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Reducibility of Flow-Spines

Ippei ISHII

Keio University

The notion of flow-spines was introduced in [2]. A flow-spine is a
standard spine of a closed 3-manifold M and is generated by a normal
pair which is a pair of a non-singular flow on M and its compact local
section. In this paper, we consider methods for constructing a simpler
flow-spine than given one. In general, a spine P, (not necessarily a
flow-spine) is thought to be simpler than P, when P, has less third
singularities than P,. And, for example in [1], several methods for
obtaining a spine with less third singularities are discovered by Ikeda,
Yamashita and Yokoyama. However a spine obtained by applying those
methods to a flow-spine is not always a flow-spine. Hence, in order to
leave our discussion within an extent of flow-spines, we must consider
other “reducibility” of flow-spines.

In §4 we will give one of reasonable definitions of the reducibility
of flow-spines. In §8 a “simply reduced flow-spine” is defined, and our
reducibility will be considered within this sub-class of simply reduced
flow-spines. And in §§5-6 we will give some conditions for a flow-spine
to be reducible in our sense. §§1-2 are devoted to preparations. Es-
pecially in §2, we will precisely formulate the concept of a “singularity-
data” introduced in [2], and give a necessary condition for a singularity-
data to be realized by a normal pair.

§1. Preliminaries.

Let M be a smooth closed 3-manifold, and 4, be a smooth non-singular
flow on M. A pair of «, and its compact local section 5 is said to be a
normal pair (see [2] for the precise definition), if (v, X) satisfies that

(i) X is homeomorphic to a compact 2-disk,

(ii) |Tu(ry, 2)@)|< oo for any x €M,

(iii) 0% is +r,-transversal at (x, T.(¢~, 3)(x)) for any x €4y, and

(iv) if z€d3 and w,=T . (v, 3)(x) €2, then T (¥, 2)(x,) is contained
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in IntY, ~
where T.(y,, 2): M— R and T.(y, 3): M— 23 are defined by

T. (Y 2)@)=Inf{t>0 |¥ () € 2}
T_(¥y, 2)(x)=sup{t<O0|y () € 3}
To(¥ D)@ =9,x) (6= Te(¥s Z)&)) -

Then flow-spines P_(+4,, ) and P,(y,, I) generated by a normal pair
(4, 3) are given by

P_(yyy 2)=2U{y(2) |2 €03, T_(¢, ) x)=t=0}
P (¥, N=3ZU{Y(r)|lxecd, 0t T (,, Z)(m)} .

It was shown in [2] that every closed 3-manifold admits a normal pair,
and that each of P_(vy,, 2) and P,(y,, 3) forms a standard spine of the
phase manifold.

When there is no fear of confusion, we simply write T, Ti and P,
for T.(¢y, 2), f‘i(a/r,, 2) and P.(¥,, X) respectively. For a given normal
pair (¢, X), the following notation are used throughout this paper, which
are the same as in [2].

NOTATION.

(1) For a closed fake surface P, &;(P) denotes the set of the j-th
singularities of P (see [1}], [2]).

(2) v denotes the number of the elements of S,(P_) (P_=P_(¥,, 2)).

(3) By a, a, *--, a, we denote the elements of S,(P_); i.e., S(P_)=
{a, +++, a})={xecInt 3| T,(x) and T2(x) are both on 53)}.
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(4) b,=T.(ap), ck=f‘i(ak) and d,=T3a,) (k=1, ---, v). Notice that
by, ¢, €02, and that {d, ---, d,}=&,(P,)cInt 3.

(5) C,C,---, C, denote the connected components of 63 —{b,, ---, b,,
Cyy * 00y c»}'

We always assume that the assignments of numbers to a,’s and C,’s

are fixed once for all.

For each k=1, --., v, we define four integers k(7) (=1, -+, 4, 1
k(j)=<2y) so that the components C,; are like as in Figure 1 (see [2] for
the precise). :

§2. Singularity-data.

