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Introduction

In this paper, we determine the decay rate of correlation for a
certain class of piecewise linear mappings explicitly (for more general
cases, we will mention in [11]) and apply it to the ecritical phenomena in
dynamical system. The decay of correlation is already pointed out to be
determined in terms of the Fredholm determinant on the physical level
in [12]. However, since the Perron-Frobenius operator is generally not
of trace class ([15]), it has not been proved except for Markov piecewise
linear mappings from mathematical point of view. One of our aims is
to give the proof to this assertion for the class of mappings F with
constant slope A which satisfies the conditions given below.

We will consider a power series @, called the Fredholm determinant
(the reciprocal of the Artin-Mazur-Ruelle zeta function), associated with
piecewise linear mapping F (whose definition will be given in §2) and
the roots of @(1/7)=0 will be called Fredholm eigenvalues. By 7,, 7,, we
denote the Fredholm eigenvalues which are the first and the second
greatest in modulus (in fact, 7, equals the slope \ of the mapping F).
Our main theorem is stated as follows:

THEOREM 0.1. i) Suppose that v,>7. Then the following two state-
ments are equivalent:
1) There exists an absolutely continuous imvariant measure with

which the dynamical system ((0, 1), ¢, F') is mixing.
2) @)= —MP'(1/\)~X(1/N; 2)=0 ,

Jor any x €0, 11, where the definition of X(z; x) will be given in §2.
ii) If the statements of i) hold, then the density function of p equals
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P, and for any pair of a function of bounded variation fe BV and a
bounded function ge L> and for any >0,

©0.1) tim((p+ o) { | fegE=@nap—| sap| gap} =0, -
where
~ {x if 0'A/N=0,
7= max {|7,/, 1} otherwise ,

and FY ig the i-fold iterate of F"

o |[F@) i=1,
02 F (”)“{F(F“-%x» i=2.

On this problem, some related results also can be found in [2] and [6].
As an application of Theorem 0.1, we show two critical phenomena
in dynamical systems. One is the case when A\ |1 for B-transformations

Fp,z(x)=x:x (mOd. 1) .

This is a model of a critical phenomenon in the transition from chaos to
ordered motion which is first observed in [9] but only along a special
sequence of mappings such that the Fredholm determinants are poly-
nominals. The other is the case when A\ |12 for unimodal linear trans-
formations

AL —N+2 o=zrx=1-—-1/N,

F, (@)=
A(®) {—-m-i—x 1-1/A<z=1.

In this case, if A>1V'2, F., is mixing, while, if 1<A=<V'2, it is
ergodic but not mixing. This case is observed in [14] again along a
special sequence of mappings. Our second main theorem (Theorem 4.1)
can be summarized as follows:

THEOREM 0.2. i) (B-transformations) The Fredholm eigenvalues
around 1, say,

ea+tp ,
have the following asymptotics of a and B:

0.3) =—l]—;r—{log N+small order} ,
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(0.4) =—J—1v-{mt+small order}  m=0, +1, +2, ---
as N|1, where N is the first return time of the point 1 to the interval
a/, 1} |
FRée@Am, 1] for 1=i<N-1,
Fi( e/, 1],

The second greatest Fredholm eigemvalue is the case n— +1, and so we
may say that the decay of the correlation

(0.5) N/An=exp {*§%<l—6g£ﬁ>z+small bo'rdefr} )

as n|1.
i) (unimodal linear transformations) The argument of the second

greatest Fredholm eigenvalue equals 7 and the decay rate of the
correlation ‘

(0.6) NIN=2\"+small order ,
as M |V'2.

This theorem shows: ‘ ,

i) (B-transformations) For A which is sufficiently close to 1 (for
sufficiently large N), the envelope of the series of the correlation funec-
tions for fe BV and ge L=, by Theorem 0.1,

| g = @nap— sap {ods

decreases approximately in the order exp{—(1/2N)(z/log N)*} by (0.5) and
one can observe the modulation with the frequency approximately N in
virtue of (0.4). This generalizes the results in [9] for the special series
F'y; such that '

Fp1) & A/, 1] for 1<i<N-1,

FP1)=1,

where Ay is the slope of F,.
ii) (unimodal linear transformations) For A which is sufficiently close

to 12, the envelope of the series of the correlation functions decreases
appoximately in the order 2»~% and the frequency of the modulation
equals 2. This generalizes the results shown in [14] near the first band-
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splitting point.

