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Introduction

In this note we shall study Hardy spaces and BMO spaces of mar-
tingales on the product Brownian spaces and their applications to function
theory on the torus.

Hardy spaces and BMO spaces of martingales on the Brownian spaces
were studied by N.Th.Varopoulos ([12], [13]) in connection with function
theory on the unit circle 7. If we will deal with H*» and BMO mar-
tingales related to function theory on the torus 77, then we need to
consider ones of 2-parameter on the product Brownian spaces (cf. [14]). J.
Brossard and L. Chevalier built stochastic integral theory for such mar-
tingales and defined Hardy spaces H?. They generalized the Burkholder-
Davis-Gundy inequality to the product Brownian spaces ([4]). We here
write K” instead of H?. H. Sato defined 2-parameter BMO martingales
and proved (K')*=BMO ([10]).

After some preliminaries in §1, in §2 we define Hilbert transforms
H; on K*(j=1,2, 3; 0<p< ) modeled after Hilbert transforms for 1-
parameter martingales defined by N.Th.Varopoulos ([13]). In this section
we prove equivalence of K'-norm and || X|| 1+ >3, || H,X||,--norm (cf. Theorem
2.4). This extends a theorem of Varopoulos ([13, Theorem 3.2]). In §3
we study projections N and M introduced by N.Th. Varopoulos and obtain
some results on them. Our main theorem is Theorem 8.5 which states that
G2 (T*) (resp. BMO(T?) is isomorphic to a closed complemented subspace
of K'(resp. BMO). This theorem implies several results as corollaries. Two
of these are a theorem of Sato ([10]) and a theorem of Gundy-Stein q7D. In
§4 we concern with H* of 2-parameter holomorphic martingales considered
as abstract Hardy algebras and their applications. In this section we
~ obtain several results on H>, which extend theorems of Varopoulos ([13]),
for example, the density of H* in H” and that Log(X) € BMOA for every
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non-zero H'-martingale X with positive real part. We prove also that
these martingales X are outer functions.
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§1. Definitions and fundamental properties.

Let (xf:¢;=0) and (yi;:t;=0) be two independent 1l-dimensional
Brownian motions on a complete probability space (2;, &/, p’) such that
pi(xi=yi=0)=1, and let :J be the o-field generated by {xd, yi: s<t;}
and all p’-null sets (¢,=0; j=1, 2). Then the familiy (#:)),,=0 satisfies
the right continuous condition, that is, N,.,;F.'=.%:] for every ¢;20
(=1, 2) (cf. [8, p. 286]). For the simplicity we assume that & ¢ coincides
the o-field generated by Uz, F:i(1=1, 2).

Let us denote by (2, F, P) the completion of the product measure
space (2,02, 7 'R.F, p'®p*) and let &,, be the o-field generated by
F R and all P-null sets (s, t=0).

In this note we use the following notations introduced in [4] and
[10].

Lr(L?) = {@: ® is Z[(R.)]QF-measurable process and
[0],= (E[(S” :|¢,,|2dsdt)w])”’< o} (O<p<oo).
S={3i 90, cll xlot, til: ne N, o}, rie R, oi<ei,
Pie Lm(Q, Tty P) (G=1, -+, m;i=1,2)} .

Let A? be the closure of § with respect to the metric [&—+],.
For each ® € A?(0<p< ) we can define the following stochastic in-

tegrals
tfs t(s tfs t(s
SS(de‘dx” , stdx‘dy’, SS@dy‘dx*, and SSgpdyldyz,
0J0 0Jo oJo 0J0
(s, t=0) (see [4)]).
In the case of l-parameter we can also define 4% on 2,(j=1, 2) in

the same manner as 4* on 2. For each @ € 45 we can define the following
stochastic integrals
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g’cpdxf and S’cpdyf (G=1,2) (s=0).
0 0

For each stochastic process (X,.:s, £=0), we use the following nota-
tions;

AX, =X — Xpo— Xoe + Xy X*=Su}’p|Xat| .

For each pe]0, «[, we set
KP={X=(X,:8,t=0): X can be written as (1.1) below.}
X, 1is a constant.

Xoo=Xoo+ qudw‘ + Safpzdy‘ for some o, p,e 4},
0 0
t t

(1.1) XO,=XOO+S q/rlda:z-i-g ¥ dy* for some A, A, € A7,
0 0

t(s 8 8
4X,, = S S R Stg O, dz'dy” + S’S O, dy'da
0J0O 0Jo 0J0
—I-Stsa@,,dyldyz for some @, ---, 0, A7 .
0J0

Here for X e K?, X has a unique representation (1.1) by [4, p. 105].
For each X e K* written as (1.1), we put

X, ={"Apr+Ipirds+ | (ot + byt

3 S“S”|q),.|2dsdt :

J=1Jo Jo

and || X||z»=|I{X, XD*?||zp+|X,l, Where | +|z» means usual L?(R, F, P)-norm
(resp. -quasi norm) if 1<p<co (resp. 0<p<1). (K7, |+|lx») is a Banach
space if 1=p<oo.

BROSSARD-CHEVALIER’S THEOREM ([4]).

For each pel0, o[ and any X e K? the following imequality holds.
(1.2) Cll X * o S| XN o S Col| X * |20
where ¢, and C, are constants depending only on p.

