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\S 1. Introduction.

The n-th Bloch constant $b_{n}(n\geqq 2)$ will be defined in terms of radii
of certain disks on minimal surfaces in the Euclidean space $R^{n}$ . As will
be seen, $b_{2}$ is the familiar one in the complex analysis. We shall prove
that

(1.1) $b_{n}\geqq n^{-1/2}b_{2}$ , $n\geqq 3$ .
Let each component $x_{j}$ of a nonconstant map $x=(x_{1}, \cdots, x_{n})$ from the

disk $D=\{|w|<1\}$ in the complex plane $|w|<\infty$ , $w=u+iv$ , into the
Euclidean space $R^{n}(n\geqq 2)$ be harmonic in $D$ . Then, the set $S$ of all
pairs $(w, x(w)),$ $w\in D$ , or simply, the map $x$ itself, is called a minimal
surface if

(1.2) $x_{u}x_{v}=0$ , $x_{u}x_{u}=x_{v}x_{v}$ in $D$ ,

where
$x_{u}=(x_{1u}, \cdots, x_{nu})$ , $x_{v}=(x_{1v}, \cdots, x_{nv})$

are partial derivatives and the products are inner; $S$ is the one-to-one
image of $D$ by $x$ .

Henceforward, $x:D\rightarrow R^{n}$ always means a minimal surface, and some-
what informally, we regard $S$ as a subset of $R^{n}$ .

The surface $S$ is endowed with the metric

$d(x(w_{1}), x(w_{2}))=\inf_{\gamma}\int_{\gamma}|x_{u}(w)||dw|$ ,

where $x(w_{j})\in S,$ $j=1,2,$ $|x_{u}|=(x_{u}x_{u})^{1/2}$ and $\gamma$ ranges over all (rectifiable)

curves connecting $w_{1}$ and $w_{2}$ in $D$ . One can also consider this a new
metric in $D$ other than the Euclidean metric. Obviously, $|x(w_{1})-x(w_{2})|\leqq$

$d(x(w_{1}), x(w_{2}))$ ; the left-hand side is the Euclidean metric in $R^{n}$ .
Received June 25, 1987
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The open disk of center $x(w_{0})$ and radius $r>0$ in $S$ is

$\Gamma.(w_{0}, r)=\{x(w);d(x(w), x(w_{0}))<r\}$ .
We shall later observe that the closure of $\Gamma ae(w_{0}, r)$ is

$\Gamma_{x}^{*}(w_{0}, r)=\{x(w);d(x(w), x(w_{0}))\leqq r\}$ ;

this is not necessarily compact. A point $x(w)$ is called regular or non-
branched if $x.(w)\neq 0$ , nonzero vector, and a subset $S_{1}\subset S$ is called regular if
each point of $S_{1}$ is regular. If $\Gamma_{\alpha}(w_{0}, r)$ is regular and further if $\Gamma_{x}^{*}(w_{0}, \gamma)$

is compact, then we call $\Gamma ae(w_{0}, r)$ admissible. Let $b(x)$ be the supremum
of $r>0$ such that there exists an admissible $\Gamma_{x}(w_{0}, r)$ for some point $x(w_{0})$ .
Let $b_{n}$ be the infimum of $b(x)$ for all $x:D\rightarrow R^{n}$ subject to the ”pinning”
condition $|x_{\tau\iota}(0)|=1$ . We then call $b_{n}$ the n-th Bloch constant. Since
$x:D\rightarrow R^{n}$ can be regarded in the obvious way as $x:D\rightarrow R^{n+1}$ , it follows
that $b_{+1}\leqq b.,$ $n\geqq 2$ .

A minimal surface $x:D\rightarrow R^{2}$ can be regarded as a nonconstant holo-
morphic or antiholomorphic function $f$ in $D$ and vice versa. For the
holomorphic case, an admissible $\Gamma_{\alpha}(w_{0}, r)$ is the one-sheeted whole disk
$\{|w-f(w_{0})|<r\}$ on the Riemannian image, an elementary but never trivial
fact. Therefore, $b_{2}$ is just the Bloch constant [A2, p. 14] in the complex
analysis.

Our first aim is to prove

THEOREM 1. The inequality (1.1) holds.

It is familiar that [Al, p. 364], [AG, p. 672], [H1], [H2, p. 60],

0.433 $\cdots$ $=\frac{\sqrt{3}}{4}<b_{2}\leqq\frac{\Gamma(1/3)\Gamma(11/12)}{(1+3^{1/2})^{1/2}\Gamma(1/4)}=0.471\cdots$ .
The determination of $b_{2}$ still remains an outstanding problem. Since
$b_{3}>1/4=0.25$ , we have an improvement of E. F. Beckenbach’s [$B$ , p. 456]
earlier one: $ b_{3}\geqq(16\sqrt{3})^{-1}=0.036\cdots$ . His paper contains no definition of
the Bloch constant $b_{\epsilon}$ ; the result is implicit.