Finally, let us state the conditions imposed on the mapping F'. The
mappings F which we consider below are of the unit interval into itself;
we always assume that there exists a partition 0=¢,<¢,<--- <=1
such that

i) F is continuous and strictly monotone on each subintervals
(e, Cir)y 0=ZESK,

ii) lim,,,, F(x) and lim,,,, F(x) are either 0 or 1, 1=k,

iii) By technical reason, we restrict ourselves to the following two
cases:

type 1) lim,,, F(x) is either 0 or 1 and F(x) is monotone increasing
on (¢, 1),

type 2) lim,,, F(x) is either 0 or 1 and F(x) is monotone increasing
on (0, ¢,),

B-transformations are the examples of type 1 and unimodal linear
transformations are the examples of type 2. Any mapping F of type 2
is conjugate to G=IoFoI which is of type 1 under the conjugacy
I(x)=1—=. Thus, hereafter, we only treat mappings of type 1. For a
mapping F of type 1, we call

i) F is a piecewise linear mapping if |F'(x)|=constant \ (x=<c,,
0<i<k+1), and we call this constant )\ the slope of the mapping F'.

ii) Fis of periodic type if there exists » such that F*'(1)=1. We

define the period N of a mapping F of periodic type (N-periodic) to be
the number determined by

N=min{n: F”(1)=1 and F™(x) is monotone increasing in some
neighborhood of 1 in (0, 1)} . '

Note that the values F(c,) (0<i1<k-+1) do not play an essential role

in our consideration by the assumptions above. Thus we always assume
that

F(c‘)=lilm Fx) (0=it=k)

and

FQ)= liﬁl F(z) .

§1. Alphabets, words and sentences.

In this section, we will prepare several notations. Put A={0, 1, ---, k},
and we call each element of the set A an alphabet. For ac A4, we
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define
[€as Catr) 0<a=xk-1,
(@)=
[0,,, 1] - a':k ’
1 if F' is monotone increasing on (a) ,

sgn a=
g {— 1 otherwise .

We call a finite sequence of alphabets w=a,---a, a word and we
define ' :

(w)y={z &[0, 1}: F¥(x) ¢ (a,), 1<j <1}
lw|=1

and
i
sgnw={[]sgna; .
i=1

We consider a formal symbol ¢ which we call an empty word and define

(#)=[0, 1]

l8|=0
and

sgng=1.

A set of words we denote by W. For xz€][0, 1], let (a?) be the interval
that contains F“"(x) and we call the infinite sequence of alphabets
aiaz- -+ the expansion of x. We usually identify x with its expansion.
The expansion of 1 plays an essential role throughout this paper. Let

K={a,---a, there exists 7 (1<j=<7-—1) such that
a,=--+=a;=k and a;,, ** -, ax<k}U{g} ,

and we call each element of the set K a k-word. Let
S={w,- - wiw;e K 1=j=s1—1), w,e K or w,=k---k},
and we call each element of the set S a sentence, where we define
We =W =w for any weW.

Of course, we can regard a sentence as a word. Using the expansion of
1 we define k-words wi=a,,: - +a, ;4 € K by
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WL+ =y ge 2By iy lag® * *Ca gy =i+
and we define
0,=wi - wheS .
DEFINITION. A word w is called of type (p, q) if
b=r—q

_ {max{n: a(r—n+1, r)=a(1, n) and sgna(l, r—n)=-—1},
(o if there exists no such =,

where

a(t, J)=a}- - -aj

and

max{n: w=w'a(l, n) for some word w’'e W},
r= ent .
0 if there exists no such =.

Now we define orders on A, W and K. On the set A, we consider
the natural order, that is, 0<1<:..--<k. For words w=a,---a, and
w=ai---a, we say that w<w’ if there exists ¢+ (1=<i<m, m) such that
a,=ay, +++, a,_,=a;_, and one of the following holds:

i) a,<a; and sgna,---a,_,=1,

ii) a,>a; and sgna,---a,_,=—1.

For w,w'c K, we define w€w' if wk<w’k. For infinite sequences of
alphabets, we can consider order as above.

DEFINITION. i) We call a word w admissible if (w)# @, and denote

W(F)={we W: w is admissible} ,
K(F)={w € K: w is admissible} ,
S(F)={s € S: 8 is admissible} .

An infinite sequence of alphabets a,a,--- is called admissible if a,:---a,€
W(F) for any n. On the admissible words, see [16].

ii) We call a word w complete if w is of type (0,0). For con-
venience, we also call the empty word ¢ complete.

