Reducibility of Flow-Spines

Ippei ISHII

Keio University

The notion of flow-spines was introduced in [2]. A flow-spine is a standard spine of a closed 3-manifold M and is generated by a normal pair which is a pair of a non-singular flow on M and its compact local section. In this paper, we consider methods for constructing a simpler flow-spine than given one. In general, a spine P_1 (not necessarily a flow-spine) is thought to be simpler than P_2 when P_1 has less third singularities than P_2 . And, for example in [1], several methods for obtaining a spine with less third singularities are discovered by Ikeda, Yamashita and Yokoyama. However a spine obtained by applying those methods to a flow-spine is not always a flow-spine. Hence, in order to leave our discussion within an extent of flow-spines, we must consider other "reducibility" of flow-spines.

In §4 we will give one of reasonable definitions of the reducibility of flow-spines. In §3 a "simply reduced flow-spine" is defined, and our reducibility will be considered within this sub-class of simply reduced flow-spines. And in §§5-6 we will give some conditions for a flow-spine to be reducible in our sense. §§1-2 are devoted to preparations. Especially in §2, we will precisely formulate the concept of a "singularity-data" introduced in [2], and give a necessary condition for a singularity-data to be realized by a normal pair.

§ 1. Preliminaries.

Let M be a smooth closed 3-manifold, and ψ_t be a smooth non-singular flow on M. A pair of ψ_t and its compact local section Σ is said to be a normal pair (see [2] for the precise definition), if (ψ_t, Σ) satisfies that

- (i) Σ is homeomorphic to a compact 2-disk,
- (ii) $|T_{\pm}(\psi_t, \Sigma)(x)| < \infty$ for any $x \in M$,
- (iii) $\partial \Sigma$ is ψ_t -transversal at $(x, T_+(\psi_t, \Sigma)(x))$ for any $x \in \partial \Sigma$, and
- (iv) if $x \in \partial \Sigma$ and $x_1 = \hat{T}_+(\psi_t, \Sigma)(x) \in \partial \Sigma$, then $\hat{T}_+(\psi_t, \Sigma)(x_1)$ is contained

in Int Σ ,

where $T_{\pm}(\psi_i, \Sigma)$: $M \rightarrow R$ and $\hat{T}_{\pm}(\psi_i, \Sigma)$: $M \rightarrow \Sigma$ are defined by

$$\begin{split} &T_{+}(\psi_{t},\,\varSigma)(x)\!=\!\inf\{t\!>\!0\,|\,\psi_{t}(x)\in\varSigma\}\\ &T_{-}(\psi_{t},\,\varSigma)(x)\!=\!\sup\{t\!<\!0\,|\,\psi_{t}(x)\in\varSigma\}\\ &\widehat{T}_{\pm}(\psi_{t},\,\varSigma)(x)\!=\!\psi_{\sigma}(x)\quad(\sigma\!=\!T_{\pm}(\psi_{t},\,\varSigma)(x))\;. \end{split}$$

Then flow-spines $P_{-}(\psi_{t}, \Sigma)$ and $P_{+}(\psi_{t}, \Sigma)$ generated by a normal pair (ψ_{t}, Σ) are given by

$$\begin{split} P_{-}(\psi_t, \ \Sigma) &= \Sigma \cup \{\psi_t(x) \,|\, x \in \partial \Sigma, \ T_{-}(\psi_t, \ \Sigma)(x) \leq t \leq 0\} \\ P_{+}(\psi_t, \ \Sigma) &= \Sigma \cup \{\psi_t(x) \,|\, x \in \partial \Sigma, \ 0 \leq t \leq T_{+}(\psi_t, \ \Sigma)(x)\} \ . \end{split}$$

It was shown in [2] that every closed 3-manifold admits a normal pair, and that each of $P_{-}(\psi_{t}, \Sigma)$ and $P_{+}(\psi_{t}, \Sigma)$ forms a standard spine of the phase manifold.

When there is no fear of confusion, we simply write T_{\pm} , \hat{T}_{\pm} and P_{\pm} for $T_{\pm}(\psi_t, \Sigma)$, $\hat{T}_{\pm}(\psi_t, \Sigma)$ and $P_{\pm}(\psi_t, \Sigma)$ respectively. For a given normal pair (ψ_t, Σ) , the following notation are used throughout this paper, which are the same as in [2].

NOTATION.

- (1) For a closed fake surface P, $\mathfrak{S}_{j}(P)$ denotes the set of the j-th singularities of P (see [1], [2]).
 - (2) ν denotes the number of the elements of $\mathfrak{S}_{3}(P_{-})$ $(P_{-}=P_{-}(\psi_{t}, \Sigma))$.
- (3) By a_1, a_2, \dots, a_{ν} we denote the elements of $\mathfrak{S}_3(P_-)$; i.e., $\mathfrak{S}_3(P_-) = \{a_1, \dots, a_{\nu}\} = \{x \in \text{Int } \Sigma \mid \hat{T}_+(x) \text{ and } \hat{T}_+^2(x) \text{ are both on } \partial \Sigma \}.$

FIGURE 1

- (4) $b_k = \hat{T}_+(a_k)$, $c_k = \hat{T}_+^2(a_k)$ and $d_k = \hat{T}_+^3(a_k)$ $(k=1, \dots, \nu)$. Notice that b_k , $c_k \in \partial \Sigma$, and that $\{d_1, \dots, d_\nu\} = \mathfrak{S}_3(P_+) \subset \operatorname{Int} \Sigma$.
- (5) C_1 , C_2 , \cdots , $C_{2\nu}$ denote the connected components of $\partial \Sigma \{b_1, \dots, b_{\nu}, c_1, \dots, c_{\nu}\}$.