A holomorphic function $f$ in $D$ is called Bloch if

$\mu(f)\equiv\sup_{weD}(1-|w|^{2})|f’(w)|$

is finite. The notion arises from the principal idea of proving the Bloch
theorem due to E. Landau [ $L$ , pp. 617-618]. The term ”Bloch function”
in the present meaning now prevails, ignoring R. M. Robinson’s earlier
paper $[Rb1$ .
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We call $x:D\rightarrow R^{n}$ Bloch if

$\mu(x)\equiv\sup_{weD}(1-|w|^{2})|x_{u}(w)|$

is finite. Note that $\mu(f)=\mu(x)$ for nonconstant $f$. A typical example is
a bounded minimal surface $x:D\rightarrow R^{n}$ , namely, $|x|$ is bounded in $D$ .
Another one is $x:D\rightarrow R^{n}$ whose Gauss curvature $\kappa(w)$ is bounded: $\kappa(w)\leqq$

$-A(A>0),$ $w\in D$ . Then, $\mu(x)\leqq 2A^{-1/2}$ .
In Section 2 we prove Theorem 1. Section $2a$ is appended to Section

2, where the notion of n-th strong Landau constant is introduced. In
Section 3 we propose some basic facts on Bloch minimal surfaces. In
Section 4 we prove some results on Bloch minimal surfaces in connection
with the present topics on disks on $S$ . In Section 5 we prove that
$x:D\rightarrow R^{n}$ is Bloch if and only if $x$ is of bounded mean oscillation in
some sense; the result is analytic rather than geometric.

I wish to express my gratitude to my colleague Norio Ejiri for his
criticism at an early stage of preparation.

\S 2. Proof of Theorem 1.

We begin with some basic properties of minimal surfaces; see [N], $[0]$ .
There exist holomorphic functions $f_{j}$ such that $x_{j}={\rm Re} f_{\dot{g}},$ $1\leqq j\leqq n$ , in

$D$ , so that the formulae in (1.2) can be unified as

(2.1) $\sum_{j=1}^{n}(f_{j}^{\prime})^{2}\equiv 0$ ;

however, the correspondence $x\rightarrow(f_{1}, \cdots, f_{n})$ is not necessarily one-to-one.
We note that

(2.2) $|x_{u}|^{2}\equiv 2^{-1}\sum_{j=1}^{n}|f_{j}^{\prime}|^{2}$ .
We call $(f_{1}, \cdots, f_{n})$ an admissible system for $x:D\rightarrow R^{n}$ .

LEMMA 2.1. Let $(f_{1}, \cdots, f_{n})$ be an admissible system for $x:D\rightarrow R^{n}$ .
Then, for each curve $\gamma$ in $D$ ,

(2.3) $\{2^{-1}\sum_{j=1}^{n}(\int_{\gamma}|f_{j}^{\prime}(w)||dw|)^{2}\}^{1/2}\leqq\int_{\gamma}|x_{u}(w)||dw|$

PROOF. The Minkowski inequality for the integrals with the power
$p=2^{-1}$ [BB, Section 18, p. 20 ff.] reads

$2(\int|x_{u}|)^{2}=\{\int(\sum|f_{j}^{\prime}|^{2})^{1/2}\}^{2}\geqq\sum(\int|f_{f}:|)^{2}$ ,
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which yields (2.3).

For $x:D\rightarrow R^{n}$ and weD we let $\Delta(w, x)$ be the supremum of $r>0$

such that an admissible $\Gamma_{x}(w, r)$ exists; if $x(w)$ is not regular, then we
set $\Delta(w, x)=0$ . Then, $b(x)=\sup\Delta(w, x)$ , where $w$ ranges over $D$ . The
quantity $\Delta(w, x)$ measures the distance from $x(w)$ either to the nearest
branch point (possibly, $x(w)$ itself) or to the “boundary” of $S$. We
denote $\Delta(w, f)=\Delta(w, x)$ for $f$ holomorphic in $D$ with $x=({\rm Re} f, {\rm Im} f)$ .
Thus, $b(f)=b(x)$ . If $f$ is constant, then $\Delta(w, f)\equiv 0$ , $b(f)=0$ . The
Liouville theorem applied to the inverse of $f$ yields that $\Delta(w, f)<\infty$ at
each $weD$ .

THEOREM 2. Let $(f_{1}, \cdots, f_{n})$ be an admissible system for $x:D\rightarrow R^{n}$ .
Then, at each $a\in D$, we have

(2.4) $\{2^{-1}\sum_{j=1}^{n}\Delta(a, f_{j})^{2}\}^{1/2}\leqq\Delta(a, x)$ .
PROOF. We may assume that $x(a)$ is regular. We pick up all $j$

with $f_{j}^{\prime}(a)\neq 0$ ; for simplicity we assume that they are
$f_{j}^{\prime}(a)\neq 0$ , $j=1,2,$ $\cdots,$ $m(\leqq n)$ .

Then, for $1\leqq j\leqq m$ , the Riemannian image of $D$ by $f_{\dot{f}}$ contains the one-
sheeted open disk of center $f_{j}(a)$ and radius $\Delta_{j}\equiv\Delta(a, f_{\dot{f}})>0$ . Let $0<\epsilon<$

$\min_{1\leq j\leq,n}\Delta_{j}$ . Then, for $1\leqq j\leqq m$ , there exists a compact set $\delta_{j}$ in $D$,
which contains $a$ and which is mapped by $f_{j}$ one-to-one onto the closed
disk $\{|w-f_{j}(a)|\leqq\Delta_{j}-\epsilon/2\}$ . The union $\delta=\delta_{1}\cup\cdots U\delta_{n}$ is, therefore, compact,
so that $x(\delta)$ is compact.

