
TOKYO J. MATH.
VOL. 9, No. 2, 1986

A New Characterization of Dragon and
Dynamical System

Masahiro MIZUTANI and Shunji ITO

Waseda University and Tsuda College

Introduction

The fractal sets called a twindragon and a dragon are encountered
in a complex binary representation [7] and a paper folding curve [5],
respectively. We have constructed in a previous paper [1] dynamical
systems on the twindragon (Figure 1) and the tetradragon (Figure 2) tiled
by four dragons which are obtained as realized domains for a two state
Bernoulli shift and a some subshift with a finite coding from a Markov
subshift [8], respectively.

We propose in this paper a new construction of a dragon different
from the paper folding process and consider a dynamical system on a
domain, tiled by four dragons, which are not the tetradragon. We call
this domain a cross dragon. Moreover surprisingly we can show in Sec-
tion 4 that this cross dragon system is actually a dual system [1] of a
very simple group endomorphism.

Indeed the cross dragon system is obtained as a realization of a fol-
lowing Markov subshift. Let $M=(M_{j,k}),$ $1\leqq j,$ $k\leqq 4$ , be a matrix such that

$M=\left(\begin{array}{llll}0 & 1 & 1 & 0\\0 & 0 & 1 & 1\\1 & 0 & 0 & 1\\1 & 1 & 0 & 0\end{array}\right)$ .

We consider $M$ as a structure matrix for a state space $\Gamma=\{0,$ $i,$ $-1+i$ ,
$-1\}$ by a correspondence $\tau:\{1,2,3,4\}\rightarrow\Gamma$ such that $\tau[1]=0,$ $\tau[2]=i$ ,
$\tau[3]=-1+i$ and $\tau[4]=-1$ , that is, let $V$ be a set of infinite sequences
generated by the structure matrix $M$,

$V=$ { $(\gamma_{1},$ $\gamma_{2},$ $\cdots);M_{r_{j^{\gamma}j+1}}.=1,$ $\gamma_{j}\in\Gamma$ for all $j\in N$},
$\overline{Received}$October14,1985



488 MASAHIRO MIZUTANI AND SHUNJI ITO

and $\sigma$ a shift on $V$. Then the system (V, $\sigma$) is a Markov subshift. Define
a realization map $\Phi:V\rightarrow Y\subset C$ such that

$\Phi:(\gamma_{1}, \gamma_{2}, \cdot\cdot, \gamma_{n}, \cdots)\rightarrow\sum_{k=1}^{\infty}\gamma_{k}(1+i)^{-k}$

for each $(\gamma_{1}, \gamma_{2}, \cdots)\in V$ , and let $Y_{\gamma}$ be the set $\{z\in Y=\{\Phi(\gamma_{1}, \gamma_{2}, \cdots)\};\gamma_{1}=\gamma\}$

for $\gamma\in\Gamma$ . Then we can see in Section 2 that each set $Y_{\gamma}$ is the dragon
whose construction is different from a paper folding process and the set
$Y$ is tiled by four dragons $\{Y_{\gamma}\}$ , in spite of that $Y$ is not the tetradragon.
This is why we call $Y$ a cross dragon (Figure 3). Also we can see in
Section 3 that the cross dragon system $(Y, T)$ can be defined as a reali-
zation of (V, $\sigma$) such that

$Tz=(1+i)z-[(1+i)z]_{c}$ for $zeY$ ,

where $[w]_{c}=\gamma$ if $we\gamma+(Y_{\gamma[1]}\cup Y_{\gamma[2]})$ for $M_{\gamma,\gamma[1]}=M_{\gamma,\gamma[2]}=1$ .
In Section 4 we will see in Theorem (4.1) that this cross dragon

system $(Y, T)$ is actually a dual system [1] of a group endomorphism $T_{L}$

on the torus $T^{2}$ such that

$\tau_{L}\left(\begin{array}{l}x\\y\end{array}\right)=\left(\begin{array}{ll}1 & -1\\1 & 1\end{array}\right)\left(\begin{array}{l}x\\y\end{array}\right)$ $(mod 1)$ .

We remark that by Theorem (3.3) the cross dragon system $(Y, T)$ is iso-
morphic to a simple system on the torus such that

$\tau\uparrow\left(\begin{array}{l}x\\y\end{array}\right)=\left(\begin{array}{ll}1 & 1\\-1 & 1\end{array}\right)\left(\begin{array}{l}x\\y\end{array}\right)+\left(\begin{array}{l}-1\\1\end{array}\right)$ $(mod 1)$ .

\S 1. Properties of twindragon and dragon.

We summarize the properties of a twindragon and a drangon obtained
in the previous paper [1]. Recall notations by Dekking [3] [4]. Let $S$ be
a finite set of symbols, $S^{*}$ be the free semigroup generated from $S$ by

the equivalence relation $\sim$ , which is defined as $W\sim V$ iff $W$ and $V$ deter-
mine the same word after cancellation, that is so-called reduced word.
And let $\theta:S^{*}\rightarrow S^{*}$ be a semigroup endmorphism. Let $f:S^{*}\rightarrow C$ be a
homeomorphism which satisfies

$f(VW)=f(V)+f(W)$ , $f(V^{-1})=-f(V)$

for all words $V,$ $W\in S^{*}$ . Define a map $K:S^{*}\rightarrow\ovalbox{\tt\small REJECT}^{\prime}(C)$ , the nonempty
compact subsets of $C$, which satisfies



DRAGON AND DYNAMICAL SYSTEM 489

$K[VW]=K[V]\cup(K[W]+f(V))$

for all reduced words $V,$ $W\in S^{*}$ , by

$K[s]=\{tf(s);0\leqq t\leqq 1\}$ for $seS$ .
This makes $K[s_{1}\cdots s_{m}]$ the polygonal line with vertices at $0,$ $f(s_{1}),$ $f(s_{1})+$

$f(s_{2}),$ $\cdots,$ $f(s_{1})+\cdots+f(s_{m})$ .
Let $S=\{a, b, c, d\}$ and the endomorphism $\theta_{t}$ be

