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of a Hamiltonian System
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Introduction

Let p=®, *+*, »,), ¢=(q, *++,q,) be points of R* and write z=
(v, 9 e R*™*. We consider a Hamiltonian system of H e C* R, R)

(H) p=—H,, ¢=H,
or equivalently
0 —
H e=JH'(z), J= ,
(H) £ (2) ( 7 0)

with I being the identity in R".

On any compact energy surface for classical Hamiltonian, that is,
H="kinetic energy’ + “potential”’, we have at least one periodic solution
of (H) [6] [5].

For any star-shaped energy surface, there exists at least one periodic
solution of (H) on it [7].

For a convex energy surface, Ekeland and Lasry [3] found » periodic
solutions on it and Ambrosetti-Mancini [2] extended it to the following.

We define [s],=[s]_=s for s€ Z and [s]_=7, [s]l,=73+1forse(f, 7+1)
with je Z.

THEOREM 1. Let C be a compact strictly convex subset of R™ with

C? boundary S. For some he R, H*(h)=S and H'(z)#0 for any z€S.
Assume further that there exist r, Re R and ke Z, 25k<n, with

(0.1) R<V'kr
such that
0.2) rBcCcRB,
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where B is the closed unit ball in R*™.

Then there exist at least [n/(k—1)], distinct periodic solutions of
(H) on S.

The case k=2 is the one by Ekeland-Lasry.

Let 0<w,=w,=< :++ =w,=1.

We identify z=(z, *++, 2,)€C" and (p, @) € R*™ by z,=p;+iq;, j=
1, ---, », and furnish a norm in z-space

(0.3) |z|i=’z=1 ;|2 .
In this note, we have
THEOREM 2. Let Q, be the ellipsoid

{zeC |z|.=1},

K=1 and Ne Z with N>K.
Let C, S and h be as in Theorem 1, replacing (0.1) and (0.2) with

0.4) R<V'N/Kr ,
and
(0.5) rBcCcCRQ, .

Then we have at least [>.1-, [@w;K]_/(N—1)], distinct periodic solutions
of (H) on S.

COROLLARY

(i) Im the case w,=w,= +++ =w,=1, we have Theorem 1.

(ii) In the case 0<w,<w,= +++ =w,=1, taking K=1/w, and N=
[K]-+1, we have at least n periodic solutions on S.

(iii) Taking proper K with N=[K]_-+1, we have at least [D.}-, ;]
periodic solutions on S.

PrOOF.

(i) Take K=1 and N=k.

(i) [ [w; K] (N-D],=[01+n-1D[K]_/[K] ]i=n

(iii) Because > 1., [w;K]_/[K]. — >3-, w; as K — oo. Q.E.D.

Remark that there is a case where we obtain more periodic solution
than (iii) assures. For example, take n =5,

0)1=0.1 ’ a)2=(l)3=w4=0.6 ’ w5=1
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and K=1.8 with N=[K]_+1=2. Then [>}, w;].=[2.9],=38 but
[320 [w;K]_/[K] -], =4.

In order to obtain »n periodic solutions, there is a case in which a
proper choice of K is necessary. For example, consider the case n=3,
w?=1/3, w,=5/6, and w,=1.

For K=3 and N=4, we have

([-—;,—x3:l_+[:—g-><3:l_+[1 x38]_)/8].=2,

hence only 2 solutions.
For K=6 and N=7, we have

([% x 6]_+[—g— % 6]_—1—[1 x 6]_)/[6]_=2+-(1T :

thus at least 3 solutions.
A special case w,= -+ =w,_,=1/2 and w,=1 is treated in [8].
Theorems 1 and 2 are proved by Dual Action Principle, which will
be explained in §1, counting the cohomological index developed by Fadell
and Rabinowitz [4] of an invariant subset under the natural S*-action.

§1. Dual action principle.

This method was developed in [1]. We explain it briefly and collect
some facts for later use.

Let S be the C* boundary of a compact strictly convex subset C of
R* (not necessarily satisfying (0.2) or (0.5)).

