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Introduction

Let $p,$ $q\in R^{n}$ and $H=H(p, q)\in C^{1}(R^{2n}, R)$ . We consider a Hamiltonian
system

$(H)$ $p=-H_{q}$ , $\dot{q}=H_{p}$ ,

or concisely

$(H)$ $\dot{z}=JH^{\prime}(z)$ ,

where $z=(p, q)$ and $J=\left(\begin{array}{ll}0 & -I\\I & 0\end{array}\right)$ with $I$ being the identity of $R^{n}$ .
In 1973, A. Weinstein [10] obtained an interesting

THEOREM 1. Let $H\in C^{2}(R^{2n}, R)$ , $H(O)=0$ , $H^{\prime}(O)=0$ and $H’(O)>0$ .
Then for sufficiently small $\epsilon>0,$ $the\gamma e$ exist $n$ distinct periodic solutions
of $(H)$ on $H^{-1}(\epsilon)$ .

For small $\epsilon>0,$ $H^{-1}(\epsilon)$ is a convex manifold (manifold which bounds
a usual convex set) close to an ellipsoid.

For ellipsoids, that is, for the system describing harmonic oscillators,
there are exactly $n$ periodic solutions on any energy surface if the angular
frequencies are independent over $Q$ .

In 1978, A. Weinstein [11] also found at least one periodic solution
on any convex Hamiltonian energy surface. Although that was covered
by P. Rabinowitz [9] which gave the result for star-shaped one, an esti-
mate obtained in [11] was used in [6].
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Since about that time, there seems to be the following speculation.

$(^{*})$ There may be $n$ periodic solutions on a convex or star-shaped
Hamiltonian energy surface in $R^{2n}$ .

A plausibility of the problem for energy surfaces which are homeo-
morphic to $S^{2n-1}$ of a classical Hamiltonian is given in [12].

A global result for the problem was obtained by Ekeland-Lasry [4],

which asserted that there are at least $n$ periodic solutions on any convex
energy surface $S$ with

$r_{1}B\subset C\subset r_{2}B$

where $r_{2}/r_{1}<\sqrt{2}$ , $B$ is the unit ball in $R^{2n}$ and $S=\partial C$.
In this note, we give a condition for convex energy surfaces to have

$n$ periodic solutions.
We identify $C^{n}$ with $R^{2n}$ by $z_{j}=p_{\dot{f}}+iq_{j}(j=1,2, \cdots, n)$ .
Let $\omega_{1},$ $\omega_{2},$ $\cdots,$ $\omega_{n}$ be numbers with

$0<\omega_{1}\leqq\omega_{2}\leqq\cdots\leqq\omega_{n}=1$ .
We put $|z|_{\omega}^{2}=\sum_{j=1}^{n}\omega_{j}|z_{j}|^{2}$ and $Q_{\omega}=\{z\in C^{n};|z|_{\omega}\leqq 1\}$ .
THEOREM 2. There is a number

$\rho(\omega_{1}, \omega_{2}, \cdots, \omega_{n})>1$

satisfying the following:
Let $C$ a compact, strictly eonvex subset of $C^{n}=R^{2n}$ with $C^{2}$ boundary

$S$, and there are positive numbers $\gamma_{1},$ $r_{2}$ with

(0.1) $r_{2}<\rho(\omega_{1}, \cdots, \omega_{n})r_{1}$

and $C$ satisfies
(0.2) $r_{1}Q_{\omega}\subset C\subset r_{2}Q_{w}$ .
Then there are $n$ distinct periodic solutions of $(H)$ on S. A candidate

of $\rho(\omega_{1}, \cdots, \omega_{n})$ is $g$iven later explicitly.

Remark that the number of periodic solutions is independent of $H$

as long as it has $S$ as a regular energy surface. (cf. Lemma 1.5 in [9].)

This theorem can be considered as a quantitative estimate for $\epsilon$ in
Theorem 1.