$\theta_{t};a\rightarrow ab,$ $b\rightarrow cb,$ $c\rightarrow cd,$ $d\rightarrow ad$ ,

and the homomorphism $f$ be

$f(a)=1=-f(c)$ , $f(b)=-i=-f(d)$ .
Define the n-step twindragon $D_{n}$ and n-step dragon $H_{n}$ (or paperfolding
dragon [5]) [1] [2] [3] [4] by

(1.1) $D_{n}=(1-i)^{-n}K[\theta_{t}^{n}(abcd)]$

and

(1.2) $H_{n}=(1-i)^{-n}K[\theta_{t}^{n}(ab)]$ .
Notice that the n-step twindragon is tiled with two n-step dragon (Figure
$1(b))$ , that is,

(1.3) $D_{n}=H_{n}\cup(-H_{n}+1-i)$ .
It is proved in [3] [4] that $D_{n}$ and $H_{n}$ converge to limit sets $D_{t}$ and $H_{d}$

respectively as $ n\rightarrow\infty$ in the Hausdorff metric $d(\cdot, )$ where

$d(A, B)=\sup\{s^{u}pi^{n}fx-y|, S^{upin}fx-y|\}$ .

The sets $D_{t}$ and $H_{d}$ are called the twindragon and the dragon, respectively.
Now let sets $X_{B},$ $X_{B,0}$ and $X_{B,-i}$ be

$X_{B}=\{\sum_{k=1}^{\infty}a_{k}(1-i)^{-k}:a_{k}e\{0, -i\}$ for all $k\in N\}$ ,

$X_{B,0}=\{\sum_{k=1}^{\infty}a_{k}(1-i)^{-k}:a_{1}=0,$ $a_{k}\in\{0, -i\}$ for all $k\geqq 2\}$ ,

$X_{B,-i}=\{\sum_{k=1}^{\infty}a_{k}(1-i)^{-k}:a_{1}=-i,$ $a_{k}e\{0, -i\}$ for all $k\geqq 2\}$

Then followings were proved in [1]; $X_{B}$ is similar to the twindragon $D_{t}$ ,
that is,
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(1.4) $X_{B}=(1-i)^{-1}D_{l}$ .
$X_{B}$ is tiled by $X_{B,0}$ and $X_{B,-}$ which are congruent each other and similar
to $X_{B}$ (Figure $1(a)$), that is,

(1.5) $X_{B}=X_{B,0}\cup X_{B,-i}$ and $\lambda(X_{B,0}\cap X_{B,-i})=0$ ,

where $\lambda$ is the Lebesgue measure on the plane. This fact indicates that

FIGURE l(a). Twindragon $X_{B}$ . $X_{B}$ is similar to $D$ , the limit set of
twindragon curve (1.1), $X_{B}=(1-I)^{-1}D$ . $X_{B}$ is tiled by twin-
dragons which are a meshed twin dragon $X_{B.0}$ and a dark
twindragon $X_{B.-i}$ , congruent to each other and similar to $X_{B}$ ,
namely $X_{B}=X_{B.0}\cup X_{B.-}$ .

FIGURE l(b). Twindragon $X_{B}$ . $X_{B}$ is also tiled by two dragons
which are a meshed dragon \langle$1-i)^{-1}H$ and a dark dragon
$-(1-i)^{-1}H_{a}+1$ , where $H_{d}$ is the limit set of dragon curve (1.2),
namely $X_{B}=(1-i)^{-1}H_{l}\cup(-(1-i)^{-1}H_{a}+1)$ .
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FIGURE l(c). The plane is tiled by twindragons $\{X_{B}+m+in;m+$
$in\in Z(i)\}$ . This figure indicates $X_{B}\cup(X_{B}+i)$ , where each twin-
dragon is tiled by two dragons. Notice that the cross dragon
$Y$ in Section 2 is included, namely $Y_{-1}\cup Y_{0}=(1-i)^{-1}H_{a}$ (meshed
dragon with end points $0$ and 1) and $Y_{\ell}UY_{-1+i}=-(1-i)^{-1}H_{a}+$

$1+i$ (dark dragon with end points $1+i$ and i) (cf. Figure 3).

twindragon is a selfsimilar fractal set of order 2. Finally the whole plane
is tiled with twindragons (cf. Figure $1(a)(c)$), that is,

$\bigcup_{m+ineZ(t)}X_{B(m+in)}=C$ ,

(1.6) and

$\lambda(\bigcup_{m+in}\partial X_{B(fh+in)})=0$ ,

where $X_{B(m+in)}=X_{B}+m+in$ and $\partial A$ is a boundary of a set $A$ .
Next recall $W^{(n)}$ , which is a set of the revolving sequences $(\delta_{1}, \cdots, \delta_{n})$

[1] [5]. We call a sequence $(\delta_{1}, \cdots, \delta_{n}),$ $\delta_{j}\in\{0,1, i, -1, -i\}$ for $1\leqq j\leqq n$ ,
a revolving if nonzero digits repeat periodically following pattern from
left to right,

$...\rightarrow 1\rightarrow-i\leftrightarrow-1\rightarrow i\rightarrow 1\rightarrow-i\rightarrow\cdots$ .
Then $W^{(n)}$ is decomposed as following;

$W^{(n)}=\bigcup_{\epsilon\in\{0,12,3\}},W_{*}^{(n)}$ ,

and

$W_{l}^{(n)}=W_{(\epsilon,0)}^{(n}\cup W_{(\epsilon,(-i)^{\epsilon})}^{(n)}$ ,

where $W_{\epsilon}^{(n}$
) means a set of the revolving sequences whose first nonzero
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digit is $(-i)^{e}$ and $W_{(l,\delta)}^{(n)}$ a subset of $W_{\epsilon}^{(n)}$ whose first digit is $\delta$ (refer to
[1] for more precise definitions). Put

$W_{l}^{*(n)}=\overline{W_{e}^{(n)}}$ and $W_{(\epsilon^{\frac{n}{\delta}})}^{*()}=\overline{W_{(*,\delta)}^{(n)}}$ ,

where $-means$ to take a complex conjugate for each digit of $(\delta_{1}, \cdots, \delta_{n})$ .
Let sets $X_{(e,\delta)}^{(n)}$ and $X_{(:_{\delta})}(n)$ be

