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Introduction

Let F be a finite set of ¢ elements, where ¢>1, ¢ is not necessarily
assumed to be a prime power, and let X be the set of all d-tuples
over F. We may assume F={0,1, ---, ¢g—1} without loss of generality,
and we regard X as an additive group. For x=(z,)e X, y=(¥,) € X, we
define the Hamming distance on X by oz, ¥)=|{1|x;+¥.}|, and distance
relations R, by R,={(x, y)e XxX|d(x, y)=1} for 2=0,1, ---,d. Then
(X, {R}~,) is a symmetric association scheme, which is called a Hamming
scheme, and is denoted by H(d, q). A perfect e-error-correcting code in
X (or a perfect e-code in H(d, q)) is a subset C of X such that for every
x € X there exists exactly one c e C satisfying d(x, ¢)=e.

The classification of perfect e-codes in H(d, q) is completed for the
many others (see [4] for details). For the case ¢e=2, the known perfect
2-codes have the following parameters (see [6, chapter V]):

(1) d=1, 2 (trivial codes)

(2) d=5, ¢=2 (binary repetition code)

(8) d=11, ¢=3 (ternary Golay code)
showed that there exists no unknown perfect 2-code in H(d, q), provided
q is a prime power. But if ¢ is not a prime power, the (non)existence
problem remains open. We know two necessary conditions for the existence
of a perfect e-code in H(d, q) with ¢ arbitrary. _

The first is called the sphere packing condition. Let S,(c) denote the
sphere of radius e with center ce X, i.e., S,(¢)={x € X|d(x, c)=e}. Then
a subset C of X is a perfect e-code in H(d, q) if and only if {S,(c)|c e C}
is a partition of X. Thus the following condition is necessary for the
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existence of a perfect e-code in H(d, q), and is called the sphere packing
condition:

d

—2 _ is an integer .
15,0 g

The second is the generalized Lloyd’s theorem: If there exists a
perfect e-code in H(d, q), then the following polynomial (which we shall
call the Lloyd polynomial)

3, K(d, ¢; @)

has ¢ distinct integral zeros among {1, 2, ---, d}, where K/(d, q; ) is the
Krawtchouk polynomial defined by

t . z\ [d—=x
(1) K,(d, g; x)=Z(—1)’(q—1~)“’< > < ) .
J=0 . Vi 11—
The main purpose of this paper is to prove the following theo-
rem. ‘ '

THEOREM 1. Let u be the minimum zero of the Lloyd polynomial,
and let k be an integer less thanm u. Define the subgroup Y of X by Y=
{x=(z,) € X|x,=0 for 1<i<k}. If there exists a perfect e-code C in H(d, q),
then C 1is distributed evenly to the cosets of X by Y, i.e., |[CN(a+Y)|=
ICNMB+Y)| for any a,be X. In particular,

qd—-s+1
1S«(c)l

18 an tnteger.

To show this theorem, we shall slightly modify the method used in
[8] by K. Nomura.
By the inequality (see [7])

u>{d—et)(g—1+e
o g—1+e

we have w>1. Therefore the condition in our theorem is really stronger
than the sphere packing condition. Moreover, in the case where e=1
and 2, we can calculate u explicitly:
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dg=1+1 it o=1
_ q
2d(q=D+4—¢-V@+Aq=Dd=2) 3 ,_gp.
2q

The above result is extended to association schemes of bilinear forms.
Now we assume that ¢ is a prime power and let X be the set of all
dXn matrices over the finite field GF(q) of q elements, where d<mn.
Define a distance 9 on X by 4(x, y)=rank(x—y), for x, y € X, and define
the distance relations R,={(x, y) e Xx X|3(x, y)=1}. Then (X, {R})i,) is
a symmetric association scheme, which is called an association scheme of
bilinear forms, or the generalized Hamming scheme with parameters
(d, m, q) (see e.g. [2], p. 806). The perfect e-code is defined similarly as
in the Hamming schemes. The sphere packing condition for this case is
stated as follows:

qdn . .
1S an integer .
[S.(e)]
To state the generalized Lloyd’s theorem for perfect e-codes in gen-
eralized Hamming schemes, we recall the definition of the hypergeometric
series.