Now we give a candidate of $\rho(\omega_{1}, \cdots, \omega_{n})$ explicitly by $\omega_{1},$ $\cdots,$ $\omega_{n}$ .
We put $\tau_{2}=1/\omega_{j}$ and induce the equivalence relation $\sim$ in $\{\tau_{;};j=$
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1, 2, $\cdots,$ $n$} defined by

$\tau_{j}\sim\tau_{k}$ iff $\tau_{j}/\tau_{k}\in Qvvt$

We denote by $D_{1},$ $D_{2},$
$\cdots,$

$D_{A}$ its equivalence classes.
For each $r=1,2,$ $\ldots,$

$A$ , there exists $a_{r}>0$ such that for some
$b_{r1}\leqq b_{r2}\leqq\cdots\leqq b_{rB_{r}}$

in $Z_{+}=\{1,2, \cdots\}$ , we have

$D_{r}=\{b_{rk}a_{r};k=1,2, \cdots, B_{r}\}$ , $B_{1}+B_{2}+\cdots+B_{A}=n$ .
This gives

(0.3) $a_{r}/a.\not\in Q$ if $\gamma\neq S$ .
Let $\sigma_{r}$ be the least common multiple of $b_{r1},$ $b_{r2},$ $\cdots$ , and $b_{rB_{r}}$ .
Put $c.=a.a$. for $r=1,2,$ $\cdots,$

$A$ .
We can assume

(0.4) $c_{1}<c_{2}<\cdots<c_{A}$ .
Remark that, if $\gamma<S$ , then $c_{r}/c.\not\in Q$ from (0.3).
So, for $r,$ $s=1,2,$ $\cdots,$

$A$ with $r<s$ ,

$\eta_{r}.\equiv\frac{1}{2}$ Min $\{|\frac{\mu}{\nu}c_{*}-c_{r}|;\nu=1,2,$ $\cdots,$ $[c_{\epsilon}]+1,$ $\mu=1,2,$ $\cdots,$ $\nu\}>0$ .

Put
$\eta_{1}={\rm Min}\{\eta_{r\epsilon};r, s=1,2, \cdots, A, r<s\}$ .

For the case $A=1$ , we put $\eta_{1}=1/2$ .
For $r=1,2,$ $\cdots,$ $A$ , we define

$P_{r}=\{(\mu, j)\in Z_{+}\times\{1,2, \cdots, n\};\mu\tau_{j}<c_{r}\}$ .
We put

$\eta_{2}={\rm Min}\{c_{r}-\mu\tau_{j};r=1,2, \cdots, A, (\mu, j)\in P_{r}\}>0$ .
Finally we put

$\eta={\rm Min}\{\eta_{1}, \eta_{2},1/2\}$ .
Then as a candidate, we can put

(0.5) $\rho(\omega_{1}, \cdots, \omega_{n})=\sqrt{1+\eta}/c_{A}$ .
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Recently [3] obtains a similar result for star-shaped Hamiltonian
energy surfaces.

Our method of estimates, which was applied to the special case [7]
and generalized using the estimates of [8], is slightly different from [3].
For example, if $n=2$ and $\omega_{1}=1/2,$ $\omega_{2}=1,$ $[3]$ gives, if restricted to convex
cases only, two periodic orbits on $\partial C$ with

$r_{1}Q_{\omega}\subset C\subset r_{2}Q_{\omega}$ , $\frac{r_{2}}{r_{1}}<\sqrt{3/2}$ .

Our method replaces the left $Q_{\omega}$ with the unit ball as (ii) of Corollary
of Theorem 2 in [8] shows.

The estimate (0.5) itself is not better than the one given in [3]
restricted to convex cases.

These results of this note or [3] are considered as a step to give the
answer to $(^{*})$ . The common method is the variational principle, cor-
$respoking$ to the Principle of Least Action, on the space of closed curves.
When we obtain the solutions as critical points of the functional, it
cannot be avoided that there appears multiple critical points, which are
different as critical points but same geometrically. The conditions imposed
on convex or star-shaped surfaces are the ones in order to eschew such
difficulties. The same difficulty appears in the problem of closed geodesics
[13]. A

The manifolds of $clos*curves$ and the situation of the functionals
on them are different from those in [3], so there may be a meaning of
proposing our method.

\S 1. Dual action principle.

This method was developed in [1]. A brief expositibn is given in \S 1
of [8] and we follow notations there.

Desired periodic solutions are obtained as critical points of a real
valued function $f$, corresponding to the Principle of Least Action in a
dual sence, on a Banach manifold $M$.