$X_{(\epsilon,\delta)}^{(n)}=\{\sum_{k=1}^{n}\delta_{k}(1+i)^{-k};(\delta_{1}, \cdots, \delta_{n})eW_{(\epsilon,\delta)\}}^{(n)}$ ,

and

$X_{(\epsilon,\delta)}^{*(n)}=\{\sum_{k=1}^{n}\delta_{k}^{*}(1-i)^{-k}:(\delta_{1}^{*}, \cdots, \delta_{n}^{*})eW_{(e,\delta)\}}^{*(n)}$ .
$X_{\epsilon}^{(n)},$ $X^{(n)},$ $X^{*(n)}$ , and $X^{*(n)}$ are defined in a similar way. Then followings
were proved in [1]; the sets of points $\{X_{(l,\delta)}^{*(n)}\}$ are congruent to each other
and similar to a set of folding points of $(n-3)$-step dragon $H_{n-\$}$ , to
express more precisely, for $n\geqq 3$ and $\epsilon\in\{0,1,2,3\}$

(1.7) $e^{-i\pi\epsilon/2}(1-i)^{3}X_{(e,0)}^{*(n)}=$ {$folding$ points of $H_{n-8}$}.

Furthermore $\{X_{\epsilon}^{*(n)}\}$ are similar to a set of folding points of $(n-2)$-step
dragon $H_{n-2}$ and

(1.8) $e^{-i\pi\epsilon/2}(1-i)^{2}X_{\epsilon}^{*(n)}=$ {$folding$ points of $H_{n-2}$}.

Taking $ n\rightarrow\infty$ , the set $X^{*(n)}$ and $X_{(\epsilon,\delta)}^{*(n)}$ converge to limit sets $X_{*}^{*}$ and
$X_{(e.\delta)}^{*}$ in the Hausdorff metric, respectively, and so $X^{*}$ is tiled by sets of

FIGURE 2(a). Tetradragon $X^{*}$ . $X^{*}$ is tiled by four dragons $\{X_{\epsilon}^{*};$

$\epsilon=\{0,1,2,3\}\}$ , namely $X_{\epsilon}^{*}=e^{e\pi/2}(1-i)^{-2}H_{l}$ and $X^{*}=\cup X_{*}^{*}$ .
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FIGURE 2(b). Dragon $X_{0}^{*}$ . $X_{0}^{*}$ is tiled by two dragons which are
meshed dragon $X_{(0\cdot 0)}^{*}$ and dark dragon $X_{(0,1)}^{*}$ . Notioe that the
dragon $X_{0}^{*}$ coincides with $Y_{-1}$ , a part of the cross dragon $Y$

in Section 2 (Figure 3).

dragons $\{X_{\epsilon}^{*}\}$ (Figure $2(a)$ ) and each $X_{\epsilon}^{*}$ is also tiled by dragons $X_{(\epsilon,0)}^{*}$ and
$X_{(\epsilon,i^{\epsilon})}^{*}$ (Figure $2(b)$), that is,

(1.9) $X^{*}=\bigcup_{\epsilon e\{0,12,8\}},X_{\epsilon}^{*}$ and $\lambda(X_{e}^{*}\cap X_{\epsilon}^{*})$ for $\epsilon\neq\epsilon$
’ ,

and
$X_{\epsilon}^{*}=X_{(\epsilon,0)}^{*}\cup X_{(\epsilon,i^{\epsilon})}^{*}$ and

(1.10)
$\lambda(X_{(\epsilon,0)}^{*}\cup X_{(\epsilon,t^{e})}^{*})=0$ .

This fact indicates that the dragons $X^{*}$ are also selfsimilar fractal sets of
order 2. We call the set $X^{*}$ a tetradragon. Finally the Lebesgue measure
of each $X_{(\epsilon,\delta)}^{*}$ is

(1.11) $x(X_{(\epsilon,\delta)}^{*})=1/8$ .
The statements for $\{X_{(\epsilon,i)}\}$ are obtained by taking the complex conjugate.

By the way another approach for the selfsimilar fractal set $K$ is
proposed by Hutchinson [6] using a set of contraction maps. A method
of constructing such set $K$ is shown in the following theorem,

THEOREM 1.1 (Hutchinson [6]). (i) Let $\mathscr{L}=\{S_{0}, \cdots, S_{N-1}\}$ be a finite
set of contraction maps on a complete metric space. Then there exists
a unique closed bounded set $K$ such that $K=\bigcup_{j=1}^{N-1}S_{j}(K)$ .

(ii) For arbitrary set $A$ let $\mathscr{L}(A)=U_{\dot{g}=1}^{N-1}S_{j}(A)$ and $\mathscr{L}^{p}(A)=$

$\mathscr{L}(\mathscr{L}^{p-1}(A))$ , then $\mathscr{L}^{p}(A)\rightarrow K$ in the Hausdorff metric for closed
bounded $A$ .
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We call the above set $K$ a.24-invariant set.
For $\mathscr{L}=\{S_{0}, \cdots, S_{N-1}\}$ let $\mathscr{L}^{n}(z_{0})$ be

(1.12) $\mathscr{L}^{n}(z_{0})=\cup.,S_{j}\circ S_{j_{t}-1^{\circ}}\cdots\circ S_{\dot{g}_{1}}(z_{0})(\dot{g}_{1},\cdot\cdot j_{*})$

where $(j_{1}, \cdots, j_{n})\in\prod_{k=1}^{n}\{0, \cdots, N-1\}$ and $z_{0}eC$. Then a desired set $K$

can be obtained by taking $ n\rightarrow\infty$ for (1.12).
Now we put contraction maps as following; for $\epsilon e\{0,1,2,3\}$