Let K*=L~NK? and let || X||geo=]|Xoooo| oo

We can prove the Doob’s inequality with respect to positive (&,)-
submartingales in a way similar to the proof of Theorem 11 in [7, p. 298].
Hence the K?-norm is equivalent to the L?-norm if p€]l, «]. From this



358 HITOSHI ARAI

fact and Proposition 1 in [4] it is true that K?=L* for pe[2, ] by
identifying (X,,:s, t=0) with X.. (where L*=L*(Q, F, p)).
Denote by & the o-field generated by

{Ax]sy, t]x]s, t,]: 0=8,<t, 0=8,<%,, A€ F,,} .

Let R.=R,\{0}. Now, a mapping T on £ into the power set of
(R.)? is called a random region if it satisfies

{(w,8 t)e2X(RY): (8, t)e T(w)}eZF.

The “random region” was introduced by H. Sato ([10]). (He called
it “region aleatoire”.)

For any X e K* written as (1.1) we set
1.3) 4X,(w)= S:S:[X,(,,,, ey (D dx'da® + O da'dy® + @ dy'da’ + @;dyldy’):l .

It is clear that (X, en®@;: 8, t20)€ A* (=1, -+, 4) and we set
4 oo (" oo .
A%, 4%y =3 || M eml@spidsdt .

We can prove easily that E[AM,AN..]=E[4M,4N,] for each M, N¢

K*® and random region T (see [10]). Denote by S the collection of all
random regions.

Let Ne K% N is called a BMO-martingale (or simply BMO) if
”Nooo”?ko::S?p | E[ Noo— Ny ll FH || 10 < 00
|| Now|[ 3 =8UP [| B Noow = Noo[*| %] | 2o < o

and ||AN]||«« =sup{||4N;||x2/(P(T+#¢))"*: T € S} <, where we regard 0/0 as
0. And we put

IN 1] = | Nosoll w0 + | Nocollox + | 4N || e + | Nool -

Denote by BMO the collection of all BMO-martingales. Then we
have easily K*C BMOCK? (p+# ) (cf. [10)]).

This BMO was defined by H. Sato ([10]). He proved the followig
theorem.

FEFFERMAN’S INEQUALITY AND K'-BMO puALITY ([10]).
(1.4) For every Xe BMO and every Y € K* |
|IE[XY]=ClI X[« Y |lg »
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where C is a universal constant.
(1.5) (KY)*=BMO .
Finally we prove the following as corollary of (1.4) and (1.5).

COROLLARY 1.1. Suppose P is o bounded projection operator on all
of K', K* and BMO and is self- adjoint on L*(=K?. Then P(KY*=
P(BMO), where P(K")*={pe (K)*: p((I— P)K*)=0} (I is the identity

mapping).
PROOF. For every @ e P(K')*, there exists a unique Xe BMO such
that o(Y)=[XY] (Y e K* by (1.5). For any Y e K* we have
E[Y(X—PX))]=E[(Y—-P(Y)X]=9(Y—P(Y))=0 .

Hence X=P(X)e P(BMO). Conversely, take any P(X)e P(BMO), and let
P(Y)=E[YP(X)] (YeK?. Then by (1.4 we have pe(KH* and
P(Y—P(Y))=0 (Xe K?. Hence @€ P(K")*.

§2. Hilbert transforms on product Brownian spaces.

The Hilbert transforms of one parameter Brownian martingales were

defined by N. Th. Varopoulos ([13]).
In the case of two parameter, we define the following Hilbert trans-

forms H; (j=1, 2) after the manner of Hilbert transforms for 1-parameter
martingales:

Hy(dw')=dy’, H(dy")=—dx’, (j=1,2)
Hy(dz")=0, Hy(dy*)=0, (j#k;j, k=1,2).

Further, the double Hilbert transform H, is defined by the composition
of H, and H,, i.e. Hy=H,0oH,=H,oH, where o means usual composite of

operators.
Then for every Xe K? written as (1.1), we obtain that

H,(X)=~p.dz + |y
+ SS( — O duwda — O do'dy’ + 0.dy'de’ + O, dy'dy?)
Hy(X) = — {wda+ [ .dy
+ S S( — @, dx'dx’+ @, dx'dy* — @, dy'dx’ + D, dy'dy?), and
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Hy(X)= S S(q)ﬂx‘dm2 — P dxdy: — D dy'dx’ + 0, dy'dy®) .

For each K? (0<p=<c0) we set

K3={Xe K*:. X,,=X,, (8,t=0) and X,=0}
Kz={Xe K?: X,,=X,, (s,t=0) and X,=0}
Kr={XeK*. X,,=4X,, (s, t=0)} .

Then K? is the direct sum K?=CPKIPKLIPK? of C, Ki, K} and K§,
namely, for every (X,)e€ K? we can identify X, with X,D[X,,— Xu]D
[ X, — XolBI[4X,] O<p=occ). By the definition of the operator H,, H, and
H, we have that (H, X, HX)=<(X, X) for every X € KiPK}, (H. X, HX)=
(X, X)> for every Xe K&DK%, and (H,X, H,X)=(X, X) for every X e Kf.
Hence we get | H;X||x»<|Xllx» (X€K? 0<p<eo, 5=1, 2, 3).

For every random region T and each X € BMO, we have ||H;(4X);||x2=
| H(AX)||x2<||4X7llge. Thus [|HX|[. =X« (G=1, 2, 3).