We always assume that the assignments of numbers to a_k 's and C_m 's are fixed once for all.

For each $k=1, \dots, \nu$, we define four integers k(j) $(j=1, \dots, 4, 1 \le k(j) \le 2\nu)$ so that the components $C_{k(j)}$ are like as in Figure 1 (see [2] for the precise).

§2. Singularity-data.

In [2] the notion of the sigularity-data was introduced. We give its precise formulation in this section.

Let (ψ_t, Σ) be a normal pair on some manifold M. Fixing an orientation on $\partial \Sigma$, we denote by \widehat{xy} $(x, y \in \partial \Sigma)$ the subarc of $\partial \Sigma$ going from x to y in the positive direction. For each $m=1, \dots, 2\nu$, take a point w_m on the component C_m of $\partial \Sigma - \{b_1, \dots, b_{\nu}, c_1, \dots, c_{\nu}\}$. Then each $a_k \in \mathfrak{S}_3(P_-)$ satisfies one of the following four conditions:

$$\begin{array}{llll} (+) & b_k \in \widehat{w_{k\,(1)}} w_{k\,(2)} & \text{and} & c_k \in \widehat{w_{k\,(3)}} w_{k\,(4)} \\ (-) & b_k \in \widehat{w_{k\,(2)}} w_{k\,(1)} & \text{and} & c_k \in \widehat{w_{k\,(4)}} w_{k\,(3)} \\ (+^*) & b_k \in \widehat{w_{k\,(1)}} w_{k\,(2)} & \text{and} & c_k \in \widehat{w_{k\,(4)}} w_{k\,(3)} \\ (-^*) & b_k \in \widehat{w_{k\,(2)}} w_{k\,(1)} & \text{and} & c_k \in \widehat{w_{k\,(3)}} w_{k\,(4)} \end{array}.$$

As is shown in [2], any a_k satisfies the condition (+) or (-) if M is orientable. In [2], the following two informations (a) and (b) about the third singularities of P_{\pm} are called a singularity-data.

- (a) The arrangement of b_k 's and c_k 's on $\partial \Sigma$.
- (b) The condition (+) or (-) or (+*) or (-*) which is satisfied by each of a_k 's.

How a singularity-data determines a flow-spine is stated in [2].

Now we shall give a more precise formulation of a singularity-data. Let B^+ , B^- , C^+ and C^- be mutually disjoint finite subsets of the circle S^1 such that $\sharp(B^+\cup B^-)=\sharp(C^+\cup C^-)$. Let θ be a one-to-one correspondence between $B^+\cup B^-$ and $C^+\cup C^-$, and σ be an orientation on S^1 . Then we call the six-tuple $(\sigma; B^+, B^-; C^+, C^-; \theta)$ a singularity-data of a flow-spine. Namely, putting $\{b_1, \dots, b_\nu\} = B^+ \cup B^-$ and $c_k = \theta(b_k)$, we determine the condition (\pm) or (\pm^*) with respect to the given orientation σ on $S^1 = \partial \Sigma$

which is satisfied by $a_k \in \mathfrak{S}_3(P_-)$ corresponding to b_k in the following way:

- (i) a_k satisfies (+) iff $b_k \in B^+$ and $c_k \in C^+$,
- (ii) a_k satisfies (-) iff $b_k \in B^-$ and $c_k \in C^-$,
- (iii) a_k satisfies $(+^*)$ iff $b_k \in B^+$ and $c_k \in C^-$,
- (iv) a_k satisfies (-*) iff $b_k \in B^-$ and $c_k \in C^+$.

Let $\Delta = (\sigma; B^+, B^-; C^+, C^-; \theta)$ be a singularity-data, and Γ_i $(l=1, \dots, \nu)$ be the connected components of $S^1 - (B^+ \cup B^-)$, and w_i be a point on Γ_i . For each $k=1, \dots, \nu$, we define three integers $k\{j\}$ $(j=1, 2, 3, 1 \le k\{j\} \le \nu)$ so that $\Gamma_{k\{j\}}$ satisfy the following conditions (i)-(iii).

- (i) $\Gamma_{k(1)}$ and $\Gamma_{k(2)}$ are components having b_k as their end point,
- (ii) $b_k \in \widehat{w_{k(1)}} \widehat{w_{k(2)}}$ iff $b_k \in B^+$, and $b_k \in \widehat{w_{k(2)}} \widehat{w_{k(1)}}$ iff $b_k \in B^-$,
- (iii) $c_k \in \Gamma_{k\{3\}}$.

And define a group $\Pi(\Delta)$ by

$$\Pi(\Delta) \equiv \langle g_1, \dots, g_{\nu}; r_1, \dots, r_{\nu} \rangle, \quad r_k = g_{k(1)} g_{k(2)} g_{k(2)}^{-1}.$$

The following theorem was shown in [2].

THEOREM 2.1. If a singularity-data Δ is realized by a normal pair on M, then $\pi_1(M) = \Pi(\Delta)$.

For a singularity-data $\Delta = (\sigma; B^+, B^-; C^+, C^-; \theta)$, we define the reversed singularity-data Δ^r by $\Delta^r = (-\sigma; C^+, C^-; B^+, B^-; \theta^{-1})$. If Δ is realized by a normal pair (ψ_t, Σ) on M, then Δ^r is realized by $(\overline{\psi}_t, \Sigma)$ where $\overline{\psi}_t$ is the time-reversed flow given by $\overline{\psi}_t = \psi_{-t}$. Hence, by the above theorem, we must have $\Pi(\Delta) = \Pi(\Delta^r) = \pi_1(M)$, namely we get the following necessary condition for the realizability of a singularity-data.