(1.13) $T_{0}(z)=(1-i)^{-1}z$ and $T_{1}(z)=(1-i)^{-1}(z-i)$ ,

(1.14) $G_{0}^{l},.(z)=(1-i)^{-1}z$ and $G_{1}^{*},.(z)=(1-i)^{-1}(iz+i)$ ,

(1.15) $G_{0,\iota}(z)=(1+i)^{-1}z$ and $G_{1},.(z)=(1+i)^{-1}(-iz+(-i)^{\iota})$ .
PROPOSITION 1.2. For $(j_{1}, \cdots, j_{n})e\prod_{k=1}^{n}\{0,1\}$

(i) $\mathscr{L}^{n}(0)=X_{B}^{(n)}$ , $T_{0}(\mathscr{L}^{n}(0))=X_{B,0}^{(n+1)}$ , and $T_{1}(\mathscr{G}^{n}(0))=X_{B.-}^{(n+1)}$ , where
$\mathscr{L}^{n}(z)=\bigcup_{\{\dot{g}_{1}\ldots..\dot{g}.)}\tau_{;}.\circ\cdots\circ T_{\dot{g}_{1}}(z)$ , and $\{T_{0}, T_{1}\}$-invariant set coincides with
$X_{B}$ , that is,

$X_{B}=T_{0}(X_{B})\cup T_{1}(X_{B})$ , $\lambda(T_{0}(X_{B})\cap T_{1}(X_{B}))=0$ .
(ii) $Z^{n}(0)=X_{l}^{*(n)}$ , $G_{0}^{*},.(\mathscr{L}^{n}(0))=X_{(l.0)}^{*(n+1)}$ , and $G_{1}^{*},.(\mathscr{L}^{n}(0))=X_{(\iota.)}^{*\{n_{l}+1)}$

where $\mathscr{L}^{n}(z)=\bigcup_{(\dot{g}_{1},\cdots,j.)}G_{\dot{g}_{*}}^{*},.\circ\cdots\circ G_{;_{1}}^{*}..(z)$ , and $\{G_{0}^{*},., G;.\}$-invariant set coin-
cides $w$ith $X_{l}^{*}$ , that is,

$X_{l}^{*}=G_{0,*}^{*}(X_{l}^{*})\cup G_{1,*}^{*}(X_{e}^{*})$ , $x(G_{0,\epsilon}^{*}(X^{*})\cap G_{1.*}^{*}(X_{\iota}^{*}))=0$ .
The similar statements for $G_{0.*}$ and $G_{1.*}$ also hold.

PROOF. It is verified from the definitions of the contraction maps. $\square $

To summarize results obtained in this section: The twindragon is
regarded as the limit set of n-step twindragon curve $D_{n}$ and also as the
complex binary expansion $X_{B}$ and as well as $\{T_{0}, T_{1}\}$-invariant set. The
twindragon is also obtained as an interior of a limit of a closed curve
$K_{n}=(1-i)^{-n}K[\theta^{n}(aba^{-1}b^{-1})]$ , where $\theta(a)=ab$ and $\theta(b)=ba^{-1}$ for $S=\{a, b\}$ ,
$f(a)=1$ and $f(b)=-i[1][3]$ . Also a dragon is constructed as the limit
set of n-step paper folding dragon curve $H_{n}$ and as the revolving expan-
sion $X_{\iota}^{*}$ and as $\{G_{0}^{*},., G_{1,*}^{*}\}$-invariant set.

We give another construction of the dragon in next section.

\S 2. Biased revolving sequences and cross dragon.

In this section we construct the dragon by a new procedure. Let
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$M$ be the structure matrix and $V$ the set of one sided infinite seuences
generated by $M$ and $\sigma$ a shift operator on $V$. We call $V$ a set of biased
revolving sequences. Then (V, a) is a subshift of finite type, namely $V$

is a closed subset of $\prod_{k=1}^{\infty}\Gamma$ and shift invariant $aV=V$ . Notice that
nonzero entries of the structure matrix can be written as $M_{t[k],r[(k+1)mod 4]}=$

$M_{\tau[k],\tau[(k+2)pod4]}=1$ for $1\leqq k\leqq 4$ . We denote these two admissible states
which follow $\gamma=\tau[k]$ with $\gamma[1]=\tau$[$(k+1)$ mod 4] and $\gamma[2]=\tau$[$(k+2)$ mod 4].
Denote a set of all finite biased revolving sequences with length $n$ by
$V^{(n)}$ . Let $V_{\gamma}^{(n)}$ be

(2.1) $V_{r}^{(n)}=\{(\gamma_{1}, \cdots, \gamma_{n})eV^{(n)}; \gamma_{1}=\gamma\}$ .
PROPERTY 2.1.
(i)

$V^{(n)}=\bigcup_{\gamma e(0,i,-1+i,-1\}}V_{\gamma}^{(n)}$ ,

(ii)
$\sigma V_{\gamma}^{(n)}=V_{\gamma[1]}^{(n-1)}\cup V_{\gamma[l]}^{(n-1)}$ ,

where $a$ is defined by $\sigma(\gamma_{1}, \cdots, \gamma_{n})=(\gamma_{2}, \cdots, \gamma_{n})$ for $(\gamma_{1}, \cdots, \gamma_{n})\in V_{\gamma}^{(n)}$ and
$M_{\gamma,\gamma[1]}=M_{\gamma,\gamma[2]}=1$ .

