TOKYO J. MATH. Vol. 9, No. 2, 1986

A New Characterization of Dragon and Dynamical System

Masahiro MIZUTANI and Shunji ITO

Waseda University and Tsuda College

Introduction

The fractal sets called a twindragon and a dragon are encountered in a complex binary representation [7] and a paper folding curve [5], respectively. We have constructed in a previous paper [1] dynamical systems on the twindragon (Figure 1) and the tetradragon (Figure 2) tiled by four dragons which are obtained as realized domains for a two state Bernoulli shift and a some subshift with a finite coding from a Markov subshift [8], respectively.

We propose in this paper a new construction of a dragon different from the paper folding process and consider a dynamical system on a domain, tiled by four dragons, which are not the tetradragon. We call this domain a cross dragon. Moreover surprisingly we can show in Section 4 that this cross dragon system is actually a dual system [1] of a very simple group endomorphism.

Indeed the cross dragon system is obtained as a realization of a following Markov subshift. Let $M = (M_{j,k})$, $1 \le j$, $k \le 4$, be a matrix such that

$$M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

We consider M as a structure matrix for a state space $\Gamma = \{0, i, -1+i, -1\}$ by a correspondence $\tau: \{1, 2, 3, 4\} \rightarrow \Gamma$ such that $\tau[1]=0, \tau[2]=i, \tau[3]=-1+i$ and $\tau[4]=-1$, that is, let V be a set of infinite sequences generated by the structure matrix M,

$$V = \{ (\gamma_1, \gamma_2, \cdots); M_{\gamma_j, \gamma_{j+1}} = 1, \gamma_j \in \Gamma \text{ for all } j \in N \},\$$

Received October 14, 1985

and σ a shift on V. Then the system (V, σ) is a Markov subshift. Define a realization map $\varphi: V \rightarrow Y \subset C$ such that

$$\Phi: (\gamma_1, \gamma_2, \cdots, \gamma_n, \cdots) \longrightarrow \sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}$$

for each $(\gamma_1, \gamma_2, \dots) \in V$, and let Y_r be the set $\{z \in Y = \{ \Phi(\gamma_1, \gamma_2, \dots) \}; \gamma_1 = \gamma \}$ for $\gamma \in \Gamma$. Then we can see in Section 2 that each set Y_r is the dragon whose construction is different from a paper folding process and the set Y is tiled by four dragons $\{Y_r\}$, in spite of that Y is not the tetradragon. This is why we call Y a cross dragon (Figure 3). Also we can see in Section 3 that the cross dragon system (Y, T) can be defined as a realization of (V, σ) such that

$$Tz = (1+i)z - [(1+i)z]_c$$
 for $z \in Y$,

where $[w]_c = \gamma$ if $w \in \gamma + (Y_{\tau[1]} \cup Y_{\tau[2]})$ for $M_{\tau,\tau[1]} = M_{\tau,\tau[2]} = 1$.

In Section 4 we will see in Theorem (4.1) that this cross dragon system (Y, T) is actually a dual system [1] of a group endomorphism T_L on the torus T^2 such that

$$T_L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1 & -1\\1 & 1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} \pmod{1}$$
.

We remark that by Theorem (3.3) the cross dragon system (Y, T) is isomorphic to a simple system on the torus such that

$$T^{\dagger} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} \pmod{1}$$
.

§1. Properties of twindragon and dragon.

We summarize the properties of a twindragon and a drangon obtained in the previous paper [1]. Recall notations by Dekking [3] [4]. Let S be a finite set of symbols, S^* be the free semigroup generated from S by the equivalence relation \sim , which is defined as $W \sim V$ iff W and V determine the same word after cancellation, that is so-called reduced word. And let $\theta: S^* \to S^*$ be a semigroup endmorphism. Let $f: S^* \to C$ be a homeomorphism which satisfies

$$f(VW) = f(V) + f(W)$$
, $f(V^{-1}) = -f(V)$

for all words $V, W \in S^*$. Define a map $K: S^* \to \mathscr{K}(C)$, the nonempty compact subsets of C, which satisfies

$$K[VW] = K[V] \cup (K[W] + f(V))$$

for all reduced words $V, W \in S^*$, by

$$K[s] = \{ tf(s); 0 \leq t \leq 1 \} \text{ for } s \in S.$$

This makes $K[s_1 \cdots s_m]$ the polygonal line with vertices at 0, $f(s_1)$, $f(s_1) + f(s_2)$, \cdots , $f(s_1) + \cdots + f(s_m)$.

Let $S = \{a, b, c, d\}$ and the endomorphism θ_t be

$$\theta_t: a \longrightarrow ab, \ b \longrightarrow cb, \ c \longrightarrow cd, \ d \longrightarrow ad$$
,

and the homomorphism f be

$$f(a) = 1 = -f(c)$$
, $f(b) = -i = -f(d)$.

Define the *n*-step twindragon D_n and *n*-step dragon H_n (or paperfolding dragon [5]) [1] [2] [3] [4] by

(1.1)
$$D_n = (1-i)^{-n} K[\theta_t^n(abcd)]$$

and

(1.2)
$$H_n = (1-i)^{-n} K[\theta_t^n(ab)].$$

Notice that the *n*-step twindragon is tiled with two *n*-step dragon (Figure 1(b)), that is,

(1.3)
$$D_n = H_n \cup (-H_n + 1 - i)$$
.

It is proved in [3] [4] that D_n and H_n converge to limit sets D_t and H_d respectively as $n \to \infty$ in the Hausdorff metric $d(\cdot, \cdot)$ where

$$d(A, B) = \sup\{\sup_{x \in A} \inf_{y \in B} |x-y|, \sup_{y \in B} \inf_{x \in A} |x-y|\}.$$

The sets D_t and H_d are called the twindragon and the dragon, respectively.

