A New Characterization of Dragon and Dynamical System

Masahiro MIZUTANI and Shunji ITO

Waseda University and Tsuda College

Introduction

The fractal sets called a twindragon and a dragon are encountered in a complex binary representation [7] and a paper folding curve [5], respectively. We have constructed in a previous paper [1] dynamical systems on the twindragon (Figure 1) and the tetradragon (Figure 2) tiled by four dragons which are obtained as realized domains for a two state Bernoulli shift and a some subshift with a finite coding from a Markov subshift [8], respectively.

We propose in this paper a new construction of a dragon different from the paper folding process and consider a dynamical system on a domain, tiled by four dragons, which are not the tetradragon. We call this domain a cross dragon. Moreover surprisingly we can show in Section 4 that this cross dragon system is actually a dual system [1] of a very simple group endomorphism.

Indeed the cross dragon system is obtained as a realization of a following Markov subshift. Let $M=\left(M_{j, k}\right), 1 \leqq j, k \leqq 4$, be a matrix such that

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

We consider M as a structure matrix for a state space $\Gamma=\{0, i,-1+i$, $-1\}$ by a correspondence $\tau:\{1,2,3,4\} \rightarrow \Gamma$ such that $\tau[1]=0, \tau[2]=i$, $\tau[3]=-1+i$ and $\tau[4]=-1$, that is, let V be a set of infinite sequences generated by the structure matrix M,

$$
V=\left\{\left(\gamma_{1}, \gamma_{2}, \cdots\right) ; M_{r_{j}, r_{j+1}}=1, \gamma_{j} \in \Gamma \text { for all } j \in N\right\},
$$

and σ a shift on V. Then the system (V, σ) is a Markov subshift. Define a realization map $\Phi: V \rightarrow Y \subset C$ such that

$$
\Phi:\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}, \cdots\right) \longrightarrow \sum_{k=1}^{\infty} \gamma_{k}(1+i)^{-k}
$$

for each $\left(\gamma_{1}, \gamma_{2}, \cdots\right) \in V$, and let Y_{γ} be the set $\left\{z \in Y=\left\{\Phi\left(\gamma_{1}, \gamma_{2}, \cdots\right)\right\} ; \gamma_{1}=\gamma\right\}$ for $\gamma \in \Gamma$. Then we can see in Section 2 that each set Y_{γ} is the dragon whose construction is different from a paper folding process and the set Y is tiled by four dragons $\left\{Y_{r}\right\}$, in spite of that Y is not the tetradragon. This is why we call Y a cross dragon (Figure 3). Also we can see in Section 3 that the cross dragon system (Y, T) can be defined as a realization of (V, σ) such that

$$
T z=(1+i) z-[(1+i) z]_{c} \text { for } z \in Y
$$

where $[w]_{c}=\gamma$ if $w \in \gamma+\left(Y_{\gamma[1]} \cup Y_{\gamma[2]}\right)$ for $M_{r, \gamma[1]}=M_{r, \gamma[2]}=1$.
In Section 4 we will see in Theorem (4.1) that this cross dragon system (Y, T) is actually a dual system [1] of a group endomorphism T_{L} on the torus \boldsymbol{T}^{2} such that

$$
T_{L}\binom{x}{y}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \quad(\bmod 1)
$$

We remark that by Theorem (3.3) the cross dragon system (Y, T) is isomorphic to a simple system on the torus such that

$$
T^{\dagger}\binom{x}{y}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}+\binom{-1}{1} \quad(\bmod 1)
$$

§ 1. Properties of twindragon and dragon.

We summarize the properties of a twindragon and a drangon obtained in the previous paper [1]. Recall notations by Dekking [3] [4]. Let S be a finite set of symbols, S^{*} be the free semigroup generated from S by the equivalence relation \sim, which is defined as $W \sim V$ iff W and V determine the same word after cancellation, that is so-called reduced word. And let $\theta: S^{*} \rightarrow S^{*}$ be a semigroup endmorphism. Let $f: S^{*} \rightarrow C$ be a homeomorphism which satisfies

$$
f(V W)=f(V)+f(W), \quad f\left(V^{-1}\right)=-f(V)
$$

for all words $V, W \in S^{*}$. Define a map $K: S^{*} \rightarrow \mathscr{K}(C)$, the nonempty compact subsets of C, which satisfies

$$
K[V W]=K[V] \cup(K[W]+f(V))
$$

for all reduced words $V, W \in S^{*}$, by

$$
K[s]=\{t f(s) ; 0 \leqq t \leqq 1\} \quad \text { for } \quad s \in S
$$

This makes $K\left[s_{1} \cdots s_{m}\right]$ the polygonal line with vertices at $0, f\left(s_{1}\right), f\left(s_{1}\right)+$ $f\left(s_{2}\right), \cdots, f\left(s_{1}\right)+\cdots+f\left(s_{m}\right)$.

Let $S=\{a, b, c, d\}$ and the endomorphism θ_{t} be

$$
\theta_{t}: a \longrightarrow a b, b \longrightarrow c b, c \longrightarrow c d, d \longrightarrow a d,
$$

and the homomorphism f be

$$
f(a)=1=-f(c), \quad f(b)=-i=-f(d) .
$$

Define the n-step twindragon D_{n} and n-step dragon H_{n} (or paperfolding dragon [5]) [1] [2] [3] [4] by

$$
\begin{equation*}
D_{n}=(1-i)^{-n} K\left[\theta_{t}^{n}(a b c d)\right] \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n}=(1-i)^{-n} K\left[\theta_{t}^{n}(a b)\right] . \tag{1.2}
\end{equation*}
$$

Notice that the n-step twindragon is tiled with two n-step dragon (Figure $1(\mathrm{~b})$), that is,

$$
\begin{equation*}
D_{n}=H_{n} \cup\left(-H_{n}+1-i\right) . \tag{1.3}
\end{equation*}
$$

It is proved in [3] [4] that D_{n} and H_{n} converge to limit sets D_{t} and H_{d} respectively as $n \rightarrow \infty$ in the Hausdorff metric $d(\cdot, \cdot)$ where

$$
d(A, B)=\sup \left\{\sup _{x \in A} \inf _{y \in B}|x-y|, \sup _{y \in B \in A} \inf _{x \in A}|x-y|\right\} .
$$