Let I and 0 be the identity mapping and zero mapping respectively.
Define T;=(I+1H;)/2 and S;=(I—1H/2 (j=1, 2).

If Xe K?, then T,X (resp. S;X) is holomorphic (resp. antiholomorphic)
in the variable ¢, in the sence given at [13] (=1,2). And 7, and S,
are bounded projection operators on all of KiZPK: and BMON[Ki DK,
since HyoH,=—1I on KZPK?: (0<p<co). Futhermore, T, and S, are self-
adjoint on K:@K}, because Hf=—H, on KK}, where Hy is the
adjoint of H; (j=1,2). Similarly, T, and S, are bounded projection opera-
tors on all of K2@PK?: and BMON[K:;PK:], and T, and S, are self-
adjoint on K:PK3,.

For any operators A,, A, A, and A, on K?, we define the operator
APAPADA, on K* as follows:

A1®A2®As@A4(X ) = A1(Xuo) + Az((Xso — X, oo))
+ Aa((Xot - Xoo)) + A4((AX,,)) (X € Kp) .
Now we define following operators.
K*= I@ T DTDBT,-T,,
K*®=0Pp0PoPT.-S, ,
K*»=0p0PodPS,-T, and
K®=0DpS.PS.PS,S, (cf. Appendix I).

For each Xe¢ K?, we write simply X*=K*X) (¢=aa, ab, ba, bb). Let
(K?)*={X*: Xe K?} and BMO*'={X*: Xe€ BMO} (0<p< e, ¢=aa, ab, ba, bb).
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Especially we put H?=(K?)** (0<p< o), BMOA=BMO* and H*=H*N L~.
From the above observations we obtain the following

ProposiTION 2.1. (1) K°* 18 a bounded projection operator on K7
(resp. BMO) onto (K?)* (resp. BMO*), especially K* 1is self-adjoint on
L*=K? (0<p< =, e=aa, ab, ba, bb), and K'-K"=0 if e#.

From (1) we can deduce (2) below.

(2) (K?)* (resp. BMO®) is a K*-norm (resp. BMO-norm) closed subspace
of K? (resp. BMO) (1<p< «, e=aa, ab, ba, bb).

THEOREM 2.2. [(KY)‘]*=BMO* (¢=aa, ab, ba. bdb), particularly, (H)*=
BMOA.

PrOOF. The theorem is an immediate consequence of Corollary 1.1
and Proposition 2.1 (1).

LEMMA 2.3. Suppose p€]0, <[. Then for every Xec K?,
2.1) (| X*| |21 (X)* | omssup [| Xiell o

where ~ means an equivalence of norms.
If pe[l, oo, then sup,,|X:l»=|Xoxll» (6=aa, ab, ba, bb).

PrROOF. We have this lemma by the iteration of the argument in
the proof of [6, Lemma 6.3]. Indeed, X* is a conformal martingale for
each parameter. So Z*=|X*|*”*is a local submartingale for each parameter
(cf. [6, Lemma 5.8]). By Proposition 2.1 and (1.2)

sup E[(|X5?’]1=Cll X% (s20) .

From this and a slight modification of [8, p. 292c], we can deduce that
(Z%):s, is an L*-bounded submartingale. Similarly (Z),., is also an L*-
bounded submartingale. Using the technique in [7, p. 298] we have the
following inequality: For every a, B€ R,,

E| sup | Xil? |= [sup (Z:) |SCEZ5]=ElXul]

ogaga 0ss=sa

Thus we obtain the lemma by Lebesgue’s convergence theorem.

DEFINITION. For every X e K?, we define
3
IIXllx1=IIXHLl+1Z=iHH5XIIL1 .

Denote by 57! the ||-||»1-norm closure of K*.
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THEOREM 2.4. (Varopoulos theorem on product Brownian spaces.)
K'=2¢" and |||zl .
ProOOF. It is clear that
[B:q[ED G PR D6 PED: 6ol T D AN
By Lemma 2.3 we have the following inequality for every Xe K.

X Nz = 11X 2+ [ X+ [ X% | g+ 1] X e
oDl PR (P G R o D & [PPE | D Gl | P
and || X g+ || X g2+ | X[ 22+ | X P02 S Cl| X | 2

(ef. Proposition 2.1 (1)). Thus ||X| g~ || X]|| 5.

By the routine duality argument and (1.5) we obtain the following
theorem.

THEOREM 2.5. Following conditions are equivalent.

(a) XeBMO.
(b) There exist Aje L~ (1=j=<4) such that

4
X=A"+ AP+ A+ AL and || X~ 4, .
J=1
(¢) There exist B;e L~ (1=j=<4) such that

4
X=B,+HB,+ H,B;+ H,B, and ”X“*N’gl”Bf”L‘”-

§3. Applications to function theory on the torus.

Let D;={z€C: |2|<1}, T;={z2€C: |2|=1}, D*=D,xD, and T*=T,xT.,.
dm; denotes the normalized Lebesgue measure on T; (j=1,2) and dm
denotes the product measure of dm, and dm,.

The Poisson kernel P;(z;, w;) and the conjugate Poisson kernel Q;(z;, w;)
on D; are of the forms

Py(z;, w;)=Re((w;+2;)/(w;—2;))
Qi(z;, wy)=Im(w;+2;)/(w;—z;)) respectively ,
where z;€ D;, w;e T;(5=1, 2).