LEMMA 1.1 1) A word w=a, --a, 18 admissible if and only 1f
ca,<al, n—1+1) for 1515 n.
ii) For admissible words w, w' € W(F'), ww’'e W(F') f and only +f
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ad, pyw'=a(l, p+{w'|)
a(l, Qw' =a(l, g+ ') ,

where w 18 of type (p, @) and we define a(l, 0)=4g.
iii) 2f @ word w is complete, then

F*(w))>(0, 1),
in other words, wx 18 admissible for all x€ (0, 1).

| LEMMA 1.2. Suppose that 6, is of tyve (16, |6,0). Then 0,.. 18 either
of type (10,], |64+:)) or (16,4.], 0). Moreover, 8, is of type (|0, 0).

The proofs of Lemma 1.1 and Lemma 1.2 are almost the same as in
[10], thus we omit them.

REMARK. For a mapping F' of type 2, let alaj--- be the expansion
of 0, then @ia;--- is the expansion of 1 of the mapping G=Io-Fol,
where ai=k—ai (:=1). :

§2. Fredholm determinant.

Let us introduce several notations and definitions, and we will
construct a renewal equation in terms of the Fredholm determinant which
is one of the main tool in this paper.

DEFINITION. For a point x€[0, 1] or ¢, define:

i) s(n, x)=the number of sentences se€ S(F') such that |s|=n and
sx is admissible. ‘ ' '

w(n, x)=the number of words we W(F') such that |w|=n and wzx
is admissible.

Note that w(nm, ¢) equals the number of subintervals in the partition
Viz {F79((1): 0=i=k}.

1 if sgna(l, n)=1 and a(1, n)x is admissible,
ii) X(m, x)=4{—1 if sgn a(1, n)=—1 and a(1, n)x is not admissible ,
0 otherwise .

iii) To state a renewal equation for w(n, x), we need the following
notations. ‘

k(p, 7)=the number of k-words w € K(F') such that w<wi,, and |w|=73 .
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2 k(p, 5)s(n—16,|—3, x) if sgné,=1,
(P, n, 2)=18(n—|6,|, 2)— 3, k(p, 5)8(n—10,|—J, x)
—8(n—|0p4,, ) if sgng,=—1.
LEMMA 2.1. For z€[0,1] or ¢

1 n=0,
2.1) s(n, ””):{Ezj,or(p, n, £)+X(n, x) n=l.

PrOOF. We shall classify the sentences enumerated by s(n, z) acecording
to the place where they differ for the first time from the expansion of 1.
For this purpose, let

7(p, n, x)=the number of sentences s=w,:--w, € S(F') (¢g=p)

such that |s|=n, w,:--w,=0,, w,,~~w;;, and sz is admissible. Then by
Lemma 1.1,

7(p, n, x)=r(p, n, x) ,

if 6, is of type (|6,],0). In case 4, is of type (|4.],10,]) (v>0) two
possibility can occur. One possibility occurs when 4,,, is of type (|4./,
|6.+:)s and in this case

1  if a(1, n)x is admissible and |6,|=%<|6,../ ,

7@, m, 2)= {O otherwise .

The other possibility is when 6,,, is of type (|6,../, 0), and we get in this
case, if sgng,=1,

7(p, n, x)={the number of k-words w such that |w|=n—|60,| and w<w},,}
—{the number of k-words w such that |w|=n—|6,| and w<w!,,} .

We get similar results in case of sgn §,= —1 also, and combining these facts
we obtain easily the proof of Lemma 2.1 (cf. [10]).

DEFINITION. Let
a; if sgna;=sgna(l, p—1)=1,
—al if sgna,=1 and sgna(l, p—1)=-1,

14aj if sgna,=—1 and sgna(l, p—1)=1,
—1—a; if sgna,=sgna(l, p—1)=-1.

b,=
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LEMMA 2.2.
(0 if j=1
bw,,l+j iof zéjélwiﬂl—l ’
. . Do, .1 wf j=|wp.| and sgn wi,, =1,
(2.2) k(p, 3)—kk(p, j—1)=4 "+ .
*b;o,ﬂ,-l tf J=|w;.| and sgn wp,,=—-1,
k of J=|wpl+1 and sgn wp,, =1,
0 otherwsise .

This lemma can be shown by elementary calculations. Combining the
above two lemmas, we get:

THEOREM 2.3.
(2.3) s(n, x)=> b,s(n—j, x)+X(n, &) —kX(n—1, z) ,
j=1

where X0, x)=1.