The sets D_{t} and H_{d} are called the twindragon and the dragon, respectively.
Now let sets $X_{B}, X_{B, 0}$ and $X_{B,-i}$ be

$$
\begin{aligned}
X_{B} & =\left\{\sum_{k=1}^{\infty} a_{k}(1-i)^{-k}: a_{k} \in\{0,-i\} \text { for all } k \in N\right\}, \\
X_{B, 0} & =\left\{\sum_{k=1}^{\infty} a_{k}(1-i)^{-k}: a_{1}=0, a_{k} \in\{0,-i\} \text { for all } k \geqq 2\right\}, \\
X_{B,-i} & =\left\{\sum_{k=1}^{\infty} a_{k}(1-i)^{-k}: a_{1}=-i, a_{k} \in\{0,-i\} \text { for all } k \geqq 2\right\} .
\end{aligned}
$$

Then followings were proved in [1]; X_{B} is similar to the twindragon D_{t}, that is,

$$
\begin{equation*}
X_{B}=(1-i)^{-1} D_{t} \tag{1.4}
\end{equation*}
$$

X_{B} is tiled by $X_{B, 0}$ and $X_{B,-t}$ which are congruent each other and similar to X_{B} (Figure $1(\mathrm{a})$), that is,

$$
\begin{equation*}
X_{B}=X_{B, 0} \cup X_{B,-i} \quad \text { and } \quad \lambda\left(X_{B, 0} \cap X_{B,-i}\right)=0 \tag{1.5}
\end{equation*}
$$

where λ is the Lebesgue measure on the plane. This fact indicates that

Figure 1(a). Twindragon $X_{B} . \quad X_{B}$ is similar to D_{t}, the limit set of twindragon curve (1.1), $X_{B}=(1-\mathrm{i})^{-1} D_{t} . X_{B}$ is tiled by twindragons which are a meshed twin dragon $X_{B, 0}$ and a dark twindragon $X_{B,-i}$, congruent to each other and similar to X_{B}, namely $X_{B}=X_{B, 0} \cup X_{B,-i}$.

Figure 1(b). Twindragon $X_{B} . \quad X_{B}$ is also tiled by two dragons which are a meshed dragon $(1-i)^{-1} H_{d}$ and a dark dragon $-(1-i)^{-1} H_{d}+1$, where H_{d} is the limit set of dragon curve (1.2), namely $X_{B}=(1-i)^{-1} H_{d} \cup\left(-(1-i)^{-1} H_{d}+1\right)$.

Figure 1(c). The plane is tiled by twindragons $\left\{X_{B}+m+i n ; m+\right.$ in $\in Z(i)\}$. This figure indicates $X_{B} \cup\left(X_{B}+i\right)$, where each twindragon is tiled by two dragons. Notice that the cross dragon Y in Section 2 is included, namely $Y_{-1} \cup Y_{0}=(1-i)^{-1} H_{d}$ (meshed dragon with end points 0 and 1) and $Y_{i} \cup Y_{-1+i}=-(1-i)^{-1} H_{d}+$ $1+i$ (dark dragon with end points $1+i$ and i) (cf. Figure 3).
twindragon is a selfsimilar fractal set of order 2. Finally the whole plane is tiled with twindragons (cf. Figure 1(a)(c)), that is,

$$
\bigcup_{m+i n \in Z(i)} X_{B(m+i n)}=C,
$$

> and

$$
\lambda\left(\bigcup_{m+i n} \partial X_{B(m+i n)}\right)=0,
$$

where $X_{B(m+i n)}=X_{B}+m+i n$ and ∂A is a boundary of a set A.
Next recall $W^{(n)}$, which is a set of the revolving sequences $\left(\delta_{1}, \cdots, \delta_{n}\right)$ [1] [5]. We call a sequence ($\delta_{1}, \cdots, \delta_{n}$), $\delta_{j} \in\{0,1, i,-1,-i\}$ for $1 \leqq j \leqq n$, a revolving if nonzero digits repeat periodically following pattern from left to right,

$$
\cdots \longrightarrow 1 \longrightarrow-i \longrightarrow-1 \longrightarrow i \longrightarrow 1 \longrightarrow-i \longrightarrow \ldots
$$

Then $W^{(n)}$ is decomposed as following;

$$
W^{(n)}=\bigcup_{\varepsilon \in\{0,1,2,3\}} W_{s}^{(n)}
$$

and

$$
W_{\varepsilon}^{(n)}=W_{(\varepsilon, 0)}^{(n)} \cup W_{(\varepsilon,(-i) \varepsilon)}^{(n)},
$$

where $W_{s}^{(n)}$ means a set of the revolving sequences whose first nonzero
digit is $(-i)^{e}$ and $W_{(e, 0)}^{(n)}$ a subset of $W_{\varepsilon}^{(n)}$ whose first digit is δ (refer to [1] for more precise definitions). Put

$$
W_{\varepsilon}^{*(n)}=\overline{W_{\varepsilon}^{(n)}} \quad \text { and } \quad W_{\varepsilon,(\overline{)}}^{*(n)}=\overline{W_{(e, \delta)}^{(n)}},
$$

where - means to take a complex conjugate for each digit of ($\delta_{1}, \cdots, \delta_{n}$).
Let sets $X_{(e, \delta)}^{(n)}$ and $X_{(e, s)}^{*(n)}$ be

$$
X_{(e, \delta)}^{(n)}=\left\{\sum_{k=1}^{n} \delta_{k}(1+i)^{-k}:\left(\delta_{1}, \cdots, \delta_{n}\right) \in W_{(e, \delta)}^{(n)}\right\},
$$

and

$$
X_{(\varepsilon, \delta)}^{*(n)}=\left\{\sum_{k=1}^{n} \delta_{k}^{*}(1-i)^{-k}:\left(\delta_{1}^{*}, \cdots, \delta_{n}^{*}\right) \in W_{(\varepsilon, \delta)}^{*(n)}\right\}
$$

$X_{\varepsilon}^{(n)}, X^{(n)}, X_{\varepsilon}^{*(n)}$, and $X^{*(n)}$ are defined in a similar way. Then followings were proved in [1]; the sets of points $\left\{X_{(6, \delta)}^{*(n)}\right\}$ are congruent to each other and similar to a set of folding points of $(n-3)$-step dragon H_{n-3}, to express more precisely, for $n \geqq 3$ and $\varepsilon \in\{0,1,2,3\}$

$$
\begin{equation*}
e^{-i \pi \varepsilon / 2}(1-i)^{3} X_{\varepsilon, 0)}^{*(n)}=\left\{\text { folding points of } H_{n-3}\right\} \tag{1.7}
\end{equation*}
$$