In [2] the notion of the sigularity-data was introduced. We give its
precise formulation in this section.
Let (¢, ) be a normal pair on some manifold M. Fixing an orien-

tation on 6, we denote by :;:Z/ (x, y €0Y) the subarc of 03 going from x

to y in the positive direction. For each m=1, -.-, 2v, take a point w,,
on the component C,, of 6¥—{b, -+, b, ¢, --+,¢,}. Then each a, € S,(P_)
satisfies one of the following four conditions:
N N
(+) bLEWiyWre and ¢, € WyeWie
— —
(=) br€WypWiy and ¢, € WywyWie
* N N
(+™*) beWiyWrey and ¢, € Wy Whe

%
(=) byeWrWryy and ¢, € WyoWsiy -

As is shown in [2], any a, satisfies the condition (+) or (—) if M is
orientable. In [2], the following two informations (a) and (b) about the
third singularities of P. are called a singularity-data.

(a) The arrangement of b,’s and ¢,’s on 93.

(b) The condition (+) or (—) or (+%*) or (—*) which is satisfied by
each of a,’s.

How a singularity-data determines a flow-spine is stated in [2].

Now we shall give a more precise formulation of a singularity-data.
Let B*, B, C* and C~ be mutually disjoint finite subsets of the circle
S* such that $#(B*UB )=#(C*UC-). Let 8 be a one-to-one correspondence
between B*UB~ and C*UC-, and o be an orientation on S'. Then we
call the six-tuple (¢; B*, B~; C*, C~; 0) a singularity-data of a flow-spine.
Namely, putting {b,, ---, b,}=B*U B~ and ¢,=6(b,), we determine the con-
dition (+) or (£*) with respect to the given orientation ¢ on S'=4%
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which is satisfied by a, € &;(P_) corresponding to b, in the following way:

(i) a, satisfies (+) iff b,€B* and ¢, €C™,

(ii) a, satisfies (—) iff b,e B~ and ¢, cC",

(iii) a, satisfies (+*) iff b,e B* and ¢, €C,

(iv) a, satisfies (—*) iff b€ B~ and ¢, € C".

Let A=(o; B*, B~; C*, C~; 6) be a singularity-data, and ", (=1, ---, »)
be the connected components of S'—(B*UB~), and w, be a point on I,.
For each k=1, ---, v, we define three integers k{j} (=1, 2, 8, 1=Zk{j}=v)
so that I',; satisfy the following conditions (i)-(iii).

(i) Iy and I'y, are components having b, as their end point,

N e

(ii) by € wewye iff b, e B*, and b, € w,w,, iff b, € B,

(iii) exelya-
And define a group I7(A) by

H(A)E<g1r RPN/ ST R 'r,,> ’ rk‘:gk(l)gk(s)g;{lz} .

The following theorem was shown in [2].

THEOREM 2.1. If a singularity-data A is realized by a normal pair
on M, then =, (M)=II(A).

For a singularity-data A=(o; B*, B~;C*, C~; 8), we define the reversed
singularity-data A* by A*"=(—o;C*, C~; BY, B~;0™'). If A is realized by
a normal pair (¥, ¥) on M, then AT is realized by (4, 2) where 4, is the
time-reversed flow given by +,=+_,. Hence, by the above theorem, we
must have II(A)=II(A")=x, (M), namely we get the following necessary
condition for the realizability of a singularity-data.

ProOPOSITION 2.2. If a singularity-data A is realized by some normal
pair, then II(A)=II(AT).

§3. Simple third singularities, simply reduced normal pairs.

Let (4, 2) be a normal pair. A third singularity a, of P_=P_(y, )
(or d; of P,) is said to be simple, if C,o=Ciry. If a,€S(P) is simple,
then each of {a,}UT_(Cis) and {d,}UT.(C.s) forms a simple closed curve
in ¥ (cf. Figure 2).

DEFINITION 3.1. A normal pair (¢, X) is said to be simply reduced,
if any simple a, € S,(P_) satisfies that

3C,, T (S(P)=1{b, -+-, b}, and
3Ce CT_(B(P)=1cs =, ¢} -
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In 'what follows, we shall give a method for obtaining a simply re-
duced normal pair from given one.

