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\S 1. Introduction and notation.

Let $R$ be a (commutative integral) domain with quotient field $K$.
One theme of enduring interest has been the study of $R$ by analyzing
properties of its overrings (that is, the rings contained between $R$ and
$K)$ . It seems remarkable that analogous “dual” studies have not been
done in terms of the behavior of the underrings of R. (We shall say
that $B$ is an underring of $R$ in case $B$ is a subring of $R$ also having
quotient field $K.$ ) In [2], one took a first step by characterizing the $R$

such that each underring of $R$ is a Euclidean domain. These domains $R$

were actually studied earlier by Gilmer [3] as the domains each of whose
subrings is a Euclidean domain. In [1, Proposition 2.11], it was shown
that the same domains $R$ are characterized by requiring that each subring
of $R$ is seminormal. (As noted in [4, Theorem 1.1], a domain $D$, with
quotient field $L$ , is seminormal if and only if, whenever $u\in L$ satisfies
$u^{2}\in D$ and $u^{s}\in D$, then $u\in D.$ ) One is naturally led to ask if the same
domains $R$ are characterized by requiring that each underring of $R$ is
seminormal. In [2], this was answered in the affirmative in the special
case $R=K$. Our main result, Theorem 2.2, answers the general question
in the affirmative. Its proof is independent of, and somewhat easier
than, the work in [2].

$R,$ $K$ retain the above meanings throughout, all subrings contain the
1 of the larger ring, ch denotes characteristic, and $F_{p}$ denotes the prime
field of characteristic $p>0$ . Any unexplained material is standard, as in
[5].

\S 2. Results.
In any study of domains via behavior of their underrings, certain

Received July 31, 1986



158 DAVID E. DOBBS AND TAKESHI ISHIKAWA

domains are catalogued by default. These are the domains having no prope]
underrings. They are characterized in Proposition 2.1, whose proof followI
immediately from [2, Corollary] (or Theorem 2.2 below). Recall, by wa3
of contrast, that $R$ has just $R$ and $K$ as overrings if and only if $R$ is ,

valuation domain of (Krull) dimension at most 1.

PROPOSITION 2.1. The following conditions on $R$ are equivalent:
(1) $R$ is the only underring of $R$ ;
(2) Either $R\cong Z$ or $R=K$ is a field algebraic over some $F_{p}$ .
We come next to our main result. The equivalence (1) $\Leftrightarrow(6)$ wat

obtained in case $R=K$ in [2, Theorem]; for arbitrary domains $R,$ $[2$

Corollary] showed that (6) is equivalent to “each underring of $R$ is $\iota$

’

Prufer (resp., Euclidean) domain.”

THEOREM 2.2. The following conditions on $R$ are equivalent:
(1) Each underring of $R$ is seminormal;
(2) Each subring of $R$ is seminormal;
(3) Each underring of $R$ is integrally closed;
(4) Each subring of $R$ is integrally closed;
(5) Each subring of $R$ is $a$ Euclidean domain;
(6) Either $R$ is isomorphic to an overring of $Z$ or $R=K$ is a fielc

algebraic over some $F_{p}$ .
PROOF. (4) $\Leftrightarrow(5)\Leftrightarrow(6)$ : Apply [3, Theorem 1].
(2) $\Leftrightarrow(6)$ : Apply [1, Proposition 2.11].
(4) $\Rightarrow(3)$ : Trivial.
(3) $\Rightarrow(1)$ : Note that each integrally closed domain is seminormal.
(1) $\Rightarrow(6)$ : Assume (1). We consider first the case $ch(R)=p>0$ . Wt