For each fe LY (T*»(=L'T? dm)) and for every z=(z, 2,) € D* we
set
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PP(f) )=\ Pu(z, )Pz, w)f (w)dm (w)

PQUAN@)=\_ Pz w)Qzs w)f w)dm(w)
QP() (@)= @z 0P w)Fw)dmw) and
QQUNE@=| Q@ 0@ w)F@wdmw),

where w=(w,, w,).

For each function # on D% R[u](w) denotes the formal radial limit of
u, that is, R[u](w)=1im,., u(rw). ‘

The Hilbert transforms H,, H, and H, are defined by

H.f=R[QP(f)], H.f=R[PQ(f)] and H,f=R[QQ(/)]

respectively (f € LY(T?). It is easy to check that H,=H,-H,=H, H, on
L*(T* (1<p= o).
For every f e LYT?* we set

f(@)=PP(f)z) (zeD?),

S (wy, 2,)=P(f(w,, +))(2:)= Sszz(zzv wy) S (wy, w)dmy(w,) (w, €Ty, 2, € D),

S (2 w) =Py (f (-, w))(2) = ST2 P(z,, w)f(w,, w)dm,(w,) (2,€D,, w,€ Ty)
and

Af(wv w2)=f('w1) wz)_‘f(wn O)—f(or wz)'l_f(oy O) ((wv wz) € Tz) .
L*(T?* (p=1) can be decomposed as follows:
LX(T*)=CHLI(THDLL(T*PLH(T?), where
L(T®)={f € L*(T?): f(w,, wy)=f(w,, 0)—f(0, 0) for all (w, wz) e T,
Li(T*)={f € L*(T"): f(wy, w,)=f(0, w;)— (0, 0) for all (w,, w,) € T°} and
LT ={f € L*(T?: f(w,, w,)=4f(w,, w,) for all (w, w,) € T?%.

Let T;=(I+4H,;)/2 and §;=I—iH,)/2 (j=1,2). Then we define the
following operators as well as in §2.
IZ“’—:I@Tl@TzEBTP Tz r‘ Kab=0@0®0671°§2 ’
R =0popodS,-T, and EK*=0PS.PS.HS.-S, .
We write f,=K*(f) and L*(T%.={f.: f € L*(T?%} (¢=aa, ab, ba, bb).
Let z,=inf {¢;: |2{,|=1}, where 2], =] +(—1)"y{, and z{, =, —(—1)"yj,
(9=1, 2). The following mappings M and N were introduced by N. Th.
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Varopoulos ([14]):

For every feC(T?), let Mf=f(z, 2;,) € L~(=L=(2, F, P)). M can be
extended to an isometry from L?*(T? to L*(=L*(2, F, P)), 1<p<~. For
every Xe L?, NX is defined as follows.

NX(e”, e**)=E[X||z;,=€*, 2;,=e*] .

Then ||NX||»=|X|lr ASp=< ). We denote MoN by N. (It is clear
that NoM is identity mapping.)

For every f e L*(T?), let (M.f)(w,, €*)=f(2:,(®w)), ') (w,€2,) and let
(M.f)(e?, @,)=f(e", 22 (®,)) (0, €R,). For every Xe L*, we set (N,;X)(e*)=
E,[X ||z§j=e’“’]~ (=1,2). It is clear that N,X(e*) e L*(2,) (ke{l, 2} and
k+3). Let N;=M,°N;.

Let H?(D?) be the Hardy space of holomorphic functions (cf. [9, p.
50]) and, let H*T")={R[f]: feH"(D)} (1=p=-e) and Z*(T’)=
{f e L*(T?: || fllar< oo} A=p< o), where || flzr=|Fllzo+25= | H;f|zo-

For f e L*(T?, n(f) denotes the radial maximal function of f, that
is, n(f)(e*, €'*) =SuPos,<.| PP(f)(re®, re*?)|. Let h*(T*)={f € L*(T?):||f|l»< 0},
where ||flli=|n( e A1=p<e). H. Sato introduced BMO-functions on
T? as follows (cf. [10]): BMO(T*) ={f € L*(T*: Mf € BMO} and ||f|l«=||Mfll«-
We put BMOA(T*=BMO(T* N H¥T?. It follows that {f e L*T): Mf €
BMO}={f & L(T): sup, §I|f—f,|dx/|z|<oo} (This is the usual BMO space)

by the John-Nierenberg inequality and Theorem 1 in [1] (ef. [12, p. 216]).
LeEmMmA 3.1. If pe]l, ], then NXe H?(T* for every X e H".

REMARK: The following proof is due essentially to N. Th. Varopoulos
[14].

t
PrOOF. Notice that 2i,5=| Xus.pd2! is in H= by Appendix I (j=1, 2).
0
Let Z,={n: n=0 and is an integer.}. Take any (m,n)¢Z, X Z,. If m<0
it is true that

NX~(m, n)= Sﬂw;"‘w{"NX(w)dm(w)

=E[(z,)™(2) " NX]
=E[(2)"™(2}) " X]
= Ez[(El(z:I))(_m (zf.z)"”’El(X)] =0.
If n<0 we have that NX"(m, n)=0 as above. By Theorem 2.1.4 in

[9] it follows that NX e H*(T?).
N. Th. Varopoulos [14] showed that Mf is holomorphic martingale
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if fe H(T)NC(T?. We extend this result as follows by giving an
alternative proof.