Suppose that #S,(P_)=2, and let a,c&S,(P_) be a simple third singu-
larity such that 6Cy,, NT_(Sy(P.))#= @. Then Ciup=Cie OF Ciy=Ci s for
some k'#k. First we shall consider the case C.,=Ci. Assume that
by, ¢, by and ¢, are arranged as in Figure 8(a). Then c’,,;,, and C,,;, UCy o
are mapped by 7_ into the figure like as in Figure 3 (b).
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FIGURE 3

Take a compact 2-disk Y in X so that (Int Y)N7T_(63)=T_(¢xc,) and 7=
dYNT_(63)=T_(v") for some small subarec ¥’ of 43 containing b,.. And
choose a continuous function f: Y— R so that f&@)=T.(z) for ze~v and
0<fx)<T,(x) for xe Y—v. A new compact local section I’ is defined
by 2'=3U{y(x)|xc Y, t=F(x)}. Then (¥, X’) is also a normal pair and
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has less third singularity than (¢, 3) (see Figure 4). If A=(s; B*, B~;
C*, C~; 0) is the singularity-data for (v, 3), then the singularity-data A’
of (¢, 3') is given by A’'=(o; B, B;; Ci, C; 6,) where BFf=B*—{b,},
Ci=C*—{cv} and 6,=6l5} s -

.
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FIGURE 4

Now we shall consider the case C,,=C,.,. In this case, T_(E:Ek) is
like as in Figure 5. First we shall show that, deforming +r, if necessary,
we may assume that T_(c,.c,) is disjoint from 7T,(33).
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FIGURE 5

Let X be the vector field generating +,, and define U to be U=
{v(x)| xeInt Y, —6<t<0}, where 6§>0 is a collar-size for (v, 3) (see [2]
for the definition of a collar-size). Let (x, ¥) be a smooth coordinate on
3. Then, by the mapping (x, ¥, t)—+(z, ¥), (x, ¥, t) becomes a coordinate
on U. Consider a vector field X on M such that X=0 on the outside of
U and X(z, y, t)=a(x, ¥, t)9/0x+b(x, y, t)3/dy on U. And let ¥} be a flow
generated by X+ X. Then obviously (¥}, X) is a normal pair and has the
same singularity-data as (4, Z);_\Moreover it is easy to see that, for an

adequate choice of X, T_(v, 3)(¢,-c,) does not intersect with T.(v}, 2)(32)
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(cf. Figure 6).
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Hence we may assume that the original (¢, ) has this property. Then

we can take a compact 2-disk YCJ3I so that (Int E)DT_(aZ'):T_(c/,,:c\,‘) and
Yn :T‘+(az>=@ (see Figure 7(a)). Then, for a compact local section 3'=
Cl(¥—-Y), (4, 2') is a normal pair and P_(+, 3’) has less third singularity
than P_(+4r, ). Also in this case, the singularity-data of (¢, 3') is ob-
tained by omitting b,. and ¢, from the one of (v, 2).
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FIGURE 7

If a,e8,(P.) is simple and b, €0C,,, then, considering the graph
T.(6%) instead of T_(33), we can see that the third singularity d, € P,
can be removed in the same way as above. Repeating this procedure,
we get a simply reduced normal pair or a normal pair with only one
third singularity. If M admits a normal pair with one third singularity,
then M is the 3-sphere S°® (see [2]). Hence we have that
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THEOREM 3.1. If M=+S?®, then by the above procedure we get a simply
reduced mormal pair. And in the case of M=S8® we obtain a simply
reduced normal pair or a normal pair with only one third singularity.

§4. Reducibility.