We shall show that

(2.5) $\Gamma_{x}^{*}(a, A(\epsilon))\subset x(\delta)$ ,

where

$A(\epsilon)=\{2^{-1}\sum_{j=1}^{n}(\Delta_{\dot{f}}-\epsilon)^{2}\}^{1/2}$ .
Then, $\Gamma_{x}^{*}(a, A(\epsilon))$ is compact and $|x_{u}|$ never vanishes in $\delta$ . Thus, $\Delta(a, x)\geqq$

$A(\epsilon)$ . On letting $\epsilon\rightarrow 0$ we have (2.4).
Suppose that (2.5) is false. Then, there exists $ weD\backslash \delta$ such that

$d(x(w), x(a))\leqq A(\epsilon)<A((3/4)\epsilon)$ . We may find a curve $\gamma$ connecting $a$ and
$w$ in $D$ such that

$\int_{\gamma}$ I $x_{u}(\zeta)$ I 1 $d\zeta|<A(\frac{3}{4}\epsilon)$ .
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For each $j,$ $1\leqq j\leqq m$ , the curve $\gamma$ contains a subcurve $\gamma_{j}$ connecting
$a$ and a boundary point of $\delta_{j}$ such that $\gamma_{j}\subset\delta_{j}$ . Consequently,

$\int_{\gamma}|f_{j}^{\prime}(\zeta)||d\zeta|\geqq\int_{\gamma_{j}}|f_{j}^{\prime}(\zeta)||d\zeta|\geqq\Delta_{j}-\frac{\epsilon}{2}$ , $1\leqq j\leqq m$ .

With the aid of (2.3) we now have

$A(\frac{\epsilon}{2})\leqq\int_{\gamma}|x_{u}(\zeta)||d\zeta|<A(\frac{3}{4}\epsilon)$ .
This contradiction completes the proof.

PROOF OF THEOREM 1. Suppose that $x:D\rightarrow R^{n}$ satisfy $|x_{u}(0)|=1$ , and
let $(f_{1}, \cdots, f_{n})$ be an admissible system for $x$ . We may suppose that
$ b(x)<\infty$ . Since $2^{-1/2}b(f_{j})\leqq b(x),$ $1\leqq j\leqq n$ , by (2.4), it follows that $ b(f_{\dot{f}})<\infty$ ,
$1\leqq j\leqq n$ . We then choose all $f_{j}$ with $f_{j}^{\prime}(0)\neq 0$ ; again, for simplicity,

$p_{j}\equiv|f_{j}^{\prime}(0)|\neq 0$ , $1\leqq j\leqq m(\leqq n)$ .
Applying the Bloch theorem: $b_{2}>0$ , to each $f_{j}/f_{j}^{\prime}(0)$ , we have $b(f_{j})\geqq b_{2}p_{j}$ ,
$1\leqq j\leqq m$ . Hence,

$b_{2}p_{j}\leqq b(f_{j})\leqq 2^{1/2}b(x)$ , $1\leqq j\leqq m$ .
Since $2=2|x_{u}(0)|^{2}=p_{1}^{2}+\cdots+p_{m}^{2}$ , it now follows that

2 $b_{2}^{2}\leqq 2nb(x)^{2}$ ,

whence $b_{2}\leqq n^{1/2}b_{n}$ . This completes the proof.

Although we shall not make use of, the fact that the closure of
$\Gamma_{x}(w_{0}, r)$ is $\Gamma_{x}^{*}(w_{0}, \gamma)$ , described in Section 1, is of independent interest.
We first note that, among the axioms of the distance, the one: $ w_{1}\neq w_{2}\Rightarrow$

$dis(x(w_{1}), x(w_{2}))>0$ , follows from (2.3); actually, at least one $f_{j}$ is non-
constant.

We shall show that for each $x(w)$ with $d(x(w_{0}), x(w))=r$ , and each
$\epsilon>0$ , there exists $x(w_{1})\in\Gamma_{x}(w_{0}, r)\cap\Gamma_{x}(w, \epsilon)$ . First, there exists a compact
disk $\delta$ of center $w$ contained in $D$ such that $x(\delta)\subset\Gamma_{x}(w, \epsilon)$ ; we may
assume $ w_{0}\not\in\delta$ . Next, for each $k\geqq 2$ , there exists a curve $\gamma_{k}$ connecting
$w_{0}$ and $w$ in $D$ such that

$\int_{\gamma_{k}}|x_{u}(\zeta)||d\zeta|<r+k^{-1}$

Then, by a point $w_{k}$ on the boundary circle $\partial\delta$ of $\delta,$
$\gamma_{k}$ is divided into
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subcurves $\gamma_{1k}$ and $\gamma_{2k};\gamma_{1k}$ connects $w_{0}$ and $w_{k}$ , and $\gamma_{2k}$ connects $w_{k}$ and
$w$ . Therefore,

(2.6) $d(x(w_{0}), x(w_{k}))\leqq\int_{\gamma_{1k}}=\int_{\gamma_{k}}-\int_{\gamma_{2k}}$

$<r+k^{-1}-d(x(w_{k}), x(w))$ .
Choose a converging subsequence of $\{w_{k}\}$ , which we denote again by $\{w_{k}\}$ ,
such that $|w_{k}-w_{1}|\rightarrow 0,$ $ w_{1}e\partial\delta$ . It is easy to observe that

$d(x(w_{k}), x(w_{1}))\rightarrow 0$ .
Letting $ k\rightarrow\infty$ in (2.6) we finally have

$d(x(w_{0}), x(w_{1}))\leqq r-d(x(w_{1}), x(w))<r$ .
REMARK. Beckenbach’s proof of $b_{\epsilon}>0$ makes use of a method of

cubic equations quite peculiar to the dimension $n=3$ , which we call $B$

method; see the proof of [$B$ , Lemma 1]. One should surely feel, in the
first reading of [B], that a particular property of the roots of a cubic
equation appears to play an important role, so that, one would suspect
the possibility of extending the result to higher dimensions by $B$ method.
It should be noted that $B$ method (in spirit, we let, after rotation and
translation and in our notation, $p_{1}=p_{2}=p_{8}$ in the proof of Theorem 1)
yields no improvement of $b_{8}\geqq 3^{-1/2}b_{2}$ . As another remark, we point out
that Beckenbach assumed that $|x_{u}(0)|\geqq 1$ for $x:D\rightarrow R^{n}$ . On dividing:
$|x_{u}(0)|^{-1}x$ , one finds that $b(x)\geqq|x_{u}(0)|b_{n}\geqq b_{n}$ .