DEFINITION.
i) The Fredholm determinant @ associated with the mapping F is
defined by

1-3b,z7 if F is aperiodic,
J=1

D(z)=

N

1->.b;22—2" if F is N-periodic .
j=1

We call z which satisfy @#(1/2)=0 a Fredholm eigenvalue of the mapping
F'. Note that our definition of Fredholm determinant is slightly different
from that of [15].

ii) We denote generating functions of w(n, ) and X(n, x) by

w(z; )= % zrw(n, x)

and

S 2 A(m,x)  if F is aperiodic ,
n=0

Xz 2)=1,_

3 z2*X(n, x) if F is N-periodic,

n=1

respectively.
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THEOREM 2.4.

(2.4) w(z; x)=X(z; x)/D(z) .
PROOF. Suppose that;, F is aperiodic. Since

2.5) w(m, 7)= 3, ks(m—i, 2)

we get by Theorem 2.3

(2.6) 3, bwtn—j, x)-—éﬁ b,S, Ka(n—i—j, 2)
—Z‘,)k‘ %b s(m—i—7, x)

=z;', {s(n—i, &) —X(n—i+1, 2)+kX(n—i, )}

=wn, x)—X(n, x) .

Therefore

w(z; ‘w):= f‘, z"w.(n, x)

1I

32 3 bw(n—j, 2)+X(z: o)
=3 bz 2+ Xz )

and this completes the proof The proof for the periodic case is almost
the same. ‘ : ' : '

LeMMA 2.5. For a word w, let w(w, m, n, x) be the number of words

v which satisfy |v|=n—|w|, wvr is admissible and WVL<ap, Qhie**".
Then we can define bj(w, m) so that

2.7 w(w, m, n, w)—“;i__}':'b,-(w, m)w(n—|w|—j, 2)| =2 ;

an explicit expression for b;(w, m) is given ‘in the proof.

ProoF. Let w(m, n, x) be the number of admissible words v=a,---a,
such that a,=a! (1=t<m). Then by elementary -calculations as in
Lemma 2.1 and Theorem 2.3, we get
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Z bw(n—7j, x)+X(n, x) if sgna(l, p)=1,

J=p'+1

@8 wim, % D=1 $ b pm—j, 2)+An, ¥)+wn—7, 2)

i=p7+1
if sgna(l, p)=—
where a(1, m) is of type (9, ¢'). Now for a Wordv w, klét

é if w<a(m+1 m+|w)]) ,
w,n=
a(l, m) otherwise ,
r=max{r*; wiw=w'a(l, r*) for some w'},

max{q*slwl alr—q*+1, r)= a(l g*) and sgna(l, r—qg*)=—1}
qg= , , if sgnwki=1,
0 otherwise ,
p=r—q,
1 if sgnwX=1 and sgna(l, p)=—1, or if
A (w)= sgn wX=sgn w=-1,
0 otherwise .

Then

w(p, n—|w|+p, x) if w<a(m+1, m+|wl|) ,

2.9 Jy 1y = 3 ! .
2.9) [w(w, m, n, x) {0 if w>a(m+1, m+|w)),

where w is of type (p,q). Now it remains to consider the case w=
a(m+1, m+|w|). In this case, we get

wim+|w|, n+m, x) if  sgna(, m)=1,
2.10)  w(w, m, n, x)={wim-+|w|—p, m+n—p, x)—wm+|w|, m+n, x)
' if sgna(l, m)=-—1

Thus by substituting (2.8) into (2.9) and (2.10), we obtain
sgn wa{ 3, bwn—|w|+p+q—J, 2)
Cdzp+1

+X(n—|w|+p+q, )} + du(w)w(n —|w|+q, x)

(2.11) w(w, m, n, r)=
if wsa(m+1, m+|w|),

0 otherwise .

On the other hand, if ¢>0 then 4,(w)=1 and b,.;=—b; for 1=5=q.
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Thus
(2.12) ZZ‘:L bwn—|w|+p+q—7, x)+A,,(w)w(n——lw|f+ q, )
jzp+1 :

2+q . . .
= 3, bwnr—|wl+p+e—j, )+ > dbwn—|w+p+q—7,x)
J=9+1 jz2p+a+1
+wn—|w|+q, x)
q . L]
== bjwn—|w|+q—j, )+ >, bwn—|w+p+q—7,x)
J=1 jzp+ati1

+w(n—|w|+q, x)
=3§+1 bwn—|w|+q—7J, )+ X(n—|w|+q, %)

+ >, bwmn—|w+p+q—7, )

jzp+a+1

=§; (bi+q+bj+p+q)w(n—"lwl—j’ w)+X(n— |’W|+q, x) .

Therefore
bjsp if ¢g=0,
(2.13) b(w, m)= ]
’ Divgtsip+e if ¢>0.

This completes the proof.

