Periodic Solutions on a Convex Energy Surface of a Hamiltonian System

Kiyoshi HAYASHI

Keio University

Introduction

Let $p = (p_1, \dots, p_n)$, $q = (q_1, \dots, q_n)$ be points of \mathbb{R}^n and write $z = (p, q) \in \mathbb{R}^{2n}$. We consider a Hamiltonian system of $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$

$$\dot{p} = -H_q , \quad \dot{q} = H_p$$

or equivalently

$$\dot{z}\!=\!JH'(z)$$
 , $J\!=\!\begin{pmatrix} 0 & -I \ I & 0 \end{pmatrix}$,

with I being the identity in \mathbb{R}^n .

On any compact energy surface for classical Hamiltonian, that is, H="kinetic energy"+"potential", we have at least one periodic solution of (H) [6] [5].

For any star-shaped energy surface, there exists at least one periodic solution of (H) on it [7].

For a convex energy surface, Ekeland and Lasry [3] found n periodic solutions on it and Ambrosetti-Mancini [2] extended it to the following.

We define $[s]_+=[s]_-=s$ for $s\in \mathbb{Z}$ and $[s]_-=j$, $[s]_+=j+1$ for $s\in (j, j+1)$ with $j\in \mathbb{Z}$.

THEOREM 1. Let C be a compact strictly convex subset of \mathbb{R}^n with C^2 boundary S. For some $h \in \mathbb{R}$, $H^{-1}(h) = S$ and $H'(z) \neq 0$ for any $z \in S$.

Assume further that there exist r, $R \in \mathbb{R}^+$ and $k \in \mathbb{Z}$, $2 \leq k \leq n$, with

$$(0.1) R < \sqrt{k} r$$

such that

$$(0.2)$$
 $rB \subset C \subset RB$,

Received September 26, 1984

where B is the closed unit ball in R^{2n} .

Then there exist at least $[n/(k-1)]_+$ distinct periodic solutions of (H) on S.

The case k=2 is the one by Ekeland-Lasry.

Let $0 < \omega_1 \le \omega_2 \le \cdots \le \omega_n = 1$.

We identify $z=(z_1, \dots, z_n) \in C^n$ and $(p, q) \in \mathbb{R}^{2n}$ by $z_j=p_j+iq_j$, $j=1, \dots, n$, and furnish a norm in z-space

$$|z|_{\omega}^{2} = \sum_{j=1}^{n} \omega_{j} |z_{j}|^{2}.$$

In this note, we have

THEOREM 2. Let Q_{ω} be the ellipsoid

$$\{z \in \mathbb{C}^n; |z|_{\omega} \leq 1\}$$
,

 $K \ge 1$ and $N \in \mathbb{Z}$ with N > K.

Let C, S and h be as in Theorem 1, replacing (0.1) and (0.2) with

$$(0.4) R < \sqrt{N/Kr} ,$$

and

$$rB \subset C \subset RQ_{\omega}.$$

Then we have at least $[\sum_{j=1}^{n} [\omega_{j}K]_{-}/(N-1)]_{+}$ distinct periodic solutions of (H) on S.

COROLLARY

- (i) In the case $\omega_1 = \omega_2 = \cdots = \omega_n = 1$, we have Theorem 1.
- (ii) In the case $0 < \omega_1 < \omega_2 = \cdots = \omega_n = 1$, taking $K = 1/\omega_1$ and $N = [K]_{-} + 1$, we have at least n periodic solutions on S.
- (iii) Taking proper K with $N=[K]_{-}+1$, we have at least $[\sum_{j=1}^{n} \omega_j]_{+}$ periodic solutions on S.

PROOF.

- (i) Take K=1 and N=k.
- (ii) $[\sum_{j=1}^{n} [\omega_{j}K]_{-}(N-1)]_{+} = [(1+(n-1)[K]_{-}/[K]_{-}]_{+} = n$
- (iii) Because $\sum_{j=1}^{n} [\omega_{j}K]_{-}/[K]_{-} \to \sum_{j=1}^{n} \omega_{j}$ as $K \to \infty$. Q.E.D.

Remark that there is a case where we obtain more periodic solution than (iii) assures. For example, take n=5,

$$\omega_1 = 0.1$$
, $\omega_2 = \omega_3 = \omega_4 = 0.6$, $\omega_5 = 1$

and K=1.8 with $N=[K]_-+1=2$. Then $[\sum_{j=1}^5 \omega_j]_+=[2.9]_+=3$ but $[\sum_j^5 [\omega_j K]_-/[K]_-]_+=4$.