Let (4, 2) be a normal pair on M, and A={a,, ---, a,} be the set
of simple third singularities of P_(y, X). Then 7,={a,}UT_(Cy;) is a
simple closed curve in X for each a,;€A. We denote by D;,c¥ the
domain bounded by 7v;, and define V to be

V=P_U{¥(x)| x€ D,UD,U---UD,, 0<t=4}

where >0 is a collar-size for (4, Y). Evidently V collapses to P_, and
has free faces

Fi={y(x)| xev;—{a,}, 0<t<d}.
Collapsing V from these free faces, we obtain

V'=(P_Uv(D)YU -+ - Uyp(D))—(F,U -+ - UF,)
FVi={v ()| zev;—{a;}, 0<t<d},

(see Figure 8). This V'’ still has free faces L;j={v(a:;)|0<t<d}.

r/ ------ D-f
\_//Y/ ——
collapse / /
174 v
FIGURE 8

Hence, continuing the collapsing process, we get a spine P of M. Maybe
P depends on the collapsing process. And, in general, P is not a flow-
spine. However it is known that

THEOREM 4.1 ([1]). If we get a P which is not a closed fake surface,
then H,(M; Z) is mot trivial or M=S®.

And the next proposition can be easily seen by the way in which
we collapse V to P.
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PROPOSITION 4.2. If P is a closed fake surface, then S,(P) is in-
cluded in S(P_)—A. And moreover if b, €dC,;, for some a,;€ A, then
a, ¢ S(P).

This proposition implies that a simply reduced flow-spine having many
simple third singularities results in a spine with few third singularities.
Taking account of this, we define the reducibility of a flow-spine in what
follows.

DEFINITION 4.1. Two simple third singularities a,, and a,, are said
to be twin, if C,, and C,,, has the same boundary point.

DEFINITION 4.2. (1) k,=k,(, ) denotes the number of the simple
third singularities of P_(v,, X).

(2) Kk,=kK,(4, ) denotes the number of pairs of twin simple third
singularities of P_(4,, X).

(3) k=k(, ) is defined by k=v—2k,+£, (V=4S,(P_)).

We define the reducibility as follows.

DEFINITION 4.3. A simply reduced normal pair (4, &) (or its flow-
spine P_(+,, X)) on M is said to be reducible, if there is a simply reduced
normal pair («, ') on M satisfying either of the following (i) or (ii).

(1) &@, 2N <k, 2).

() &l 2=k, 3) and k(P 228,90, 2D <KoYy 3)—28,(P, 2).

The next theorem will give a reasonability of this definition of the
reducibility.

THEOREM 4.3. If M admits a simply reduced mormal pair (i, X)
such that k(r, 2)=<0, then either H,(M; Z)+{0} or M=S>.

First we shall prove that

LEMMA 4.4. Let a, and a,, be twin simple third singularities of
P_(¢vy, 3). If (¥, 3) is simply reduced and H,(M; Z)={0}, then 3C,, N
0C;,0y =1{bs,} for some ks+#k,, k..

ProOF. Since (v, 2) is simply reduced, C, ,=C,,, if the conclusion
of the lemma does not hold. In this case, setting L=CI(C, ) UCy, i U Ciyia)»
we can see that 7_(L) forms a component of 4% UT_(3%), that is,
03 UT_(6X) is not connected. As is shown in Theorem 4.3 of [2],
H,(M; Z) is not trivial if 83X UT_(33) is not connected. This completes
the proof.
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PROOF OF THEOREM 4.3. Suppose that H,(M; Z)={0} and M=S? and
consider the spine P constructed in the beginning of this section. Because
of Theorem 4.1, P is a closed fake surface.

Let A be the set of simple third singularities of P_(4,, 3), and A,
be a set of third singularities @, such that b, €dC,, for some a,c A
(AcA,). Then, since (¢, 2) is simply reduced, we have #4,=2(x,—«,)+«,
by Lemma 4.4, and hence #&,(P)<(v—«,)—2(k,—&,) by Proposition 4.2.
On the other hand, M has no standard spine without third singularities
if H(M; Z)={0} (see [1]). Therefore we must have x(vy,, 3)=£&,(P)>0.
This proves the theorem.

According to Theorem 4.3, an affirmative answer to the following
problem implies the Poincaré conjecture.