$f$ satisfies Palais-Smale condition and

$m=\inf_{ueK}f(u)>0$ .
This gives automatically at least one periodic orbit on convex

Hamiltonian energy surface, the result of [11].
$M$ is a submanifold of
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$E=\{u\in L^{\alpha}(0,2\pi;C^{n});\int u\equiv\frac{1}{2\pi}\int_{0}^{2\pi}u(t)dt=0\}$

with $1<\alpha<2$ . And we have for $\mu\in Z_{+}$

(1.1) $u\in M-u^{\mu}\equiv\mu^{\delta}u(\mu\cdot)eM$

(1.2) $f(u^{\mu})=\mu^{\theta}f(u)$ for $u\in M$

where $\delta=1/(2-\alpha)$ and $\theta=\alpha/(2-\alpha)=\alpha\delta$ .
If $u\in M$ is a critical point of $f$, then so is $u^{\mu}$ , but these give the

same periodic solution. To distinguish such multiple critical points is the
main difficulty.

\S 2. Harmonic oscillators.

We freely refer the notations of [8] in particular \S 1 and \S 2.
In [8], starting from a convex set $C$, we constructed $G,$ $f,$ $M$, and $\Phi$

(written as $\phi$ in [8]). We attach the subindex $i$ to $G,$ $f$, etc. $(i=1,2)$

constructed from $\gamma_{i}Q_{\omega}$ . $G_{0},$ $f_{0},$ $m_{0}$ and $M_{0}$ mean the $G,$ $f_{1}m$ , and $M$ written
in \S 2 in [8]. Bare $G,$ $f,$ $m$ and $M$ are the one constructed from $C$ in
the introduction of this note with (0.2).

Section 2 in [8] gives

LEMMA 1.

$m_{0}\equiv\min_{ueM_{0}}f_{0}(u)=f_{0}(v_{n})=\frac{\pi}{\theta}$ ,

where $v_{j}$ is defined in \S 2 of [8].

Also (0.2) implies

(2.1) $G_{1}(u)\leqq G(u)\leqq G_{2}(u)$ .
And we have $(i=1,2)$

(2.2) $G_{i}(u)=R_{l}^{\alpha}G_{0}(u)$ ,

where

(2.3) $R_{i}=r_{i}\beta^{-1/\beta}$ .
Further we have

LEMMA 2. For $u\in M_{0},$ $\Phi_{i}(u)=R_{t}^{\theta}u$ and $f_{i}(\Phi_{i}(u))=R^{2\theta}f_{0}(u)$ .
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In $pa\gamma ticularf(u)$ attains the minimum $m_{i}$ at $u=R_{i}^{\theta}e^{it}a_{n}$ and $m_{i}=$

$m_{0}R^{2\theta}(i=1,2)$ .
PROOF. Let $u\in M_{0}$ and $\Phi_{i}(u)=\lambda u\in M_{i}$ .
Then $\int u\cdot Lu=\alpha\int G_{0}(u)$ , hence, by (1.6) and (2.13),

$x^{2-a}=\alpha\int G_{i}(u)/\int u\cdot Lu$

$=\alpha f^{R_{i}^{\alpha}G_{0}(u)}/\alpha f^{G_{0}(u)}$

$=R_{i}^{\alpha}$ ,

therefore $x=R_{i}^{\theta}$ .
And we have

$f(xu)=m_{0}\alpha\int G_{i}(xu)$

$=x^{a}R_{i}^{\alpha}m_{0}\alpha\int G_{0}(u)$

$=R^{\theta\alpha+\alpha}f_{0}(u)$

$=R_{i}^{2\theta}f_{0}(u)$ . Q.E.D.