PROPOSITION 2.2. If a singularity-data Δ is realized by some normal pair, then $\Pi(\Delta) = \Pi(\Delta^r)$.

§ 3. Simple third singularities, simply reduced normal pairs.

Let (ψ_t, Σ) be a normal pair. A third singularity a_k of $P_- = P_-(\psi_t, \Sigma)$ (or d_k of P_+) is said to be simple, if $C_{k(2)} = C_{k(3)}$. If $a_k \in \mathfrak{S}_3(P_-)$ is simple, then each of $\{a_k\} \cup \hat{T}_-(C_{k(2)})$ and $\{d_k\} \cup \hat{T}_+(C_{k(3)})$ forms a simple closed curve in Σ (cf. Figure 2).

DEFINITION 3.1. A normal pair (ψ_i, Σ) is said to be simply reduced, if any simple $a_k \in \mathfrak{S}_3(P_-)$ satisfies that

$$\partial C_{k(1)} \subset \hat{T}_+(\mathfrak{S}_3(P_-)) = \{b_1, \dots, b_{\nu}\}, \text{ and } \partial C_{k(4)} \subset \hat{T}_-(\mathfrak{S}_3(P_+)) = \{c_1, \dots, c_{\nu}\}.$$

FIGURE 2

In what follows, we shall give a method for obtaining a simply reduced normal pair from given one.

Suppose that $\#\mathfrak{S}_3(P_-) \geq 2$, and let $a_k \in \mathfrak{S}_3(P_-)$ be a simple third singularity such that $\partial C_{k(1)} \cap \widehat{T}_-(S_3(P_+)) \neq \emptyset$. Then $C_{k(1)} = C_{k'(3)}$ or $C_{k(1)} = C_{k'(4)}$ for some $k' \neq k$. First we shall consider the case $C_{k(1)} = C_{k'(3)}$. Assume that b_k , c_k , $b_{k'}$ and $c_{k'}$ are arranged as in Figure 3 (a). Then $\widehat{c_{k'}c_k}$ and $C_{k'(1)} \cup C_{k'(2)}$ are mapped by \widehat{T}_- into the figure like as in Figure 3 (b).

Take a compact 2-disk Y in Σ so that $(\operatorname{Int} Y) \cap \widehat{T}_{-}(\partial \Sigma) = \widehat{T}_{-}(\widehat{c_{k'}c_{k}})$ and $\gamma \equiv \partial Y \cap \widehat{T}_{-}(\partial \Sigma) = \widehat{T}_{-}(\gamma')$ for some small subarc γ' of $\partial \Sigma$ containing $b_{k'}$. And choose a continuous function $f: Y \to R$ so that $f(x) = \widehat{T}_{+}(x)$ for $x \in \gamma$ and $0 < f(x) < T_{+}(x)$ for $x \in Y - \gamma$. A new compact local section Σ' is defined by $\Sigma' = \Sigma \cup \{\psi_{t}(x) \mid x \in Y, \ t = f(x)\}$. Then (ψ_{t}, Σ') is also a normal pair and

166 IPPEI ISHII

has less third singularity than (ψ_t, Σ) (see Figure 4). If $\Delta = (\sigma; B^+, B^-; C^+, C^-; \theta)$ is the singularity-data for (ψ_t, Σ) , then the singularity-data Δ' of (ψ_t, Σ') is given by $\Delta' = (\sigma; B_1^+, B_1^-; C_1^+, C_1^-; \theta_1)$ where $B_1^{\pm} = B^{\pm} - \{b_{k'}\}$, $C_1^{\pm} = C^{\pm} - \{c_{k'}\}$ and $\theta_1 = \theta|_{B_1^+ \cup B_1^-}$.

Now we shall consider the case $C_{k(1)} = C_{k'(4)}$. In this case, $\widehat{T}_{-}(\widehat{c_{k'}c_{k}})$ is like as in Figure 5. First we shall show that, deforming ψ_{t} if necessary, we may assume that $\widehat{T}_{-}(\widehat{c_{k'}c_{k}})$ is disjoint from $\widehat{T}_{+}(\partial \Sigma)$.

Let X be the vector field generating ψ_t , and define U to be $U = \{\psi_t(x) | x \in \text{Int } \Sigma, -\delta < t < 0\}$, where $\delta > 0$ is a collar-size for (ψ_t, Σ) (see [2] for the definition of a collar-size). Let (x, y) be a smooth coordinate on Σ . Then, by the mapping $(x, y, t) \mapsto \psi_t(x, y)$, (x, y, t) becomes a coordinate on U. Consider a vector field \widetilde{X} on M such that $\widetilde{X} \equiv 0$ on the outside of U and $\widetilde{X}(x, y, t) = a(x, y, t) \partial/\partial x + b(x, y, t) \partial/\partial y$ on U. And let ψ'_t be a flow generated by $X + \widetilde{X}$. Then obviously (ψ'_t, Σ) is a normal pair and has the same singularity-data as (ψ_t, Σ) . Moreover it is easy to see that, for an adequate choice of \widetilde{X} , $\widehat{T}_-(\psi'_t, \Sigma)(\widehat{c_k} \cdot \widehat{c_k})$ does not intersect with $\widehat{T}_+(\psi'_t, \Sigma)(\partial \Sigma)$

(cf. Figure 6).