\S $2a$ . The strong Landau constants.

Let $x:D\rightarrow R^{n}(n\geqq 2)$ , let $w\in D$ , and let $\Delta_{L}(w, x)$ be the supremum of
$r>0$ such that $\Gamma_{x}^{*}(w, r)$ is compact; no regularity restriction on $\Gamma_{x}(w, r)$

is posed. Let $L(x)$ be the supremum of $\Delta_{L}(w, x)$ for $w\in D$ . For $n\geqq 2$ ,
the infimum $L_{n}$ of $L(x)$ for all $x:D\rightarrow R^{n}$ subject to the condition $|x_{u}(0)|=1$

is called the n-th strong Landau constant by the reason mentioned soon.
Since $\Delta(w, x)\leqq\Delta_{L}(w, x)$ , it follows that $b(x)\leqq L(x)$ , and hence $b_{n}\leqq L_{n},$ $n\geqq 2$ .
It is easy to see that $L_{n}\leqq L_{n-1},$ $n\geqq 3$ .

Without saying the details, we denote $\Delta_{L}(w, f)$ and $L(f)$ for $f$ holo-
morphic, and possibly constant, in $D$ . The constant $L_{2}$ is then not
greater than the Landau constant $L;L$ is the supremum of the radii of
all open Euclidean disks contained in the (set-theoretic) image of $D$ by
$f$ holomorphic in $D$ and normalized by $|f^{\prime}(0)|=1$ . The constant $L$ is
introduced by E. Landau [L]. It is known that [Al, p. 364], [Rm, p. 389],
$fP$ , p. 6901,
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$(2a.1)$ $ 2^{-1}<L\leqq\frac{\Gamma(1/3)\Gamma(5/6)}{\Gamma(1/6)}=0.543\cdots$ ;

the right-hand side is said to be an unpublished result of Robinson [Al,
p. 364]. Since $b_{2}\leqq L_{2}\leqq L$ , it would be an interesting problem to prove
$b_{2}<L_{2}<L$ . We shall not be concerned with this but with

THEOREM la. $L_{n}\geqq n^{-1/2}L_{2},$ $n\geqq 3$ .
The proof of Theorem la is similar to that of Theorem 1, once the

following analogue of Theorem 2 is established.

THEOREM $2a$ . Let $(f_{1}, \cdots, f_{n})$ be an admissible system for $x:D\rightarrow R^{n}$ .
Then, at each $a\in D$ , we have

$(2a.2)$ $\{2^{-1}\sum_{j=1}^{n}\Delta_{L}(a, f_{j})^{2}\}^{1/2}\leqq\Delta_{L}(a, x)$ .
PROOF. There is a nuisance of the possibility of $\Delta_{L}(a, f_{\dot{f}})=\infty$ . We

pick up all nonconstant $f_{\dot{f}}$ ; for simplicity, we assume that they are $f_{j}$ ,
$1\leqq j\leqq m$ . Then,

$\Delta_{j}\equiv\Delta_{L}(a, f_{\dot{f}})>0$ , $1\leqq j\leqq m(\leqq n)$ .
We first consider the case where all $\Delta_{j}<\infty,$ $1\leqq j\leqq m$ , and we let $0<\epsilon<$

$\min_{1\leq j\leq m}\Delta_{j}$ again. Let $\delta_{j}$ be the component, containing $a$ , of the inverse
image of

$\{|w-f_{j}(a)|\leqq\Delta_{j}-\epsilon/2\}$ by $f_{j}$ , $1\leqq j\leqq m$ .
Since $f_{j}$ is an open map, it follows that each $\delta_{\dot{f}}$ is compact, so that
$\delta=\delta_{1}\cup\cdots\cup\delta_{rn}$ is compact. Following the same lines as in the proof of
Theorem 2 up to proving (2.5) for our present $\Delta_{j}$ , we now have $(2a.2)$

by the limiting process of $\epsilon\rightarrow 0$ .
To prove that $\Delta_{L}(a, x)=\infty$ in case there exists one $\Delta_{L}(a, f_{\dot{f}})=\infty$ , we

let $\delta(k)$ be the component, containing $a$ , of the inverse image of
$\{|w-f_{j}(a)|\leqq k+2\}$ by $f_{j},$ $k=1,2,$ $\cdots$ . Then, $x(\delta(k))$ is compact, and we
can show that

$\Gamma_{x}^{*}(a, 2^{-1/2}k)\subset x(\delta(k))$

with the aid of

$2^{-1/2}\int_{\gamma}|f_{j}^{\prime}(w)||dw|\leqq\int_{\gamma}|x_{*}(w)||dw|$
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resulting from (2.3). Thus, $\Delta_{L}(a, x)\geqq 2^{-1/2}k$ , and hence the limiting process
yields the requested.

REMARK. There would be no “precise” extension of the Landau
constant to $n\geqq 3$ because there is no fixed ”surface” covered by $S$ .

\S 3. Bloch minimal surfaces.

Let $(f_{1}, \cdots, f_{n})$ be an admissible system for $x:D\rightarrow R^{n}$ . Then, it
follows from (2.2) that

(3.1) $2^{-1/2}\mu(f_{\dot{f}})\leqq\mu(x)\leqq 2^{-1/2}\sum_{k=1}^{n}\mu(f_{k})$ , $1\leqq j\leqq n$ .
Therefore, $x$ is Bloch if and only if all $f_{j}$ are Bloch. It follows from
(2.1) that if $n-1$ members of $f_{1},$

$\cdots,$ $f_{n}$ are Bloch, then the rest is Bloch.
If $x:D\rightarrow R^{n}$ is bounded, then ${\rm Re} f_{\dot{f}}$ is bounded, so that $f_{j}$ is Bloch,

$1\leqq j\leqq n$ ; see the remark after Lemma 3.1 below. Therefore, $x$ is Bloch
by (3.1).