THEOREM 2.6. Let v, be the greatest Fredholm eigenvalue, that is,
[7,| %8 greater than absolute value of any other Fredholm eigenvalues.
Then the topological entropy h(F') of the mapping F equals log |v,|.

PROOF. Clear from the fact that z=+, is a singular point of w(z; x).

THEOREM 2.7. Suppose that the mapping F' 18 piecewise linear with
1ts slope . Then we get An=",.

PROOF. We devide the proof into three steps.
i) Note that

Mr—ain™?) if sgnai=1,

(2.14) Fla)= { —Az—a®\™) if sgna’=-—1.
Thus we get

(2.15) r=(af+e*)\"'+sgn afF(m))x.‘i ,
where

{0 if sgnai=1,
1 if sgnai=-1.
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Therefore, repeating this procedure, we get that » is one of the Fredholm
eigenvalues. This shows A=(7,].

ii) Assume that the mapping F is of periodic type. Then, since the
number of subintervals of the form F‘*!'-Y((w)) (we W(F)) is finite, there
exists a constant B>0 such that for any we W(F'), the length of the
interval F'*-Y((w)) is greater than B. This means that the length of
(w) is greater than A~'*'*'B. Hence

(2.16) wn, $)SN B,

This shows
(2.17) W(F)=lim _:;. log w(n, ¢)
<logn.
Therefore, by Theorem 2.6, we get A=|v,|. Hence, by i), for a mapping
which is of periodic type we get A=7,.

iii) For any F which is aperiodie, there exists a sequence of mappings
F, which is M,-periodic for some M, such that

liman, =M

n—oQ

and there exists N, such that

lim N,= oo

n—o0

and
b.n=b, 1<i=N,,

where ) is the slope of F and A, is the slope of F’,, and
@(Z, F)=1—Z b.tZ‘ ’
13

Mn
O(z, F,)=1->, b, ,2*—2"»
i=1

are the Fredholm determinant of F and F,, respectively. Thus, by

Rouché’s theorem the Fredholm eigenvalues of F', which is greater than

1 in modulus converge to that of F. This completes the proof.
Concerning the convergence of a Fredholm eigenvalue, we get:

THEOREM 2.8. Let @ be a Fredholm determinant and {®,} be a
sequence of Fredhlom determinants which satisfy

Oébi,'n ék
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and
bt=b4.n Jor 1=<i=zn,
where
DP(z2)=1— 2‘. bzt

D.(2)=1 —Z‘, b, .2* .

Let v (|7]|>1) be a Fredholm eigenvalue of ® with multiplicity p. Then
Sfor any e>0 (|7|—e>1) and sufficiently large m, there exist Fredholm
etgenvalues 7, ., +++, V. of @, such that

(2.18) Y =Yeul <(Y|—8)™*  1=i=p.

PrROOF. From the assumption, there exists a constant C+0 such that
(2.19) &(z)=C(z—7"")?+small order
as z— 7. On the other hand, there exists a constant D>0 such that
(2.20) |D,.(2) —D(2)| < D(|7|™*+ )"
for |z—7~'|=68. Take 6=(]v|—e)~"?. Then

(|77 +o) " =(Y|—e) (|7 + (7| —e) /7

tends to zero as m— <. This shows, for sufficiently large =,
(2.21) |0.(2) — 0(2)| <|0(2)|

for [z—77'|=68. By Rouché’s theorem, this proves the theorem.

§3. The decay of correlation.
In this section, we will prove Theorem 0.1.
THEOREM 3.1. Assume that

3.1) p@)= —MP'(L/N\)7X(1/N: ) =0

Then o(x) is the density of the imvariant probability measure for the
mapping F.

ProOOF. Noticing the fact that
1 if x<ai.+1a3.+z' °

3.2 : 1, n)= i
(8.2) X(n, x)sgn a(1, n) {0 if z>al,al,---

we can prove this theorem in the same way as in [4], thus we omit the
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proof. By g, we denote the invariant measure with its density p.

DEFINITION. i) ,
BV =the set of functions with bounded variation on the unit interval,
V(f)=the total variation of a function fe BV,

L>=the set of bounded measurable functions on the unit interval,

| £l =ess sup.ero,11 |/ ()],
L*=the set of integrable functions with respect to the Lebesgue

measure on the unit interval.
ii) For f, ge L', we define operators P=P, and @"=Q% (n=1) by

| Pravg@dn= | g F@nas,
Qf)=Pf@)-| fape .