Also we have

LEMMA 3. $m_{1}\leqq m\leqq m_{2}$ .
PROOF. Let $w=R_{2}^{\theta}e^{it}a_{n}\in M_{2}$ be the point such that $f_{2}(w)=m_{2}$ by

Lemma 2. Then for some $x>0,$ $xw\in M$.
$x^{2-\alpha}=\alpha\int G(w)/\int w\cdot Lw$ (by (5) in [2])

$\leqq\alpha\}R_{2}^{\alpha}G_{0}(w)/R_{2}^{2\theta}$ (by (2.1) and (2.2))

$=R_{2}^{\alpha}\cdot R_{2}^{\theta\alpha}/R_{2}^{2\theta}$

$=1$ .
Hence

$m\leqq f(xw)$

$=m_{0}\alpha\int G(\lambda w)$ (by (6) in [2])

$\leqq m_{0}\alpha\int R_{2}^{\alpha}G_{0}(xw)$ (by (2.1))

$=m_{0}R_{a}^{\alpha}\lambda^{\alpha}\alpha\int G_{0}(w)$
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$\leqq m_{0}R_{2}^{\alpha}\cdot R_{2}^{\theta\alpha}$

$=m_{0}R_{2}^{2\theta}$

$=m_{2}$ , (by Lemma 2).

Now, since $R_{1}^{\alpha}G_{0}(u)\leqq G(u)$ , we have

$\min\{G(u);|u|=1\}\geqq\frac{1}{\alpha}R_{1}^{\alpha}$ ,

thus this $R_{1}$ plays the role of $r$ in the proof of Lemma 3 of [2].
Because $b$ in the lemma equals $\pi$ , we have $m\geqq(\pi/\theta)R_{1}^{2\theta}=m_{0}R_{1}^{2\theta}=m_{1}$

by (15) in the proof of the lemma. Q.E.D.

For given $K\geqq 1$ , put $\nu_{j}=[K/\tau_{j}]$ for $j=1,2,$ $\cdots,$ $n$ and $ a=\nu_{1}+\nu_{2}+\cdots$

$+\nu_{n}$ .
For $\zeta=(\zeta_{j\mu})_{j=1,2,\cdots,n};_{\mu=1,2,\cdots,\nu_{j}}\in C^{a}$ , we define

$u_{\zeta}=\sum_{j=1}^{n}\sum_{\mu=1}^{\nu_{j}}\zeta_{j\mu}v_{j}^{\mu}\in E$ .
Then, from (2.10), we have

$\int u_{\zeta}\cdot Lu_{\zeta}=\sum_{j=1}^{n}\sum_{\mu=1}^{\nu_{j}}(\mu\tau_{j})^{\theta}|\zeta_{j\mu}|^{2}$

$\equiv||\zeta\Vert^{2}$

We put $\Sigma=\{\zeta\in C^{a};\Vert\zeta\Vert=1\}$ and for $\zeta\in\Sigma$ we define

$\lambda(\zeta)=[\alpha\int G_{0}(u_{\zeta})]^{\delta}$ ,

then, (1.7) of [8] implies $\phi_{0}(\zeta)\equiv\lambda(\zeta)u_{\zeta}\in M_{0}$ and we have

(2.4) $f_{0}\circ\phi_{0}(\zeta)=m_{0}[\alpha\int G_{0}(u_{\zeta})]^{2\delta}$ , (by (1.9) in [8]).

Then the following lemma is proved as Lemma 2 in [8].

LEMMA 4. For any small $\epsilon>0$ , choosing $\alpha$ sufficiently near 2 (choosing
$\beta$ in practice), we have

Max $f_{0}\circ\phi_{0}(\Sigma)\leqq(1+\epsilon)^{\theta}K^{\theta}m_{0}$ .
\S 3. Cohomological indices.

This concept was proposed in [5]. For the definition and the properties,
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we refer [4] or [9]. $1^{o},$ $2^{o},$
$\cdots,$

$6^{o}$ mean the ones of Lemma 1.13 in [9].
For a set $B$, on which an $S^{1}$ action is considered, the cohomological index
of $B$ is denoted by $i(B)$ .

Let $M,$ $M_{0},$ $M_{1},$ $M_{2}$ be the Banach submanifolds of $E$ derived from
$C$ satisfying (0.2) with (0.1), $\beta^{1/\beta}Q_{\omega},$ $\gamma_{1}Q_{\omega}$ and $r_{2}Q_{\omega}$ according to the pro-
cedure of \S 1 respectively.

We attach $i$ for the notations as $G,$ $f,$ $m,$ $\Phi$ as above $(i=0,1,2)$ .
We collect some relations about $M,$ $M_{0},$ $M_{1},$ $M_{2}$ , etc.