Qyy Qyy A | _ & (ay; @@, q)i(as; @)
? 2< b, b,, » & x) —é (by; @):(bs; @)e(a; Q): ’

where

. ) _{(1—a)"'(1—aqt—l) (t=1, 2, "‘) ’
(@ 0:=1, (t=0) .

Then the generalized Lloyd’s theorem insists that, if there exists a
perfect e-code in the generalized Hamming scheme with parameters
(d, n, @), then the following function in z (which is a polynomial of degree
e in ¢7%)

(2) ng‘”(w, % n; q)

has e distinct integral zeros among {1, ---, d}, where K4/'(x, ¢~% n; q) is
the affine ¢g-Krawtchouk polynomial defined in [9] by

K& (x, g%, n; q)= (@" a7M(e% a7, giivR(—1)t
(95 9
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a45q%0
><’3¢2 —-n —d ; q, q .
a"q

Then we have the following Theorem 2, which we shall prove in
Section 2. The method is essentially the same as that of Theorem 1,
but the computation is more complicated.

THEOREM 2. Let u be the minimum zero of the function (2), and let
k be an integer less than u. Define the subgroup Y of X by Y={x=(x,;) €
Xlz,;=0 for 1=i5k,1<j=<n}. If there exists a perfect e-code C in the
generalized Hamming scheme with parameters (d, n, q), then C is distri-
buted evenly to the cosets of X by Y, i.e., |CN(a+Y)|=|CNDB+Y)| for
any a,be X. In particular,

@-%+1)n
q

|Ss(e)l

18 an integer .
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§1. Proof of Theorem 1.

For each coset a+Y of X by Y, we can choose a € X such that a=
(a, +++, @, 0, -+, 0), so that the set of representatives of the cosets of
X by Y is identified with F*. Thus we write as follows: {x=(x,)e
X|x,=a, for 1=1, -+, k}=a+Y for a=(a,) € F*.

Let C be a perfect e-code in H(d, g). We shall consider the sphere
covering of each coset. For ac F* and ¢e€C, we shall calculate the car-
dinarity |S,(¢)N(a+Y)|. The Hamming distance on F* will be denoted
by 9’, and for each c¢e€ X=F", the first k-tuple (¢, +++, ¢.) € F* of ¢ will
be denoted by ¢’. Put j=0d'(a, ¢’). Then it is easily seen that

e (d—Ek
IS.(e)N(a+Y)|=3] ( _)(q_l)t—f .

i=3 —

Since {S.(c)|c € C} is a partition of X, we have

at+Y= UC{S,(c) N(a+Y)} (disjoint union),

and

la+ Y| =§&IS,(0) N(a+7Y)|
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=% = 50

§=0 ceC i=3 ’l,—-j

)(q-—l)i“"'

e e d——k A
) 8'(a,d) =7

Since ¢’ is the Hamming distance on H(k, q), we can rewrite the above
equation by using the adjacency matrices A; (7=0,1, ---, k) of the Ham-
ming scheme H(k, q), whose rows and columns are labelled by be F'*:

1
(3) by (d l?)(q—l)""'Aa-$=lY|(f>,
§=0i=j \1—J 1

where ¢ is the column vector whose b-entry (be F*) is |[CN(b+Y)|.
We shall prove that the matrix

(4) A=
4 i—j

e [d—k )

> ( . .)(q—l)i—in

is nonsingular. To show this, we shall calculate the eigenvalues of A.
The next lemma is well-known.

LEMMA 1. Let k and n be positive integers. Then

x n k x—k
()2 LI0)
n/ m= \m—m/\ m
LEMMA 2. Let K/(d, q; ) be the Krawtchouk polynomials defined by
(1). Then we have the following identily:

e e . —k e
> (d j)(q—l)“"K,-(k, q; x)=§)Ki(d, HE )M

i=0i=4 \ 1 —
PrROOF. We have

e o [d—Fk
PIPH ( . j)(q—l)i"'K,-(k, q; %)

i=0i=i\1—7J

=33 (‘%“;.‘)(q—l)*-f§°<—1>'~(q—1)f-m<”)(k_”)

j=0i=j \ 1— m)\j—m
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. d— —
= (—1)"(q-—1)“"(x)(. '.‘)({‘ ”)
t,5,m=0 m/\i—3 /\j—m