REMARK. The operator P is called the Perron-Frobenius operaror.
On the property of Q", see [13] (ef. also [3], [7]).
iii) For a monotone function f, we define

f )o=nrlin f=),
and for n=1, we inductively define functions

(f)n—':w”zl BwIw+(f)n—1 ’

wl=n

where
Bﬁﬁlf}}) {f(@) — (f)n-s(2)}

and I, is the indicator function of the interval (w).
iv) We define »* in the following way:
a) For a monotone function f, we define

(=3, 5 |IBJ@+e ™.

m=0 wi|lw|=m

b) For a function fe BV, we define
vi(f)=inf{v,(f) +vi(f)} ,

where infimum is taken over all f; and f, which are monotone and

fi+fe=1.

¢) For a function fe BV, we define
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v()=Tm () .
LEMMA 3.2. For a function fe BV,
8.3) i) (<o,
(3.4) ii) || 1@ — (@ + (Fon@Mda| < ViR,

of fi+fo=f and both f, (1=1, 2) are monotone.

PROOF. Assume that the funection f is monotone. Then it is trivial
that

(3.5) - n(NsSVOL+E+D(@+e—1)7 .

This shows i). For =1 or 2, we get

(3.6) || o)~ Fouanda| s ViEn—.
This shows ii).

LEMMA 3.3. Assume that the greatest Fredholm eigenvalue N\ 18
simple. Then for any >0, there exists a constant K such that

(3.7 [w(n, 2)— p(@\*| < K@ +e)" .
PROOF. By Theorem 2.4 and the definition of p,
w(z; 2) — p(2)(1 —A2) ' =X(2; x)/@(2) — p(x)(1 —r2)™*

is analytic in |z|<%™. Thus for |2|<(p+¢&)™ there exists a constant K
such that

(3.8) lw(z; ) — p(@)(1—N2) <K .

This proves the lemma.
For a word we W(F') and g€ L>, by Lemma 2.5, we get

6.9 ||eL@e@du|=|r" = | Luw)pua)g@ds— (@) | gdp|

=] 3 | pwone@ds—pw) | gap|

lvl=n—lw

=M@ S S SZ(m, wor)g(@)dz+ p((w)) S gdp|

lvi=n—|w]|

= [M@ @) A sgnat, m)s w(w, m, n, z)g(x)dz
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+ ) | g
< M@y S A" sgnalt, m) "3 b, m) | win—jwl—j, o)
xg@)dz-+u(w)) | gdp| +2N@ A g+ —1)

<{[r@amy 75 sen alt, mib,w, morm-tei-s

i=

+#((w))l +M@'AANT S, Ib;(w, m)|A—"=1%1=3

m20 j2n—|w|~-1

xS x-»—mzk"fz:‘,:' S lw(n— ] — §, £)— PN =1"11|da

w0

+22 (=D} gl -
Similarly as for the calculation of w(w, m, n, x), we get
(810)  —MOUANT 3 3 sen a(l, miby(w, mnm = p(w))

Thus we conclude that the first term in (8.9) equals zero. On the other
hand, by Lemma 3.3, there exists a constant K’ such that for n=|w|

(8.11) the remaining term of (4.9)<K'((p+e)\)"(n+e)~"*Y|gll
=K'((p+e)/\)llgllvi(l,) -

For a function fe BV, consider monotone functions f,, f. such that
S=/fi+/: then,

(3.12) | @@ s|| @+ ()o@
+ IS A P {(ﬁ)n+(ﬁ)n}](w)a(oc)dpi .

By the linearity of Q®,

(3.13) the first term of right hand side of (8.12)
<K'((@+eN"@u(f)+vu(f)lgll .
On the other hand,

the second term of right hand side of (8.12)
= || P+ N
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+|| @~ @+ (@man | gan| -
o= szlellel | (1A — @) + (@]

which by Lemma 8.2 ii),

(3.14) C e s2lelllgh Vi .
Hence, _ |
(3.15) I Q"f(x)g(w)dﬂl

<K'+ gl »,.<f>+2npn lgll V(f)x"' ‘

Therefore we conclude that

Tm(r+ony~ || @F@e@dn| <K' lghves) ,

and this proves the latter half of ii) of Theorem 0.1. On the ‘other hand
if the dynamical system ([0, 1], &, F) is mixing and p is absolutely
contmuous, then for f, g € L°°

316 Sfd;z X p(x)d,a lim Sf(F""(x))p(x)d#
- =lim §f<F<"><-x)>—d§<x>p<x>dx e
= | fowaa| L)@z .
X
Therefore

3.17) . Sfdp: S fw)o(x)dz .

This shows (dy/dx)(x)=p(x) a.e., this completes the proof. - ' - .

REMARK. In our case, all the mappings considered are mixing except
unimodal linear transformatlons with its slopeSl/ 2 (cf. [1], [4], [5], [7D.