LEMMA 38.2. Suppose pell, «]. Then Mf € H? for every f € H?*(T?).

PrOOF. We first prove the lemma in the case of p=1. Let f e HY(T?).
Then there exist f, e HX(T? (n € N) such that lim,_. ||f,—f|l.:=0. Hence
lim, .« | Mf,— Mf||;:=0, and Mf,e L* implies Mf,c K* (n€ N).

Let H¥( & ")=H*N(CPHPKE) and H(F)=H*N(CPK;). We can iden-
tify H*(#7) with H*Q,) defined by N. Th. Varopoulos [13] (=1, 2).
By [13, p. 97] we have

HY & )'=H¥ 7 ) ={X: Xe H(& %) and E,[X]=0]}.
Take any Xe H*(. %)*. Then
E[(M£) X1=E[(MFYF D= MLf)NZDdm; ,

where ke{l, 2} and k=j. M,f,e HXT;) by definition of f,, and N,;Xe
H*T;) by Lemma 3.1. From this it follows that

E[(Mf)X]= S .M,,fndm,-ST N;Xdm; = S M, f,dm; EJX]=0.

Hence Mf,e HX & 9)**=H %9 (=1, 2), and so (E,[Mf,||.&:].; is
holomorphic in the sense given at [13] (j=1,2). So Mfe[H*,CH' by
Appendix I and Lemma 2.8, where we denote by [H*], the L*-norm closure
of H*.

Next, suppose pe[l, «]. Let fe H?(T?). By the above assertion we
conclude that Mf e H'NL?=H* by Appendix I.

Following lemma was proved in Varopoulos [13] in the case of 1-
parameter. We give an alternative proof and extend to the case of 2-
parameter.

LemmaA 3.3. (1) N(I-I,-X)zﬁ,-(NX) Jor every Xe K*® (5=1, 2, 3).
(2) MH;f)=H;,Mf for every feLXT? (j=1, 2, 3).

ProOF. We first prove (1) for every X=FG € L%(2,)QL%(2,), where
2(2,) is the real part of L*2;) (j=1,2). By easy calculation we have
that X+iH X=F+iHF)G. Lemma 3.1 implies that N,(F+i(HF)) e
HXT). Of course N F+iH N,Fe H¥T,. Since any real valued function
in H¥T),) is constant, we have N,(H,F)—H,(N,F)=ceR. By definition
of H, and H, we have that ¢=0. Hence NX+iH,NX=NX+iNHJX,
and so N(N, X)=H,(NX). In the same manner as the above we have
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N(H,X)=H,(NX). Thus N(H,X)=H(NX).

It is an immediate consequence of the above fact that (1) is true for
every Xe K*

We can prove (2) by using the above method, Lemma 8.2 and that
any real valued martingale in H?( & 7) is constant (cf. [13] or Corollary
4.3) (1=1, 2).

The following corollary is clear from Lemma 3.3.

COROLLARY 3.4. (1) N(H;X)=H;NX) forevery Xe K*. (j=1, 2, 3).

(2) M(f)=M() for every f € L*T? (e=aa, ab, ba, bb).

(83) N(X*)=N(X), and N(X)=N(X) for every XeK* (¢=aa, ab,
ba, bb).

Let us recall the definition of “isomorphic”. Let (X, ||:||x) and (Y,
||-]lz) be two Banach spaces. ¢ is called an isomorphism on X onto Y if
@ is bijective linear operator on X to Y and is continuous and open. We
say that X is isomorphic to Y if there exists an isomorphism on X onto Y.

Our main theorem is the following

THEORE 3.5. S#74T? (resp. BMO(T?) is isomorphic to a closed
complemented subspace of K' (resp. BMO). Indeed, N is a bounded pro-
jection operator on K' (resp. BMO) and M is an isomorphism on S#'(T?)
(resp. BMO(T?) onto N(K*) (resp. N(BMO)).

PROOF. That NoN=N is clear. For every Xc K? we see that
~ ~ ] ~
||N(X)||x1§C(I|N(X)||L1+’Z:'.lHH,-(NX)HLO (by Theorem 2.4)
~ 3 ~
=C(||N(X)||L1+i§=:{ IN(H;X)||z1) (by Corollary 3.4)

3
§0(||X|IL1+JZ=‘41IIH5X||L1)
=c|| X||x (by Theorem 2.4),

where C and ¢ are universal constants. Hence N is a bounded projection
operator on K!. Take any X e BMO and any random region T. Then we
have

| NUX)||%e= | M(4X), 32 = E[N(4X); N(4X),]
=E[N(4X)N(4X);]1=E[(4X)N(N(4X))]
§C1”AX”**“N(N(AX)T)HKI (by (1.4))
SClAX ) x| N(AX) || 22 (by the above result)
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=CZ||AX”**E[X(T$¢) . <N(AX)T’ N(AX)T>1/2]
écleAX”**P(T¢¢)1/2”N(AX)T”K2 ’

hence ||N(UX)|xx =Cil|4X .5, Where C; denotes a universal constant (j=
1, 2).