FIGURE 6

Hence we may assume that the original (ψ_t, Σ) has this property. Then we can take a compact 2-disk $Y \subset \Sigma$ so that $(\operatorname{Int} \Sigma) \cap \widehat{T}_{-}(\partial \Sigma) = \widehat{T}_{-}(\widehat{c_k, c_k})$ and $Y \cap \widehat{T}_{+}(\partial \Sigma) = \emptyset$ (see Figure 7(a)). Then, for a compact local section $\Sigma' = \operatorname{Cl}(\Sigma - Y)$, (ψ_t, Σ') is a normal pair and $P_{-}(\psi_t, \Sigma')$ has less third singularity than $P_{-}(\psi_t, \Sigma)$. Also in this case, the singularity-data of (ψ_t, Σ') is obtained by omitting $b_{k'}$ and $c_{k'}$ from the one of (ψ_t, Σ) .

FIGURE 7

If $a_k \in \mathfrak{S}_3(P_-)$ is simple and $b_{k'} \in \partial C_{k(4)}$, then, considering the graph $\widehat{T}_+(\partial \Sigma)$ instead of $\widehat{T}_-(\partial \Sigma)$, we can see that the third singularity $d_{k'} \in P_+$ can be removed in the same way as above. Repeating this procedure, we get a simply reduced normal pair or a normal pair with only one third singularity. If M admits a normal pair with one third singularity, then M is the 3-sphere S^3 (see [2]). Hence we have that

THEOREM 3.1. If $M \neq S^3$, then by the above procedure we get a simply reduced normal pair. And in the case of $M = S^3$ we obtain a simply reduced normal pair or a normal pair with only one third singularity.

§ 4. Reducibility.

Let (ψ_i, Σ) be a normal pair on M, and $A = \{a_{k_1}, \dots, a_{k_r}\}$ be the set of simple third singularities of $P_-(\psi_i, \Sigma)$. Then $\gamma_j = \{a_{k_j}\} \cup \widehat{T}_-(C_{k_j(2)})$ is a simple closed curve in Σ for each $a_{k_j} \in A$. We denote by $D_j \subset \Sigma$ the domain bounded by γ_j , and define V to be

$$V = P_{-} \cup \{\psi_{t}(x) \mid x \in D_{1} \cup D_{2} \cup \cdots \cup D_{r}, 0 < t \leq \delta\}$$

where $\delta > 0$ is a collar-size for (ψ_t, Σ) . Evidently V collapses to P_- , and has free faces

$$F_{j} = \{ \psi_{t}(x) \mid x \in \gamma_{j} - \{a_{k_{j}}\}, \ 0 < t < \delta \}$$
 .

Collapsing V from these free faces, we obtain

$$V' = (P_{-} \cup \psi_{\delta}(D_{1}) \cup \cdots \cup \psi_{\delta}(D_{r})) - (\tilde{\gamma}_{1} \cup \cdots \cup \tilde{\gamma}_{r})$$
$$\tilde{\gamma}_{j} = \{\psi_{t}(x) \mid x \in \gamma_{j} - \{a_{k,j}\}, 0 < t < \delta\},$$

(see Figure 8). This V' still has free faces $L_j = \{ \psi_t(a_{k_j}) | 0 < t < \delta \}$.

FIGURE 8

Hence, continuing the collapsing process, we get a spine \tilde{P} of M. Maybe \tilde{P} depends on the collapsing process. And, in general, \tilde{P} is not a flow-spine. However it is known that

THEOREM 4.1 ([1]). If we get a \tilde{P} which is not a closed fake surface, then $H_1(M; \mathbb{Z})$ is not trivial or $M = S^3$.

And the next proposition can be easily seen by the way in which we collapse V to \tilde{P} .

PROPOSITION 4.2. If \tilde{P} is a closed fake surface, then $\mathfrak{S}_3(\tilde{P})$ is included in $\mathfrak{S}_3(P_-)-A$. And moreover if $b_k \in \partial C_{kj(1)}$ for some $a_{kj} \in A$, then $a_k \notin \mathfrak{S}_3(\tilde{P})$.

This proposition implies that a simply reduced flow-spine having many simple third singularities results in a spine with few third singularities. Taking account of this, we define the reducibility of a flow-spine in what follows.

DEFINITION 4.1. Two simple third singularities a_{k_1} and a_{k_2} are said to be twin, if $C_{k_1(1)}$ and $C_{k_2(1)}$ has the same boundary point.

DEFINITION 4.2. (1) $\kappa_0 = \kappa_0(\psi_t, \Sigma)$ denotes the number of the simple third singularities of $P_-(\psi_t, \Sigma)$.

- (2) $\kappa_1 = \kappa_1(\psi_t, \Sigma)$ denotes the number of pairs of twin simple third singularities of $P_-(\psi_t, \Sigma)$.
 - (3) $\kappa = \kappa(\psi_t, \Sigma)$ is defined by $\kappa = \nu 2\kappa_0 + \kappa_1$ ($\nu = \#\mathfrak{S}_{\mathfrak{g}}(P_-)$).

We define the reducibility as follows.

DEFINITION 4.3. A simply reduced normal pair (ψ_t, Σ) (or its flow-spine $P_-(\psi_t, \Sigma)$) on M is said to be reducible, if there is a simply reduced normal pair (ψ_t', Σ') on M satisfying either of the following (i) or (ii).

- (i) $\kappa(\psi_t, \Sigma') < \kappa(\psi_t, \Sigma)$.
- (ii) $\kappa(\psi_t', \Sigma') = \kappa(\psi_t, \Sigma)$ and $\kappa_0(\psi_t', \Sigma') 2\kappa_1(\psi_t', \Sigma') < \kappa_0(\psi_t, \Sigma) 2\kappa_1(\psi_t, \Sigma)$.

The next theorem will give a reasonability of this definition of the reducibility.

THEOREM 4.3. If M admits a simply reduced normal pair (ψ_t, Σ) such that $\kappa(\psi_t, \Sigma) \leq 0$, then either $H_1(M; \mathbb{Z}) \neq \{0\}$ or $M = S^3$.