§4. Critical phenomena.

Among the mappings which we considered in this paper, there are
two critical states. One is the case, \when_)_\.‘_ll for B-_transformations and
the other is the case when A /1”2 ‘for unimodal linear transformations.
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For a B-transformation with its slope N which is sufficiently close to 1,
there exists N such that the Fredholm determmant is of the form:

(4‘1.) | o q)(z) 1 —z— z”G(z),v
where o -
(4.2) GR)=1+2"(L 42" (- -)e--)

NSNSoo (we con81der z —O)A‘

In [8], they cons1dered the spec1al case N,= oo, For a ummodal l1near
transformation F' with its slope A which is sufficiently close to 1V 2, there
exists N such that

43 . (1+20(r)=1—22—22"G(z),
where G(2) is analytic in the domain |z|<1.

THEOREM 4.1. i) For a Q-transformation F with the Fredholm

determinant of the form (4.1), the greatest Fredholm eigenvalues exist
around 1 and they are of the asymptotic Sform:

(4.4) | et

where | N

4.5) o a= lb(log N —log log N +-1—-°1gol°——-—gl;—l,ly-+small order) -

and

{4:6) le('nrc+( 1)”‘1 : N7r+small order) - m=0, +1, £2, ... g

The greatest Fredholm eigenvalue (=the slope \) is the case when n=0
and the second Fredholm eigenvalues are the case m=2=1. The decay
rate of correlation 7/ is asymptotically -of the form: <

wn 77/7\. exp—-—(fc/log N)2+sma11 order .

as A1 N is expressed by N\ asymptotlcally of the form :

__ loglog x[ 1 log( log log ) ; 5
4.8 N=——2"221 + 11 order |.
(4.8) log A L + 2 log log-\ { log log A } smatl or er]

ii) For a unimodal linear transformation F with the Fredholm
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determinant of the form (4.8),
4.9) A=1"2 exp 2"*(g+small order) ,

and the second Fredholm eigenvalue whose argument equals z is asympto-
tically of the form:

(4.10) —1"2 exp 2¥”*(—g+small order) ,

as A |1 2 and other eigenvalues are much smaller that the above two
solutions, where

g=G(27?) .
The decay rate of the correlation 7/\ is asymptotically of the form:
(4.11) N/A=2\"*+small order .

PrROOF. We will consider B-transformations. Let for an integer n
1 .
=exp —{e+it(n+7)n} .
z=exp — {e+i(n+7)x}

Then the real and imaginary part of the equation ®&(z)=0 become

(4.12) 1—e*Y cos % =e*{cos(n+7)w Re G+sin(n+7)xr Im G} ,

(4.13) —e"sin (—75’-1*—'1\-;-)-75=e‘{sin(n+r)7r Re G +cos(n+7)r Im G} ,
where Re G and Im G are the real and the imaginary part of G, respec-
tively.

LEMMA 4.2. Let e=¢(n, N) be a solution of (4.12) and (4.18). Then
(4.14) }l{im(e+log' N)/loglog N=1.

PROOF. Since the minimum solution is 1/A (i.e. n=7=0), it is
sufficient to consider only this case. Suppose that (4.14) does not hold,

then there exists a subsequence, which we also write by {N}, and a>0
such that for sufficiently large N,

e<—log N+(1—a)loglog N .

Therefore, since
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(4.15) IRe G~1|<(1~(-1-‘§1\7— "“)“1———»1 ,

the right hand term of (4.12) N(log N)*'<1
for sufficiently large N. On the other hand |

(4.16) the left hand term of (4.12)=1—¢“"=—¢/N+small order
> N'log N+small order .

This contradicts (4.15). ‘
Now we will show the existence of £=(¢g, &) (¢=—log N+loglog N+
&, &=1). Let for a given n

®1%(&)=(N/log N)Re @(exp —l—];r—{e+i(n+£z)}) ’

PY(e)=(NJlog N)m 0((exp ——{e-+i(n+8)})

and
PE(e) = (P (e), PIO(E)) -
Then
(4.17) P¥¢(0)——0
and
(4.18) J(@™%)(0)= (3979 32,)(0) — (‘"(1) 2)

uniformly in G as N— o, where
g {71' ’ if n is even,

-7 if n is odd .