On $E$, we consider the usual $S^{1}$ action

$A.u(t)=u(t+s)$ for $s\in S^{1}=R/2\pi Z$ .
$M,$ $M_{0},$ $M_{1}$ and $M_{2}$ are invariant sets under the $S^{1}$ action. We put

$M^{\iota}=\{ueM;f(u)\leqq c\}$ and $M_{i}^{c}=\{u\in M_{i};f_{i}(u)\leqq c\}$ , then $M^{\iota}$ and $M_{i}^{\iota}$ are also
invariant sets $(i=0,1,2)$ .

Now we put $p_{r}=\# P_{r}$ for $r=1,2,$ $\cdots,$
$A$ .

In Lemma 4 and the definitions above it, we denote $\Sigma$ by $\Sigma_{r}$ , for
the case $K=c_{r},$ $r=1,2,$ $\cdots,$

$A$ .
We remark that

(3.1) $i(\Sigma_{r})=p_{r}+B_{r}$

from $2^{o}$ and $6^{o}$ .
We put $\rho=\sqrt{1+\eta}/c_{A}$ and choose $\epsilon>0$ so small that

(3.2) $(1+\epsilon)R_{2}/R_{1}<\rho$ ,

and determine $\alpha_{r}$ to apply Lemma 4 for the above case.
We henceforth fix $\alpha={\rm Min}\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{A}\}$ .
Then Lemma 4 gives

(3.3) Max $f_{0}\circ\phi_{0}(\Sigma_{r})\leqq(1+\epsilon)^{\theta}c^{\theta},m_{0}$ .
Let $\phi;\Sigma_{r}\rightarrow M$ be the mapping defined as $\phi_{0}:\Sigma_{r}\rightarrow M_{0}$ . Then we have

LEMMA 5. Max $fo\phi(\Sigma_{r})<(c_{r}+\eta)^{\theta}m$ .
PROOF. For any $\zeta\in\Sigma_{r}$ , we have

$f\circ\phi(\zeta)=m_{0}[\alpha\int G(u_{\zeta})]^{2\delta}$ (by (1.9) in [8])

$\leqq m_{0}[\alpha\int G_{2}(u_{\zeta})]^{2\delta}$ (by (2.1))

$=m_{0}[\alpha\int G_{0}(u_{\zeta})]^{2\delta}\cdot R_{2}^{\alpha\cdot 2\delta}$ (by (2.2))
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$=f_{0}\circ\phi_{0}(\zeta)\cdot R_{2}^{2\theta}$ (by (1.9) in [8])
$\leqq(1+\epsilon)^{\theta}c_{r}^{\theta}m_{0}R_{2}^{2\theta}$ (by (3.3))
$=(1+\epsilon)^{-\theta}c_{r}^{\theta}m_{0}((1+\epsilon)R_{2})^{2\theta}$

$<c_{r}^{\theta}m_{0}(\rho R_{1})^{2\theta}$ (by (3.2))

$=(c_{r}\rho^{2})^{\theta}m_{1}$ (by Lemma 2)

$\leqq(c.\cdot(1+\eta/c_{A}))^{\theta}m$ (by Lemma 3)

$\leqq(c_{r}+\eta)^{\theta}m$ . (by (0.4))

Q.E.D.

LEMMA 6. If $c_{r}-\eta\leqq c<c_{r}$ , then $i(M_{1}^{c^{\theta}m_{1}})\leqq p_{r}$ .
PROOF. We suppose

(3.4) $i(M_{1}^{c^{\theta}m_{1}})\geqq p_{r}+1$ .
For $k=1,2,$ $\cdots,$ $p_{r}+1$ , we put

(3.5) $\kappa_{k}=\inf_{BeO_{k}}$
$supf_{1}(B)$ ,

where $\Omega_{k}=$ {$B$ ; invariant subset of $M_{1}$ with $i(B)\geqq k$ and $f_{11B}$ : bounded}.
Then the usual argument of critical point theory asserts that

$\kappa_{1}\leqq\kappa_{2}\leqq\cdots\leqq\kappa_{p_{f}+1}$

are critical values of $ f_{1}:M_{1}\rightarrow[m_{I}, \infty$ ) and from Remark 1.23 in [9], we have

(3.6) if $\kappa_{k}=\kappa_{k+1}=\cdots=\kappa_{k+l}$ , then
$i$(the set of all critical points of the level $\kappa_{k}$) $\geqq l+1$ .