First we shall prove that

LEMMA 4.4. Let a_{k_1} and a_{k_2} be twin simple third singularities of $P_{-}(\psi_t, \Sigma)$. If (ψ_t, Σ) is simply reduced and $H_1(M; \mathbf{Z}) = \{0\}$, then $\partial C_{k_1(1)} \cap \partial C_{k_2(1)} = \{b_{k_3}\}$ for some $k_3 \neq k_1$, k_2 .

PROOF. Since (ψ_t, Σ) is simply reduced, $C_{k_1(1)} = C_{k_2(1)}$ if the conclusion of the lemma does not hold. In this case, setting $L = \operatorname{Cl}(C_{k_1(2)} \cup C_{k_1(1)} \cup C_{k_2(2)})$, we can see that $\hat{T}_-(L)$ forms a component of $\partial \Sigma \cup \hat{T}_-(\partial \Sigma)$, that is, $\partial \Sigma \cup \hat{T}_-(\partial \Sigma)$ is not connected. As is shown in Theorem 4.3 of [2], $H_1(M; \mathbb{Z})$ is not trivial if $\partial \Sigma \cup \hat{T}_-(\partial \Sigma)$ is not connected. This completes the proof.

PROOF OF THEOREM 4.3. Suppose that $H_1(M; \mathbb{Z}) = \{0\}$ and $M \neq S^3$, and consider the spine \tilde{P} constructed in the beginning of this section. Because of Theorem 4.1, \tilde{P} is a closed fake surface.

Let A be the set of simple third singularities of $P_{-}(\psi_{t}, \Sigma)$, and A_{0} be a set of third singularities $\alpha_{k'}$ such that $b_{k'} \in \partial C_{k(1)}$ for some $\alpha_{k} \in A$ $(A \subset A_{0})$. Then, since (ψ_{t}, Σ) is simply reduced, we have $\#A_{0} = 2(\kappa_{0} - \kappa_{1}) + \kappa_{1}$ by Lemma 4.4, and hence $\#\mathfrak{S}_{3}(\tilde{P}) \leq (\nu - \kappa_{1}) - 2(\kappa_{0} - \kappa_{1})$ by Proposition 4.2. On the other hand, M has no standard spine without third singularities if $H_{1}(M; \mathbb{Z}) = \{0\}$ (see [1]). Therefore we must have $\kappa(\psi_{t}, \Sigma) \geq \#\mathfrak{S}_{3}(P) > 0$. This proves the theorem.

According to Theorem 4.3, an affirmative answer to the following problem implies the Poincaré conjecture.

PROBLEM. Let M be a homotopy sphere and (ψ_i, Σ) be a simply reduced normal pair on M. Is (ψ_i, Σ) reducible whenever $\kappa(\psi_i, \Sigma) > 0$?

§5. Examples of reducing methods.

In this section, we explain by examples how we can see the reducibility of a flow-spine. As an example, we consider the singularity-data $(\sigma; B^+, B^-; C^+, C^-; \theta)$ given in Figure 9, where $B^+ = \{b_1, b_3\}$, $B^- = \{b_2, b_4\}$, $C^+ = \{c_1, c_3\}$, $C^- = \{c_2, c_4\}$ and $c_k = \theta(b_k)$. It can be shown that this singularity-data is realized by a normal pair on S^3 , and $\hat{T}_-(\partial \Sigma)$ and $\hat{T}_+(\partial \Sigma)$ are like as in Figure 10.

FIGURE 9

We shall show the reducibility of this normal pair (ψ_t, Σ) in three different ways.

The First Method. Take a compact 2-disk $Y \subset \Sigma$ like as in Figure

11 (a). Next choose a continuous function $f: Y \to R$ such that $f(x) = T_+(x)$ for $x \in Y \cap \widehat{T}_-(\partial \Sigma)$ and $0 < f(x) < T_+(x)$ otherwise. Then, setting $\Sigma' = \Sigma \cup \{\psi_t(x) | x \in Y, t = f(x)\}$, we get a new normal pair (ψ_t, Σ') . For this (ψ_t, Σ') , $\widehat{T}_-(\partial \Sigma')$ is like as in Figure 11 (b). Evidently $\kappa(\psi_t, \Sigma') = \kappa(\psi_t, \Sigma) - 1$.

FIGURE 11

The Second Method. In this case, we take a compact 2-disk $Y \subset \Sigma$ like as in Figure 12. Then, applying the method used in § 3, we may assume that $Y \cap \hat{T}_{-}(\partial \Sigma) = \emptyset$. Take another 2-disk U like as in Figure 12.

FIGURE 12

Now choose a continuous function $f\colon U\to R$ such that $f(x)=T_+(x)$ for $x\in U\cap \widehat{T}_-(\partial\Sigma)$ and $0< f(x)< T_+(x)$ otherwise. Then, setting $\Sigma'=(\operatorname{Cl}(\Sigma-Y))\cup\{\psi_t(x)|x\in U,\,t=f(x)\}$, we obtain a normal pair $(\psi_t,\,\Sigma')$. The singularity-data of $(\psi_t,\,\Sigma')$ is given by Figure 13, and this normal pair has a simple third singularity a_1 . Hence, applying the procedure in §3, we get a simply reduced normal pair $(\psi_t',\,\Sigma'')$ such that $\kappa(\psi_t',\,\Sigma'')<\kappa(\psi_t,\,\Sigma)$.