Since || Xowllox =SUD{|| Xooo — Xop|| 2/ (P(T< 0))“%: T is a stopping time.},
we can prove that ||[N(X,w)|lox =C||Xowllox by using the above method. In
similar manner as the case of X,., we have that ||N(Xwu))||xo=Cl|Xwo|lo-
So that, N is a bounded projection operator on BMO.

Hence N(K") (resp. N(BMO)) is a closed complemented subspace of K*
(resp. BMO).

Take any fe€S#£(T?. Then by using of Theorem 2.1.8 (¢) in [9],
we have that there exist f, € C(T? (ne€ N) such that lim, .. || f,— f||%:=0.
Theorem 2.4 and Lemma 3.3 imply that lim,, ,...||Mf,—Mf.||z2:=0. Hence
there exists a X € K* such that lim,_... | Mf,— X||xz1=0. And the boundedness
of N (see above) implies that

lim || Mf, — NX|| 2 =1lim || N(MS,— X)|| 2 =0 .

So lim,..||f,—NX||z=0. Thus f=NX and Mf=NXe N(K)cK"
Theorem 2.4 and Lemma 3.3 show that

1Lt =Bim | amclion | B2, s = | M

Hence M is isomorphism on S#' onto N(KY).

By definition of BMO(T?), it is clear that M is an isomorphism on
BMO(T?) onto N(BMO).

This theorem implies the following corollaries.

COROLLARY 3.6. (H. Sato [10])
S (T*H*=BMO(T? .

PrOOF. It is clear that N is self-adjoint on L =K?). Hence N(K\)*=
N(BMO) by Corollary 1.1 and Theorem 3.5. And SN (T*) (resp. BMO(T?))
is isomorphic to N(K') (resp. N(BMO)) by Theorem 3.5. Thus F(TH*=
BMO(T?).

COROLLARY 3.7. [2£Y(T*)]*=BMO(T?* (¢=aa, ab, ba, bb). Especially,
HY(T**=BMOA(T?).

PROOF. NoK* is a bounded projection operator on all of K* K* and
BMO by Theorem 3.5 and Proposition 2.1. Thus the corollary is proved
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in a similar way as the proof of Corollary 3.6.
COROLLARY 38.8. (A special case of a theorem of Gundy and Stein [T])
h(T? s tsomorphic to 7' (T?) .

ProOOF. It is easy to check that EL[Mf II%¢]=f(zilA., 2:,ae) for every
f € h(T?, where f=PP(f) on D* and f=f on T".
The following inequalities were proved in [7, p. 305, Lemme 4'].

(3.1) ¢|INX||n<Z|[NX*||. for all XeK*,
(8.2) IMf*|=Cl|fllw  for all fehr(T?,

where ¢ and C are universal constants. (In Appendix II we shall give
an alternative proof of (3.1).)

From Theorem 2.8.1 in [9] and an easy calculation of the Poisson
kernel we have that lim,., n(f,—f)=0 a.e. dm for every f € h'(T?), where
frw)=f(rw) (weT?. Thus C(T? is dense in A'(T* by Lebesgue’s con-
vergence theorem. Hence Mf € K* for every f € h'(T?) (cf. the proof of
Theorem 3.5). '

(1.2), (3.1) and (8.2) follows that | Mf||x<c||Mf*|| =G, f|ls for every
fehi(T?, and [|[NX||u=Zc||NX*||=¢c|INX ||z for every Xe K.

So M is an isomorphism on RYT? onto N(K'). Thus Theorem 3.5
prove the corollary.

From Corollary 3.6 we have the Fefferman-Stein decomposition of
BMO(T?), and Corollary 3.7 implies the following

COROLLARY 3.9. The following conditions (a) and (b) are equivalent.
(a) feBMOA(T?.
(b) There exists an h € L*(T?) such that
f(z, zz)’-"K“(h)(zn 2,)
=emr|  § I /&—en)r, tatde,

Sfor all (2, z,) € D%, and || f|l.~||h| -

REMARK. This corollary is an extention of Theorem 5 (a)«<(e) in [1].

§4. H* as abstract Hardy algebras and their applications.

It is not hard to see that H= is not weak * Dirichlet algebras. (See
[11] for weak = Dirichlet algebras.) We begin by proving the following
theorem.
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THEOREM 4.1. (1) H* 18 a weak * closed algebra of L.

(2) H=»>sl1.

(3) E[XY]=E[X]ELY] for every X, Ye H~.

(4) log(|Xu|)=E[log(|X|)] for every XeH'.

(6) H?NL"=H" 1=p=sr=o).

(6) Hr=[H*],=[H*(ZYQH*(Z ], 1<p< ), where we denote by
[H*], (resp. [H*(F')QH>(5%)],) the L*-norm closure of H= (resp.
H>( 7 QH>(?) and we denote by H*(F " )QH*(F*) the linear span
of {FG: Fe H ("), Ge H*(Z?).

In order to prove Theorem 4.1 we need the following lemma.

LEMMA 4.2, Let X“, -.., X" ¢ H* and let G be a domain in C* such
that P{M, =X, -+, X;¢eG for every s, t=0}=1. If @ a function
which is twice continuously differentiable on C* and analytic on G, then
we obtain the following (a) and (b).

(a) If sup,.|p(M,,)| € L? then (p(M,,))e H*.

() If Xe H*> (1<j<n), then (p(M,,)) € H*.