Take 8>2 and determine the Hamiltonian H=H(z): R**— R by

1.1) H*(1)=S
1.2) H: B-homogeneous. (H(\2)=N*H(z), »>0).
Then H is convex, so the Legendre transform G=G(u) is obtained,
which is a-homogeneous (1/a+1/8=1, 1<a<2).
Put E= {u e L*(0, 2r; R“)Suz Shu(t)dt=0} and define a C*-function
0
f:E— R by
__1f .
fay=—— Su Lu+§G(u) .

where z=Lu is determined by w=—JZ and Sz=0. We also consider
as a complex n-vector and u-Lu means the usual Euclidian inner product,
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in C* as 2n-dimensional vector space over R.
Finally put

M={ueE\0; Su-Lu:aSG(u)} :

Then M is a C' Banach submanifold of E and f: M — R satisfies P—S
condition.

And we have a one to one correspondence between critical points of
f in M and periodic orbits on S.
Furthermore we have

(1.8) m=min{f(u); ue M}>0,
and for peZ,={1,2, ---}

1.4) ueM =>uw=p’u(p-)eM
(1.5) Sfury=p’fu) for ueM

where 0=1/2—a) and ¢ 0=a/2—a)=ad.
And for uwe E with Su-Lu>O, there is the unique A>0 such that
2 € M. 2 is explicitly determined by

(1.6) x"“zagG(u)lgu-Lu, ((5) in [2])
where S means 1/27r§.
So
1.7) x=|:a§G(u)]’ if gu-Lu-_—.1
and because of
(1.8) f(u)=%§G(u)=-2%}—Su-Lu for ueM ((6) in [2])
we have
(1.9) o =ZalGou)
_ T a
=2y aSG(u)

=%|:a§G(u)]“ if Su-Lu—-:l .
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§2. Harmonic oscillators.

We consider the Hamiltonian

2.1) Hy(z)= Za w;lz; [,

=1

I.\le—‘

where 0<w, 2w, < -++ Sw,=1 are angular frequencies.
Since the complex version of (H) is 2=21(0/0Z)H(z) and 2(6/0% ;) H,(z) =
w;z;, (H) becomes componentwisely

2.2) bi—iwzy,  G=1,2, cee 1.
Hence the j-th periodic solution with multiplicity pe Z, is
2.3) c;etita;;c;€C\0, 0=t=2ur/w;

where a; is the j-th vector of the usual orthogonal basis of C".
We put

2.4) .mw=%mz

for B>2.
H, is B-homogeneous and satisfies (1.1) if S is

(2.5) {zeC"; |2|,=B"?}

The Legendre transform G(u) of Hy(z) is

2.6) Glu)=2ulz
} (44

where |ult=3, 75wl 7,=1/o,.
An elementary calculation gives

LEMMA 1. The corresponding critical point of f in M to (2.3) s
2.7 vi(t) = 't a;

and, writing v as v;, we have
(2.8) Foof) = fw) =(pe )’ -

We also have
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1
(2.9) Lo = Z'vgf
(2.10) Sv?Lv,‘;=3‘"‘8,,,p“’z';" .

Thus, for S defined by (2.5), m in (1.3) is given by

m=flw) ==,
hence
(2.11) fw)=tim and fv)=(er;)’m .
We put y,=[w;K]_, then we have
(2.12) ;=<K for j=1,2,---,n.

Also put a=y,+vy,+ *+* +,.
For {=(8;u)i=12, - nin=1,2,:-:,0; €C*, We define

)

(2.13) w=3, 3 i e E .
i=1 k=1
Then, from (2.10), we have
n Vi
(2.14) %uc-Lu;= 33 ()|l
i=1 p=1
=|ICI*.

We put 3={{eC% ||{||=1} and for { €Y we define
(2.15) Mo =] afewo |,
then, (1.7) implies @({)=\({)u.€ M and we have
(2.16) rop@=ml afGws ", (by (1.9))

where m=7n/¢=min{f(u); v € M} in the situation of this section.
Then we have

LEMMA 2. For small ¢>0, choosing o properly, we have

Max fop(Z)<(1+¢)’K'm .
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PROOF.
For {3, we have

n

(2.17) aGuy) = (Z T;

J=1

A SR
_<JZ=1 78
= F(t)" .

