphic to S}, X,NX, is homeomorphic to (SN JS0))x S* and
X,=S8"N (D3 is homeomorphic to (S*~'N f~(0)) x D?, we have
@ b(DrNSfH(SH))=1,
b(D N fH(8S3)=b,_.(SF*N f7(0)), 1Si=n—38,
b oD N F7HS))=b,_(SP N F0)) -1,
b..(D!N f4(8S5)=0.

Applying again the Mayer-Vietoris exact sequence to the pair of
Xi=DrNF7S:)* and X,=(Dr N f7%(S3))", where note that X, U X,=M, ,(f)
and X,N X, is homeomorphic to (S*~*N f~%(0)) x S*, we have

(r) b(M,,(f)=1,

by(M. () =b,(S* N f1(0))=1,
b(M, () =2b,_(SF*N f7X(0)), 2Si=n—38,
bn_o(M,,s(f))=2b,_o(Sr N F10))—1,
b,_(M, (f))=1.

From (r), we have

XM FN=Z, (— 1M, o £)
=11+ 3 (DB, () + (1)

= (=1 4+ 5 2~ 1), (S N FH0) + (1)

=—=2X(S! 7N F70)+2(—1)""+2
=—2X(S;7 N f0)+2X(S™) .
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Q.E.D. of Lemma 5.2.
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