Now let sets X_{B} , $X_{B,0}$ and $X_{B,-i}$ be

$$\begin{split} X_B &= \left\{ \sum_{k=1}^{\infty} a_k (1-i)^{-k} : a_k \in \{0, -i\} \text{ for all } k \in N \right\} ,\\ X_{B,0} &= \left\{ \sum_{k=1}^{\infty} a_k (1-i)^{-k} : a_1 = 0, \ a_k \in \{0, -i\} \text{ for all } k \ge 2 \right\} ,\\ X_{B,-i} &= \left\{ \sum_{k=1}^{\infty} a_k (1-i)^{-k} : a_1 = -i, \ a_k \in \{0, -i\} \text{ for all } k \ge 2 \right\} . \end{split}$$

Then followings were proved in [1]; X_B is similar to the twindragon D_t , that is,

(1.4)
$$X_{B} = (1-i)^{-1}D_{t}$$

 X_B is tiled by $X_{B,0}$ and $X_{B,-i}$ which are congruent each other and similar to X_B (Figure 1(a)), that is,

(1.5)
$$X_B = X_{B,0} \cup X_{B,-i} \text{ and } \lambda(X_{B,0} \cap X_{B,-i}) = 0$$
,

where λ is the Lebesgue measure on the plane. This fact indicates that

FIGURE 1(a). Twindragon X_B . X_B is similar to D_t , the limit set of twindragon curve (1.1), $X_B = (1-i)^{-1}D_t$. X_B is tiled by twindragons which are a meshed twin dragon $X_{B,0}$ and a dark twindragon $X_{B,-i}$, congruent to each other and similar to X_B , namely $X_B = X_{B,0} \cup X_{B,-i}$.

FIGURE 1(b). Twindragon X_B . X_B is also tiled by two dragons which are a meshed dragon $(1-i)^{-1}H_d$ and a dark dragon $-(1-i)^{-1}H_d+1$, where H_d is the limit set of dragon curve (1.2), namely $X_B = (1-i)^{-1}H_d \cup (-(1-i)^{-1}H_d+1)$.

DRAGON AND DYNAMICAL SYSTEM

FIGURE 1(c). The plane is tiled by twindragons $\{X_B+m+in; m+in \in \mathbb{Z}(i)\}$. This figure indicates $X_B \cup (X_B+i)$, where each twindragon is tiled by two dragons. Notice that the cross dragon Y in Section 2 is included, namely $Y_{-1} \cup Y_0 = (1-i)^{-1}H_d$ (meshed dragon with end points 0 and 1) and $Y_i \cup Y_{-1+i} = -(1-i)^{-1}H_d + 1+i$ (dark dragon with end points 1+i and i) (cf. Figure 3).

twindragon is a selfsimilar fractal set of order 2. Finally the whole plane is tiled with twindragons (cf. Figure 1(a)(c)), that is,

$$\bigcup_{\substack{m+in\in Z(i)}} X_{B(m+in)} = C ,$$

 $(1.6) \qquad \text{and} \qquad$

$$\lambda(\bigcup_{m+in}\partial X_{B(m+in)})=0$$
,

where $X_{B(m+in)} = X_B + m + in$ and ∂A is a boundary of a set A.

Next recall $W^{(n)}$, which is a set of the revolving sequences $(\delta_1, \dots, \delta_n)$ [1] [5]. We call a sequence $(\delta_1, \dots, \delta_n)$, $\delta_j \in \{0, 1, i, -1, -i\}$ for $1 \leq j \leq n$, a revolving if nonzero digits repeat periodically following pattern from left to right,

$$\cdots \longrightarrow 1 \longrightarrow -i \longrightarrow -1 \longrightarrow i \longrightarrow 1 \longrightarrow -i \longrightarrow \cdots$$

Then $W^{(n)}$ is decomposed as following:

$$W^{(n)} = \bigcup_{\varepsilon \in \{0,1,2,3\}} W^{(n)}_{\varepsilon},$$

and

$$W^{(n)}_{\varepsilon} = W^{(n)}_{(\varepsilon,0)} \cup W^{(n)}_{(\varepsilon,(-i)^{\varepsilon})}$$

where $W_{\epsilon}^{(n)}$ means a set of the revolving sequences whose first nonzero

digit is $(-i)^{\epsilon}$ and $W_{(\epsilon,\delta)}^{(n)}$ a subset of $W_{\epsilon}^{(n)}$ whose first digit is δ (refer to [1] for more precise definitions). Put

$$W_{\epsilon}^{*(n)} = \overline{W_{\epsilon}^{(n)}}$$
 and $W_{(\epsilon, \bar{\delta})}^{*(n)} = \overline{W_{(\epsilon, \delta)}^{(n)}}$,

where — means to take a complex conjugate for each digit of $(\delta_1, \dots, \delta_n)$. Let sets $X_{(\epsilon,\delta)}^{(n)}$ and $X_{(\epsilon,\delta)}^{*(n)}$ be

$$X_{(\epsilon,\delta)}^{(n)} = \left\{ \sum_{k=1}^{n} \delta_k (1+i)^{-k} : (\delta_1, \cdots, \delta_n) \in W_{(\epsilon,\delta)}^{(n)} \right\},$$

and

$$X_{(\epsilon,\delta)}^{*(n)} = \left\{ \sum_{k=1}^{n} \delta_k^* (1-i)^{-k} : (\delta_1^*, \cdots, \delta_n^*) \in W_{(\epsilon,\delta)}^{*(n)} \right\} .$$

 $X_{\varepsilon}^{(n)}$, $X^{(n)}$, $X_{\varepsilon}^{*(n)}$, and $X^{*(n)}$ are defined in a similar way. Then followings were proved in [1]; the sets of points $\{X_{(\varepsilon,\delta)}^{*(n)}\}$ are congruent to each other and similar to a set of folding points of (n-3)-step dragon H_{n-3} , to express more precisely, for $n \ge 3$ and $\varepsilon \in \{0, 1, 2, 3\}$