Furthermore $\left\{X_{\varepsilon}^{*(n)}\right\}$ are similar to a set of folding points of ($n-2$)-step dragon H_{n-2} and

$$
\begin{equation*}
e^{-i \pi \varepsilon / 2}(1-i)^{2} X_{\varepsilon}^{*(n)}=\left\{\text { folding points of } H_{n-2}\right\} \tag{1.8}
\end{equation*}
$$

Taking $n \rightarrow \infty$, the set $X_{e}^{*(n)}$ and $X_{e \varepsilon, s)}^{*(n)}$ converge to limit sets X_{ε}^{*} and $X_{(\varepsilon, s)}^{*}$ in the Hausdorff metric, respectively, and so X^{*} is tiled by sets of

Figure 2(a). Tetradragon X^{*}. X^{*} is tiled by four dragons $\left\{X_{t}^{*}\right.$;

$$
\varepsilon=\{0,1,2,3\}\}, \text { namely } X_{\varepsilon}^{*}=e^{i \varepsilon \pi / 2}(1-\mathrm{i})^{-2} H_{d} \text { and } X^{*}=\cup X_{\varepsilon}^{*}
$$

Figure 2(b). Dragon $X_{0}^{*} . \quad X_{0}^{*}$ is tiled by two dragons which are meshed dragon $X_{(0,0)}^{*}$ and dark dragon $X_{(0,1)}^{*}$. Notice that the dragon X_{0}^{*} coincides with Y_{-1}, a part of the cross dragon Y in Section 2 (Figure 3).
dragons $\left\{X_{\varepsilon}^{*}\right\}$ (Figure 2(a)) and each X_{ε}^{*} is also tiled by dragons $X_{(\varepsilon, 0)}^{*}$ and $X_{(\varepsilon, t)}^{*}$ (Figure 2(b)), that is,

$$
\begin{equation*}
X^{*}=\underset{\varepsilon \in\{0,1,2,3\}}{ } X_{\varepsilon}^{*} \quad \text { and } \quad \lambda\left(X_{\varepsilon}^{*} \cap X_{\varepsilon^{\prime}}^{*}\right) \text { for } \varepsilon \neq \varepsilon^{\prime} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{align*}
& X_{\varepsilon}^{*}=X_{(\varepsilon, 0)}^{*} \cup X_{(\varepsilon, i \varepsilon)}^{*} \quad \text { and } \tag{1.10}\\
& \lambda\left(X_{(\varepsilon, 0)}^{*} \cup X_{(\varepsilon, t \varepsilon}^{*}\right)=0 .
\end{align*}
$$

This fact indicates that the dragons X_{ε}^{*} are also selfsimilar fractal sets of order 2. We call the set X^{*} a tetradragon. Finally the Lebesgue measure of each $X_{(6, \delta)}^{*}$ is

$$
\begin{equation*}
\lambda\left(X_{(e, \delta)}^{*}\right)=1 / 8 . \tag{1.11}
\end{equation*}
$$

The statements for $\left\{X_{(\varepsilon, s)}\right\}$ are obtained by taking the complex conjugate.
By the way another approach for the selfsimilar fractal set K is proposed by Hutchinson [6] using a set of contraction maps. A method of constructing such set K is shown in the following theorem,

Theorem 1.1 (Hutchinson [6]). (i) Let $\mathscr{L}=\left\{S_{0}, \cdots, S_{N-1}\right\}$ be a finite set of contraction maps on a complete metric space. Then there exists a unique closed bounded set K such that $K=\cup_{j=1}^{N-1} S_{j}(K)$.
(ii) For arbitrary set A let $\mathscr{L}(A)=\bigcup_{j=1}^{N-1} S_{j}(A)$ and $\mathscr{L}^{p}(A)=$ $\mathscr{L}\left(\mathscr{L}^{p-1}(A)\right)$, then $\mathscr{L}^{p}(A) \rightarrow K$ in the Hausdorff metric for closed bounded A.

We call the above set K a \mathscr{L}-invariant set.
For $\mathscr{L}=\left\{S_{0}, \cdots, S_{N-1}\right\}$ let $\mathscr{L}^{n}\left(z_{0}\right)$ be

$$
\begin{equation*}
\mathscr{L}^{n}\left(z_{0}\right)=\underset{\left(j_{1}, \cdots, j_{n}\right)}{\cup} S_{j_{n}} \circ S_{j_{n-1}} \circ \cdots \circ S_{j_{1}}\left(z_{0}\right) \tag{1.12}
\end{equation*}
$$

where $\left(j_{1}, \cdots, j_{n}\right) \in \Pi_{k=1}^{n}\{0, \cdots, N-1\}$ and $z_{0} \in C$. Then a desired set K can be obtained by taking $n \rightarrow \infty$ for (1.12).

Now we put contraction maps as following; for $\varepsilon \in\{0,1,2,3\}$

$$
\begin{gather*}
T_{0}(z)=(1-i)^{-1} z \quad \text { and } \quad T_{1}(z)=(1-i)^{-1}(z-i), \tag{1.13}\\
G_{0, e}^{*}(z)=(1-i)^{-1} z \quad \text { and } \quad G_{1, e}^{*}(z)=(1-i)^{-1}\left(i z+i^{\iota}\right), \tag{1.14}\\
G_{0, e}(z)=(1+i)^{-1} z \quad \text { and } \quad G_{1, e}(z)=(1+i)^{-1}\left(-i z+(-i)^{\iota}\right) . \tag{1.15}
\end{gather*}
$$

Proposition 1.2. For $\left(j_{1}, \cdots, j_{n}\right) \in \prod_{k=1}^{n}\{0,1\}$
(i) $\mathscr{L}^{n}(0)=X_{B}^{(n)}, \quad T_{0}\left(\mathscr{L}^{n}(0)\right)=X_{B, 0}^{(n+1)}$, and $T_{1}\left(\mathscr{L}^{n}(0)\right)=X_{B,-i}^{(n+1)}$, where $\mathscr{L}^{n}(z)=\cup_{\left(j_{1}, \cdots, j_{n}\right)} T_{j_{n}} \circ \cdots \circ T_{j_{1}}(z)$, and $\left\{T_{0}, T_{1}\right\}$-invariant set coincides with X_{B}, that is,

$$
X_{B}=T_{0}\left(X_{B}\right) \cup T_{1}\left(X_{B}\right), \quad \lambda\left(T_{0}\left(X_{B}\right) \cap T_{1}\left(X_{B}\right)\right)=0
$$