The Gauss curvature [$0$ , p. 76] $\kappa(w)$ of $x:D\rightarrow R^{n}$ at a regular point
$x(w)$ is defined by

$\kappa(w)=-|x_{u}(w)|^{-2}\Delta\log|x_{u}(w)|$ .
Suppose that $\kappa(w)\leqq-A(A>0)$ at each regular point. We shall show
that $\mu(x)\leqq 2A^{-1/2}$ . The proof follows the same lines as in the proof of
[Al, Theorem $A$]; we include a sketch of it for completeness. For each
$r,$ $0<r<1$ , we set $x(w)=r(r^{2}-|w|^{2})^{-1}$ . Let $y=2^{-1}A^{1/2}x$ . Our aim is to
show that

$|y_{u}(w)|\leqq x(w)$ for $|w|<r$ .
Then, letting $r\rightarrow 1$ we have the requested. We suppose that the open
set $E=\{w;|w|<r, |y_{u}(w)|>\lambda(w)\}$ is nonempty. Since $|y_{u}|$ never vanishes
in $E$, we have

$\Delta\log(|y_{u}|/x)\geqq 4(|y_{u}|^{2}-\lambda^{2})>0$ in $E$ ,

so that the nonconstant and positive subharmonic function $s=\log(|y_{u}|/x)$

has no maximum in $E$. We choose a sequence $\{w_{k}\}_{kZ1}$ of points in $E$

such that $s(w_{k})$ converges to the supremum $Q>0$ of $s$ in $E$, and further
$w_{k}\rightarrow w_{0},$ $|w_{0}|\leqq r$ . The two possibilities, $|w_{0}|=r$ and $|w_{0}|<r$ , then lead
us to a contradiction: $ Q=-\infty$ and $Q=0$ , respectively.

Many criteria for a holomorphic function in $D$ to be Bloch are known
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[P]; see some recent works [Y1], [Y2], [Y4], for example. It is not
difficult, with the aid of (3.1) partially, to obtain analogous criteria
for $x$ to be Bloch. Among them we pick up three which might be
noteworthy from a geometrical viewpoint.

The disk $D$ is endowed with the Poincar\’e metric, or the non-Euclidean
hyperbolic metric; the distance is

$\sigma(w_{1}, w_{2})=\tanh^{-1}\frac{|w_{1}-w_{2}|}{|1-\overline{w}_{1}w_{2}|}$ .

Let $U(a, \gamma)$ be the disk of center $a\in D$ and the radius $\tanh^{-1}r$ , that is,

$U(a, r)=\{w;\frac{|w-a|}{|1-\overline{a}w|}<r\}$ , $0<r<1$ .
The area of the image $x(U(a, r))$ counting the multiplicities is then given
by

Area $x(U(a, r))=\int\int_{U(a,r)}|x_{u}(w)|^{2}dudv$ .

THEOREA 3. A minimal surface $x:D\rightarrow R^{n}$ is Bloch if and only if
there exists $\gamma,$ $0<r<1$ , such that

sup Area $ x(U(a, r))<\infty$ .
For the proof of the corresponding result for the holomorphic func-

tions, see [Y1].
The next theorem is never obvious.

THEOREM 4. A minimal surface $x:D\rightarrow R^{n}$ is Bloch if and only if $x$

is uniformly continuous as a map from $D$ endowed with $a$ into the
Euclidean space $R^{n}$ .

For the proof we shall make use of

LEMMA 3.1. Let $f$ be holomorphic and $|{\rm Re} f|<K$ in a disk $\{|w|<M\}$ ,
$M>0$ . Then, $|f^{\prime}(0)|\leqq M^{-1}e^{2K}$ .

PROOF. We may assume that $f$ is nonconstant. Then, $g(w)=$

$\exp\{f(Mw)-K\},$ $weD$ , is bounded, $|g|<1$ . The Schwarz-Pick lemma now
reads

$(1-|w|^{2})|g^{\prime}(w)|\leqq 1-|g(w)|^{2}<1$ ,

which, together with $|g|^{-1}\leqq e^{2K}$ , yields
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$(1-|w|^{2})|f^{\prime}(Mw)|\leqq M^{-1}e^{2K}$ , $weD$ .
The lemma follows on setting $w=0$ .

REMARK. If $|{\rm Re} f|<K$ in $D$ , then $f$ is Bloch by

$(1-|w|^{2})|f^{\prime}(w)|\leqq e^{2K}$ , $weD$ .
Let $\Phi$ be the family of all one-to-one conformal mappings from $D$

onto $D$ . Then,

$(1-|w|^{2})|\phi^{\prime}(w)|=1-|\phi(w)|^{2}$ , weD,

for each $\phi\in\Phi$ . Therefore, $x:D\rightarrow R^{n}$ is Bloch if and only if the composed
minimal surface $x\circ\phi:D\rightarrow R^{n}$ for some (and hence each) $\phi e\Phi$ , is Bloch by
$\mu(x)=\mu(x\circ\phi)$ .