In order to obtain n periodic solutions, there is a case in which a proper choice of K is necessary. For example, consider the case n=3, $\omega_1^2=1/3$, $\omega_2=5/6$, and $\omega_3=1$.

For K=3 and N=4, we have

$$\left(\left[\frac{1}{3}\times3\right]_{-}+\left[\frac{5}{6}\times3\right]_{-}+[1\times3]_{-}\right)/[3]_{-}=2$$
,

hence only 2 solutions.

For K=6 and N=7, we have

$$\left(\left[\frac{1}{3}\times 6\right]_{-}+\left[\frac{5}{6}\times 6\right]_{-}+\left[1\times 6\right]_{-}\right)/\left[6\right]_{-}=2+\frac{1}{6}$$
,

thus at least 3 solutions.

A special case $\omega_1 = \cdots = \omega_{n-1} = 1/2$ and $\omega_n = 1$ is treated in [8].

Theorems 1 and 2 are proved by $Dual\ Action\ Principle$, which will be explained in §1, counting the cohomological index developed by Fadell and Rabinowitz [4] of an invariant subset under the natural S^1 -action.

§1. Dual action principle.

This method was developed in [1]. We explain it briefly and collect some facts for later use.

Let S be the C^2 boundary of a compact strictly convex subset C of \mathbb{R}^{2n} (not necessarily satisfying (0.2) or (0.5)).

Take $\beta > 2$ and determine the Hamiltonian $H = H(z): \mathbb{R}^{2n} \to \mathbb{R}$ by

$$(1.1) H^{-1}(1) = S$$

(1.2)
$$H: \beta$$
-homogeneous. $(H(\lambda z) = \lambda^{\beta} H(z), \lambda > 0)$.

Then H is convex, so the Legendre transform G=G(u) is obtained, which is α -homogeneous $(1/\alpha+1/\beta=1, 1<\alpha<2)$.

Put $E = \left\{ u \in L^{\alpha}(0, 2\pi; \mathbf{R}^{2n}) \int u \equiv \int_{0}^{2\pi} u(t) dt = 0 \right\}$ and define a C^1 -function $f: E \to \mathbf{R}$ by

$$f(u) = -\frac{1}{2} \int u \cdot Lu + \int G(u) .$$

where z=Lu is determined by $u=-J\dot{z}$ and $\int z=0$. We also consider u as a complex n-vector and $u \cdot Lu$ means the usual Euclidian inner product,

in C^n as 2n-dimensional vector space over R. Finally put

$$M = \{ u \in E \setminus 0; \int u \cdot Lu = \alpha \int G(u) \}$$
.

Then M is a C^1 Banach submanifold of E and $f: M \rightarrow R$ satisfies P-S condition.

And we have a one to one correspondence between critical points of f in M and periodic orbits on S.

Furthermore we have

$$(1.3) m = \min\{f(u); u \in M\} > 0,$$

and for $\mu \in \mathbb{Z}_+ = \{1, 2, \cdots\}$

$$(1.4) u \in M = > u^{\mu} \equiv \mu^{\nu} u(\mu \cdot) \in M$$

$$(1.5) f(u^{\mu}) = \mu^{g} f(u) for u \in M$$

where $\delta = 1/(2-\alpha)$ and $\vartheta \theta = \alpha/(2-\alpha) = \alpha\delta$.

And for $u \in E$ with $\int u \cdot Lu > 0$, there is the unique $\lambda > 0$ such that $\lambda u \in M$. λ is explicitly determined by

(1.6)
$$\lambda^{2-\alpha} = \alpha \int G(u) / \int u \cdot Lu , \qquad ((5) \text{ in } [2])$$

where \int means $1/2\pi \int$.

(1.7)
$$\lambda = \left[\alpha \int G(u)\right]^{s} \quad \text{if} \quad \int u \cdot Lu = 1$$

and because of

(1.8)
$$f(u) = \frac{\pi}{\delta} \int G(u) = \frac{1}{2\vartheta} \int u \cdot Lu \quad \text{for} \quad u \in M$$
 ((6) in [2])

we have

(1.9)
$$f(\lambda u) = \frac{\pi}{\vartheta} \alpha \int G(\lambda u)$$
$$= \frac{\pi}{\vartheta} \lambda^{\alpha} \alpha \int G(u)$$
$$= \frac{\pi}{\vartheta} \left[\alpha \int G(u) \right]^{2\vartheta} \quad \text{if} \quad \int u \cdot Lu = 1.$$

§ 2. Harmonic oscillators.