(1.7)
$$e^{-i\pi\epsilon/2}(1-i)^{3}X_{(\epsilon,0)}^{*(n)} = \{\text{folding points of } H_{n-3}\}.$$

Furthermore $\{X_{\epsilon}^{*(n)}\}$ are similar to a set of folding points of (n-2)-step dragon H_{n-2} and

(1.8)
$$e^{-i\pi\epsilon/2}(1-i)^2 X_{\epsilon}^{*(n)} = \{\text{folding points of } H_{n-2}\}.$$

Taking $n \to \infty$, the set $X_{\epsilon}^{*(n)}$ and $X_{(\epsilon,\delta)}^{*(n)}$ converge to limit sets X_{ϵ}^{*} and $X_{(\epsilon,\delta)}^{*}$ in the Hausdorff metric, respectively, and so X^{*} is tiled by sets of

FIGURE 2(a). Tetradragon X^* . X^* is tiled by four dragons $\{X^*_{\varepsilon}; \varepsilon = \{0, 1, 2, 3\}\}$, namely $X^*_{\varepsilon} = e^{i\varepsilon\pi/2}(1-i)^{-2}H_d$ and $X^* = \bigcup X^*_{\varepsilon}$.

FIGURE 2(b). Dragon X_0^* . X_0^* is tiled by two dragons which are meshed dragon $X_{(0,0)}^*$ and dark dragon $X_{(0,1)}^*$. Notice that the dragon X_0^* coincides with Y_{-1} , a part of the cross dragon Yin Section 2 (Figure 3).

dragons $\{X_{\epsilon}^*\}$ (Figure 2(a)) and each X_{ϵ}^* is also tiled by dragons $X_{(\epsilon,0)}^*$ and $X_{(\epsilon,i\epsilon)}^*$ (Figure 2(b)), that is,

(1.9)
$$X^* = \bigcup_{\varepsilon \in \{0,1,2,3\}} X^*_{\varepsilon} \text{ and } \lambda(X^*_{\varepsilon} \cap X^*_{\varepsilon'}) \text{ for } \varepsilon \neq \varepsilon',$$

and

(1.10)
$$\begin{aligned} X_{\varepsilon}^{*} = X_{(\varepsilon,0)}^{*} \cup X_{(\varepsilon,i^{\varepsilon})}^{*} \quad \text{and} \\ \lambda(X_{(\varepsilon,0)}^{*} \cup X_{(\varepsilon,i^{\varepsilon})}^{*}) = 0 \end{aligned}$$

This fact indicates that the dragons X_*^* are also selfsimilar fractal sets of order 2. We call the set X^* a tetradragon. Finally the Lebesgue measure of each $X_{(\epsilon,\delta)}^*$ is

(1.11)
$$\lambda(X_{(\epsilon,\delta)}^*) = 1/8$$
.

The statements for $\{X_{(\varepsilon,\delta)}\}$ are obtained by taking the complex conjugate.

By the way another approach for the selfsimilar fractal set K is proposed by Hutchinson [6] using a set of contraction maps. A method of constructing such set K is shown in the following theorem,

THEOREM 1.1 (Hutchinson [6]). (i) Let $\mathscr{L} = \{S_0, \dots, S_{N-1}\}$ be a finite set of contraction maps on a complete metric space. Then there exists a unique closed bounded set K such that $K = \bigcup_{i=1}^{N-1} S_i(K)$.

(ii) For arbitrary set A let $\mathscr{L}(A) = \bigcup_{j=1}^{N-1} S_j(A)$ and $\mathscr{L}^p(A) = \mathscr{L}(\mathscr{L}^{p-1}(A))$, then $\mathscr{L}^p(A) \to K$ in the Hausdorff metric for closed bounded A.

We call the above set K a \mathcal{L} -invariant set.

For $\mathscr{L} = \{S_0, \dots, S_{N-1}\}$ let $\mathscr{L}^n(z_0)$ be

(1.12)
$$\mathscr{L}^{n}(z_{0}) = \bigcup_{(j_{1},\cdots,j_{n})} S_{j_{n}} \circ S_{j_{n-1}} \circ \cdots \circ S_{j_{1}}(z_{0}) .$$

where $(j_1, \dots, j_n) \in \prod_{k=1}^n \{0, \dots, N-1\}$ and $z_0 \in C$. Then a desired set K can be obtained by taking $n \to \infty$ for (1.12).

Now we put contraction maps as following; for $\varepsilon \in \{0, 1, 2, 3\}$

(1.13)
$$T_0(z) = (1-i)^{-1}z \text{ and } T_1(z) = (1-i)^{-1}(z-i),$$

(1.14)
$$G_{0,\epsilon}^{*}(z) = (1-i)^{-1}z \text{ and } G_{1,\epsilon}^{*}(z) = (1-i)^{-1}(iz+i^{\epsilon}),$$

(1.15)
$$G_{0,\epsilon}(z) = (1+i)^{-1}z$$
 and $G_{1,\epsilon}(z) = (1+i)^{-1}(-iz+(-i)^{\epsilon})$.

PROPOSITION 1.2. For $(j_1, \dots, j_n) \in \prod_{k=1}^n \{0, 1\}$

(i) $\mathscr{L}^n(0) = X_B^{(n)}$, $T_0(\mathscr{L}^n(0)) = X_{B,0}^{(n+1)}$, and $T_1(\mathscr{L}^n(0)) = X_{B,-i}^{(n+1)}$, where $\mathscr{L}^n(z) = \bigcup_{(j_1,\dots,j_n)} T_{j_n} \circ \cdots \circ T_{j_1}(z)$, and $\{T_0, T_1\}$ -invariant set coincides with X_B , that is,

$$X_{B} = T_{0}(X_{B}) \cup T_{1}(X_{B}) , \qquad \lambda(T_{0}(X_{B}) \cap T_{1}(X_{B})) = 0 .$$