(ii) $\mathscr{L}^{n}(0)=X_{t}^{*(n)}, \quad G_{0, e}^{*}\left(\mathscr{L}^{n}(0)\right)=X_{(e, 0)}^{*(n+1)}, \quad$ and $\quad G_{1, e}^{*}\left(\mathscr{L}^{n}(0)\right)=X_{(e, t e)}^{*(n+1)}$ where $\mathscr{L}^{n}(z)=\cup_{\left(j_{1}, \cdots, j_{n}\right)} G_{j_{n}, e}^{*} \circ \cdots \circ G_{j_{1}, e}^{*}(z)$, and $\left\{G_{0, \mathrm{c}}^{*}, G_{1, \mathrm{e}}^{*}\right\}$-invariant set coincides with X_{*}^{*}, that is,

$$
X_{\varepsilon}^{*}=G_{0, \varepsilon}^{*}\left(X_{\varepsilon}^{*}\right) \cup G_{1, e}^{*}\left(X_{\varepsilon}^{*}\right), \quad \lambda\left(G_{0, e}^{*}\left(X_{\varepsilon}^{*}\right) \cap G_{1, e}^{*}\left(X_{\varepsilon}^{*}\right)\right)=0 .
$$

The similar statements for $G_{0, \varepsilon}$ and $G_{1, \varepsilon}$ also hold.
Proof. It is verified from the definitions of the contraction maps.
To summarize results obtained in this section: The twindragon is regarded as the limit set of n-step twindragon curve D_{n} and also as the complex binary expansion X_{B} and as well as $\left\{T_{0}, T_{1}\right\}$-invariant set. The twindragon is also obtained as an interior of a limit of a closed curve $K_{n}=(1-i)^{-n} K\left[\theta^{n}\left(a b a^{-1} b^{-1}\right)\right]$, where $\theta(a)=a b$ and $\theta(b)=b a^{-1}$ for $S=\{a, b\}$, $f(a)=1$ and $f(b)=-i$ [1] [3]. Also a dragon is constructed as the limit set of n-step paper folding dragon curve H_{n} and as the revolving expansion X_{c}^{*} and as $\left\{G_{0, c}^{*}, G_{1, \mathrm{~s}}^{*}\right\}$-invariant set.

We give another construction of the dragon in next section.
§ 2. Biased revolving sequences and cross dragon.
In this section we construct the dragon by a new procedure. Let
M be the structure matrix and V the set of one sided infinite seuences generated by M and σ a shift operator on V. We call V a set of biased revolving sequences. Then (V, σ) is a subshift of finite type, namely V is a closed subset of $\Pi_{k=1}^{\infty} \Gamma$ and shift invariant $\sigma V=V$. Notice that nonzero entries of the structure matrix can be written as $M_{\tau[k], \tau[(k+1) \bmod 4]}=$ $M_{\tau[k], \tau[(k+2) \bmod 4]}=1$ for $1 \leqq k \leqq 4$. We denote these two admissible states which follow $\gamma=\tau[k]$ with $\gamma[1]=\tau[(k+1) \bmod 4]$ and $\gamma[2]=\tau[(k+2) \bmod 4]$. Denote a set of all finite biased revolving sequences with length n by $V^{(n)}$. Let $V_{r}^{(n)}$ be

$$
\begin{equation*}
V_{r}^{(n)}=\left\{\left(\gamma_{1}, \cdots, \gamma_{n}\right) \in V^{(n)} ; \gamma_{1}=\gamma\right\} . \tag{2.1}
\end{equation*}
$$

Property 2.1.
(i)

$$
V^{(n)}=\bigcup_{r \in\{0, i,-1+i,-1\}} V_{r}^{(n)},
$$

(ii)

$$
\sigma V_{r}^{(n)}=V_{r[1]}^{(n-1)} \cup V_{r[2]}^{(n-1)}
$$

where σ is defined by $\sigma\left(\gamma_{1}, \cdots, \gamma_{n}\right)=\left(\gamma_{2}, \cdots, \gamma_{n}\right)$ for $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \in V_{r}^{(n)}$ and $M_{r, \gamma[1]}=M_{r, \gamma[2]}=1$.
(iii)

$$
i V_{r}^{(n)}+i=V_{r[1]}^{(n)} \quad \text { and } \quad-V_{r}^{(n)}+(-1+i)=V_{r[2]}^{(n)},
$$

where $a V^{(n)}+b=\left\{\left(a \gamma_{1}+b, \cdots, a \gamma_{n}+b\right)\right\}$ for $V^{(n)}=\left\{\left(\gamma_{1}, \cdots, \gamma_{n}\right)\right\}$.
Proof. (i) and (ii) are obvious. In order to prove (iii), it is enough to notice that symbols $0, i,-1+i$ and -1 , which can be considered as points on the plane, are obtained from a symbol by rotating by angle $\pi j / 2, j=1,2,3$, around $(-1+i) / 2$. Indeed, for example,

$$
e^{i \pi / 2}\left\{V_{0}^{(n)}-(-1+i) / 2\right\}+(-1+i) / 2=V_{i}^{(n)},
$$

and

$$
e^{i \pi}\left\{V_{0}^{(n)}-(-1+i) / 2\right\}+(-1+i) / 2=V_{-1+i}^{(n)}
$$

We realize a biased revolving sequence $\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ to a point $p\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ of C by the realization map Φ defined in the Introduction

$$
\begin{equation*}
p\left(\gamma_{1}, \cdots, \gamma_{n}\right)=\sum_{k=1}^{n} \gamma_{k}(1+i)^{-k} \tag{2.2}
\end{equation*}
$$

Corresponding to the sets of sequence $V^{(n)}$ and $V_{r}^{(n)}$, let sets of points $Y^{(n)}$ and $Y_{r}^{(n)}$ be

$$
\begin{align*}
& Y^{(n)}=\left\{p\left(\gamma_{1}, \cdots, \gamma_{n}\right) ;\left(\gamma_{1}, \cdots, \gamma_{n}\right) \in V^{(n)}\right\}, \quad \text { and } \\
& Y_{r}^{(n)}=\left\{p\left(\gamma_{1}, \cdots, \gamma_{n}\right) ;\left(\gamma_{1}, \cdots, \gamma_{n}\right) \in V_{r}^{(n)}\right\}, \tag{2.3}
\end{align*}
$$

By Property 2.1 we obtain:
Proposition 2.2.
(i)

$$
Y^{(n)}=\bigcup_{r \in\{0, i,-1+i,-1\}} Y_{r}^{(n)},
$$

(ii)

$$
(1+i) Y_{r}^{(n)}-\gamma=Y_{r[1]}^{(n-1)} \cup Y_{r[2]}^{(n-1)} \text { for } n \geqq 2,
$$

where $a A+b=\{a x+b ; x \in A\}$ for a set A,

$$
\begin{equation*}
i Y_{r}^{(n)}+\sum_{k=1}^{n} i(1+i)^{-k}=Y_{r[1]}^{(n)} \quad \text { and }-Y_{r}^{(n)}+\sum_{k=1}^{n}(-1+i)(1+i)^{-k}=Y_{r[2]}^{(n)}, \tag{iii}
\end{equation*}
$$

that is, $Y_{\gamma[1]}^{(n)}$ and $Y_{\gamma[2]}^{(n)}$ are obtained by rotating $Y_{r}^{(n)}$ by angle $\pi / 2$ and π, respectively, around $\sum_{k=1}^{n}(-1+i) / 2(1+i)^{-k}$.