claim that $R=K$ is algebraic over $F_{p}$ . Indeed, choose a transcendenct
basis $\{X_{i}\}$ of $K$ over $F_{p}$ , such that $\{X_{i}\}\subset R$ . Set $L=F_{p}(\{X_{i}\})$ and $A=$
$F_{p}[\{X_{i}\}]$ ; let $T$ denote the integral closure of $A$ in $R$ . Since $K$ is algebrait
over $L$ , the usual ”clearing denominators” trick gives $R\subset T_{A\backslash \{0\}}$ ; in par,
ticular, $K$ is the quotient field of $T$. Then $D=F_{p}+u^{2}T$ is an underring
of $R$ , for each nonunit $u\in T\backslash \{0\}$ . By (1), $u\in D$ ; write $u=e+u^{2}t$ , wit}
$e\in F_{p}$ and $t\in T$. As $u^{-1}\not\in T$, it follows easily that $e\neq 0$ . Hence, $e$ is $\iota$

’

unit of $T$. It follows from $e=u(1-ut)$ that $u$ is a unit of $T$, contrar3
to hypothesis. So no such $u$ exists; that is, $T$ is a field. By integralit3
(cf. [5, Theorem 48]), $A$ is also a field. Hence $\{X_{i}\}$ is empty, and $K$ if
algebraic over $F_{p}$ . Moreover, since $T\subset R\subset T_{A\backslash \{0\}},$ $R=K$, and the claim
has been proved.

We tum now to the case $ch(R)=0$ . We shall show flrst that $K$ if
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algebraic over $Q$ . Deny. Choose a transcendence basis $\{X_{i}\}$ of $K$ over
$Q$ such that $\{X_{i}\}\subset R$ ; let $X$ be one of the $X_{i}$ . Set $L=Q(\{X_{i}\}),$ $A=Z[\{X\}]$ ,
and $B$ the integral closure of $A$ in $R$ . Clearing denominators reveals
that $R$ is contained in the quotient field of $B$ ; thus, $B$ is an underring
of $R$ . The preceding paragraph now may be reinterpreted for the present
context. Using $D=Z+X^{2}B$, we find $X=e+X^{2}b_{1}$ , with $0\neq e\in Z$ and $b_{1}eB$.
Let $q$ be a rational prime not dividing $e$ , and use integrality to produce
$PeSpec(B)$ such that $P\cap A=(q, \{X_{l}\})$ . It follows from $e=X(1-Xb_{1})$ that
$eeP\cap Z=qZ$, the desired contradiction. Hence, $K$ is algebraic over $Q$ .

It remains only to show that $K=Q$ . Deny. Hence, one may choose
$\gamma eR\backslash Q$ . Clearing denominators gives $0\neq meZ$ such that $\delta=m\gamma$ is in-
tegral over Z. Letting $E$ denote the integral closure of $Z$ in $R$ , we see
as above that $K$ is the quotient field of $E$. Thus $E$ is an underring of
$R$ , and so is $Z+q^{2}E$ for each rational prime $q$ . Put $M=Q(\delta)$ and $S=$

$E\cap M$. Note that $S$ is integral over $Z$ and, since $\delta eS,$ $M$ is the quotient
field of $S$. Also, since $Z$ is Noetherian and $S$ is a subring of the ring
of algebraic integers of $M,$ $S$ is a finitely generated Z-module.

We can now complete the proof of Theorem 2.2. Let $q$ be a rational
prime. By (1), $Z+q^{2}E$ is seminormal, and it follows easily that $ qE\subset$

$Z+q^{2}E$. Thus, if $ueE$ , then $u=v+qw$ , with weE and $v\in Zq^{-1}\cap E=Z$.
It follows that $E=Z+qE$. Now, for each $yeS$ , we have $y=m+qe$ , for
some $m\in Z,$ $eeE$. Observe that $e=(y-m)q^{-1}eE\cap M=S$. It follows
easily that $S=Z+qS$. As $S$ is finitely generated over $Z$, the standard
determinant trick (essentially Nakayama’s Lemma) gives $n\in qZ$ such that
$(1-n)S\subset Z$. Then $S\subset Q$ , contradicting $\delta eS\backslash Q$ .
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