. chtcelp  1yet x d—k k—x
i,‘.t=0(_1) (¢=1) (’i+t-—e)(i—j)(j—i+e-——t)

=2(—1)‘+‘-'(q—1)"‘( y >i(d_k)( ire )

6,t=0 t+t—e/ i=mo\i—35 /\j—1+e—t

Il

©,

=1%O( —1)‘“"‘(0—1)"‘( y )(d——x) (by Lemma 1)

t+t—e/\e—t
. d_.
=5 <—1>"<q—1>*-f(”f)( ) ””)
£9=0 j/\i—j
=3 i(—l)f(q—l)*-f( ”f)(“.l_".’)
T=0 5=0 ] 1—J

=3 Kd, ¢ ) -

LEMMA 3. The eigenvalues of A are given by the values of the
Lloyd polymomial at z=0,1, ---, k.

PROOF. Since A; is the j-th adjacency matrix of the Hamming
scheme H{(k, q), the eigenvalues of A; are Kk, q; ), (x=0,1, ---, k) (see
[2], 3.2). Thus the assertion is obvious by (4) and Lemma 2.

Since % is the minimum zero of the Lloyd polynomial, the assumption
k<u implies that the matrix A is nonsingular. Since the row sum of A,
is the j-th valency K,(k, q; 0), Lemma 2 shows that every row sum of A
is equal to

¢ o ( d—k

1—J
Hence the column vector (1, ---, 1) is an eigenvector of A belonging to
the eigenvalue [S,(c)|. So the equation (3) has a solution

)(q— 1)Kk, q: 0) =§ K.(d, q; 0)=|8S,(c)| .

j=0 i=;

e=£‘(1’ M) 1) ’

1S, (e)]
and this is unique by the nonsingularity of A. Thus we have
Y| k
cnd+Y)=— for any beF*,
en 5.

this implies that C is distributed evenly to the cosets of X by Y. Put-
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ting k=u—1, we have

d—u-+1
q

1S.(e)]

ICNd+Y)|=
Since [CN(b+Y)| is an integer, the theorem is proved.

§2. Proof of Theorem 2.
For each kxn matrix a=(a,;), a+ Y denotes the “coset” of X by Y:
{(x=(2,;) e X|z;;=a,; for 1=izk, 1<j=<n}.

For each d xn matrix ¢, the submatrix consisting of upper k rows of ¢
is denoted by c'.

Assume that there exists a perfect e-code C in the generalized Ham-
ming scheme with parameters (d, n, ¢). For kxn matrix a and ce C, we
shall calculate the cardinarity |S,(c)N(a+Y)|. Put j=rank(a—c’), then

IS.(e)N(a+Y)|=|{y € a+ Y| rank(c—y)=<e}|
=‘2;‘;_ {y € a+ Y|rank(e—y)=1}| .

It is easily seen that

{y € a+ Y| rank(c—y)=1}| =[ . }q"“‘*"’(q”“" —1)--(g" 7 —q*=7),

where l: ,;'; denotes the Gaussian polynomial which is equal to the number

of m-dimensional subspaces of a m-dimensional vector space over GF(q),
namely,

m]| (@ D.  (@*—1)--(g"—q™)°

[n]_ (@ 4 Vm _("—1)---("—q™™)

Hence

la+Y|=31S,©)N(@+ )

=2, [Si(e) N (a+ 1)
§=0 rank‘(::xe—oc’)zj

e e [d—Fk7 . .
=2, > X [ . .}q’ @B (grmi—1)- -+ (" =g~
=0 rank'(::—c-'c’)=j =ilt—J
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. d—k
= “ Jq:w Blgr=i—1)..+(¢" —¢"% ) 3, [CNDB+Y).