LEMMA 2.3. $\quad Y_{\gamma}^{(n)}=(1+i)^{-1}\left\{i Y_{r}^{(n-1)}+\gamma+\sum_{k=1}^{n-1} i(1+i)^{-k}\right\} \cup(1+i)^{-1} \times$ $\left\{-Y_{r}^{(n-1)}+\gamma+\sum_{k=1}^{n-1}(-1+i)(1+i)^{-k}\right\}$.

Proof. From Property 3.1

$$
\begin{aligned}
V_{r}^{(n)} & =(\gamma, \underbrace{0, \cdots, 0}_{n-1})+\left\{\left(0, V_{r[1]}^{(n-1)}\right) \cup\left(0, V_{r[2]}^{(n-1)}\right)\right\} \\
& =(\gamma, \underbrace{0, \cdots, 0}_{n-1})+\left\{\left(0, i V_{r}^{(n-1)}+i\right) \cup\left(0,-V_{r}^{(n-1)}+(-1+i)\right)\right\},
\end{aligned}
$$

where $\left(0, V^{(n-1)}\right)=\left\{\left(0, \gamma_{1}, \cdots, \gamma_{n-1}\right)\right\} \in V^{(n)}$ for $V^{(n-1)}=\left\{\left(\gamma_{1}, \cdots, \gamma_{n-1}\right)\right\}$. By the relation above we obtain the result.

This lemma shows that each set $Y_{r}^{(n)}$ is a recurrent set of order 2, namely the n-step set $Y_{r}^{(n)}$ is obtained from two ($n-1$)-step sets $Y_{r}^{(n-1)}$ for each γ.

It is verified by the definition of $Y_{r}^{(n)}$ that

$$
\begin{equation*}
d\left(Y_{r}^{(n)}, Y_{r}^{(n+1)}\right) \leqq\left(\frac{1}{\sqrt{2}}\right)^{n} \tag{2.4}
\end{equation*}
$$

in the Hausdorff metric. Then there exist limit sets Y and Y_{γ} such that $Y^{(n)}$ and $Y_{r}^{(n)}$ converge to Y and Y_{r}, respectively, in the Hausdorff metric. Taking $n \rightarrow \infty$ in Proposition 2.2 and Lemma 2.3, we obtain,

Proposition 2.4. Let $Y=\left\{\sum_{k=1}^{\infty} \gamma_{k}(1+i)^{-k}:\left(\gamma_{1}, \gamma_{2}, \cdots\right) \in V\right\}$ and $Y_{r}=$ $\left\{\sum_{k=1}^{\infty} \gamma_{k}(1+i)^{-k} ;\left(\gamma_{1}, \gamma_{2}, \cdots\right) \in V_{r}\right\}$. Then sets Y and $Y_{r}, \gamma \in \Gamma$, satisfy following properties:

$$
\begin{equation*}
Y=\bigcup_{r \in\{0, i,-1+i,-1\}} Y_{r}, \tag{i}
\end{equation*}
$$

(ii)

$$
(1+i) Y_{\gamma}-\gamma=Y_{\gamma[1]} \cup Y_{\gamma[2]},
$$

$$
\begin{equation*}
i Y_{\gamma}+1=Y_{\gamma[1]} \quad \text { and } \quad-Y_{\gamma}+1+i=Y_{\gamma[2]} \tag{iii}
\end{equation*}
$$

that is, sets $\left\{Y_{r}\right\}$ are congruent to each other and obtained by rotating some Y_{r}, by angles $\pi k / 2, k=1,2,3$, around $(1+i) / 2$.
(iv)

$$
Y_{r}=(1+i)^{-1}\left(i Y_{r}+\gamma+1\right) \cup(1+i)^{-1}\left(-Y_{\gamma}+\gamma+1+i\right) .
$$

Let contraction maps $F_{0, r}$ and $F_{1, r}$ on the plane be

$$
\begin{align*}
& F_{0, r}(z)=(1+i)^{-1}(i z+\gamma+1) \quad \text { and } \\
& F_{1, r}(z)=(1+i)^{-1}(-z+\gamma+1+i) . \tag{2.5}
\end{align*}
$$

Then from Proposition 2.4 (iv) we can say that the limit sets $\left\{Y_{r}\right\}$ are $\left\{F_{0, r}, F_{1, r}\right\}$-invariant sets satisfying relations

$$
\begin{equation*}
Y_{r}=F_{0, r}\left(Y_{r}\right) \cup F_{1, r}\left(Y_{r}\right) \quad \text { for each } \quad \gamma \in \Gamma . \tag{2.6}
\end{equation*}
$$

Theorem 2.5. Let sets $Y_{r}, \gamma \in\{0, i,-1+i,-1\}$ satisfy the relation (2.6) and $Y=\cup_{r \in\{0, i,-1+i,-1\}} Y_{\gamma}$. Then
(i) each set Y_{r} is a dragon with $\lambda\left(Y_{r}\right)=1 / 4$ and end point besides the common $(1+i) / 2$ is 0 for $Y_{-1}, 1$ for $Y_{0}, 1+i$ for Y_{i}, i for Y_{-1+i}.
(ii) the set Y is tiled by $\left\{Y_{r}\right\}$, that is,

$$
Y=\cup_{\gamma \in\{0, i,-1+i,-1\}} Y_{r} \quad \text { and } \quad \lambda\left(Y_{r} \cap Y_{\gamma^{\prime}}\right)=0 \quad \text { for } \quad \gamma \neq \gamma^{\prime}
$$

(see Figure 3).
Proof. (i) Notice that the contraction maps $F_{0, r}$ and $F_{1, r}$ for $\gamma=-1$ coincide with $G_{0, \varepsilon}^{*}$ and $G_{1, \varepsilon}^{*}$ for $\varepsilon=0$ in Section 1, namely

$$
F_{0,-1}(z)=G_{0,0}^{*}(z) \quad \text { and } \quad F_{1,-1}(z)=G_{1,0}^{*}(z) .
$$