PROOF OF THEOREM 4. Suppose first that $x$ is Bloch, $\mu=\mu(x)<\infty$ .
On integrating both sides of

$|x_{*}(w)||dw|\leqq\mu(1-|w|^{2})^{-1}|dw|$

along the Poincar\’e geodesic 7 connecting $w_{1}$ and $w_{2}$ in $D$ we have

(3.2) $|x(w_{1})-x(w_{2})|\leqq d(x(w_{1}), x(w_{2}))\leqq\int_{\gamma}|x_{u}(w)||dw|$

$\leqq\mu\sigma(w_{1}, w_{2})$ ,

so that $x$ is uniformly continuous.
Conversely, suppose that $x$ is uniformly continuous. Then, there

exists $M,$ $0<M<1$ , such that

$\sigma(w_{1}, w_{2})<\tanh^{-1}M-|x(w_{1})-x(w_{2})|<1$ .
For each a $eD$ , we consider a particular member

$\phi_{a}(w)=\frac{w+a}{1+\overline{a}w}$

of $\Phi$ . Let $(f_{1}, \cdots, f_{n})$ be an admissible system. Then,

$|w|<M-\sigma(\phi_{a}(w), \phi_{a}(0))=\tanh^{-1}|w|<\tanh^{-1}M$ ,

so that, the real part $x_{j}\circ\phi_{a}-x_{j}(a)$ of $f_{j}\circ\phi_{a}-f_{j}(a)$ is bounded by 1 for
$|w|<M$ because

1 $x_{*}\cdot\circ\phi_{*}(w)_{-X;}(a)|\leqq|x\circ\phi_{a}(w)-x\circ\phi_{a}(0)|<1$ .



BLOCH CONSTANTS 147

It follows from Lemma 3.1 that $(1-|a|^{2})|f_{j}^{\prime}(a)|\leqq M^{-1}e^{2}$ . Since $a$ is
arbitrary, $\mu(f_{j})\leqq M^{-1}e^{2},1\leqq j\leqq n$ , whence, (3.1)

$|$ shows that $x$ is Bloch.
This completes the proof.

We fix $n$ . A family $\mathscr{M}$ of minimal surfaces $x:D\rightarrow R^{n}$ is called
normal (in the sense of P. Montel) if each sequence $\{x^{(k)}\}_{k\geq 1}$ extracted
from $\mathscr{M}$ contains a subsequence $\{y^{(k)}\}_{k\geq 1}$ such that, for each $\epsilon>0$ and
for each compact set $\delta\subset D$, there exists a number $J=J(\delta, \epsilon)$ with the
property:

$\sup_{we}|y^{(j)}(w)-y^{(k)}(w)|<\epsilon$

for all $j,$ $k>J$. Given $x:D\rightarrow R^{n}$ we consider the family of minimal
surfaces

$\mathscr{M}(x)=\{x\circ\phi-x\circ\phi(0);\phi\in\Phi\}$ .
THEOREM 5. For $x;D\rightarrow R^{n}$ to be Bloch it is necessary and sufficient

that $\mathscr{M}(x)$ is normal.

PROOF. Suppose that $x$ is Bloch with $\mu=\mu(x)$ . We shall show that
(i) for each $a\in D$ and each $y\in \mathscr{M}(x)$ ,

$|y(a)|\leqq\mu\sigma(a, 0)$ ;

(ii) for each $a$ $eD$ and each $\epsilon>0$ , there exists $r>0$ such that

$|w-a|<r-|y(w)-y(a)|<\epsilon$ fol all $y\in \mathscr{M}(x)$ .
Then, $\mathscr{M}(x)$ is uniformly bounded at each point $a\in D$ by (i) and equi-
continuous by (ii). The Ascoli-Arzel\‘a’s diagonal process theorem (see
[Ry, p. 155]) then shows that $\mathscr{M}(x)$ is normal.

Since $a(a, O)=\sigma(\phi(a), \phi(0)),$ $(i)$ is a consequence of (3.2). Choose $r>0$

so that

$|w-a|<r-a(w, a)<\epsilon/\mu$ .
Since $\sigma(w, a)=\sigma(\phi(w), \phi(a))$ , (ii) is again a consequence of (3.2).

To prove the sufficiency we assume that $\mathscr{M}(x)$ is normal, yet $x$ is
not Bloch. Then, there exists a sequence $\{a_{k}\}_{k\geqq 1}$ with $(1-|a_{k}|^{2})|x_{u}(a_{k})|\rightarrow\infty$ .
Let

$\phi_{k}(w)=\underline{w+a_{k}}$ $w\in D$ .
$1+\overline{a}_{k}w$

Then,
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$y^{(k)}\equiv x\circ\phi_{k}-x(a_{k})\in\ovalbox{\tt\small REJECT}(x)$ ,

so that there exists a subsequence of $\{y^{(k)}\}$ , which we denote again by
$\{y^{\{k)}\}$ such that $\{y^{tk)}\}$ converges to a map $y$ from $D$ into $R^{n}$ uniformly on
each compact set in $D$ ; each component of $y$ is harmonic in $D$ . After
the componentwise observation, it follows that $(y^{(k)})_{u}$ also converges to $y_{u}$

locally and uniformly. In particular, $(y^{(k)})_{u}(0)\rightarrow y_{u}(0)$ , so that $|(y^{tk)})_{u}(0)|=$

$(1-|a_{k}|^{2})|x_{u}(a_{k})|-\mapsto\infty$ ; this is a contradiction.

\S 4. Disks on Bloch minimal surfaces.

We begin with a characterization of $b_{n}$ in terms of $\mu(x)$ and $b(x)$ .
PROPOSITION 1. Fix $n\geqq 2$ . Then,

(4.1) $\mu(x)\leqq b_{n}^{-1}b(x)$

for each $x:D\rightarrow R^{n}$ . This is sharp in the sense that if $c>0$ satisfies
$\mu(x)\leqq cb(x)$ for each $x:D\rightarrow R^{n}$ , then $b_{n}^{-1}\leqq c$ .