From (3.4), we have

(3.7) $\kappa_{p_{f}+1}\leqq c^{\theta}m_{1}$ .
On the other hand, the critical points of $f_{1}$ in $M_{1}^{c^{\theta}m_{1}}$ are completely

known.
By the definition of $\eta_{2}$ , we remark that

(3.8) $P_{r}=\{(\mu, j);\mu\tau_{j}\leqq c\}$ .
First we have $p_{r}$ critical points ($mod$ . $S^{1}$ action)

$w_{j}^{\mu}\equiv\Phi_{1}(v_{\dot{f}}^{\mu})=R_{1}^{\theta}v_{\dot{f}}^{\mu}$ ; $(\mu, j)\in P_{r}$ .
If some of them are in the same level, say
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$f_{1}(w_{g_{1}}^{\mu_{1}})=f_{1}(w_{\dot{g}_{2}}^{\mu_{2}})=\cdots=f_{1}(w_{\dot{g}_{l}}^{\mu_{l}})=b^{\theta}m_{1}$ ,

then $\mu_{1}\tau_{\dot{g}_{1}}=\mu_{2}\tau_{\dot{g}_{2}}=\cdots=\mu_{l}\tau_{j_{l}}=b$ .
We put $\Sigma^{\prime}=\{\zeta_{1}w_{\dot{g}_{1}}^{\mu_{1}}+\zeta_{2}w_{\dot{g}_{2}}^{\mu_{2}}+\cdots+\zeta_{l}w_{\dot{J}l}^{\mu_{l}}eE;(\zeta_{1}, \zeta_{l}, \cdots, \zeta_{l})\in C^{l}$ and $|\zeta_{1}|^{2}+$

$|\zeta_{2}|^{2}+\cdots+|\zeta_{l}|^{2}=1\}$ .
We claim that

(3.9) $\Sigma$ is the set of all critical points in $M_{1}$ of level $b^{\theta}m_{1}$ , and
$i(\Sigma)=l$ .

First, for $w\in\Sigma^{\prime}$ , we have

$f_{1}(w)=m_{0}\int w\cdot Lw$

$=m_{0}R_{\iota^{\theta}}^{2}(|\zeta_{1}|^{2}(\mu_{1}\tau_{\dot{g}_{1}})^{\theta}+\cdots+|\zeta_{\iota}|^{2}(\mu_{l}\tau_{i_{l}})^{\theta})$ (by (2.10) in [8])
$=b^{\theta}m_{1}$ .

Next, let $z(t)=(z_{1}(t), z_{2}(t),$ $\cdots,$ $z_{n}(t))$ be a nontrivial $ 2\pi$-periodic solution
of $(H)$ with $H(z)=H_{1}(z)=r_{1}^{-\beta}|z|_{\omega}^{\beta}$ .

Then $\dot{z}_{j}(t)=2i(\partial/\partial\overline{z_{j}})H_{1}=ir_{1}^{-\beta}\cdot\beta|z(t)|_{\omega}^{l-2}\omega_{\dot{f}}z_{j},$ $j=1,2,$ $\cdots,$ $n$ . Remarking
that $|z(t)|_{\omega}=r_{1}H_{1}(z(t))^{1/\beta}$ is constant, we put $b=r_{1}^{-\beta}\cdot\beta|z|_{\omega}^{\beta-2}$ and $\mu_{\dot{f}}=b\omega_{j}$ , then
we have $\dot{z}_{j}(t)=i\mu_{\dot{f}}z_{j}$ , therefore

$z(t)=\sum_{jeJ}\xi_{\dot{f}}e^{\mu_{j^{it}}}a_{\dot{f}}$ , $\xi_{j}\in C$

where $J=\{j\in\{1,2, \cdots, n\};\mu_{j}\in Z_{+}\}$ .
The function $u\in M_{1}$ corresponding to $z$ is given by