As discussed in Section 1, the set Y_{-1} satisfying

$$
Y_{-1}=F_{0,-1}\left(Y_{-1}\right) \cup F_{1,-1}\left(Y_{-1}\right),
$$

is a dragon $(1-i)^{-2} H_{d}$ with $\lambda\left(Y_{-1}\right)=1 / 4$ and end points are 0 and $(1+i) / 2$ (Figure 2 (b)), and
(*)

$$
\lambda\left(F_{0,-1}\left(Y_{-1}\right) \cap F_{1,-1}\left(Y_{-1}\right)\right)=0
$$

Then from Proposition 2.4 (iii) we obtain (i).
(ii) A set $Y_{0} \cup Y_{i}$ is tiled by Y_{0} and Y_{i} owing to (*) and Proposition 2.4 (iii). Using Proposition 2.4 (iii), it is shown that each set $Y_{r} \cup Y_{r[1]}$ is tiled by Y_{γ} and $Y_{r[1]}$. Proposition 2.4 (iii) also indicates that the set $Y_{-1} \cup Y_{0}$ also forms a dragon $(1-i)^{-1} H_{d}$ with end points 0 and 1 since similar condition holds for $X_{\varepsilon}^{*}=X_{(\varepsilon, 0)}^{*} \cup X_{(e, t e)}^{*}$. Moreover by (1.3), (1.4) and (1.6) we can see that the twindragon X_{B} has anoter tiling form (Figure 1 (b)), that is,

$$
X_{B}=(1-i)^{-1} H_{d} \cup\left(-(1-i)^{-1} H_{d}+1\right)
$$

and

$$
\lambda\left(X_{B} \cap\left(X_{B}+i\right)\right)=0 .
$$

Thus we obtain the following relation,

$$
\lambda\left((1-i)^{-1} H_{d} \cap\left\{-(1-i)^{-1} H_{d}+1+i\right\}\right)=0 .
$$

Since $(1-i)^{-1} H_{d}=Y_{-1} \cup Y_{0}$,

$$
\lambda\left(\left(Y_{-1} \cup Y_{0}\right) \cap\left(Y_{i} \cup Y_{-1+i}\right)\right)=0
$$

that is evident from Proposition 2.4 (iii), which was to be demonstrated (cf. Figure 1 (c) and Figure 3).

It is verified that $Y_{-1}=X_{0}^{*}, Y_{0}=X_{1}^{*}+1, Y_{i}=X_{2}^{*}+1+i$ and $Y_{-1+i}=$ $X_{3}^{*}+i$. We call the set Y a cross dragon (Figure 3).

Figure 3. Cross dragon Y. Y is tiled by four dragons $\left\{Y_{r} ; \gamma=\right.$ $\{0, i,-1+i,-1\}\}$ in a different manner from tetradragon X^{*} (Figure 2). Notice that $Y \subset\left(X_{B} \cup X_{B}+i\right)$) (Figure 1(c)).
§ 3. Dynamical system on cross dragon.
We can define a dynamical system on the cross dragon. Since the dynamical system is constructed in the same manner as the previous one in Section 6 of [1], we state propositions without proof.

We consider the map \widehat{T} for each point $z \in Y$:

$$
\begin{equation*}
\hat{T}: z \longrightarrow(1+i) z \quad \text { for } z \in Y \tag{3.1}
\end{equation*}
$$

Then we obtain by Proposition 2.4 (ii),

$$
\hat{T} Y_{\gamma}=\gamma+\left(Y_{\gamma[1]} \cup Y_{\gamma[2]}\right)
$$

We prepare following sets \hat{U}_{r} and U_{r} for each $\gamma \in \Gamma$;

$$
\begin{align*}
& \hat{U}_{0}=Y_{i} \cup Y_{-1+i}, \quad \hat{U}_{i}=i+\left(Y_{-1+i} \cup Y_{-1}\right), \\
& \hat{U}_{-1+i}=-1+i+\left(Y_{-1} \cup Y_{0}\right), \quad \hat{U}_{-1}=-1+\left(Y_{0} \cup Y_{i}\right), \quad \text { and } \tag{3.2}\\
& U_{r}=\hat{U}_{r}-\gamma
\end{align*}
$$

We call \hat{U}_{r} a neighbourhood of integer γ.
Define a map T for $z \in Y \backslash \cap_{r \in \Gamma} \partial Y_{r}$ by

$$
\begin{equation*}
T z=(1+i) z-[(1+i) z]_{C} \tag{3.3}
\end{equation*}
$$

where $[w]_{c}=\gamma$ if $w \in \hat{U}_{r}$. Then the map T satisfies

$$
\begin{equation*}
T Y_{r}=Y_{\gamma[1]} \cup Y_{\gamma[2]} \text { for each } \gamma \in \Gamma \tag{3.4}
\end{equation*}
$$

that is, the partition $\left\{Y_{r} ; \gamma \in \Gamma\right\}$ of Y is a Markov partition for the map T. Let $\gamma_{k}(z)$ be

$$
\begin{equation*}
\gamma_{k}(z)=\left[(1+i) T^{k-1} z\right]_{C} \quad \text { for } \quad k \geqq 1 \tag{3.5}
\end{equation*}
$$

Then we have
Theorem 3.1. Let Y be the cross dragon and T be the cross dragon map (3.3). Then
(i) the transformation (Y, T) induces an expansion

$$
z=\sum_{k=1}^{\infty} \gamma_{k}(z)(1+i)^{-k} \quad \text { for } \quad z \in Y \backslash \bigcup_{k=0}^{\infty} T^{-k}\left(\bigcap_{r \in \Gamma} \partial Y_{r}\right),
$$

(ii) the Lebesgue measure λ is invariant with respect to (Y, T),
(iii) let μ be a Markov invariant measure for the system (V, σ) with the transition probability P and stationary probability Π such that

$$
P=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right), \quad \Pi=(1 / 4,1 / 4,1 / 4,1 / 4)
$$

then, the dynamical system (Y, T, λ) is isomorphic to (V, σ, μ) and consequently (Y, T, λ) is ergodic.

Identifying the complex plane with \boldsymbol{R}^{2}, we can show that the set Y can be regarded as a covering space of the torus T^{2} because of the tiling properties of twindragon (1.6) and the set $\left\{Y_{r}\right\}$.