We consider the Hamiltonian

(2.1)
$$H_2(z) = \frac{1}{2} \sum_{j=1}^n \omega_j |z_j|^2,$$

where $0 < \omega_1 \le \omega_2 \le \cdots \le \omega_n = 1$ are angular frequencies.

Since the complex version of (H) is $\dot{z} = 2i(\partial/\partial \overline{z})H(z)$ and $2(\partial/\partial \overline{z}_j)H_2(z) = \omega_j z_j$, (H) becomes componentwisely

$$\dot{z}_j = i\omega_j z_j , \qquad j = 1, 2, \cdots, n .$$

Hence the j-th periodic solution with multiplicity $\mu \in \mathbb{Z}_+$ is

$$(2.3) c_i e^{i\omega_j t} a_i; c_i \in \mathbb{C} \setminus 0, \quad 0 \leq t \leq 2\mu \pi/\omega_i$$

where a_j is the j-th vector of the usual orthogonal basis of C^n . We put

$$(2.4) H_{\beta}(z) = \frac{1}{\beta} |z|_{\omega}^{\beta}$$

for $\beta > 2$.

 H_{β} is β -homogeneous and satisfies (1.1) if S is

$$\{z \in C^n; |z|_{\omega} = \beta^{1/\beta}\}$$

The Legendre transform G(u) of $H_{\beta}(z)$ is

$$(2.6) G(u) = \frac{1}{\alpha} |u|_{\tau}^{\alpha}$$

where $|u|_{\tau}^{2} = \sum_{j=1}^{n} \tau_{j} |u_{j}|^{2}$, $\tau_{j} = 1/\omega_{j}$.

An elementary calculation gives

LEMMA 1. The corresponding critical point of f in M to (2.3) is

$$v_{j}^{\mu}(t) \equiv \mu^{\delta} \tau_{j}^{\vartheta/2} e^{\mu i t} a_{j}$$

and, writing v_i^1 as v_j , we have

(2.8)
$$f(v_{j}^{\mu}) = \mu^{g} f(v_{j}) = (\mu \tau_{j})^{g} \frac{\pi}{\vartheta}.$$

We also have

$$(2.9) Lv_j^{\mu} = \frac{1}{\mu}v_j^{\mu}$$

Thus, for S defined by (2.5), m in (1.3) is given by

$$m=f(v_n)=\frac{\pi}{\vartheta}$$
,

hence

(2.11)
$$f(v_i) = \tau_i^g m \quad and \quad f(v_i) = (\mu \tau_i)^g m$$
.

We put $\nu_i = [\omega_i K]_-$, then we have

$$(2.12) \nu_i \tau_i \leq K for j=1, 2, \cdots, n.$$

Also put $a=\nu_1+\nu_2+\cdots+\nu_n$.

For $\zeta = (\zeta_{j\mu})_{j=1,2,\dots,n;\mu=1,2,\dots,\nu_j} \in \mathbb{C}^a$, we define

(2.13)
$$u_{\zeta} = \sum_{i=1}^{n} \sum_{\mu=1}^{\nu_{i}} \zeta_{i\mu} v_{i}^{\mu} \in E.$$

Then, from (2.10), we have

(2.14)
$$\int u_{\zeta} \cdot L u_{\zeta} = \sum_{j=1}^{n} \sum_{\mu=1}^{\nu_{j}} (\mu \tau_{j})^{\vartheta} |\zeta_{j\mu}|^{2}$$

$$\equiv ||\zeta||^{2}.$$

We put $\Sigma = \{\zeta \in C^a; ||\zeta|| = 1\}$ and for $\zeta \in \Sigma$ we define

(2.15)
$$\lambda(\zeta) = \left[\alpha \int G(u_{\zeta})\right]^{\delta},$$

then, (1.7) implies $\varphi(\zeta) \equiv \lambda(\zeta)u_{\zeta} \in M$ and we have

(2.16)
$$f \circ \varphi(\zeta) = m \left[\alpha \int G(u_{\zeta}) \right]^{2\delta} , \qquad (by (1.9))$$

where $m=\pi/\vartheta=\min\{f(u); u\in M\}$ in the situation of this section. Then we have

LEMMA 2. For small $\varepsilon > 0$, choosing α properly, we have

Max
$$f \circ \varphi(\Sigma) \leq (1+\varepsilon)^{\vartheta} K^{\vartheta} m$$
.

PROOF.