(ii) $\mathscr{L}^n(0) = X_{\epsilon}^{*(n)}$, $G_{0,\epsilon}^*(\mathscr{L}^n(0)) = X_{(\epsilon,0)}^{*(n+1)}$, and $G_{1,\epsilon}^*(\mathscr{L}^n(0)) = X_{(\epsilon,i\epsilon)}^{*(n+1)}$ where $\mathscr{L}^n(z) = \bigcup_{(j_1,\dots,j_n)} G_{j_n,\epsilon}^* \circ \dots \circ G_{j_1,\epsilon}^*(z)$, and $\{G_{0,\epsilon}^*, G_{1,\epsilon}^*\}$ -invariant set coincides with X_{ϵ}^* , that is,

$$X_{\epsilon}^{*} = G_{0,\epsilon}^{*}(X_{\epsilon}^{*}) \cup G_{1,\epsilon}^{*}(X_{\epsilon}^{*}) , \qquad \lambda(G_{0,\epsilon}^{*}(X_{\epsilon}^{*}) \cap G_{1,\epsilon}^{*}(X_{\epsilon}^{*})) = 0 .$$

The similar statements for $G_{0,\epsilon}$ and $G_{1,\epsilon}$ also hold.

PROOF. It is verified from the definitions of the contraction maps. \Box

To summarize results obtained in this section: The twindragon is regarded as the limit set of *n*-step twindragon curve D_n and also as the complex binary expansion X_B and as well as $\{T_0, T_1\}$ -invariant set. The twindragon is also obtained as an interior of a limit of a closed curve $K_n = (1-i)^{-n} K[\theta^n (aba^{-1}b^{-1})]$, where $\theta(a) = ab$ and $\theta(b) = ba^{-1}$ for $S = \{a, b\}$, f(a) = 1 and f(b) = -i [1] [3]. Also a dragon is constructed as the limit set of *n*-step paper folding dragon curve H_n and as the revolving expansion X_i^* and as $\{G_{0,i}^*, G_{1,i}^*\}$ -invariant set.

We give another construction of the dragon in next section.

\S 2. Biased revolving sequences and cross dragon.

In this section we construct the dragon by a new procedure. Let

494

M be the structure matrix and *V* the set of one sided infinite seuences generated by *M* and σ a shift operator on *V*. We call *V* a set of biased revolving sequences. Then (V, σ) is a subshift of finite type, namely *V* is a closed subset of $\prod_{k=1}^{\infty} \Gamma$ and shift invariant $\sigma V = V$. Notice that nonzero entries of the structure matrix can be written as $M_{r[k],r[(k+1) \mod 4]} =$ $M_{r[k],r[(k+2) \mod 4]} = 1$ for $1 \leq k \leq 4$. We denote these two admissible states which follow $\gamma = \tau[k]$ with $\gamma[1] = \tau[(k+1) \mod 4]$ and $\gamma[2] = \tau[(k+2) \mod 4]$. Denote a set of all finite biased revolving sequences with length *n* by $V^{(n)}$. Let $V_{\tau}^{(n)}$ be

(2.1)
$$V_r^{(n)} = \{(\gamma_1, \cdots, \gamma_n) \in V^{(n)}; \gamma_1 = \gamma\}.$$

PROPERTY 2.1. (i)

$$V^{(n)} = \bigcup_{r \in \{0, i, -1+i, -1\}} V_r^{(n)}$$
,

(ii)

$$\sigma V_r^{(n)} = V_{r[1]}^{(n-1)} \cup V_{r[2]}^{(n-1)}$$
,

where σ is defined by $\sigma(\gamma_1, \dots, \gamma_n) = (\gamma_2, \dots, \gamma_n)$ for $(\gamma_1, \dots, \gamma_n) \in V_r^{(n)}$ and $M_{r,r[1]} = M_{r,r[2]} = 1$. (iii)

$$iV_{\tau}^{(n)} + i = V_{\tau[1]}^{(n)} \text{ and } -V_{\tau}^{(n)} + (-1+i) = V_{\tau[2]}^{(n)},$$

where $aV^{(n)} + b = \{(a\gamma_1 + b, \cdots, a\gamma_n + b)\}$ for $V^{(n)} = \{(\gamma_1, \cdots, \gamma_n)\}.$

PROOF. (i) and (ii) are obvious. In order to prove (iii), it is enough to notice that symbols 0, i, -1+i and -1, which can be considered as points on the plane, are obtained from a symbol by rotating by angle $\pi j/2$, j=1, 2, 3, around (-1+i)/2. Indeed, for example,

$$e^{i\pi/2} \{V_{0}^{(n)} - (-1 + i)/2\} + (-1 + i)/2 = V_{i}^{(n)}$$
 ,

and

$$e^{i\pi} \{V_0^{(n)} - (-1+i)/2\} + (-1+i)/2 = V_{-1+i}^{(n)}$$

We realize a biased revolving sequence $(\gamma_1, \dots, \gamma_n)$ to a point $p(\gamma_1, \dots, \gamma_n)$ of C by the realization map Φ defined in the Introduction

(2.2)
$$p(\gamma_1, \dots, \gamma_n) = \sum_{k=1}^n \gamma_k (1+i)^{-k}$$
.