(iii)

$iV_{r^{tn)}}+i=V_{\gamma[1]}^{(n)}$ and $-V_{\gamma}^{(n)}+(-1+i)=V_{\gamma[2]}^{(n)}$ ,

where $aV^{(n)}+b=\{(a\gamma_{1}+b, \cdots, a\gamma_{n}+b)\}$ for $V^{(n)}=\{(\gamma_{1}, \cdot\cdot, \gamma_{n})\}$ .
PROOF. (i) and (ii) are obvious. In order to prove (iii), it is enough

to notice that symbols $0,$ $i,$ $-1+i$ and $-1$ , which can be considered as
points on the plane, are obtained from a symbol by rotating by angle
$\pi j/2,$ $j=1,2,3$ , around $(-1+i)/2$ . Indeed, for example,

$e^{\ell\pi/2}\{V_{0}^{(n})-(-1+i)/2\}+(-1+i)/2=V^{(n)}$ ,

and
$e^{i_{7\Gamma}}\{V_{0}^{(n)}-(-1+i)/2\}+(-1+i)/2=V_{-1+i}^{(n)}$ . $\square $

We realize a biased revolving sequence $(\gamma_{1}, \cdots, \gamma_{n})$ to a point
$p(\gamma_{1}, \cdots, \gamma_{n})$ of $C$ by the realization map $\Phi$ defined in the Introduction

(2.2) $p(\gamma_{1}, \cdots, \gamma_{n})=\sum_{k=1}^{n}\gamma_{k}(1+i)^{-k}$ .
Corresponding to the sets of sequence $V^{(n)}$ and $V_{\gamma}^{(n}$

) let sets of points
$Y^{(n)}$ and $Y_{r^{tn)}}$ be
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$Y^{(n)}=\{p(\gamma_{1}, \cdots, \gamma_{n});(\gamma_{1}, \cdots, \gamma_{n})\in V^{(n)}\}$ , and
(2.3)

$Y_{\gamma}^{(n)}=\{p(\gamma_{1}, \cdots, \gamma_{n});(\gamma_{1}, \cdots, \gamma_{n})\in V_{\gamma}^{(n)}\}$ .
By Property 2.1 we obtain:

PROPOSITION 2.2.
(i)

$Y^{tn)}=\bigcup_{\gamma e\{0,i,-1+i.-1\}}Y_{\gamma}^{(n)}$ ,

(Ii)

$(1+i)Y_{\gamma}^{(n)}-\gamma=Y_{\gamma[1]}^{(n-1)}\cup Y_{\gamma[1]}^{(n-1)}$ for $n\geqq 2$ ,

where $aA+b=\{ax+b;x\in A\}$ for a set $A$ ,
(iii)

$iY_{\gamma}^{(n)}+\sum_{k=1}^{n}i(1+i)^{-k}=Y_{\gamma[1]}^{(n)}$ and $-Y_{\gamma}^{(n)}+\sum_{k=1}^{n}(-1+i)(1+i)^{-k}=Y_{\gamma[2]}^{(n)}$ ,

that is, $Y_{\gamma[1]}^{(n)}$ and $Y_{\gamma[2]}^{(n)}$ are obtained by rotating $Y_{\gamma}^{(n)}$ by angle $\pi/2$ and $\pi$ ,
respectively, around $\sum_{k=1}^{n}(-1+i)/2(1+i)^{-k}$ .

LEMMA 2.3. $Y_{\gamma}^{(n)}=(1+i)^{-1}\{iY_{\gamma}^{(n-1)}+\gamma+\sum_{k=1}^{n-1}i(1+i)^{-k}\}\cup(1+i)^{-1}\times$

$\{-Y_{\gamma}^{(n-1)}+\gamma+\sum_{k=1}^{n-1}(-1+i)(1+i)^{-k}\}$ .
PROOF. From Property 3.1

$V_{\gamma}^{(n)}=(\gamma,)+\{(0\frac{0,\cdots,0}{n-1}, V_{\gamma[1]}^{(n-1)})\cup(0, V_{\gamma[l]}^{\{n-1)})\}$

$=(\gamma,)+\{(0, iV_{\gamma}^{(n-1)}\frac{0,\cdots,0}{n-1}+i)\cup(0, -V_{\gamma}^{(n-1)}+(-1+i))\}$
,

where $(0, V^{(n-1)})=\{(0, \gamma_{1}, \cdots, \gamma_{n-1})\}\in V^{(n)}$ for $V^{(n-1)}=\{(\gamma_{1}, \cdots, \gamma_{n-1})\}$ . By the
relation above we obtain the result. $\square $

This lemma shows that each set $Y_{\gamma}^{(n)}$ is a recurrent set of order 2,
namely the n-step set $Y_{r^{tn)}}$ is obtained from two $(n-1)$-step sets $Y_{\gamma}^{(n-1)}$

for each $\gamma$ .
It is verified by the definition of $Y_{\gamma}^{(n)}$ that

(2.4) $d(Y_{\gamma}^{(n})Y_{\gamma}^{(n+1)})\leqq(\frac{1}{\sqrt{2}})^{n}$

in the Hausdorff metric. Then there exist limit sets $Y$ and $Y_{\gamma}$ such that
$Y^{(n)}$ and $Y_{\gamma}^{(n)}$ converge to $Y$ and $Y_{r}$ , respectively, in the Hausdorff metric.
Taking $ n\rightarrow\infty$ in Proposition 2.2 and Lemma 2.3, we obtain,
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PROPOSITION 2.4. Let $Y=\{\sum_{k=1}^{\infty}\gamma_{k}(1+i)^{-k};(\gamma_{1}, \gamma_{2}, \cdots)\in V\}$ and $Y_{r}=$

$\{\sum_{k=1}^{\infty}\gamma_{k}(1+i)^{-k};(\gamma_{1}, \gamma_{2}, \cdots)\in V_{\gamma}\}$ . Then sets $Y$ and $Y_{\gamma},$ $\gamma\in\Gamma$ , satisfy fol-
lowing properties:

(i) $Y=\bigcup_{\gamma e\{0,i,-1+i,-1\}}Y_{\gamma}$ ,

(ii) $(1+i)Y_{\gamma}-\gamma=Y_{\gamma[1]}UY_{\gamma[2]}$ ,

(iii) $iY_{\gamma}+1=Y_{\gamma[1]}$ and $-Y_{\gamma}+1+i=Y_{\gamma[2]}$ ,

that is, sets $\{Y_{\gamma}\}$ are congruent to each other and obtained by rotating
some $Y_{\gamma}$ , by angles $\pi k/2,$ $k=1,2,3$ , around $(1+\dot{j})/2$ .