PROBLEM. Let M be a homotopy sphere and (v, 3) be a simply
reduced normal pair on M. Is (¢, X) reducible whenever £(vy,, 3)>0?

§5. Examples of reducing methods.

In this section, we explain by examples how we can see the reduec-
ibility of a flow-spine. As an example, we consider the singularity-data
(o; B*, B—;C*, C~;0) given in Figure 9, where B*={b, b}, B~ ={b,, b,},
Ct=l{e, ¢}, C~={c,, ¢} and ¢, =6(b,). It can be shown that this singularity-
data is realized by a normal pair on S%, and T_(&Z’) and 'f"+(az*) are like
as in Figure 10.

b

C3

9

Cy
C2

bq, Cq

FIGURE 9

We shall show the reducibility of this normal pair (¥, ) in three dif-
ferent ways.
The First Method. Take a compact 2-disk YCJX like as in Figure



FLOW-SPINES 171

FIGure 10

11(a). Next choose a continuous function f: Y— R such that fizx)= T (x)
for e YNT_(62) and 0<fx)<T.(x) otherwise. Then, setting X'=
Uy ) |xe Y, t=f(x)}, we get a new normal pair (v, 3'). For this
(s, 37), T_(83") is like as in Figure 11 (b). Evidently (v, 2)=k(y,, 3)—1.

(a) ®

FIGUre 11

The Second Method. In this case, we take a compact 2-disk YcJI
like as in Figure 12. Then, applying the method used in §3, we may
assume that YNT_(62)=g. Take another 2-disk U like as in Figure 12.
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FIGURE 12

Now choose a continuous function f: U— R such that f(x)=T,(x) for
zeUNT_(02) and 0 < f(x)< T.(x) otherwise. Then, setting 3’ =
ClT—-Y)U{¥(x)|x € U, t=f(x)}, we obtain a normal pair (¢, 3’). The
singularity-data of (¢, 3') is given by Figure 18, and this normal pair
has a simple third singularity a,. Hence, applying the procedure in §3,
we get a simply reduced normal pair (¢, X”) such that &(y4, 3") <
(Y 2).

C1

FI1GURE 13

The Third Method. In this case, we take three 2-disks Y; (j=
1, 2, 3) like as in Figure 14(a), (b). And let v, (I=1, ---, 6) be subarecs
of 0Y; indicated in the figure. We can choose continuous functions
fi: Y;— R such that

(i) 0<fi(x)<T.(x) for any j and z€ Y},

(ii) fix)=0o (6 is a collar-size),

(iii) fy(x)=T.(x)+6 for xz€,,

(iv) filx)=T, (x)+o fgr X €Y, and

(v) fiw)=T.@)+ f(T.@) for xev, (T.(x)e,).
Then D={y(x)|xc Y}, t=fi(x), j=1, 2, 3} is a compact local section and
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homeomorphic to a 2-disk. Now take another compact 2-disk U like as
in Figure 14 (b), and choose a continuous function f: U— R such that
fx)=T.(x) for e UNT_33), fix)=6 for xe UNY, and 0< f(x)< Ty ()
otherwise.

(a) (b)
FIGURE 14

Then, defining 3’ by 3'=3UDU {4 (x)|xe U, t=f(x)}, we get a normal
pair (¢r,, ). We can easily see that, applying the procedure used in §3
to this (v, 3'), we obtain a normal pair (¥}, ") with #S,(P_(y4, 3"))=1.

In the next section, we shall give a generalization of the third
method. The first and the second methods will be discussed in the forth-
coming paper.

§6. A condition for the reducibility of flow-spines.

In order to give a condition for the reducibility which is a general-
ization of the third method of the preceding section, we first prepare a
definition.