For $\zeta \in \Sigma$, we have

(2.17)
$$\alpha G(u_{\zeta}) = \left(\sum_{j=1}^{n} \tau_{j} \left| \sum_{\mu=1}^{j} \zeta_{j\mu} v_{j}^{\mu} \right|^{2} \right)^{\alpha/2}$$

$$= \left(\sum_{j=1}^{n} \tau_{j}^{\beta+1} \left| \sum_{\mu=1}^{\nu_{j}} \zeta_{j\mu} \mu^{\delta} e^{\mu i t} \right|^{2} \right)^{\alpha/2}$$

$$= F(t)^{\alpha/2}.$$

Then

(2.18)
$$\int F(t)dt = \sum_{j=1}^{n} \sum_{\mu=1}^{\nu_{j}} (\mu \tau_{j})^{\vartheta+1} |\zeta_{j\mu}|^{2}$$

$$\leq K \sum_{j} \sum_{\mu} (\mu \tau_{j})^{\vartheta} |\zeta_{j\mu}|^{2}$$

$$= K ||\zeta||^{2}$$

$$= K$$

First for given $\varepsilon > 0$, we choose $\varepsilon_1 > 0$ so small that

$$(2.19) (1+\varepsilon_1)^2(1+2\varepsilon_1) \leq 1+\varepsilon \text{ and } K\varepsilon_1 < 1.$$

Then choose α so near 2 that

$$(2.20) s/(1+\varepsilon_1) \leq s^{\alpha/2} \leq (1+\varepsilon_1)s \text{for } (K\varepsilon_1)^2 \leq s \leq 2K.$$

Then we have

$$(2.21) \qquad \int \alpha G(u_{\zeta}) = \int F(t)^{\alpha/2}$$

$$= \int_{F(t) \leq (K\epsilon_{1})^{2}} + \int_{(K\epsilon_{1})^{2} < F(t)}$$

$$\leq (K\epsilon_{1})^{2\alpha/2} + \int (1+\epsilon_{1})F(t) \qquad (by (2.20))$$

$$\leq K\epsilon_{1} + (1+\epsilon_{1})K \qquad (by (2.18))$$

$$= (1+2\epsilon_{1})K$$

$$\leq (1+\epsilon_{1})[(1+2\epsilon_{1})K]^{\alpha/2} \qquad (by (2.20))$$

$$\leq [(1+\epsilon_{1})^{2}(1+2\epsilon_{1})K]^{\alpha/2}$$

$$\leq [(1+\epsilon)K]^{\alpha/2} \qquad (by (2.19))$$

Therefore

$$f\circ\varphi(\zeta)=m\bigg[\alpha \int G(u_{\zeta})\bigg]^{2\delta}$$

$$\leq m[(1+\varepsilon)K]^{(\alpha/2)2\delta}$$

$$\leq (1+\varepsilon)^{\vartheta}K^{\vartheta}m,$$

proving the lemma.

Q.E.D.

§ 3. Proof of Theorem 2.

We attach the tilde $\tilde{}$ to the notations as \tilde{G} , \tilde{f} , \tilde{M} and $\tilde{\varphi}$ derived from C in Theorem 2, E and Σ unchanged and $\tilde{\varphi} \colon \Sigma \to \tilde{M}$ with

$$\widetilde{f} \circ \widetilde{\varphi}(\zeta) = m \left[\alpha \int \widetilde{G}(u_{\zeta}) \right]^{2\delta} , \quad \zeta \in \Sigma ,$$

by (1.9). Recall that $m = \pi/\vartheta = \min\{\tilde{f}(u); u \in M\}$.

LEMMA 3. (0.5) with (0.4) implies

$$\operatorname{Max} \widetilde{f} \circ \widetilde{\varphi}(\Sigma) < N^{\vartheta} \widetilde{m}$$

where $\widetilde{m} = \min\{\widetilde{f}(u); u \in \widetilde{M}\}.$

PROOF. First we claim

$$(3.2) \rho_1^{\alpha} \cdot \frac{1}{\alpha} |u|^{\alpha} \leq \widetilde{G}(u) \leq \rho_2^{\alpha} G(u) \text{for any } u \in \mathbf{R}^{2n} ,$$

where $\rho_1 = r\beta^{-1/\beta}$, $\rho_2 = R\beta^{-1/\beta}$ and G(u) is given by (2.6). This is obtained from (0.5) and the fact that $\rho_1^{\alpha}(1/\alpha)|u|^{\alpha}$ (or $\rho_2^{\alpha}G(u)$) is G(u) in §1 derived from C = rB (or RQ_{ω} respectively).