(iv)

$Y_{\gamma}=(1+’\dot{b})^{-1}(iY_{\gamma}+\gamma+1)\cup(1+i)^{-1}(-Y_{\gamma}+\gamma+1+i)$ .
Let contraction maps $F_{0,\gamma}$ and $F_{1,\gamma}$ on the plane be

$F_{0,r}(z)=(1+i)^{-1}(iz+\gamma+1)$ and
(2.5)

$F_{1,\gamma}(z)=(1+i)^{-1}(-z+\gamma+1+i)$ .
Then from Proposition 2.4 (iv) we can say that the limit sets $\{Y_{\gamma}\}$ are
$\{F_{0,\gamma}, F_{1,r}\}$-invariant sets satisfying relations

(2.6) $Y_{\gamma}=F_{0,\gamma}(Y_{\gamma})UF_{1,\gamma}(Y_{\gamma})$ for each $\gamma\in\Gamma$ .
THEOREM 2.5. Let sets $Y_{\gamma},$ $\gamma\in\{0, i, -1+i, -1\}$ satisfy the relation

(2.6) and $Y=U_{\gamma e\{0,i,-1+i,-1\}}Y_{\gamma}$ . Then
(i) each set $Y_{\gamma}$ is a dragon with $\lambda(Y_{\gamma})=1/4$ and end point besides

the common $(1+i)/2$ is $0$ for $Y_{-1},1$ for $Y_{0},1+i$ for $Y_{i},$ $i$ for $Y_{-1+i}$ .
(ii) the set $Y$ is tiled by $\{Y_{\gamma}\}$ , that is,

$Y=\bigcup_{1\gamma e\{0.l,+i.-1\}}Y_{\gamma}$ and $x(Y_{\gamma}\cap Y_{\gamma\prime})=0$ for $\gamma\neq\gamma^{\prime}$

(see Figure 3).

PROOF. (i) Notice that the contraction maps $F_{0,\gamma}$ and $F_{1,r}$ for $\gamma=-1$

coincide with $G_{0,\epsilon}^{*}$ and $G_{1,\epsilon}^{*}$ for $\epsilon=0$ in Section 1, namely

$F_{0,-1}(z)=G_{0,0}^{*}(z)$ and $F_{1,-1}(z)=G_{1,0}^{*}(z)$ .
As discussed in Section 1, the set $Y_{-1}$ satisfying

$Y_{-1}=F_{0,-1}(Y_{-1})\cup F_{1,-1}(Y_{-1})$ ,

is a dragon $(1-i)^{-2}H_{d}$ with $\lambda(Y_{-1})=1/4$ and end points are $0$ and $(1+i)/2$

(Figure 2 $(b)$), and
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$(*)$ $x(F_{0,-1}(Y_{-\iota})\cap F_{1,-1}(Y_{-1}))=0$ .
Then from Proposition 2.4 (iii) we obtain (i).

(ii) A set $Y_{0}\cup Y$ is tiled by $Y_{0}$ and $Y_{i}$ owing to $(*)$ and Proposition
2.4 (iii). Using Proposition 2.4 (iii), it is shown that each set $Y_{\gamma}\cup Y_{\gamma \mathfrak{c}\iota 1}$ is
tiled by $Y_{\gamma}$ and $Y_{\gamma[1]}$ . Proposition 2.4 (iii) also indicates that the set
$Y_{-1}UY_{0}$ also forms a dragon $(1-i)^{-1}H_{d}$ with end points $0$ and 1 since
similar condition holds for $X_{l}^{*}=X_{(\cdot,0)}^{*}\cup X_{(\cdot,i)}^{*}$ . Moreover by (1.3), (1.4) and
(1.6) we can see that the twindragon $X_{B}$ has anoter tiling form (Figure
1 $(b))$ , that is,

$X_{B}=(1-i)^{-1}H_{d}\cup(-(1-i)^{-1}H_{d}+1)$ ,
and

$x(X_{B}\cap(X_{B}+i))=0$ .
Thus we obtain the following relation,

$\lambda((1-i)^{-1}H_{d}\cap\{-(1-i)^{-1}H_{d}+1+i\})=0$ .
Since $(1-i)^{-1}H_{d}=Y_{-1}\cup Y_{0}$ ,

$\lambda((Y_{-1}\cup Y_{0})\cap(Y_{i}\cup Y_{-1+i}))=0$ ,

that is evident from Proposition 2.4 (iii), which was to be demonstrated
(cf. Figure 1 (c) and Figure 3). $\square $

It is verified that $Y_{-1}=X_{0}^{*},$ $Y_{0}=X_{1}^{*}+1,$ $Y_{i}=X_{2}^{*}+1+i$ and $Y_{-1+i}=$

$X_{3}^{*}+i$ . We call the set $Y$ a cross dragon (Figure 3).

FIGURE 3. Cross dragon Y. $Y$ is tiled by four dragons { $Y_{\gamma}$ ; $r=$

$\{0, i, -1+i, -1\}\}$ in a different manner from tetradragon $X^{*}$

(Figure 2). Notice that $Y\subset(X_{B}\cup X_{B}+i))$ (Figure $1(c)$).
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\S 3. Dynamical system on cross dragon.

We can define a dynamical system on the cross dragon. Since the
dynamical system is constructed in the same manner as the previous one
in Section 6 of [1], we state propositions without proof.

We consider the map $\hat{T}$ for each point $z\in Y$:

(3.1) $\hat{T}:z\rightarrow(1+i)z$ for $ z\in$ Y.