Proor. Let Y@, , Y™ e H(s7) and p'{(Y®, -+, Y™ eG for
every t=0}=1. If sup,|p(Y®, ---, Y{™)| e L', then Ito’s formula and [8,
p. 292 ¢)] give (p(Y ™, «+-, Y") e H(F %) (=1, 2). From this we have

that (@(M,,)):= (resp. (p(M,.)).=,) is a holomorphic martingale for fixed
8§=0 (resp. t=0). By Proposition 1 in [4] and Appendix I we have (a).
And (b) is clear by (a).

PrROOF OF THEOREM 4.1. (2) is obvious. By Lemma 4.2 we obtain
that H* is an algebra and satisfies (8). By Proposition 2.1 (2) and Lemma
2.3, it is true that H? is L?-norm closed (1=<p< ). Since H*=H*NL">,
H> is weak = closed algebra by Krein-Smulian consequence ([2]). By
Corollary 2.4.6 in [11] we have

(4.1) log |E;[X]|< Ejllog | X]] ,

for every Xe H(&9) (5=1, 2).
Take any Xe H'. If X,=0, then (4) is clear. We assume X, 0.
Then we have
o > K[| X|]=E,[E[| X[]]= E.[E,[log | X]|]]
= Ejllog |E\[X]|]=log |E.E[X]|
=log | Xo|> — oo .

Hence log]XooléEz[El[lbg|X]]]=E[logIX]] by Fubini’s theorem. So
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we obtain (4). Finally we will prove (6). We first suppose 2=<p< . Let
XeH?. For any &>0, there exist a,e€C, A™ e L?(2,) and B™ e L?(R2,)
(n=1, -++, N) such that
N
”X___Z—lanA(n)B(n)“Lp<e .
Then we have that

|X-3 2.4 T (B
n=1

?

LP

Kaa( X— ,.ZZ“I a,A™ B('n))

(by (1.2))

< Cl Kaa(X_g anA(n)B(n)> .,

=C| K|, X——i_v‘, a,A™B™ (by Proposition 2.1(1))
=eC|[K**,

here and throughout this proof we denote by C various universal con-
stants, and ||K*||,=sup{|| K*Y||xs: || Y ||e»=1}.

KPP

Ler RE=inf{s:|T(A"®),|=m} and let S%=inf{t: |T,(B*),|=m}, me N,
k::l, N N.
For every ke{l, ---, N}, there exists an m € N depending only on
Sin-18,A™B™ such that
| T2 (A™) — T/ (A™) gk || Lo 2y €/ Nlayl<”’
| To(B™®) — To(B®)sk || o0, =€/ Nlasls' ,

where #'=max(l, | T\(A®)||zrc0ps | To™(B*)||zp0p: k=1, -++, N). Hence

IX— 3 @, T(A™)an TW(B™)sn

L?

=|x-2 a.iam) 7B
n=1

‘L?

“+

L?

3 @, T(A™) T(B™)— 3 a, T(A™) T,(B™)gn

N
+[[5 @ A T(B)gn — 3% @, Ti(A™) g0 T B™)gn
n=1 n=1
<eC||K*||, +&+e=e@+C|| K*],).

Since 3.1, a,Ty(A™)en T(B™)s» € H(FHQH*(# *)CH*, we have
that H*=[H*(# )QH"(Z )], =[H"]?, if 2=p< .

L?
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; Suppose 1=p<2. Let XeH’. By [13, p. 97] it is clear that
(Xyo—Xw), and (X,,—X,), are in [H*(& HYQH"(],. By Appendix I,
there exists AeA? such that AX = S Adzdz. By definition of A
there exists A,€ S (n e N) such that lim,_., [A—A,],=0. Hence we have

”AX— SSAndzldzz gCHAX—- “A,,dzldzﬁ
o -
=C[A—A],—>0 (a8 m— o).

Since SSA,Ldz‘dzzeH2 we have that

Hr=|H*],=[[H(F)QH(F )], =[H(FHIQH(F ), .

COROLLARY 4.8. If Xe H*' is real valued, then X is a constant
SJunction.

PrOOF. It is clear by [11, Lemma 3.2] and (4).
As application of results in this section stated above we study there-

after H'-martingales with positive real parts.
We put

H*={X:Re X=0 a.s. and exp(—aX)ec H* for every a=0}
(cf. [2]).
THEOREM 4.4. If Xe H', Re X=0 and X+0 a.s., then

Log(X)=log(|X|)+7Arg X€ BMOA (—n/2<Arg X=r/2) and
log (| X)) = Eflog(| X)]> — oo .

Hence X is an outer function.
For the proof of this theorem we need following lemma.
LEMMA 4.5. If Xe H! and exp(X)e L~, then exp(X)e H*

PROOF. Since |exp(X,,)|<| exp(X)||,~< o, we have that exp(X) e H'N
L*=H>, by Lemma 4.2 and Theorem 4.1 (5).

LEMMA 4.6. If Xe H' and Re(X)=>0 a.s., then Xe H*.
PROOF. exp(—aX)eL> for any a=0. Hence Xe H* by Lemma 4.5.

LEMMA 4.7. Suppose pel0, <] and let Xe H*. If Im(X)e BMO,
then Xe BMOA.
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PrROOF. To prove the lemma, it suffices to show that 4Xe BMOA.
Let AX=§SAdz‘dz’ for some A€ A® (cf. Appendix I). Then

Re(4X)= S S(Re(A))(dx‘dx* — dytdy?) — S S(Im(A)) (dy'da? +dady?)
and
Im(4X)= S S(Im(A))(dxldxz — dytdy?) + SS(Re(A))(dy‘dx* +dridy?) .