Corresponding to the sets of sequence $V^{(n)}$ and $V_r^{(n)}$, let sets of points $Y^{(n)}$ and $Y_r^{(n)}$ be

(2.3)
$$Y^{(n)} = \{ p(\gamma_1, \cdots, \gamma_n); (\gamma_1, \cdots, \gamma_n) \in V^{(n)} \}, \text{ and } \\ Y^{(n)}_T = \{ p(\gamma_1, \cdots, \gamma_n); (\gamma_1, \cdots, \gamma_n) \in V^{(n)}_T \}.$$

By Property 2.1 we obtain:

Proposition 2.2. (i)

$$Y^{(n)} = \bigcup_{\gamma \in \{0, i, -1+i, -1\}} Y^{(n)}_{\gamma}$$
,

(ii)

$$(1+i) Y_{r}^{(n)} - \gamma = Y_{r[1]}^{(n-1)} \cup Y_{r[2]}^{(n-1)} \text{ for } n \ge 2$$
 ,

where $aA+b=\{ax+b; x \in A\}$ for a set A, (iii)

$$i Y_{\tau}^{(n)} + \sum_{k=1}^{n} i(1+i)^{-k} = Y_{\tau[1]}^{(n)} \quad and \quad -Y_{\tau}^{(n)} + \sum_{k=1}^{n} (-1+i)(1+i)^{-k} = Y_{\tau[2]}^{(n)}$$

that is, $Y_{\tau[1]}^{(n)}$ and $Y_{\tau[2]}^{(n)}$ are obtained by rotating $Y_{\tau}^{(n)}$ by angle $\pi/2$ and π , respectively, around $\sum_{k=1}^{n} (-1+i)/2(1+i)^{-k}$.

LEMMA 2.3. $Y_{7}^{(n)} = (1+i)^{-1} \{ i Y_{7}^{(n-1)} + \gamma + \sum_{k=1}^{n-1} i(1+i)^{-k} \} \cup (1+i)^{-1} \times \{ -Y_{7}^{(n-1)} + \gamma + \sum_{k=1}^{n-1} (-1+i)(1+i)^{-k} \}.$

PROOF. From Property 3.1

$$V_{\tau}^{(n)} = (\gamma, \underbrace{0, \dots, 0}_{n-1}) + \{(0, V_{\tau}^{(n-1)}) \cup (0, V_{\tau}^{(n-1)})\} \\ = (\gamma, \underbrace{0, \dots, 0}_{n-1}) + \{(0, iV_{\tau}^{(n-1)} + i) \cup (0, -V_{\tau}^{(n-1)} + (-1+i))\},$$

where $(0, V^{(n-1)}) = \{(0, \gamma_1, \dots, \gamma_{n-1})\} \in V^{(n)}$ for $V^{(n-1)} = \{(\gamma_1, \dots, \gamma_{n-1})\}$. By the relation above we obtain the result.

This lemma shows that each set $Y_{r}^{(n)}$ is a recurrent set of order 2, namely the *n*-step set $Y_{r}^{(n)}$ is obtained from two (n-1)-step sets $Y_{r}^{(n-1)}$ for each γ .

It is verified by the definition of $Y_r^{(n)}$ that

(2.4)
$$d(Y_{r}^{(n)}, Y_{r}^{(n+1)}) \leq \left(\frac{1}{\sqrt{2}}\right)^{n}$$

in the Hausdorff metric. Then there exist limit sets Y and Y_r such that $Y^{(n)}$ and $Y_r^{(n)}$ converge to Y and Y_r , respectively, in the Hausdorff metric. Taking $n \to \infty$ in Proposition 2.2 and Lemma 2.3, we obtain,

PROPOSITION 2.4. Let $Y = \{\sum_{k=1}^{\infty} \gamma_k (1+i)^{-k} : (\gamma_1, \gamma_2, \cdots) \in V\}$ and $Y_r = \{\sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}; (\gamma_1, \gamma_2, \cdots) \in V_r\}$. Then sets Y and $Y_r, \gamma \in \Gamma$, satisfy following properties:

(i)
$$Y = \bigcup_{\gamma \in \{0, i, -1+i, -1\}} Y_{\gamma}$$
,

(ii)
$$(1+i)Y_{\tau} - \gamma = Y_{\tau[1]} \cup Y_{\tau[2]}$$
,

(iii)
$$iY_r + 1 = Y_{r[1]}$$
 and $-Y_r + 1 + i = Y_{r[2]}$,

that is, sets $\{Y_7\}$ are congruent to each other and obtained by rotating some Y_7 , by angles $\pi k/2$, k=1, 2, 3, around (1+i)/2. (iv)

$$Y_r = (1+i)^{-1}(iY_r + \gamma + 1) \cup (1+i)^{-1}(-Y_r + \gamma + 1 + i)$$
.

Let contraction maps $F_{0,7}$ and $F_{1,7}$ on the plane be

(2.5)
$$F_{0,7}(z) = (1+i)^{-1}(iz+\gamma+1) \text{ and } F_{1,7}(z) = (1+i)^{-1}(-z+\gamma+1+i).$$

Then from Proposition 2.4 (iv) we can say that the limit sets $\{Y_r\}$ are $\{F_{0,7}, F_{1,7}\}$ -invariant sets satisfying relations

(2.6)
$$Y_{\tau} = F_{0,\tau}(Y_{\tau}) \cup F_{1,\tau}(Y_{\tau}) \quad for \ each \quad \gamma \in \Gamma.$$

THEOREM 2.5. Let sets Y_r , $\gamma \in \{0, i, -1+i, -1\}$ satisfy the relation (2.6) and $Y = \bigcup_{\tau \in \{0, i, -1+i, -1\}} Y_{\tau}$. Then

(i) each set Y_{γ} is a dragon with $\lambda(Y_{\gamma})=1/4$ and end point besides the common (1+i)/2 is 0 for Y_{-1} , 1 for Y_0 , 1+i for Y_i , i for Y_{-1+i} .

(ii) the set Y is tiled by $\{Y_{\gamma}\}$, that is,

$$Y = \bigcup_{\substack{\tau \in \{0,i,-1+i,-1\}}} Y_{\tau} \quad and \quad \lambda(Y_{\tau} \cap Y_{\tau'}) = 0 \quad for \quad \gamma \neq \gamma'$$

(see Figure 3).

PROOF. (i) Notice that the contraction maps $F_{0,\gamma}$ and $F_{1,\gamma}$ for $\gamma = -1$ coincide with $G_{0,\varepsilon}^*$ and $G_{1,\varepsilon}^*$ for $\varepsilon = 0$ in Section 1, namely

$$F_{0,-1}(z) = G_{0,0}^*(z)$$
 and $F_{1,-1}(z) = G_{1,0}^*(z)$.