DEFINITION 6.1. A simple closed curve B in M is said to be nice
(with respect to a normal pair (¢, 3)), if it satisfies that

(1) BNEUG(PHIUS(P)=0,

(ii) Arx) e B for any xe€ B and 0<t< T (),

(iii) B is nowhere tangential to +,, and transversal to P_ and P,,

(iv) BNP_={x;} is a singleton and x;¢C,,=C,s for any simple
third singularity a, of P_,

(v) there is an embedded 2-disk Dy M—23 such that ¢D;=pB and
D; is a compact local section of +,, and

(vi) DsNP_NP,#@ or T.(xs) & Cry UC,, for any simple third sin-
gularity a, of P_. :

Then we can show that
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THEOREM 6.1. A simply reduced normal pair (¥, 3) is reducible, if
it admits a mice closed curve B such that %,={y(2,)|0<t< T.(x,)} does
not intersect with D,.

Moreover in the case where H,(M; Z) is trivial, we have that

THEOREM 6.2. "A simply reduced mormal pair (¢, 3) on M is re-
ducible, of H(M; Z) is trivial and (¥, ) admits a nice closed curve.

PROOF OF THEOREM 6.1. Let BAbe a nice closed curve with respect
to (4, ), and B, be a subset of T .(&,(P_)) consisting of the points b
such that +,(d) ¢ D, for any 0<t<T,(b). First we shall prove that

LEMMA 6.3. b,=T.(a,) i3 contained in B, if a, is a simple third
singularity of P_(v,, 2). .

PROOF. Let the third singularity a, be simple, and VX be the
domain bounded by {a,} UT_(C..,). And define V to be V={y(x)|z e C(V),
0<t=T.(x)}. Then, according to the conditions (iv) and (v) in Definition
6.1, each component of D,NoV is a closed curve in dV—(VUT.(V) UCiq),
and nowhere tangential to ¥,. Therefore D,NdV cannot intersect with the
orbit segment from b, to T.(b,). This completes the proof of the lemma.

Now suppose that Z;ND,=@, and denote by C; the component of
32 — (T ,(&y(P_)) UT2(&,(P.))) which contains 7, (x;). Then, since &,ND,=
@, we can take a compact 2-disk UcJS like as in Figure 15 and a con-
tinuous function f: U— R which satisfy that

(i) UNT_(33)cT_(Cp),

(ii) flx)=T.(x) for xc UNT_(Cy), A

(iii) AT_(x))=—T_(x) for ze g (T_(x)e UNT_(B)), and

(iv) Yrm@)€ZND,; for x€ U-T_(2UB).

S f_(/j) / T—(Cﬂ) -
\\J

FIGURE 15
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Define 3’ to be 3'=3 U D;U{y(x)|x € U, t=f(x)}. Then (4, 3') is a normal
pair, and a,=T_(v, 3")(x;) is a simple third singularity of P_(+, 3’). In
the remainder of the proof, we denote T.(y, 3') and T.(v, 3') by T.
and T, respectively, and 7T.(y,, X) and T.(¥, 3) by T. and T, respec-
tively. Let B* be the set of points ¢ €8N P,(y, 3) such that ,(c) ¢ D,
for any T_(c)<t<O0, and define B, by B,=T’(B*). Then it is evident
that Sy(P_(y, 3")={a} UT.(B)UT'(B,). Let A be the singularity-data
of (¥, 3’), and A’ be the one obtained by removing B, and 7.(B, from
A. Then, noticing that a, is simple, we can easily see that A’ can be
realized by some normal pair (v, 3”’) on M. We shall consider a simply
reduced normal pair (4¥, ¥*) which is obtained by applying the procedure
in §3 to this (¥4, 2”), and show that &(¥}, I*) <k, X) or k(v I*)—
2’51('&?: 2*)<’£0("l"t’ E)'_z’ﬁ("p‘tr 2)'

First we shall consider the case where D;N P, N P_# Q (Py.=P.(¥,, I)).
In this case #B,<#&,(P.), and hence #&,(P*)<#B,+1=<#&,(P.) (P*=
P_(y¥, 2*)). It follows from Lemma 6.3 and the procedure for getting
(¥f, 2*) that kf=k;+1 or k; (j=0,1, kF=k;(¥, Z*) and k;=k;(v,, 2)),
and that £¥=k,+1 if #S,(P*)=#S,(P_). Therefore we have (¥, I*)>
K(vyr,, 3) except the case where £ =k, and #S,(P*)=#&,(P_)—1. This case
can occur only when #(D,NP,NP_)=1 and T.(x,) is contained in C.o Or
C,« for some simple third singularity a, of P_. And in this case we can
see that x£¥=«,, and hence k(¥¥, 3*)<k(y, X) also in this case.