Hence
(Re(4X), Re(4X)) =<{Im(4X), Im(4X)) .

From this we have Re(4X) e K:. By the definition of BMO-norm we
obtain

”Re(AX)”**::”Im(AX)”** .
Thus 4X e BMOA.

PROOF OF THEOREM 4.4. By Lemma 4.6 and [2, p. 94], there exist
h,€ H* (ke N) such that

We put X =X+(1/n) and h,,.=h,+1/n) (n€N). Then Re(h,,)=
1/n (n, ke N). By Runge’s approximation theorem in function theory and
Theorem 4.1 (1) we have that Log(k, ,) € H* (k, n € N). It is easy to check
that log(|X|) € L* by using of Theorem 4.1 (4). Since

|Log(hy,.)|=max(log(n), log(|X|+1))+= ,
|Log(X™)| =max(log(|X|+1), log(| X)) +=

(n, ke N), we obtain that Log(X) € H' by Lebesgue’s convergence theorem.
Since Im(Log(X)) e L, we have Log(X)e BMOA by Lemma 4.7.

Now, we put s, ,=max(||Re(h,,.)|z= [Im(hs,a)llz), 6,.=1/n and e,,=
[0.+(8¢,.)*]/0. (n, ke N). Then it follows that

s, n—Ep,nll Lo S (=20, + (64,0))* <6k, (M, KEN) .

Hence, by §8 Corollary 4 in [3], there exist g, ,€ H* (k, n€ N) such
that

h’k,n = (ek,n) exp (gk,'n) .
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We put Y, .=Q1/e,..) exp(—g;.) (K, n€N). By Lemma 4.5, we have
that Y, ,e H* and Y, ,h;.=1 (n, ke N). Theorem 4.1 (4) implies that

— oo <Zlog(|E[h,,.]1) =E[log(|hs,.))] .
Since [log(|hs,.)| <k, <|X|+1, it follows that
— oo <log(|E[X]|)= E[log(| X])] .

REMARK. In the case of 1-parameter, Varopoulos proved the Helson-
Szego’s theorem by using of following result ([13]):

If Xe H(Z™), X+#0; Re(X)=0 a.s. dP, then Log(X)ec H\(Z™).

But the Helson-Szeg6’s theorem in general does not hold on the torus
and product Brownian spaces. Indeed, we can construct w € L*(T?) satisfy-
ing the following (1), (2) and (8).

(1) 0=w=x1 a.s.dm.

(2) There exists a universal constant C>0 such that

> | JEs rwdm=Cl | frwdm  (f e LT .

j=1
(3) log(w) ¢ {g,+ >3- Hig;: 9, € L™(T?), k=0, 1, 2, 8.}.

This w can be constructed by modifying a Fefferman’s function in
[5, p. 397].

Appendix 1.

We shall here describe an explicit form of X* (X € K?, e=aa, ab, ba, bb).
Let X be written as (1.1). We put

a=(p,—19,)/2, o =(p,+1i9p,)/2, b=(y—19)/2,
b'=("l"1+?:"l"2)/2’ A=(@1_":@z_i@s_¢4)/4,
B=(0,4+19,—10,+?,)/4, C=(0,—i0,+1D,+D,)/4
and D=(0,+10,+10,—,)/4 .

Then we have
X=X, + S adz'+ S bdz* + SSAolzldz2 ,
x*=|Bizdz, X“=SSCd§‘dz2 and

X= Sa'di‘ + Sb’di2 + S SDdZ’:'IdZ2 .
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Appendix IT,

We shall here give an alternative proof of (3.1) in the proof of
Corollary 8.8; there exists a universal constant C, such that

INX||u=CJINX*||.» for all XeK'.

Let Ye K? and let P,(NY) be analytic on D,. Put f,=NY. By Hardy-
Littlewood’s inequality on T,, we have that

| ncsoee, endode

0

< rr( sup Pz( sup |P,(fi(+, -))(se"’)|”’)(re“°))2d0d¢

0 Jo \ogr<i 0ss<1

<l | (sup PCAC, enre)=) dodp

0 \0sr<1

=cf |11, enidodo
0 Jo

where ¢ and C are universal constants. Hence

In(I e =Cll il

Let Xe K*® and put f=NX. Since K*(f), K*(f), K*(f)~ and K®*(f)~
are analytic on D,, we obtain

NB(u=CIE()l.: (¢=aa, ab, ba, bb) .
So we obtain |
N =S AAIE s e=aa, ab, ba, bb}
=C3 {|1K()llz1: e=aa, ab, ba, bb}
=C X {|ME*(f)||.:: e=aa, ab, ba, bb}

=C 3 {I|[K*M(f)||11: e=aa, ab, ba, bb}
|| M| g || MF* |22

For every Xe K*, there exist X™ ¢ K* (n € N) such that
lim || X— X" || g1=0

(cf. the definition of 4'). Hence
lim | NX*— NX™*|| 2 <lim || N(X— X™)*|| 2

n—r00

~lim || N(X— X)) || = || N, lim || X— X*™|| 2=0 .
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Thus we obtain (3.1).
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