FIGURE 13

The Third Method. In this case, we take three 2-disks Y_j (j=1,2,3) like as in Figure 14(a), (b). And let γ_l $(l=1,\cdots,6)$ be subarcs of ∂Y_j indicated in the figure. We can choose continuous functions $f_j: Y_j \to R$ such that

- (i) $0 < f_j(x) < T_+(x)$ for any j and $x \in Y_j$,
- (ii) $f_1(x) \equiv \delta$ (δ is a collar-size),
- (iii) $f_2(x) = T_+(x) + \delta$ for $x \in \gamma_4$,
- (iv) $f_s(x) = T_+(x) + \delta$ for $x \in \gamma_{\epsilon}$, and
- (v) $f_3(x) = T_+(x) + f_2(\hat{T}_+(x))$ for $x \in \gamma_5$ $(\hat{T}_+(x) \in \gamma_3)$.

Then $D = {\psi_i(x) | x \in Y_j, t = f_j(x), j = 1, 2, 3}$ is a compact local section and

homeomorphic to a 2-disk. Now take another compact 2-disk U like as in Figure 14(b), and choose a continuous function $f: U \to \mathbb{R}$ such that $f(x) = T_+(x)$ for $x \in U \cap \hat{T}_-(\partial \Sigma)$, $f(x) = \delta$ for $x \in U \cap Y_1$ and $0 < f(x) < T_+(x)$ otherwise.

FIGURE 14

Then, defining Σ' by $\Sigma' = \Sigma \cup D \cup \{\psi_t(x) | x \in U, t = f(x)\}$, we get a normal pair (ψ_t, Σ) . We can easily see that, applying the procedure used in §3 to this (ψ_t, Σ') , we obtain a normal pair (ψ_t', Σ'') with $\#\mathfrak{S}_3(P_-(\psi_t', \Sigma'')) = 1$.

In the next section, we shall give a generalization of the third method. The first and the second methods will be discussed in the forthcoming paper.

§6. A condition for the reducibility of flow-spines.

In order to give a condition for the reducibility which is a generalization of the third method of the preceding section, we first prepare a definition.

DEFINITION 6.1. A simple closed curve β in M is said to be *nice* (with respect to a normal pair (ψ_t, Σ)), if it satisfies that

- $(i) \quad \beta \cap (\Sigma \cup \mathfrak{S}_{2}(P_{-}) \cup \mathfrak{S}_{2}(P_{+})) = \emptyset,$
- (ii) $\psi_t(x) \notin \beta$ for any $x \in \beta$ and $0 < t < T_+(x)$,
- (iii) β is nowhere tangential to ψ_t , and transversal to P_- and P_+ ,
- (iv) $\beta \cap P_{-}=\{x_{\beta}\}$ is a singleton and $x_{\beta} \notin C_{k(2)}=C_{k(3)}$ for any simple third singularity a_{k} of P_{-} ,
- (v) there is an embedded 2-disk $D_{\beta} \subset M \Sigma$ such that $\partial D_{\beta} = \beta$ and D_{β} is a compact local section of ψ_t , and
- (vi) $D_{\beta} \cap P_{-} \cap P_{+} \neq \emptyset$ or $\widehat{T}_{+}(x_{\beta}) \notin C_{k(1)} \cup C_{k(4)}$ for any simple third singularity a_{k} of P_{-} .

Then we can show that

THEOREM 6.1. A simply reduced normal pair (ψ_i, Σ) is reducible, if it admits a nice closed curve β such that $\widetilde{x}_{\beta} \equiv \{\psi_i(x_{\beta}) | 0 < t < T_+(x_{\beta})\}$ does not intersect with D_{β} .

Moreover in the case where $H_1(M; \mathbb{Z})$ is trivial, we have that

THEOREM 6.2. A simply reduced normal pair (ψ_t, Σ) on M is reducible, if $H_1(M; \mathbb{Z})$ is trivial and (ψ_t, Σ) admits a nice closed curve.

PROOF OF THEOREM 6.1. Let β be a nice closed curve with respect to (ψ_t, Σ) , and B_0 be a subset of $\hat{T}_+(\mathfrak{S}_s(P_-))$ consisting of the points b such that $\psi_t(b) \notin D_{\beta}$ for any $0 < t < T_+(b)$. First we shall prove that

LEMMA 6.3. $b_k = \hat{T}_+(a_k)$ is contained in B_0 , if a_k is a simple third singularity of $P_-(\psi_i, \Sigma)$.

PROOF. Let the third singularity a_k be simple, and $V \subset \Sigma$ be the domain bounded by $\{a_k\} \cup \hat{T}_-(C_{k(2)})$. And define \tilde{V} to be $\tilde{V} = \{\psi_t(x) | x \in \mathrm{Cl}(V), 0 \le t \le T_+(x)\}$. Then, according to the conditions (iv) and (v) in Definition 6.1, each component of $D_{\beta} \cap \partial \tilde{V}$ is a closed curve in $\partial \tilde{V} - (V \cup \hat{T}_+(V) \cup C_{k(2)})$, and nowhere tangential to ψ_t . Therefore $D_{\beta} \cap \partial \tilde{V}$ cannot intersect with the orbit segment from b_k to $\hat{T}_+(b_k)$. This completes the proof of the lemma.

Now suppose that $\widetilde{x}_{\beta} \cap D_{\beta} = \emptyset$, and denote by C_{β} the component of $\partial \Sigma - (\widehat{T}_{+}(\mathfrak{S}_{3}(P_{-})) \cup \widehat{T}_{+}^{2}(\mathfrak{S}_{3}(P_{-})))$ which contains $\widehat{T}_{+}(x_{\beta})$. Then, since $\widetilde{x}_{\beta} \cap D_{\beta} = \emptyset$, we can take a compact 2-disk $U \subset \Sigma$ like as in Figure 15 and a continuous function $f: U \to \mathbb{R}$ which satisfy that

- (i) $U \cap \widehat{T}_{-}(\partial \Sigma) \subset \widehat{T}_{-}(C_{\beta}),$
- (ii) $f(x) = T_+(x)$ for $x \in U \cap \widehat{T}_-(C_\beta)$,
- (iii) $f(\hat{T}_{-}(x)) = -T_{-}(x)$ for $x \in \beta$ $(\hat{T}_{-}(x) \in U \cap \hat{T}_{-}(\beta))$, and
- (iv) $\psi_{f(x)}(x) \notin \Sigma \cap D_{\beta}$ for $x \in U \hat{T}_{-}(\partial \Sigma \cup \beta)$.