LEMMA 4.8 (inverse function theorem). For sufficiently large N,
there exist r>0 and meighbourhood of 0 UY°*cCQ(r) and V¥4 Q(r/2) such
that @"¢ i3 one to one and onto from UY¢ to V¢, where

Q(”'):'{E:(fl’ 52): l$1[<'r (’i=1, 2)} .
PrROOF. Let ‘
PpVoE)=J M4 (E) ~¢,

where
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Then by the continuity in '5,' for sufficiently large N, there exists »>0
such that the absolute value of each component of J(*+¢)(¢) is less than
1/4 for € Q(r). Therefore for ¢, ¢’ € Q(r),

(4.19) I«/r”*“(e)—-«lr”"’(e')l<%|'e—e’|, |
where - _
lel=max ¢ .

On the other hand,

(4.20) 6= &I <T-(@"9() — @™ ()| -+ | 2(8) — ¥ e")] .
Hence |
4.21) lJ-l(qJ”'“(e)—cp":"(e'))l>§le—e’| a

This shows that ¢”'¢ is one to one in the domain Q(»). For any >0
(0/2<7r), take N sufficiently large to satisfy

[ 9(0)| <o/2 .
For any { € Q((r—9)/2), let
£&=0
and
&e=C—¥"%&-,) for kz=1.
Then

(4.22) 86— &aal = [P E(Eer) — 0 (840)| <%’IE&—1 —&es <27*Hgy| o
Then

k
(4.23) &6 = |8l +‘§=]1 &= &1l <218,/ =2(|L —479(0)]|

=2+ ™0 <r .

This shows &, € Q(r). Since {&:} is a Cauchy sequence, there exists &€ Q(r)
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suce that
§=C—4"%g) ,

that is, P RS
PVo(8)=JC .
Hence, putting |

UY8 = Q(r) ( (J-'p™ %)~ Q((rr — 8)/2))
and

VRO=JQUr—3)2) .

the assertion of Lemma 4.3 is proved. |
By Lemma 4.3, there exists, for a given 7, a unique solution g(N)
which satisfies

P %(&(N))=0
and '

lim &(N)=0 .
N—oo

This shows, for a given =, unique solutions e=e&(n, N) and z=17(n, N)
which satisfy
(D(exp %{s—i—i(n—l—r)n})-—-o .

Moreover, it is easy to show that the solutions of (4.12) and (4.13) satisfy

log log N

(4.24)  e=¢(n, N)=—log N+loglog N—
log N

+small order ,

(4.25) r=7(n, N)=(—1)""—2_ tsmall order .
log N

Now we will consider the decay rate of the correlation. Let
| o(n)=e(n, N)—&0, N)

and
G(n)=G(exp [—llv{s(n, N)+in+z(n, N))}]) :

Since
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(4.26) 1 —2|*=[z|G*,

we get

(4.27) 1—2¢*™¥V/¥ eog -;r—(nn+z'(n, N)r)+ g™ ¥VN

=M |G)

(4.28) 1 —2¢* NN | g 0NN = gl O.])|G(Q)[2 ,

Hence

(4.29) (n+7(n, N))’m*N~*+small order=e¥ (g2 1)
+eH (G —1) —e* O (GO)—1) .

Therefore

(4.30) o(n) =%(IOZEN)2+small order .

On the other hand, it is trivial that if n=0(log N), then there exists no
solutions with order as one of (4.24) and if n=o(log N), (4.24) and (4.25)
holds. Thus the second greatest Fredholm eigenvalue are the case n=+1
and

(4.31) NIN=e" "W/~ -—exp{—%v— Tog >+small order}

This completes i) of Theorem 4.1. The proof of ii) is almost the same,
thus we omit it.
For a noncritical state, we get:

THEOREM 4.4. Let F be a piecewise linear mapping and {Fy} be a
sequence of piecewise linear mappings such that

b,=b7 for 1=<i1<N,
where

d(z, F)=1 —E“, b.z* (the Fredholm determinant of F),
D(z, FN)=1-—2“, b¥zt (the Fredholm determinant of FY) .

Then the decay rate of the correlation n/\ for F and Ny/\y for Fy satisfy,
Jor any >0 and for sufficiently large N,

(4.32) [P/N—Dx /Ny < (7| —€)~N77
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where N (\y) 8 the slope of F (F'y), respectively,

(s (=the second greatest Fredholm eigenvalue of ®(z, F))

V= if [n>1,

A f |71,

and p 18 the multiplicity of the Fredholm eigenvalue 7.

REMARK. If [v7,|]=1, we cannot evaluate the order.
ProoF.

19/ = D/ N Z 9N OV —=Aw) [0 — (M=)
=75/ — (A —2y))

Thus by Theorem 2.8, the assertion of Theorem 4.4 easily follows.

REMARK. It seems that the rigorous studies on the power spectrum

of mappings are important application, but we find them only in [8], [17]
and [18].
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