$u(t)=-i\dot{z}$

$=\sum_{jeJ}\xi_{j}\mu_{\dot{\partial}}e^{\mu_{j}}{}^{t}a_{j}$

$=\sum_{\dot{g}eJ}\omega_{J^{\prime 2}}!\xi_{\dot{f}}(\mu_{\dot{f}}\tau_{j})^{-1/(\beta-2)}v_{\dot{g}^{\dot{f}}}^{\mu}$ .
Now

$(\mu_{\dot{f}}\tau_{\dot{f}})^{-1/(\beta-2)}=b^{-1/(\beta-2)}$

$=(r_{1}^{-l}\cdot\beta\cdot|z|_{\omega}^{\beta-2})^{-1/(\beta-2)}$

$=R_{1}^{\theta}/|z|_{\varpi}$ .
Putting $\zeta_{j}!/2/|z|_{\omega}$ , we have

$u(t)=\sum_{jeJ}\zeta_{\dot{f}}w_{j^{\dot{f}}}^{\mu}$ and $\sum_{jeJ}|\zeta_{j}|^{2}=1$ .
This means $ ue\Sigma$ , proving the first half of (3.9).
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$2^{o}$ and $6^{o}$ give the second half of (3.9).
Taking into account this argument and (3.6), the critical point of $f_{1}$

of the level $\kappa_{p,+1}$ cannot exist in $M_{1}^{p_{m_{1}}}$ .
This contradicts (3.7), proving the lemma. Q.E.D.

Also we have

LEMMA 7. $i())\leqq p_{r},$ $r=1,2,$ $\cdots,$
$A$ .

PROOF. For $u\in M^{((1+\epsilon)^{2_{(0_{r}-\eta))}\theta_{m}}}$ , put $xu=\Phi_{1}(u)$ , then

$x^{2-\alpha}=\alpha\int G_{1}(u)/\int u\cdot Lu$ (by (5) in [2])

$=\alpha\int G_{1}(u)/\alpha\int G(u)$

$\leqq 1$ , (by (2.1))

so $\lambda\leqq 1$ , hence

(3.10) $f_{1}\circ\Phi_{1}(u)=f_{1}(\lambda u)$

$=m_{0}\alpha\int G_{1}(xu)$ (by (6) in [2])

$=x^{\alpha}m_{0}\alpha\int G_{1}(u)$

$\leqq m_{0}\alpha\int G(u)$

$=f(u)$

$\leqq(1+\epsilon)^{2\theta}(c_{r}-\eta)^{\theta}m$

$\leqq(1+\epsilon)^{2\theta}(c_{r}-\eta)^{\theta}m_{0}R_{2}^{2\theta}$ (by Lemmas 2 and 3)

$<(c_{r}-\eta)^{\theta}m_{0}(R_{1}\rho)^{2\theta}$

$=((c,-\eta)\rho^{2})^{\theta}m_{0}R_{1}^{2\theta}$

$\leqq(c_{r}-\eta^{2}/c_{A})^{\theta}m_{1}$ .
Put $c=c_{r}-\eta^{2}/c_{A}$ , then $c_{r}-\eta<c<c_{f}$

From (3.10), we have the continuous equivariant map

$\Phi_{1}:M^{((1+e)}))\rightarrow M_{1}^{c^{\theta}’ n_{1}}$ .
Therefore $2^{o}$ and Lemma 6 yield the lemma. Q.E.D.

\S 4. Proof of Theorem 2.

We put
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$\gamma_{k}=\inf_{Be\Gamma_{k}}$
$supf(B)$ ,

where $\Gamma_{k}=$ {$B$; invariant subset of $M$ with $i(B)\geqq k$ and $f|_{B}$ : bounded}.
Then for each $r=1,2,$ $\cdots,$

$A$ ,

$\gamma_{p,+1}\leqq\gamma_{p_{f}+2}\leqq\cdots\leqq\gamma_{p_{f}+B_{f}}$

are critical values of $ f:M\rightarrow[m, \infty$ ) as in the proof of Lemma 6.
Since $\phi;\Sigma_{r}\rightarrow M$ is a continuous equivariant map, (3.1) and $2^{o}$ yield