Corollary 3.2. Let

$$
L=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)
$$

which induces an expanding endomorphism T_{L} on the torus T^{2}. Then there exists a Markov partition $\left\{Y_{r} ; \gamma \in \Gamma\right\}$ on the torus for $T_{L}: \boldsymbol{T}^{2} \rightarrow \boldsymbol{T}^{2}$, so that the dynamical system (T^{2}, T_{L}, λ) with this partition is isomorphic to the one sided subshift of finite type (V, σ, μ).

This corollary says that there exists a "fractal" Markov partition with respect to the expanding endomorphism T_{L} (For general expanding endomorphisms $T_{L}, L=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, see Bedford [9]).

Moreover we introduce a simple system ($Y^{\dagger}, T^{\dagger}, \lambda^{\dagger}$) as follows: let $Y^{\dagger}=\{x+i y ; 0 \leqq x, y<1\}$ and a map T^{\dagger} be

$$
\begin{equation*}
T^{\dagger} z=(1-i) z+(-1+i)-[(1-i) z+(-1+i)] \text { for } z \in Y^{\dagger} \tag{3.6}
\end{equation*}
$$

where $[w]=[\operatorname{Re}(w)]+i[\operatorname{Im}(w)]$ for $z \in C$, and the sequence of integer $\left\{\xi_{k}(z)\right.$; $\boldsymbol{k} \in \boldsymbol{N}\}$ be

$$
\begin{equation*}
\xi_{k}(z)=\left[(1-i) T^{\dagger k-1} z+(-1+i)\right] \text { for each } z \in Y^{\dagger} \tag{3.7}
\end{equation*}
$$

Then we can verify that the transformation (Y^{\dagger}, T^{\dagger}) induces a expansion

$$
\begin{equation*}
z=\sum_{k=1}^{\infty}\left(\xi_{k}(z)-(-1+i)\right)(1-i)^{-k} \quad \text { for } \quad \text { a.e. } z \in Y^{\dagger} \tag{3.8}
\end{equation*}
$$

and has the Lebesgue measure as an invariant measure λ^{\dagger} and also the partition $\left\{Y_{\gamma}^{\dagger} ; \gamma \in \Gamma\right\}$, where $Y_{\gamma}^{\dagger}=\left\{z \in Y^{\dagger} ; \xi_{1}(z)=\gamma\right\}$, is a Markov partition, that is,

$$
\begin{equation*}
T^{\dagger} Y_{r}^{\dagger}=Y_{r[1]}^{\dagger} \cup Y_{r[2]}^{\dagger} \tag{3.9}
\end{equation*}
$$

Therefore T^{\dagger}-admissible sequences $\left\{\left(\xi_{1}(z), \xi_{2}(z), \cdots\right)\right\}$ which have the same structure of the sequences generated by the cross dragon system (Y, T). Thus we obtain:

Theorem 3.3. The dynamical systems (Y, T, λ) and ($Y^{\dagger}, T^{\dagger}, \lambda^{\dagger}$) are isomorphic to each other as an endomorphism, that is there exists measure preserving invertible map Ψ defined on Y such that

$$
T^{\dagger} \circ \Psi=\Psi \circ T
$$

§4. Dual map and natural extension of cross dragon system.

We show that the cross dragon system (Y, T, λ) is nothing but the dual map [1] of a very simple system.

Let $Y^{*}=\{x+i y ; 0 \leqq x, y<1\}$ and a map T^{*} be

$$
\begin{equation*}
T^{*} z=(1+i) z-[(1+i) z] \text { for } z \in Y^{*} \tag{4.1}
\end{equation*}
$$

Hence a set $\left\{[(1+i) z] ; z \in Y^{*}\right\}$ coincides with $\Gamma=\{0, i,-1+i,-1\}$. We can easily verify that the transformation $\left(Y^{*}, T^{*}\right)$ is well defined on Y^{*} and has the Lebesgue measure λ^{*} on Y^{*} as an invariant measure and also induces a expansion for a.e. $z \in Y^{*}$ such that

$$
\begin{equation*}
z=\sum_{k=1}^{\infty} \eta_{k}(z)(1+i)^{-k}, \tag{4.2}
\end{equation*}
$$

where

$$
\eta_{k}(z)=\left[(1+i) T^{* k-1} z\right]
$$

Let a set Y_{η}^{*} be

$$
\begin{equation*}
Y_{\eta}^{*}=\left\{\sum_{k=1}^{\infty} \eta_{k}(z)(1+i)^{-k} ; z \in Y^{*} \text { and } \eta_{1}(z)=\eta\right\} \tag{4.3}
\end{equation*}
$$

Then we can see that the sets $\left\{Y_{\eta}^{*} ; \eta \in \Gamma\right\}$ are four triangles with vertices 0,1 for $Y_{0}^{*}, 1,1+i$ for $Y_{i}^{*}, 1+i, i$ for $Y_{-1+i}^{*}, i, 0$ for Y_{-1}^{*} and $(1+i) / 2$ in common, and the domain Y^{*} is tiled by these triangles, that is,

$$
\begin{equation*}
Y^{*}=\bigcup_{\eta \in\{0, i,-1+i,-1\}} Y_{\eta}^{*} \quad \text { and } \quad \lambda\left(Y_{\eta}^{*} \cap Y_{\eta^{\prime}}^{*}\right)=0 \quad \text { for } \quad \eta \neq \eta^{\prime} . \tag{4.4}
\end{equation*}
$$

Let M^{*} be a structure matrix such that

$$
M_{j, k}^{*}=\left\{\begin{array}{lll}
1 & \text { if } & T^{*} Y_{\tau[j]}^{*} \cap Y_{\tau[k]}^{*} \neq \varnothing \\
0 & \text { if } & T^{*} Y_{\tau[j]}^{*} \cap Y_{\tau[k]}^{*}=\varnothing
\end{array}\right.
$$

Let V^{*} and V_{η}^{*} be

$$
\begin{gather*}
V^{*}=\left\{\left(\eta_{1}, \eta_{2}, \cdots\right) ; \eta_{j} \in \Gamma \text { and } M_{\eta_{j}, \eta_{j+1}}^{*}=1 \text { for all } j \geqq 1\right\} \tag{4.5}\\
V_{\eta}^{*}=\left\{\left(\eta_{1}, \eta_{2}, \cdots\right) \in V^{*} ; \eta_{1}=\eta\right\} \tag{4.6}
\end{gather*}
$$

It is easily verified that every element of V^{*} has the same admissibility as the sequence $\left(\eta_{1}(z), \eta_{2}(z), \cdots\right)$ induced by $\left(Y^{*}, T^{*}\right)$, Notice that
 $\left(V^{*}, \sigma^{*}\right)$ is a dual symbolic system [1] for (V, σ). Thus we obtain,

Theorem 4.1. The cross dragon system (Y, T, λ) is a dual system for the system $\left(\boldsymbol{Y}, T^{*}, \lambda^{*}\right)$.