In the case $n=2$ we obtain

(4.2) $\mu(f)\leqq b_{2}^{-1}b(f)\leqq 4\cdot 3^{-1/2}b(f)$

for each $f$ holomorphic in $D$ . Proposition 1 has

COROLLARY 4.1. If $ b(x)<\infty$ for $x:D\rightarrow R^{n}$ , then $x$ is Bloch.

We note that for $f$ holomorphic in $D$ , we have

(4.3) $b(f)\leqq\mu(f)$

with the aid of W. Seidel and J. L. Walsh’s theorem [SW, Theorem 2,

p. 133]. This, combined with (4.2), yields the well-known criterion: $f$ is
Bloch if and only if $ b(f)<\infty$ . It is open whether or not the converse
of Corollary 4.1 is true in case $n\geqq 3$ .

PROOF OF PROPOSITION 1. The sharpness is immediate. For $x$ with
$|x_{u}(0)|=1$ , we have $1\leqq cb(x)$ , so that the definition of $b_{n}$ shows that
$c^{-1}\leqq b_{n}$ . Now, we must prove that

(4.4) $(1-|a|^{2})|x_{u}(a)|\leqq b_{n}^{-1}b(x)$ , $a\in D$ .
Assuming that $x(a)$ is regular, we set

$u=(1-|a|^{2})^{-1}|x..(a)|^{-1}x\circ d$,
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in $D$ . Then, $|y_{u}(0)|=1$ , so that, by the definition of $b_{n}$ , there exists $w$

in $D$ such that $\Delta(w, y)\geqq b_{n}$ . Therefore,

$b(x)\geqq\Delta(\phi_{a}(w), x)=(1-|a|^{2})|x_{u}(a)|\Delta(w, y)$

$\geqq b_{n}(1-|a|^{2})|x_{u}(a)|$ ,

whence (4.4).

Let $q$ stand for $b$ or $\mu$ and let $c_{q}$ be the infimum of $c>0$ such that

$(1-|w|^{2})|f^{\prime}(w)|\leqq cq(f)^{1/2}\Delta(w, f)^{1/2}$ , $w\in D$ ,

for each $f$ holomorphic and Bloch in $D$ . Actually, $c_{q}$ is the minimum in
the sense that

(4.5) $(1-|w|^{2})|f^{\prime}(w)|\leqq c_{q}q(f)^{1/2}\Delta(w, f)^{1/2}\backslash $ ’ $weD$ ,

for each $f$ Bloch in $D$ .
The first result, perhaps, of estimating $c_{b}$ explicitly, would be [SW,

Theorem 10, p. 208], where
$c_{b}\leqq 2\cdot 5^{1/2}b_{2}^{-1/2}$ ;

the right term is at least, 6.51 $\cdots$ . L. V. Ahlfors implicitly proved that

(4.6) $(1-|w|^{2})|f’(w)|\leqq 2\cdot 3^{-1/2}\{\Delta(w, f)/b(f)\}^{1/2}\{3b(f)-\Delta(w, f)\}$

if $ b(f)<\infty$ (see [Al, pp. 363-364], [A2, pp. 12-15]). It now follows that

$(1-|w|^{2})|f’(w)|\leqq 2\cdot 3^{1/2}b(f)^{1/2}\Delta(w, f)^{1/2}$ , $w\in D$ ,

so that $ c_{b}\leqq 2\cdot 3^{1/2}=3.46\cdots$ . C. Pommerenke [$P$ , Theorem 1, $(i)$] improved
the Ahlfors estimate (4.6); he proved that the right-hand side of (4.6)
can be multiplied by an absolute constant $P,$ $0<P<1$ , so that $c_{b}<2\cdot 3^{1/2}$ .
However, it appears to be difficult to find more explicit estimate of $P$

than $0<P<1$ by his method. It is easy to prove that

$1\leqq c_{\mu}\leqq c_{b}\leqq b_{2}^{-1/2}c_{\mu}$ .
For the $c_{\mu}$ part, we observed in [Y3, Theorem 1] that

$ c_{\mu}\leqq\min_{r>0}2r^{1/2}(\tanh r)^{-1}=2.62\cdots$ .
Our next task is to extend (4.5) to $R^{n}$ .
PROPOSITION 2. If $x:D\rightarrow R^{n}$ is Bloch, then at each $weD$ ,
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$(1-|w|^{2})|x_{u}(w)|\leqq c_{q}n^{1/4}q(x)^{1/2}\Lambda(w, x)^{1/2}$ ,

where $q=b$ or $\mu$ .
PROOF. It follows from (2.4) and (3.1) that

$q(f_{j})\leqq 2^{1/2}q(x)$ , $1\leqq j\leqq n$ .
Squaring both sides of (4.5) for $f_{\dot{f}}$ , summing up with respect to $j$ , and
considering the Schwarz inequality, we have

$2(1-|w|^{2})^{2}|x_{u}(w)|^{2}=(1-|w|^{2})^{2}\sum|f_{\dot{f}}^{\prime}(w)|^{2}$

$\leqq c_{q}^{2}\sum q(f_{\dot{f}})\Delta(w, f_{j})\leqq c_{q}^{2}2^{1/2}q(x)n^{1/2}(\sum\Delta(w, f_{\dot{f}})^{2})^{1/2}$

$\leqq 2c_{q}^{2}q(x)n^{1/2}\Delta(w, x)$ ,

where (2.4) is considered.

REMARK 1. The $L_{n}$ version of Proposition 1 is valid:
$\mu(x)\leqq L_{n}^{-1}L(x)$

holds for each $x:D\rightarrow R^{n}(n\geqq 2)$ . If $c>0$ satisfies $\mu(x)\leqq cL(x)$ for each
$x:D\rightarrow R^{n}$ , then $L_{n}^{-1}\leqq c$ .