Then we obtain by Proposition 2.4 (ii),

$\hat{T}Y_{\gamma}=\gamma+(Y_{\gamma[1]}\cup Y_{\gamma[2]})$ .
We prepare following sets $\hat{U}_{\gamma}$ and $U_{\gamma}$ for each $\gamma e\Gamma$ ;

$\hat{U}_{0}=YUY_{-1+i}$ , $\hat{U}_{i}=i+(Y_{-1+i}UY_{-1})$ ,
(3.2)

$\hat{U}_{-1+i}=-1+i+(Y_{-1}UY_{0})U_{\gamma}=\hat{U}_{\gamma}-\gamma$

.
’

$\hat{U}_{-1}=-1+(Y_{0}\cup Y_{i})$ , and

We call $\hat{U}_{\gamma}$ a neighbourhood of integer $\gamma$ .
Define a map $T$ for $z\in Y\backslash \bigcap_{\gamma e\Gamma}\partial Y_{\gamma}$ by

(3.3) $Tz=(1+\dot{j})z-[(1+i)z]_{C}$ ,

where $[w]_{C}=\gamma$ if $w\in\hat{U}_{\gamma}$ . Then the map $T$ satisfies

(3.4) $TY_{\gamma}=Y_{\gamma[1]}\cup Y_{\gamma[2]}$ for each $\gamma\in\Gamma$ ,

that is, the partition $\{Y_{\gamma};\gamma\in\Gamma\}$ of $Y$ is a Markov partition for the map
$T$. Let $\gamma_{k}(z)$ be

(3.5) $\gamma_{k}(z)=[(1+i)T^{k-1}z]_{C}$ for $k\geqq 1$ .
Then we have

THEOREM 3.1. Let $Y$ be the cross dragon and $T$ be the cross dragon
map (3.3). Then

(i) the transformation $(Y, T)$ induces an expansion

$z=\sum_{k=1}^{\infty}\gamma_{k}(z)(1+i)^{-k}$ for $ z\in Y\backslash \bigcup_{k=0}T^{-k}(\bigcap_{\gamma e\Gamma}\partial Y_{\gamma})\infty$ ,

(ii) the Lebesgue measure $\lambda$ is invariant with respect to $(Y, T)$ ,
(iii) let $\mu$ be a Markov invariant measure for the system (V, $\sigma$) with

the transition probability $P$ and stationary probability $\Pi$ such that
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$P=\left(\begin{array}{llll}0 & 1/2 & 1/2 & 0\\0 & 0 & 1/2 & 1/2\\1/2 & 0 & 0 & 1/2\\1/2 & 1/2 & 0 & 0\end{array}\right)$ , $\Pi=(1/4,1/4,1/4,1/4)$ ,

then, the dynamical $s$ystem $(Y, T, \lambda)$ is isomorphic to (V, $\sigma,$ $\mu$) and con-
sequently $(Y, \tau, x)$ is ergodic.

Identifying the complex plane with $R^{2}$ , we can show that the set $Y$

can be regarded as a covering space of the torus $T^{2}$ because of the tiling
properties of twindragon (1.6) and the set $\{Y_{\gamma}\}$ .

COROLLARY 3.2. Let

$L=\left(\begin{array}{ll}1 & -1\\1 & l\end{array}\right)$ ,

which induces an expanding endomorphism $T_{L}$ on the torus $T^{2}$ . Then
there exists a Markov partition $\{Y_{\gamma};\gamma\in\Gamma\}$ on the torus for $T_{L}:T^{2}\rightarrow T^{2}$ ,
so that the dynamic$al$ system $(T^{2}, T_{L}, x)$ with this partition is $isomorph\dot{w}$

to the one sided subshift of finite type (V, $\sigma,$ $\mu$).

This corollary says that there exists a “fractal” Markov partition with
respect to the expanding endomorphism $T_{L}(For$ general expanding endo-
morphisms $T_{L},$ $L=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ , see Bedford $[9])$ .

Moreover we introduce a simple system $(Y^{\dagger}, \tau\uparrow, \lambda^{\gamma})$ as follows: let
$Y^{\dagger}=\{x+iy;0\leqq x, y<1\}$ and a map $\tau\uparrow$ be

(3.6) $T^{\dagger}z=(1-i)z+(-1+i)-[(1-i)z+(-1+i)]$ for $z\in Y^{\dagger}$ ,

where $[w]=[{\rm Re}(w)]+i[{\rm Im}(w)]$ for $z\in C$, and the sequence of integer {$\xi_{k}(z)$ ;
$k\in N\}$ be

(3.7) $\xi_{k}(z)=[(1-i)T^{\gamma k-1}z+(-1+i)]$ for each $z\in Y^{\dagger}$ .
Then we can verify that the transformation $(Y^{t}, T^{t})$ induces a expansion

(3.8) $z=\sum_{k=1}^{\infty}(\xi_{k}(z)-(-1+i))(1-i)^{-k}$ for $a.e$ . $z\in Y^{\dagger}$ ,

and has the Lebesgue measure as an invariant measure $\lambda^{\dagger}$ and also the
partition $\{Y_{\gamma}^{\dagger};\gamma\in\Gamma\}$ , where $Y_{\gamma}^{\dagger}=\{z\in Y^{\dagger};\xi_{1}(z)=\gamma\}$ , is a Markov partition,
that is,

(3.9) $T^{\dagger}Y_{\gamma}^{\uparrow}=Y_{\gamma[1]}^{\uparrow}\cup Y_{\gamma[2]}^{\dagger}$ .
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Therefore $\tau\uparrow$-admissible sequences $\{(\xi_{1}(z), \xi_{2}(z), \cdots)\}$ which have the same
structure of the sequences generated by the cross dragon system $(Y, T)$ .
Thus we obtain:

THEOREM 3.3. The dynamical systems $(Y, T, x)$ and $(Y^{\uparrow}, \tau\uparrow, \lambda^{\dagger})$ are
isomorphic to each other as an endomorphism, that is there exists measure
preserving invertible map $\Psi$ defined on $Y$ such that

$T^{\dagger}\circ\Psi=\Psi\circ T$ .

\S 4. Dual map and natural extension of cross dragon system.

We show that the cross dragon system $(Y, T, x)$ is nothing but the
dual map [1] of a very simple system.