The natural extension [1] of the symbolic system (V, σ) is ($\tilde{V}, \tilde{\sigma})$ such that

$$
\begin{align*}
\tilde{V}= & \left\{\left(\cdots, \gamma_{-2}, \gamma_{-1}, \gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots\right) ; \overline{\gamma_{k}} \in \Gamma \text { and } M_{\gamma_{k}, \gamma_{k+1}}=1\right\rangle \tag{4.7}\\
& <\text { for all } k \in Z\}
\end{align*}
$$

and $\tilde{\sigma}$ is a shift operator on \tilde{V}.
Lemma 4.2. The set \tilde{V} is decomposed as follows;

$$
\begin{aligned}
& \tilde{V}=\bigcup_{r \in\{0, i,-1+i,-1\}}\left(V_{\eta}^{*} \cup V_{\eta^{\prime}}^{*}\right) \cdot V_{r} \\
&=\bigcup_{r \in\{0, i,-1+i,-1\}} \\
& V_{r}^{*} \cdot\left(V_{\gamma[1]} \cup V_{\gamma[2]}\right),
\end{aligned}
$$

where for $\left(\eta_{1}, \eta_{2}, \cdots\right) \in V^{*}$ and $\left(\gamma_{1}, \gamma_{2}, \cdots\right) \in V,\left(\eta_{1}, \eta_{2}, \cdots\right) \cdot\left(\gamma_{1}, \gamma_{2}, \cdots\right)=$ $\left(\cdots, \eta_{2}, \eta_{1}, \gamma_{1}, \gamma_{2}, \cdots\right)$ and $M_{\eta, r}=M_{\eta^{\prime}, r}=M_{r, \gamma[1]}=M_{r, \gamma[2]}=1$.

The proof is easily derived from the admissibilities of V and V^{*}.
Theorem 4.3. Let a set \tilde{Y} be a subset of \mathscr{q}^{2} such that

$$
\begin{aligned}
\tilde{Y} & =\bigcup_{r \in \Gamma} \bigcup_{\eta} Y_{\eta}^{*} \times Y_{r} \\
& =\bigcup_{r \in \Gamma} \bigcup_{\mathbf{z}} Y_{r}^{*} \times Y_{\mathbf{z}}
\end{aligned}
$$

where $\eta \in\left\{\eta^{\prime} ; M_{\eta^{\prime}}{ }_{r}=1\right\}$ and $\delta \in\left\{\delta^{\prime} ; M_{r, \gamma^{\prime}}=1\right\}$ for $\gamma \in \Gamma$, and a map \widetilde{T} be for $(w, z) \in Y_{\eta}^{*} \times Y_{\tau}$

$$
\widetilde{T}(w, z)=\left((1+i)^{-1}(w+\gamma), T z\right)
$$

Then the system $(\widetilde{Y}, \widetilde{T}, \widetilde{\lambda})$ is a natural extension of the cross dragon system (Y, T, λ), where $\tilde{\lambda}$ is the Lebesgue measure on \tilde{Y}.

Proof. The decompositions of \tilde{V} in Lemma 4.2 reduce to the decompositions of their realization \widetilde{Y} with a realization map $\widetilde{\Phi}$ for $\left(\eta_{1}, \eta_{2}, \cdots\right) \times$ $\left(\gamma_{1}, \gamma_{2}, \cdots\right) \in \widetilde{V}$ such that

$$
\widetilde{\Phi}:\left(\eta_{1}, \eta_{2}, \cdots\right) \cdot\left(\gamma_{1}, \gamma_{2}, \cdots\right) \longrightarrow\left(\sum_{k=1}^{\infty} \eta_{k}(1+i)^{-k}, \sum_{j=1}^{\infty} \gamma_{j}(1+i)^{-j}\right) .
$$

We can see by Property 2.1 and Lemma 4.2 that if $\tilde{\omega} \in V_{\eta}^{*} \cdot V_{r}$ then $\tilde{\omega}$ is translated by $\tilde{\sigma}$ bijectively to

$$
\tilde{\sigma} \tilde{\omega} \in V_{r}^{*} \cdot\left(V_{r[1]} \cup V_{r[2]}\right) .
$$

The realization $(\widetilde{V}, \tilde{\sigma})$ is nothing but

$$
\widetilde{T}(w, z)=\left((1+i)^{-1}(w+\gamma), T z\right) \quad \text { for } \quad(w, z) \in Y_{\eta}^{*} \times Y_{\gamma} .
$$

Therefore the map \widetilde{T} is well defined and bijection. It is easily verified that the Lebesgue measure $\tilde{\lambda}$ is invariant with respect to ($\widetilde{Y}, \widetilde{T}$).

Cororally 4.4. The dynamical system $\left(\widetilde{Y}, \widetilde{T}^{-1}, \widetilde{\lambda}\right)$ is a natural extension of ($Y^{*}, T^{*}, \lambda^{*}$).

We can say by Corollary 4.4 that the cross dragon system (Y, T, λ) is the dual system of the simple system ($Y^{*}, T^{*}, \lambda^{*}$).

We point out here that the dynamical system ($Y^{\dagger}, T^{\dagger}, \lambda^{\dagger}$) in Section 3 is also the dual system for ($Y^{*}, T^{*}, \lambda^{*}$) which has a simple domain in contrast with (Y, T, λ).

References

[1] M. Mizutani and Sh. Ito, Dynamical system on dragon domains, to appear in Japan J. Appl. Math.
[2] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
[3] F. M. Deking, Recurrent sets, Adv. in Math., 44 (1982), 78-104.
[4] F.M. Dekring, Replicating super figures and endomorphism of free groups, J. Combin Theory (A), 32 (1982), 315-320.
[5] C. Davis and D. E. Knuth, Number representations and dragon curves I, J. Recreational Math., 3 (1970), 66-81.
[6] J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[7] D. Knuth, The Art of Computer Programing II, Section 4.1, Addison Wesley, 1969.
[8] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.
[9] T. Bedford, Generating special Markov partitions for Hyperbolic Total Automorphisms using fractals, preprint.

Present Address:
Department of Applied Physics
School of Sciences and Engineerings
Waseda University
Orubo, Shinjuku-ku, Toryo 160
AND
Department of Mathematics
Tsuda College
Tsuda-machi, Kodaira, toryo 187