FIGURE 15

Define Σ' to be $\Sigma' = \Sigma \cup D_{\beta} \cup \{\psi_{t}(x) \mid x \in U, t = f(x)\}$. Then (ψ_{t}, Σ') is a normal pair, and $\alpha'_{0} = \hat{T}_{-}(\psi_{t}, \Sigma')(x_{\beta})$ is a simple third singularity of $P_{-}(\psi_{t}, \Sigma')$. In the remainder of the proof, we denote $T_{\pm}(\psi_{t}, \Sigma')$ and $\hat{T}_{\pm}(\psi_{t}, \Sigma')$ by T'_{\pm} and \hat{T}'_{\pm} respectively, and $T_{\pm}(\psi_{t}, \Sigma)$ and $\hat{T}_{\pm}(\psi_{t}, \Sigma)$ by T_{\pm} and \hat{T}_{\pm} respectively. Let B^{*} be the set of points $c \in \beta \cap P_{+}(\psi_{t}, \Sigma)$ such that $\psi_{t}(c) \notin D_{\beta}$ for any $T_{-}(c) < t < 0$, and define B_{1} by $B_{1} = \hat{T}'_{-}(B^{*})$. Then it is evident that $\mathfrak{S}_{3}(P_{-}(\psi_{t}, \Sigma')) = \{\alpha'_{0}\} \cup \hat{T}'_{-}(B_{0}) \cup \hat{T}'_{-}(B_{1})$. Let Δ be the singularity-data of (ψ_{t}, Σ') , and Δ' be the one obtained by removing B_{1} and $\hat{T}'_{+}(B_{1})$ from Δ . Then, noticing that α'_{0} is simple, we can easily see that Δ' can be realized by some normal pair (ψ'_{t}, Σ'') on M. We shall consider a simply reduced normal pair (ψ'_{t}, Σ^{*}) which is obtained by applying the procedure in §3 to this (ψ'_{t}, Σ'') , and show that $\kappa(\psi^{*}_{t}, \Sigma^{*}) < \kappa(\psi_{t}, \Sigma)$ or $\kappa_{0}(\psi^{*}_{t}, \Sigma^{*}) - 2\kappa_{1}(\psi^{*}_{t}, \Sigma^{*}) < \kappa(\psi_{t}, \Sigma) - 2\kappa_{1}(\psi_{t}, \Sigma)$.

First we shall consider the case where $D_{\beta} \cap P_{+} \cap P_{-} \neq \emptyset$ $(P_{\pm} = P_{\pm}(\psi_{t}, \Sigma))$. In this case $\sharp B_{0} < \sharp \mathfrak{S}_{3}(P_{-})$, and hence $\sharp \mathfrak{S}_{3}(P_{-}^{*}) \leq \sharp B_{0} + 1 \leq \sharp \mathfrak{S}_{3}(P_{-})$ $(P_{-}^{*} = P_{-}(\psi_{t}^{*}, \Sigma^{*}))$. It follows from Lemma 6.3 and the procedure for getting $(\psi_{t}^{*}, \Sigma^{*})$ that $\kappa_{j}^{*} = \kappa_{j} + 1$ or κ_{j} $(j = 0, 1, \kappa_{j}^{*} = \kappa_{j}(\psi_{t}^{*}, \Sigma^{*}))$ and $\kappa_{j} = \kappa_{j}(\psi_{t}, \Sigma)$, and that $\kappa_{0}^{*} = \kappa_{0} + 1$ if $\sharp \mathfrak{S}_{3}(P_{-}^{*}) = \sharp \mathfrak{S}_{3}(P_{-})$. Therefore we have $\kappa(\psi_{t}^{*}, \Sigma^{*}) > \kappa(\psi_{t}, \Sigma)$ except the case where $\kappa_{0}^{*} = \kappa_{0}$ and $\sharp \mathfrak{S}_{3}(P_{-}^{*}) = \sharp \mathfrak{S}_{3}(P_{-}) - 1$. This case can occur only when $\sharp (D_{\beta} \cap P_{+} \cap P_{-}) = 1$ and $\widehat{T}_{+}(x_{\beta})$ is contained in $C_{k(1)}$ or $C_{k(4)}$ for some simple third singularity a_{k} of P_{-} . And in this case we can see that $\kappa_{1}^{*} = \kappa_{1}$, and hence $\kappa(\psi_{t}^{*}, \Sigma^{*}) < \kappa(\psi_{t}, \Sigma)$ also in this case.