As discussed in Section 1, the set Y_{-1} satisfying

$$Y_{-1} = F_{0,-1}(Y_{-1}) \cup F_{1,-1}(Y_{-1})$$
 ,

is a dragon $(1-i)^{-2}H_d$ with $\lambda(Y_{-1})=1/4$ and end points are 0 and (1+i)/2 (Figure 2 (b)), and

(*)
$$\lambda(F_{0,-1}(Y_{-1}) \cap F_{1,-1}(Y_{-1})) = 0$$
.

Then from Proposition 2.4 (iii) we obtain (i).

(ii) A set $Y_0 \cup Y_i$ is tiled by Y_0 and Y_i owing to (*) and Proposition 2.4 (iii). Using Proposition 2.4 (iii), it is shown that each set $Y_r \cup Y_{r[1]}$ is tiled by Y_r and $Y_{r[1]}$. Proposition 2.4 (iii) also indicates that the set $Y_{-1} \cup Y_0$ also forms a dragon $(1-i)^{-1}H_d$ with end points 0 and 1 since similar condition holds for $X_i^* = X_{(i,0)}^* \cup X_{(i,i^*)}^*$. Moreover by (1.3), (1.4) and (1.6) we can see that the twindragon X_B has anoter tiling form (Figure 1 (b)), that is,

$$X_{\scriptscriptstyle B} \!=\! (1\!-\!i)^{-1} H_{\scriptscriptstyle d} \cup (-(1\!-\!i)^{-1} H_{\scriptscriptstyle d} \!+\! 1)$$
 ,

and

 $\lambda(X_B \cap (X_B + i)) = 0$.

Thus we obtain the following relation,

$$\lambda((1-i)^{-1}H_d \cap \{-(1-i)^{-1}H_d + 1 + i\}) = 0$$
.

Since $(1-i)^{-1}H_d = Y_{-1} \cup Y_0$,

$$\lambda((Y_{-1}\cup Y_0)\cap (Y_{\mathfrak{c}}\cup Y_{-1+\mathfrak{c}}))=0,$$

that is evident from Proposition 2.4 (iii), which was to be demonstrated (cf. Figure 1 (c) and Figure 3). \Box

It is verified that $Y_{-1} = X_0^*$, $Y_0 = X_1^* + 1$, $Y_i = X_2^* + 1 + i$ and $Y_{-1+i} = X_3^* + i$. We call the set Y a cross dragon (Figure 3).

FIGURE 3. Cross dragon Y. Y is tiled by four dragons $\{Y_r; i = \{0, i, -1+i, -1\}\}$ in a different manner from tetradragon X^* (Figure 2). Notice that $Y \subset (X_B \cup X_B + i)$) (Figure 1(c)).

§ 3. Dynamical system on cross dragon.

We can define a dynamical system on the cross dragon. Since the dynamical system is constructed in the same manner as the previous one in Section 6 of [1], we state propositions without proof.

We consider the map \widehat{T} for each point $z \in Y$:

(3.1)
$$\hat{T}: z \longrightarrow (1+i)z \text{ for } z \in Y.$$

Then we obtain by Proposition 2.4 (ii),

$$\hat{T}Y_r = \gamma + (Y_{r[1]} \cup Y_{r[2]})$$
.

We prepare following sets \hat{U}_{γ} and U_{γ} for each $\gamma \in \Gamma$;

$$\begin{array}{l} \hat{U}_{0} = Y_{i} \cup Y_{-1+i}, \qquad \hat{U}_{i} = i + (Y_{-1+i} \cup Y_{-1}), \\ (3.2) \qquad \hat{U}_{-1+i} = -1 + i + (Y_{-1} \cup Y_{0}), \qquad \hat{U}_{-1} = -1 + (Y_{0} \cup Y_{i}), \quad \text{and} \\ U_{r} = \hat{U}_{r} - \gamma. \end{array}$$

We call \widehat{U}_r a neighbourhood of integer γ . Define a map T for $z \in Y \setminus \bigcap_{r \in \Gamma} \partial Y_r$ by

$$(3.3) Tz = (1+i)z - [(1+i)z]_c,$$

where $[w]_c = \gamma$ if $w \in \hat{U}_r$. Then the map T satisfies

$$(3.4) TY_{\gamma} = Y_{\gamma[1]} \cup Y_{\gamma[2]} \text{ for each } \gamma \in \Gamma ,$$

that is, the partition $\{Y_r; \gamma \in \Gamma\}$ of Y is a Markov partition for the map T. Let $\gamma_k(z)$ be

(3.5)
$$\gamma_k(z) = [(1+i)T^{k-1}z]_c \text{ for } k \ge 1.$$

Then we have

THEOREM 3.1. Let Y be the cross dragon and T be the cross dragon map (3.3). Then

(i) the transformation (Y, T) induces an expansion

$$z = \sum_{k=1}^{\infty} \gamma_k(z) (1+i)^{-k}$$
 for $z \in Y igvee_{k=0}^{\infty} T^{-k}(\bigcap_{\tau \in \Gamma} \partial Y_{\tau})$,

(ii) the Lebesgue measure λ is invariant with respect to (Y, T),

(iii) let μ be a Markov invariant measure for the system (V, σ) with the transition probability P and stationary probability Π such that

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 1/2 & 0 & 0 \end{pmatrix}, \qquad \Pi = (1/4, 1/4, 1/4, 1/4),$$

then, the dynamical system (Y, T, λ) is isomorphic to (V, σ, μ) and consequently (Y, T, λ) is ergodic.

Identifying the complex plane with \mathbb{R}^2 , we can show that the set Y can be regarded as a covering space of the torus T^2 because of the tiling properties of twindragon (1.6) and the set $\{Y_r\}$.