$\phi(\Sigma_{r})\in\Gamma_{p,+B_{f}}$ . Hence we have

(4.1) $\gamma_{p_{f}+B_{f}}<(c_{r}+\eta)^{\theta}m$ ,

by the definition of $\gamma_{k}$ and Lemma 5.
Next we claim

(4.2) $\gamma_{p,+1}>(c,-\eta)^{\theta}m$ .
In fact, if $\gamma_{p_{f}+1}\leqq(c,-\eta)^{\theta}m$ , then there is a

(4.3) Be $\Gamma_{p_{f}+1}$

with $supf(B)\leqq((1+\epsilon)^{2}(c_{r}-\eta))^{\theta}m$ .
So $2^{o}$ and Lemma 7 yield $i(B)\leqq p_{r}$ , taking the inclusion as the equi-

variant map.
This contradicts (4.3), giving (4.2).
Now we put $L=(c_{r}-\eta, c_{r}+\eta)$ for $r=1,2,$ $\cdots,$

$A$ . Then

(4.4) if $r<s$ , then $ I_{r}\cap I.=\emptyset$ ,

because $\eta\leqq\eta_{r}.\leqq(1/2)(c.-c_{r})$ .
We have

LEMMA 8. Let $r,$ $s\in\{1,2, \cdots, A\}$ with $r<s$ .
If $u$ and $v\in M$ satisfy

(4.5) $(c_{r}-\eta)^{\theta}m<f(u)<(c_{r}+\eta)^{\theta}m$

(4.6) $(c.-\eta)^{\theta}m<f(v)<(c.+\eta)^{\theta}m$ ,

then $u$ and $v$ are geometrically distinct.

PROOF. We assume $u$ and $v$ are geometrically equal, that is $u=w^{\mu}$

and $v=w^{\nu}$ for some weM and $\mu,$ $\nu\in Z_{+}$ ($mod$ . $S^{1}$ action).
Put $\lambda=(f(w)/m)^{1/\theta}$ . Then we have $f(u)=\mu^{\theta}f(w)=(\mu\lambda)^{\theta}m$ and $f(v)=$

$(\nu\lambda)^{\theta}m$ .
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(4.5) and (4.6) imply

(4.7) $ c_{r}-\eta<\mu_{\lambda}<c_{r}+\eta$

(4.8) $ c_{*}-\eta<\nu\lambda<c.+\eta$ .
Since $\lambda\geqq 1$ and $\eta\leqq 1/2$ , we have $v\leqq[c.]+1$ from (4.8).
We remark that $\mu<\nu$ from (4.4), in particular $\mu/\nu<1$ , so (4.8) gives

$\frac{\mu}{\nu}C.-\eta<_{\nu\nu}z_{(c.-\eta)<\frac{\mu}{\nu}\cdot\nu\lambda<\frac{\mu}{\nu}(c.+\eta)<A_{c.+\eta}}$ .
This implies $|\mu\lambda-(\mu/\nu)c.|<\eta$ .
On the other hand $|\mu\lambda-c_{r}|<\eta$ , hence we have

$|_{\nu}g$

This contradicts the definition of $\eta_{r\iota}$ . Q.E.D.

Now we have $B_{r}$ critical values

$(c_{r}-\eta)^{\theta}m<\gamma_{p_{r}+1}\leqq\gamma_{p_{r}+2}\leqq\cdots\leqq\gamma_{p_{f}+B_{f}}<(c_{r}+\eta)^{\theta}m$ ,

from (4.1) and (4.2).
If $\gamma_{p_{f}+k}=\gamma_{p_{r}+k+1}$ for some $k=1,2,$ $\cdots,$ $B_{r}-1$ , then there exist infinitely

many critical points ($mod$ . $S^{1}$ action) in the level (cf. (3.6)). In any case,
we have at least $B_{r}$ critical points ($mod$ . $S^{1}$ action) in the level

$(c_{r}-\eta)^{\theta}m<f<(c_{r}+\eta)^{\theta}m$ .
These critical points are geometrically distinct, since $\eta\leqq 1/2$ (recall

the method of distinguishing geometrically before).
Thus, from Lemma 8, we have at least geometrically distinct

$B_{1}+B_{2}+\cdots+B_{A}=n$

critical points altogether.
This completes the proof of Theorem 2.
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