§=0 = b:kxXn matrix
d j ‘7 rank(a—b)=3

We can rewrite the above equation by using the adjacency matrices
A; (7=0,1, ---, k) of the generalized Hamming scheme with parameters
(k, n, @), whose rows and columns are labelled by kxn matrix b:

[

—k 1
(5) ,[ Jq""’""(q""'—l)---(q”"—q‘“‘“‘)Af$=IYI -

§=0 i=
1

where ¢ is the column vector whose b-entry (b: k X n matrix) is |[CN(b+ Y)|.
We shall prove that the matrix

e _e d-—k ) . ) ]

is nonsingular. To show this, we shall calculate the eigenvalues of A.
As an analogue of Lemma 1, we use next lemma.

LEMMA 4 ([1, (8.8.10)]). Let k be a monnegative integer less than d,

then
+ {d—k][k]q;u_b‘ﬂ){d]
=l i—gllJ ]

LEMMA 5. We have the following identity.

2 B :ﬂ @R (g* 1) - (" — ¢ K} (=, 75, m; Q)

J=01=j

=§ K# ' (x, q7% m; q) .

ProOF. The left hand side is

¢ d—k
(7) zgz[ J ¢/ 4H(g i —1) - -+ (g" = ¢

t=0

w £0% 979,005 a79; gau-vn 1y (070 D@7 0
(g5 @); @ a7 @).(a; ).

By the identity
(@"—1)---(¢"—q*™")

qj(i—j)

(@7 =1)+ - (" =g ) g™ ¢ (—1Yg?9 " =
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this is equal to
b (¢°=g"): - -(¢*=¢™)
L LAY n__qgt-l - - .
0t2=(')_12=t’: 9} (q 1) (q q )(qa_q‘)...(ql_qa-—l)

X @i =R =qt—+th—jt Q@ @).4q¢
@™ 095 9
e i

=3 —(q—x; Q):q" (@"—1)-+ «(q"—g*~)qt@—*
=0 i=0 (7" 9).(q; ),

th‘ |:d k} [k } q(j—t) (d—k—=t+5)
=t v—9 |Lg—t¢

By Lemma 4, we have

i[d k:, lik_t] q(j—t)(d—k—t+j)=§|: d—Fk ][k_tJ qj(d-k—i+t+j)=[d—t .
i=t| 1—7J ||g—t =0 | 1—t—7 7 1—t

Therefore (7) is equal to

& G| G n1) e (g —qt % Ded’
21249 ['— ](q R T YO}

_ -1 1)iqtti-v/2+td—o (1— qd) (1'_qd~i+1)
Z 5_‘. (@"; ¢ "(—1)'q A=) (1—g=
A=g" .- A—q") _ (g7% @)
A=@---A—q) (@ 0).(a; )
& (g™ q_l)t(q q ), 12(1.—1)/2 1)t ¢ (g% D:(a7%; q).q"
= (g; 9); (=1 x §—:° (@ % @)a™; 9).(a; @)

=§‘. K (x, 7% m; q) .
=0

Hence we have the desired identity.

Now we shall consider the eigenvalues of A. Since A; is the j-th
adjacency matrix of the generalized Hamming scheme with parameters
(k, n, @), the eigenvalues of A; are K3//(x, ¢7* n; q), where =0, 1, - -  k
(see [2], 8.5, 3.6). Hence the eigenvalues of the matrix 4 are

d—Fk
2 Z [ ; ] @R (g" I —1)- - (T — @)K (=, g7, m; q)
j=0i=o| §—g

where =0, 1, ---, k, which are equal to the values of the function dis-
cribed in (2) at « by virtue of Lemma 5.

Since % is the minimum zero of the function (2) and k<wu, the matrix
A is nonsingular. Since the row sum of A; is the j-th valency



438

AKIHIRO MUNEMASA

K#7(0, g%, n; g), Lemma 5 shows that every row sum of A is equal to

S K#7(0, 74, n;.q9)=|S,(c)

i=0

Therefore the equation (5) has the unique solution

lCn(b+Y)l=-l.S|,_€5|_ for any kxn matrix b.

This implies that C is distributed evenly to the cosets of X by Y. Putting
k=u—1, we have,

(d—u+1)n
q

b+Y)=4 ——.
ICN(d+Y)] 0]

Since |CN(b+Y)| is an integer, we have Theorem 2.

ADDED IN PROOF. Recently Laura Chihara proved in her thesis (The

University of Minnesota, 1985) that there exist no perfect e-dode in
generalized Hamming scheme.
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