Vi
Z Ci#’vé‘
#=1

2>a/2

vy
3} Coppter
#=1

2)0:/2

Then

(2.18) SF(t)dt: g, Pz= (7 )"+ Cs
gK; %‘. (e )’ 1851

=K ¢l
=K

First for given ¢>0, we choose &,>0 so small that
(2.19) 1+e)(1Q+2¢)<1+e and Kg<1.

Then choose a so near 2 that

(2.20) s/(1+e)=s”’=(1+¢,)s for (Ke)=s=<2K.

Then we have

2.21) gaG(uc) = SF(t)“/z

SF(t)S(Ke,_)z g(Kc1)2<F(t)

<&+ +erre)
=Ke,+(1+e)K
=14+2¢)K

=1 +e)[1+2¢)K]*"
=[A+e)*A+26)K]*"
=[A+eK]”

Therefore

S °¢(C5 = m[agG(uc):ra

219

(by (2.12))

(by (2.20))
(by (2.18))

(by (2.20))

(by (2.19))
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gm[(l + e)K](aﬂ)Zd
<=1 +¢e)’Km ,

proving the lemma. Q.E.D.

§3. Proof of Theorem 2.

We attach the tilde ~ to the notations as G, f, M and & derived from
C in Theorem 2, E and Y unchanged and &: Y — M with

(3.1) Fp@=mlafGwo[’, tex,
by (1.9). Recall that m=xr/¢=min{f(u); u € M}.
LemMMA 3. (0.5) with (0.4) implies
Max fo&(Z) < N
where 7 =min{f(u); u € M}.

PrOOF. First we claim

(3.2) or-2ulr<Gu)=pG) for any ueR™,

where o,=rg"¢, p,=RB™"? and G(u) is given by (2.6). This is obtained
from (0.5) and the fact that pf(1/a)lu|* (or psG(w)) is G(u) in §1 derived
from C=7B (or RQ, respectively).

Since (3.2) implies min,,,.,G(u)=(1/a)p?, we have

(3.3) mzmpei’® ,

by (15) in [2] (b in (15) is equal to 27x).
Now, in Lemma 2, we choose ¢>0 so small that

(3.4) 0./0.<V' N[A+e)K .
For { €23, we have
f~°¢(C)=m[a§G(uc):|%
sl alGu) [ ot (by (3.2))

=fop(0)- 03’ (by (2.16))
<1 +e&)°K?-mp3’® (by Lemma 2)
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= m(l/(l‘i‘__s)f{pz)w

<m(V'Np)¥ (by (3.4))
= N%m*

= N%m (by (3.3))

Q.E.D.

Now we use the index theory developed by Fadell and Rabinowitz
[4]. We refer Lemma 1.13 of [7] for the definitions and properties.

We put My={u c IM; f(u)< N®}.

Then &(3)c My by Lemma 8.

And &: ¥ — M is equivariant under the S (=R/2rZ)-action: A=
(€8 5,) 31,2, eesmipmtyy ey TOF E=(L5)i:u € C* and Au(t)=u(t+s) for w e M.

We can prove that index Y=a, because Y is embedded onto F'N.&
in (E)*, where F is a 2a dimensional invariant subspace of (E)' and
& is the unit sphere of E, (see 6° in Lemma 1.13 in [7]. FE, is written
as F in the lemma). F' is concretely given by

spancle*a;; g=1, + -+, n; p=1, -+, v;} .

Thus 2° in the lemma implies index (liy)=a. So Lusternik-Schnirel-
mann theory gives at least a critical points (up to S'-action). But we
cannot avoid the possibility that functions in Iy has multiplicity less
than N. Therefore we have at least [a/(IN—1)], distinct periodic solutions,

as in the proof of [2].
This proves the theorem. Q.E.D.
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