Next we shall consider the case where D;,NP,NP_=@ and T+(wp) é
CiwyUC,y for any simple third singularity a, of P_. Let y be the end
point of C, which is not included in T+(Dﬁ). If y e T .(S4(P.)), then using
the condition that 7', (x,) ¢C,, for any simple a,, we can see that
1S,(P*)=#C,(P_)+1, k¥=k,+1 and k*=k, or k,+1. And in the case
where y is contained in T2(S,(P.)), by ‘the condition T+(xp)$C,,“, for
simple a,, we have that #S,(P*)<#S,(P.), £*=k,+1 or &, and £*=k, or
£;+1, and moreover that #S,(P*)<#S,(P.) if k*=k,. Hence in any cases,
we get k(v T*)<k(¥,, T) or Kk —2k¥ <rKk,—2k,. This completes the
proof.

PrROOF OF THEOREM 6.2. According to Theorem 6.1, it is sufficient
for the proof of Theorem 6.2 to show that Z,ND,=@ for any nice closed
curve @ if H,(M; Z) is trivial.

Assume that #,N D, @, and define F: 83— R by

F(x)=1inf{t >0y (x) € D;} .

According to the conditions (ii), (iv) and (v) of Definition 6.1, F is con-
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tinuous on 8 and F(x)<T.(x) for any x€3. Hence the 2-dimensional
polyhedron D,U A defines a 2-cycle, where Z={v.(2)| x€B, 0=t=F(z)}.
Therefore if H,(M; Z) is trivial, then D,U g divides M into two domains
V. and V,. Let «, be a point D; which is not contained in the domain
bounded by {v.(x)|xcB, t=F(x)}. We can choose z, so that the orbit
through z, does not intersect with B. Without loss of generality, we
assume that +¥,(x,) € V, for small 6>0 and ¥ _,(%,) € V,. Because (D,U AN
Y=, 3 is completely included in either of these two domains.

Let ScV,. Then there must exist a %, (T_(x,)<t,<0) such that
Jr(x) € V, for t,<t<0 and ¥, (x,) € D;,. However this is obviously impos-
sible. Also in the case of Y V,, we have a contradiction that () €
D;— U for some 0<t<T.(x,) where UCD; is the domain bounded by
{v(x)|x e B, t=F(x)}. This completes the proof.

REMARK 1. The assumption of Theorem 6.2 seems to be somewhat
weakened, that is, we can show the following (a) and (b).

(a) If H(M; Z)={0} and g is a simple closed curve satisfying that
(1) P satisfies (i)-(iv) in Definition 6.1,
(2) LK(B, ¥4B))=0 for sufficiently small §>0 where LK(-, -) is the
linking number,
(8) there is an “immersed” 2-disk D;cM—J such that dD;=8 and D;
is nowhere tangential to 4,
then we can take an embedded 2-disk D;/cM—23 with 6D,=23.

(b) Any simple closed curve satisfying (i)-(iv) in Definition 6.1 has
the above property (2) if H,(M; Z) is trivial.

However, in (a), it is not yet known whether we can take Dy so
that it is transversal to .

REMARK 2. Recently Ikeda and Inoue ([3], [4]) introduced the concept
of DS-diagrams and DS-diagrams with E-cycle. As is pointed out in [4],
a flow-spine defines a DS-diagram with E-cycle. The converse can be
also proved, namely, we can construct a normal pair which generates a
given DS-diagram with E-cycle. Especilly we can say that if a singularity-
data is realizable in the sense of [2], then it is really generated by some
normal pair. This fact will be discussed in the forthcoming paper.
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