Next we shall consider the case where $D_{\beta} \cap P_{+} \cap P_{-} = \emptyset$ and $\widehat{T}_{+}(x_{\beta}) \notin C_{k(1)} \cup C_{k(4)}$ for any simple third singularity a_{k} of P_{-} . Let y be the end point of C_{β} which is not included in $\widehat{T}_{+}(D_{\beta})$. If $y \in \widehat{T}_{+}(\mathfrak{S}_{3}(P_{-}))$, then using the condition that $\widehat{T}_{+}(x_{\beta}) \notin C_{k(1)}$ for any simple a_{k} , we can see that $\#\mathfrak{S}_{3}(P_{-}^{*}) = \#\mathfrak{S}_{3}(P_{-}) + 1$, $\kappa_{0}^{*} = \kappa_{0} + 1$ and $\kappa_{1}^{*} = \kappa_{1}$ or $\kappa_{1} + 1$. And in the case where y is contained in $\widehat{T}_{+}^{2}(\mathfrak{S}_{3}(P_{-}))$, by the condition $\widehat{T}_{+}(x_{\beta}) \notin C_{k(4)}$ for simple a_{k} , we have that $\#\mathfrak{S}_{3}(P_{-}^{*}) \leq \#\mathfrak{S}_{3}(P_{-})$, $\kappa_{0}^{*} = \kappa_{0} + 1$ or κ_{0} and $\kappa_{1}^{*} = \kappa_{1}$ or $\kappa_{1} + 1$, and moreover that $\#\mathfrak{S}_{3}(P_{-}^{*}) < \#\mathfrak{S}_{3}(P_{-})$ if $\kappa_{0}^{*} = \kappa_{0}$. Hence in any cases, we get $\kappa(\psi_{i}^{*}, \Sigma^{*}) < \kappa(\psi_{i}, \Sigma)$ or $\kappa_{0}^{*} - 2\kappa_{1}^{*} < \kappa_{0} - 2\kappa_{1}$. This completes the proof.

PROOF OF THEOREM 6.2. According to Theorem 6.1, it is sufficient for the proof of Theorem 6.2 to show that $\tilde{x}_{\beta} \cap D_{\beta} = \emptyset$ for any nice closed curve β if $H_1(M; \mathbb{Z})$ is trivial.

Assume that $\widetilde{x}_{\beta} \cap D_{\beta} \neq \emptyset$, and define $F: \beta \rightarrow \mathbf{R}$ by

$$F(x) = \inf\{t > 0 \mid \psi_t(x) \in D_{\theta}\}$$
.

According to the conditions (ii), (iv) and (v) of Definition 6.1, F is con-

176 IPPEI ISHII

tinuous on β and $F(x) < T_+(x)$ for any $x \in \beta$. Hence the 2-dimensional polyhedron $D_{\beta} \cup \widetilde{\beta}$ defines a 2-cycle, where $\widetilde{\beta} = \{\psi_t(x) \mid x \in \beta, \ 0 \le t \le F(x)\}$. Therefore if $H_1(M; \mathbb{Z})$ is trivial, then $D_{\beta} \cup \widetilde{\beta}$ divides M into two domains V_1 and V_2 . Let x_0 be a point D_{β} which is not contained in the domain bounded by $\{\psi_t(x) \mid x \in \beta, \ t = F(x)\}$. We can choose x_0 so that the orbit through x_0 does not intersect with β . Without loss of generality, we assume that $\psi_s(x_0) \in V_1$ for small $\delta > 0$ and $\psi_{-\delta}(x_0) \in V_2$. Because $(D_{\beta} \cup \widetilde{\beta}) \cap \Sigma = \emptyset$, Σ is completely included in either of these two domains.

Let $\Sigma \subset V_1$. Then there must exist a t_0 $(T_-(x_0) < t_0 < 0)$ such that $\psi_t(x_0) \in V_2$ for $t_0 < t < 0$ and $\psi_{t_0}(x_0) \in D_\beta$. However this is obviously impossible. Also in the case of $\Sigma \subset V_2$, we have a contradiction that $\psi_t(x_0) \in D_\beta - U$ for some $0 < t < T_+(x_0)$ where $U \subset D_\beta$ is the domain bounded by $\{\psi_t(x) | x \in \beta, t = F(x)\}$. This completes the proof.

REMARK 1. The assumption of Theorem 6.2 seems to be somewhat weakened, that is, we can show the following (a) and (b).

- (a) If $H_1(M; \mathbb{Z}) = \{0\}$ and β is a simple closed curve satisfying that (1) β satisfies (i)-(iv) in Definition 6.1,
- (2) $LK(\beta, \psi_{\delta}(\beta)) = 0$ for sufficiently small $\delta > 0$ where $LK(\cdot, \cdot)$ is the linking number,
- (3) there is an "immersed" 2-disk $D'_{\beta} \subset M \Sigma$ such that $\partial D'_{\beta} = \beta$ and D'_{β} is nowhere tangential to ψ_t , then we can take an embedded 2-disk $D''_{\beta} \subset M \Sigma$ with $\partial D''_{\beta} = \beta$.
- (b) Any simple closed curve satisfying (i)-(iv) in Definition 6.1 has the above property (2) if $H_1(M; \mathbb{Z})$ is trivial.

However, in (a), it is not yet known whether we can take D''_{β} so that it is transversal to ψ_t .

REMARK 2. Recently Ikeda and Inoue ([3], [4]) introduced the concept of DS-diagrams and DS-diagrams with E-cycle. As is pointed out in [4], a flow-spine defines a DS-diagram with E-cycle. The converse can be also proved, namely, we can construct a normal pair which generates a given DS-diagram with E-cycle. Especilly we can say that if a singularity-data is realizable in the sense of [2], then it is really generated by some normal pair. This fact will be discussed in the forthcoming paper.

References

- [1] H. IKEDA, Acyclic fake surfaces, Topology, 10 (1971), 9-36.
- [2] I. ISHII, Flows and spines, Tokyo J. Math., 9 (1986), 505-525.
- [3] H. IKEDA and Y. INOUE, Invitation to DS-diagrams, Kobe J. Math., 2 (1985), 169-186.
- [4] H. IKEDA, DS-diagrams with E-cycle, Kobe J. Math., 3 (1986), 103-112.

FLOW-SPINES

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU, YOKOHAMA 223