COROLLARY 3.2. Let

$$L = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 ,

which induces an expanding endomorphism T_L on the torus T^2 . Then there exists a Markov partition $\{Y_r; \gamma \in \Gamma\}$ on the torus for $T_L: T^2 \to T^2$, so that the dynamical system (T^2, T_L, λ) with this partition is isomorphic to the one sided subshift of finite type (V, σ, μ) .

This corollary says that there exists a "fractal" Markov partition with respect to the expanding endomorphism T_L (For general expanding endomorphisms T_L , $L = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, see Bedford [9]).

Moreover we introduce a simple system $(Y^{\dagger}, T^{\dagger}, \lambda^{\dagger})$ as follows: let $Y^{\dagger} = \{x + iy; 0 \leq x, y < 1\}$ and a map T^{\dagger} be

$$(3.6) T^{\dagger}z = (1-i)z + (-1+i) - [(1-i)z + (-1+i)] for z \in Y^{\dagger},$$

where $[w] = [\operatorname{Re}(w)] + i[\operatorname{Im}(w)]$ for $z \in C$, and the sequence of integer $\{\xi_k(z); k \in N\}$ be

(3.7)
$$\xi_k(z) = [(1-i)T^{\dagger k-1}z + (-1+i)] \text{ for each } z \in Y^{\dagger}.$$

Then we can verify that the transformation $(Y^{\dagger}, T^{\dagger})$ induces a expansion

(3.8)
$$z = \sum_{k=1}^{\infty} (\xi_k(z) - (-1+i))(1-i)^{-k}$$
 for a.e. $z \in Y^+$,

and has the Lebesgue measure as an invariant measure λ^{\dagger} and also the partition $\{Y_{r}^{\dagger}; \gamma \in \Gamma\}$, where $Y_{r}^{\dagger} = \{z \in Y^{\dagger}; \xi_{1}(z) = \gamma\}$, is a Markov partition, that is,

$$(3.9) T^{\dagger}Y_{r}^{\dagger}=Y_{r[1]}^{\dagger}\cup Y_{r[2]}^{\dagger}.$$

500

Therefore T^{\dagger} -admissible sequences $\{(\xi_1(z), \xi_2(z), \cdots)\}$ which have the same structure of the sequences generated by the cross dragon system (Y, T). Thus we obtain:

THEOREM 3.3. The dynamical systems (Y, T, λ) and $(Y^{\dagger}, T^{\dagger}, \lambda^{\dagger})$ are isomorphic to each other as an endomorphism, that is there exists measure preserving invertible map Ψ defined on Y such that

$$T^{\dagger} \circ \Psi = \Psi \circ T$$
.

§4. Dual map and natural extension of cross dragon system.

We show that the cross dragon system (Y, T, λ) is nothing but the dual map [1] of a very simple system.

Let $Y^* = \{x + iy; 0 \leq x, y < 1\}$ and a map T^* be

(4.1)
$$T^*z = (1+i)z - [(1+i)z]$$
 for $z \in Y^*$.

Hence a set $\{[(1+i)z]; z \in Y^*\}$ coincides with $\Gamma = \{0, i, -1+i, -1\}$. We can easily verify that the transformation (Y^*, T^*) is well defined on Y^* and has the Lebesgue measure λ^* on Y^* as an invariant measure and also induces a expansion for a.e. $z \in Y^*$ such that

(4.2)
$$z = \sum_{k=1}^{\infty} \eta_k(z) (1+i)^{-k} ,$$

where

$$\eta_k(z) = [(1+i)T^{*k-1}z].$$

Let a set Y_{η}^* be

(4.3)
$$Y_{\eta}^{*} = \left\{ \sum_{k=1}^{\infty} \eta_{k}(z)(1+i)^{-k}; z \in Y^{*} \text{ and } \eta_{1}(z) = \eta \right\}.$$

Then we can see that the sets $\{Y_{\eta}^*; \eta \in \Gamma\}$ are four triangles with vertices 0, 1 for $Y_0^*, 1, 1+i$ for $Y_i^*, 1+i, i$ for $Y_{-1+i}^*, i, 0$ for Y_{-1}^* and (1+i)/2 in common, and the domain Y^* is tiled by these triangles, that is,

(4.4)
$$Y^* = \bigcup_{\eta \in \{0,i,-1+i,-1\}} Y^*_{\eta} \text{ and } \lambda(Y^*_{\eta} \cap Y^*_{\eta'}) = 0 \text{ for } \eta \neq \eta'.$$

Let M^* be a structure matrix such that

$$M^*_{j,k} = egin{cases} 1 & ext{if} & T^*Y^*_{\mathfrak{r}[j]} \cap Y^*_{\mathfrak{r}[k]}
eq arnothing \ 0 & ext{if} & T^*Y^*_{\mathfrak{r}[j]} \cap Y^*_{\mathfrak{r}[k]}
eq arnothing \ .$$

Let V^* and V_{η}^* be

$$(4.5) V^* = \{(\eta_1, \eta_2, \cdots); \eta_j \in \Gamma \text{ and } M^*_{\eta_j, \eta_{j+1}} = 1 \text{ for all } j \ge 1\}$$

(4.6)
$$V_{\eta}^* = \{(\eta_1, \eta_2, \cdots) \in V^*; \eta_1 = \eta\}$$

It is easily verified that every element of V^* has the same admissibility as the sequence $(\eta_1(z), \eta_2(z), \cdots)$ induced by (Y^*, T^*) , Notice that

$$^{t}M = M^{*}$$

and so for any $(\eta_1, \dots, \eta_n) \in V^{*(n)}$ a sequence (η_n, \dots, η_1) , which is a backward sequence of it, is an element of $V^{(n)}$. In this sense we call (V^*, σ^*) is a dual symbolic system [1] for (V, σ) . Thus we obtain,

THEOREM 4.1. The cross dragon system (Y, T, λ) is a dual system for the system (Y^*, T^*, λ^*) .