Let $Y^{*}=\{x+iy;0\leqq x, y<1\}$ and a map $T^{*}$ be

(4.1) $T^{*}z=(1+i)z-[(1+i)z]$ for $z\in Y^{*}$ .
Hence a set $\{[(1+i)z];z\in Y^{*}\}$ coincides with $\Gamma=\{0, i, -1+i, -1\}$ . We
can easily verify that the transformation $(Y^{*}, T^{*})$ is well defined on $Y^{*}$

and has the Lebesgue measure $\lambda^{*}$ on $Y^{*}$ as an invariant measure and
also induces a expansion for a.e. $z\in Y^{*}$ such that

(4.2) $z=\sum_{k=1}^{\infty}\eta_{k}(z)(1+i)^{-k}$ ,

where

$\eta_{k}(z)=[(1+i)T^{*k-1}z]$ .
Let a set $Y_{\eta}^{*}$ be

(4.3) $Y_{\eta}^{*}=\{\sum_{k=1}^{\infty}\eta_{k}(z)(1+i)^{-k};z\in Y^{*}$ and $\eta_{1}(z)=\eta\}$ .
Then we can see that the sets $\{Y_{\eta}^{*}; \eta\in\Gamma\}$ are four triangles with vertices
$0,1$ for $Y_{0}^{*},$ $1,1+i$ for $Y_{i}^{*},$ $1+i,$ $i$ for $Y_{-1+i}^{*},$ $i,$ $0$ for $Y_{-1}^{*}$ and $(1+i)/2$ in
common, and the domain $Y^{*}$ is tiled by these triangles, that is,

(4.4) $Y^{*}=_{\eta e}\bigcup_{(0,i,-1+i,-1\}}Y_{\eta}^{*}$ and $x(Y_{\eta}^{*}\cap Y_{\eta}^{*})=0$ for $\eta\neq\eta’$ .
Let $M^{*}$ be a structure matrix such that

$M_{j,k}^{*}=\left\{\begin{array}{ll}1 & if T^{*}Y_{r[\dot{g}]}^{*}\cap Y_{\tau[k]}^{l}\neq\emptyset\\ 0 & if T^{*}Y_{\tau[j]}^{*}\cap Y_{r[k]}^{*}=\emptyset.\end{array}\right.$
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Let $V^{*}$ and $V_{\eta}^{*}$ be

(4.5) $V^{*}=$ { $(\eta_{1},$ $\eta_{2},$ $\cdots);\eta_{j}\in\Gamma$ and $M_{\eta_{j}.\eta_{\dot{J}+1}}^{*}=1$ for all $j\geqq 1$ }

(4.6) $V_{\eta}^{*}=\{(\eta_{1}, \eta_{2}, \cdots)eV^{*};\eta_{1}=\eta\}$ .
It is easily verified that every element of $V^{*}$ has the same admissibility
as the sequence $(\eta_{1}(z), \eta_{2}(z),$ $\cdots$ ) induced by $(Y^{*}, T^{*})$ , Notice that

(4.7)

and a is a shift operator on $\tilde{V}$.
LEMMA 4.2. The set $\tilde{V}$ is decomposed as follows;

$\tilde{V}=\bigcup_{\gamma e\{0,i,-1+.-1\}}(V_{\eta}^{*}\cup V_{\eta}^{*})\cdot V_{\gamma}$

$=_{\gamma e\{0.i}.\bigcup_{1+-1\}},V_{\gamma}^{*}\cdot(V_{\gamma[1]}UV_{\gamma[2]})$ ,

where for $(\eta_{1}, \eta_{2}, \cdots)\in V^{*}$ and $(\gamma_{1}, \gamma_{2}, \cdots)\in V$, $(\eta_{1}, \eta_{2}, \cdots)\cdot(\gamma_{1}, \gamma_{2}, \cdots)=$

$(\cdots, \eta_{2}, \eta_{1}, \gamma_{1}, \gamma_{2}, \cdots)$ and $M_{\eta^{\gamma}},=M_{\eta^{\prime,\gamma}}=M_{\gamma,\gamma[1]}=M_{\gamma.\gamma[2]}=1$ .
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$\tilde{T}(w, z)=((1+i)^{-1}(w+\gamma), Tz)$ .
Then the system $(\tilde{Y},\tilde{T}, \tilde{\lambda})$ is a natural extension of the cross dragon
system $(Y, T, x)$ , where $\tilde{\lambda}$ is the Lebesgue measure on $\tilde{Y}$.

PROOF. The decompositions of $\tilde{V}$ in Lemma 4.2 reduce to the decom-
positions of their realization $\tilde{Y}$ with a realization map $\tilde{\Phi}$ for $(\eta_{1}, \eta_{2}, \cdots)\times$

$(\gamma_{1}, \gamma_{2}, \cdots)\in\tilde{V}$ such that

$\tilde{\Phi}:(\eta_{1}, \eta_{2}, \cdots)\cdot(\gamma_{1}, \gamma_{2}, \cdots)\rightarrow(\sum_{k=1}^{\infty}\eta_{k}(1+i)^{-k},\sum_{\dot{g}=1}^{\infty}\gamma_{j}(1+i)^{-\dot{g}})$ .
We can see by Property 2.1 and Lemma 4.2 that if $\tilde{\omega}\in V_{\eta}^{*}\cdot V_{\gamma}$ then $\tilde{\omega}$ is
translated by ff biiectively to

$\theta\tilde{\omega}\in V_{\gamma}^{*}\cdot(V_{\gamma[1]}\cup V_{\gamma[2]})$ .
The realization $(\tilde{V},\tilde{\sigma})$ is nothing but

$\tilde{T}(w, z)=((1+i)^{-1}(w+\gamma), Tz)$ for $(w, z)\in Y_{\eta}^{*}\times Y_{\gamma}$ .
Therefore the map $\tilde{T}$ is well defined and bijection. It is easily verified
that the Lebesgue measure $\tilde{\lambda}$ is invariant with respect to $(\tilde{Y},\tilde{T})$ . $\square $

CORORALLY 4.4. The dynamical system $(\tilde{Y},\tilde{T}^{-1}, \tilde{\lambda})$ is a natural exten-
sion of $(Y^{*}, T^{*}, x^{*})$ .
We can say by Corollary 4.4 that the cross dragon system $(Y, T, x)$ is
the dual system of the simple system $(Y^{*}, T^{*}, x^{*})$ .

We point out here that the dynamical system $(Y^{t}, T^{\prime}, x\uparrow)$ in Section
3 is also the dual system for $(Y^{*}, T^{*}, x^{*})$ which has a simple domain in
contrast with $(Y, T, \lambda)$ .
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