Since (3.2) implies $\min_{|u|=1} \tilde{G}(u) \ge (1/\alpha) \rho_1^{\alpha}$, we have

$$\widetilde{m} \ge m \rho_1^{i\vartheta} ,$$

by (15) in [2] (b in (15) is equal to 2π).

Now, in Lemma 2, we choose $\varepsilon > 0$ so small that

$$(3.4) \rho_{\scriptscriptstyle 2}/\rho_{\scriptscriptstyle 1} \! < \! \sqrt{N/(1+\varepsilon)K} \; .$$

For $\zeta \in \Sigma$, we have

$$\begin{split} \widetilde{f} \circ \widetilde{\varphi}(\zeta) &= m \bigg[\alpha \Big\} \widetilde{G}(u_{\zeta}) \bigg]^{2\delta} \\ &\leq m \bigg[\alpha \Big\} G(u_{\zeta}) \bigg]^{2\delta} \rho_{2}^{2\alpha\delta} & \text{(by (3.2))} \\ &= f \circ \varphi(\zeta) \cdot \rho_{2}^{2\beta} & \text{(by (2.16))} \\ &\leq (1 + \varepsilon)^{\vartheta} K^{\vartheta} \cdot m \rho_{2}^{2\beta} & \text{(by Lemma 2)} \end{split}$$

$$egin{align} &= m(\sqrt{(1+arepsilon)K}
ho_2)^{2artheta} \ &< m(\sqrt{N}
ho_1)^{2artheta} \ &= N^{artheta}m
ho_1^{2artheta} \ &\le N^{artheta}\widetilde{m} \ & ext{(by (3.4))} \ &\ge N. \end{aligned}$$

Now we use the index theory developed by Fadell and Rabinowitz [4]. We refer Lemma 1.13 of [7] for the definitions and properties.

We put $\widetilde{M}_N = \{u \in \widetilde{M}; \widetilde{f}(u) < N^{\vartheta} \widetilde{m}\}.$

Then $\widetilde{\varphi}(\Sigma) \subset \widetilde{M}_N$ by Lemma 3.

And $\widetilde{\varphi}\colon \Sigma \to \widetilde{M}$ is equivariant under the S^1 (= $R/2\pi Z$)-action: $A_s\zeta = (e^{i\mu s}\zeta_{j\mu})_{j=1,2,\dots,n;\mu=1,2,\dots,\nu_j}$ for $\zeta = (\zeta_{j\mu})_{j;\mu} \in C^a$ and $A_su(t) = u(t+s)$ for $u \in \widetilde{M}$.

We can prove that index $\Sigma = a$, because Σ is embedded onto $F \cap \mathscr{S}$ in $(E_2^0)^{\perp}$, where F is a 2a dimensional invariant subspace of $(E_2^0)^{\perp}$ and \mathscr{S} is the unit sphere of E_2 (see 6° in Lemma 1.13 in [7]. E_2 is written as E in the lemma). F is concretely given by

$$span_{c}\{e^{\mu it}a_{i}; j=1, \dots, n; \mu=1, \dots, \nu_{i}\}$$
.

Thus 2° in the lemma implies index $(\tilde{M}_N) \ge a$. So Lusternik-Schnirelmann theory gives at least a critical points (up to S^1 -action). But we cannot avoid the possibility that functions in \tilde{M}_N has multiplicity less than N. Therefore we have at least $[a/(N-1)]_+$ distinct periodic solutions, as in the proof of [2].

This proves the theorem.

Q.E.D.

References

- [1] A. Ambrosetti and G. Mancini, Solution of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255 (1981), 405-421.
- [2] A. Ambrosetti and G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Differential Equations, 43 (1982), 249-256.
- [3] I. EKELAND and J. M. LASRY, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math., 112 (1980), 283-319.
- [4] E. FADELL and P. RABINOWITZ, Generalized cohomological index theories for group actions with an application to bifurcation questions for Hamiltonian systems, Invent Math., 45 (1978), 139-174.
- [5] H. GLUCK and W. ZILLER, Existence of periodic motions of conservative system, Seminar on Minimal Submanifolds, Ann. of Math. Studies 103 Princeton University Press, Princeton, 1983, 65-98.
- [6] K. HAYASHI, Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., 6 (1983), 473-486.

KIYOSHI HAYASHI

- [7] P. RABINOWITZ, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
- [8] K. HAYASHI, Near the Hamiltonian $H = \sum_{j=1}^{n-1} \frac{1}{2} (p_j^2 + q_j^2) + (p_n^2 + q_n^2)$, Tokyo J. Math., 8 (1985), 415-427.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU
YOKOHAMA 223