The natural extension [1] of the symbolic system (V, σ) is $(\tilde{V}, \tilde{\sigma})$ such that

(4.7)
$$\widetilde{V} = \{(\cdots, \gamma_{-2}, \gamma_{-1}, \gamma_0, \gamma_1, \gamma_2, \cdots); \forall_k \in \Gamma \text{ and } M_{\gamma_k, \gamma_{k+1}} = 1 \\ \frown \text{ for all } k \in \mathbb{Z}\},$$

and $\tilde{\sigma}$ is a shift operator on \tilde{V} .

LEMMA 4.2. The set \tilde{V} is decomposed as follows;

$$\widetilde{V} = \bigcup_{\substack{\gamma \in \{0, i, -1+i, -1\} \\ \eta \in \{0, i, -1+i, -1\} }} (V_{\eta}^* \cup V_{\eta'}^*) \cdot V_{\eta}$$
$$= \bigcup_{\substack{\gamma \in \{0, i, -1+i, -1\} \\ \eta \in \{0, i, -1+i, -1\} }} V_{\eta}^* \cdot (V_{\tau[1]} \cup V_{\tau[2]})$$

where for $(\eta_1, \eta_2, \cdots) \in V^*$ and $(\gamma_1, \gamma_2, \cdots) \in V$, $(\eta_1, \eta_2, \cdots) \cdot (\gamma_1, \gamma_2, \cdots) = (\cdots, \eta_2, \eta_1, \gamma_1, \gamma_2, \cdots)$ and $M_{\eta,\tau} = M_{\eta',\tau} = M_{\tau,\tau[1]} = M_{\tau,\tau[2]} = 1$.

The proof is easily derived from the admissibilities of V and V^* .

THEOREM 4.3. Let a set \tilde{Y} be a subset of Q^2 such that

$$\widetilde{Y} = \bigcup_{\substack{\tau \in \Gamma \quad \eta \\ \tau \in \Gamma \quad \vartheta}} \bigcup_{\substack{Y_{\eta}^{*} \times Y_{\eta}}} Y_{\eta}^{*} \times Y_{\eta}$$

T:77

where $\eta \in \{\eta'; M_{\eta Q_r} = 1\}$ and $\delta \in \{\delta'; M_{r,s'} = 1\}$ for $\gamma \in \Gamma$, and a map \tilde{T} be for $(w, z) \in Y_{\eta}^* \times Y_{\tau}$

$$\tilde{T}(w, z) = ((1+i)^{-1}(w+\gamma), Tz)$$
.

Then the system $(\tilde{Y}, \tilde{T}, \tilde{\lambda})$ is a natural extension of the cross dragon system (Y, T, λ) , where $\tilde{\lambda}$ is the Lebesgue measure on \tilde{Y} .

PROOF. The decompositions of \tilde{V} in Lemma 4.2 reduce to the decompositions of their realization \tilde{Y} with a realization map $\tilde{\Phi}$ for $(\eta_1, \eta_2, \cdots) \times (\gamma_1, \gamma_2, \cdots) \in \tilde{V}$ such that

$$\widetilde{\varPhi}: (\gamma_1, \gamma_2, \cdots) \cdot (\gamma_1, \gamma_2, \cdots) \longrightarrow \left(\sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}, \sum_{j=1}^{\infty} \gamma_j (1+i)^{-j}\right).$$

We can see by Property 2.1 and Lemma 4.2 that if $\tilde{\omega} \in V_{\tau}^* \cdot V_{\tau}$ then $\tilde{\omega}$ is translated by $\tilde{\sigma}$ bijectively to

$$\widetilde{\sigma}\widetilde{\omega}\in V_{r}^{*}\cdot(V_{r[1]}\cup V_{r[2]})$$
 .

The realization $(\tilde{V}, \tilde{\sigma})$ is nothing but

$$T(w, z) = ((1+i)^{-1}(w+\gamma), Tz)$$
 for $(w, z) \in Y_{\eta}^{*} \times Y_{\eta}$.

Therefore the map \widetilde{T} is well defined and bijection. It is easily verified that the Lebesgue measure $\widetilde{\lambda}$ is invariant with respect to $(\widetilde{Y}, \widetilde{T})$.

CORORALLY 4.4. The dynamical system $(\tilde{Y}, \tilde{T}^{-1}, \tilde{\lambda})$ is a natural extension of (Y^*, T^*, λ^*) .

We can say by Corollary 4.4 that the cross dragon system (Y, T, λ) is the dual system of the simple system (Y^*, T^*, λ^*) .

We point out here that the dynamical system $(Y^{\dagger}, T^{\dagger}, \lambda^{\dagger})$ in Section 3 is also the dual system for (Y^*, T^*, λ^*) which has a simple domain in contrast with (Y, T, λ) .

References

- [1] M. MIZUTANI and SH. ITO, Dynamical system on dragon domains, to appear in Japan J. Appl. Math.
- [2] B.B. MANDELBROT, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
- [3] F. M. DEKKING, Recurrent sets, Adv. in Math., 44 (1982), 78-104.
- [4] F. M. DEKKING, Replicating super figures and endomorphism of free groups, J. Combin Theory (A), 32 (1982), 315-320.
- [5] C. DAVIS and D. E. KNUTH, Number representations and dragon curves I, J. Recreational Math., 3 (1970), 66-81.
- [6] J.E. HUTCHINSON, Fractals and selfsimilarity, Indiana Univ. Math. J., 30 (1981), 713-747.
- [7] D. KNUTH, The Art of Computer Programing II, Section 4.1, Addison Wesley, 1969.
- [8] W. PARRY, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.

504

[9] T. BEDFORD, Generating special Markov partitions for Hyperbolic Total Automorphisms using fractals, preprint.

> Present Address: Department of Applied Physics School of Sciences and Engineerings Waseda University Okubo, Shinjuku-ku, Tokyo 160 and Department of Mathematics Tsuda College Tsuda-machi, Kodaira, Tokyo 187

> > .