REMARK 2. With the aid of the inequality $2^{-1}b(f_{\dot{f}})^{2}\leqq b(x)^{2},1\leqq j\leqq n$ ,
resulting from (2.4), Proposition 1 teaches us another proof of Theorem
1. We have

$(1-|w|^{2})^{2}|x_{u}(w)|^{2}=2^{-1}\sum(1-|w|^{2})^{2}|f_{j}^{\prime}(w)|^{2}$

$\leqq 2^{-1}\sum b_{2}^{-2}b(f_{\dot{f}})^{2}\leqq nb_{2}^{-2}b(x)^{2}$ ,

whence, $\mu(x)\leqq n^{1/2}b_{2}^{-1}b(x)$ . Therefore, $b_{n}^{-1}\leqq n^{1/2}b_{2}^{-1}$ , or, $b_{n}\geqq n^{-1/2}b_{2}$ . Similarly,
we have another proof of Theorem la, which we leave as an exercise.

REMARK 3. We may show that $ c_{b}\geqq b_{2}^{-1}=2.11\cdots$ . Actually, $\mu(f)\leqq$

$c_{b}b(f)$ , together with Proposition 1, shows that $c_{b}\geqq b_{2}^{-1}$ . As a $consequence_{l}$

we further obtain
$ c_{\mu}\geqq b_{2}^{1/2}c_{b}\geqq b_{2}^{-1/2}\geqq 1.45\cdots$ .

In conclusion,

2.11 $\cdots$ $\leqq c_{b}<3.46\cdots$ ,
1.45 $\cdots$ $\leqq c_{\mu}\leqq 2.62\cdots$ .

\S 5. Integral criteria.

We shall show that $x:D\rightarrow R^{n}$ is Bloch if and only if $x$ is of boundec
mean $os:illa\dotplus in\mathfrak{n}$ in $ T)_{-}fha\star$ is-
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(A) $0<\rho\leqq 1\sup_{a8D}mD(a, \rho)^{-1}\int\int_{D(a,\rho)}|x(w)-x(a)|$
$ dudv<\infty$ ,

where
$D(a, \rho)=\{|w-a|<\rho(1-|a|)\}$ ,
$mD(a, \rho)=\pi\rho^{2}(1-|a|)^{2}$ , the area of $D(a, \rho)$ .

We shall actually prove much more.

THEOREM 6. For $x:D\rightarrow R^{n}$ the following are mutually equivalent.
(B) $x$ is Bloch.
(C) There exists $c>0$ such that

$\sup_{aeD}mD(a, 1)^{-1}\int\int_{D(a,1)}\exp(c|x(w)-x(a)|)dudv<\infty$

(D) There exists $\rho,$ $0<\rho<1$ , such that

$\sup_{aeD}mD(a, \rho)^{-1}\int\int_{D(a,\rho)}\log|x(w)-x(a)|$ $ dudv<\infty$ .
As will be apparent, we may say that (C) is the strongest and (D)

is the weakest condition in integrals; the case $n=2$ in Theorem 6 yields
criteria for a holomorphic function in $D$ to be Bloch.

Postponing the proof of the theorem we show that $(C)\Rightarrow(A)\Rightarrow(D)$ .
As will be proved later in Lemma 5.1, logl $x-x(a)|$ is subharmonic in $D$ .
Therefore,

$|x-x(a)|p=\exp(p\log|x-x(a)|)$ , $p>0$ ,
$\exp(c|x-x(a)|)$ , $c>0$ ,

are subharmonic in $D$ . With the aid of

log $X\leqq X\leqq c^{-1}e^{cX}$ , $X\geqq 0$ ,

and the fact that, for a fixed $a\in D$ , the area mean in $D(a, \rho)$ of a sub-
harmonic function in $D$ is a nondecreasing function of $\rho(1-|a|)$ , hence
of $\rho$ , [Rd, p. 8], we have $(C)\Rightarrow(A)\Rightarrow(D)$ .

LEMMA 5.1. For $x:D\rightarrow R^{n}$ , and for each fixed $x_{0}eR^{n},$ $\log|x-x_{0}|$ is
a subharmonic function in $D$ .

PROOF. See [BR, p. 653] for the case $n=3$ . We may suppose that
$n\geqq 3$ and $x_{0}=0$ . Since $\log|x(w)|=-\infty$ if $x(w)=0$ , we consider $w$ with
$x(w)\neq 0$ . At this point, we have

(5.1) $2^{-1}|x|^{4}\Delta\log|x|=|x_{u}|^{2}|x|^{2}-(xx_{u})^{2}-(xx_{v})^{2}$
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To prove $\Delta\log x\geqq 0$ at $w$ , we may further assume that $x_{u}(w)\neq 0$ . Let
$e_{1},$ $\cdots,$ $e_{n}$ be an orthonormal basis in $R^{n}$ such that

$e_{1}=\frac{x_{u}(w)}{|x_{u}(w)|}$ , $e_{2}=\frac{x_{v}(w)}{|x_{v}(w)|}$ .
Let

$x(w)=\sum_{j=1}^{n}c_{j}e_{\dot{f}}$ .
In view of (1.2) we observe that the right-hand side of (5.1) at $w$ is

$|x.|^{2}(\sum_{j=\S}^{n}c_{j}^{2})\geqq 0$ .
PROOF OF THEOREM 6. $(B)\Rightarrow(C)$ . There exists $c>0$ with $c\mu<2,$ $\mu=$

$\mu(x)$ . For each fixed a $eD$,

$w=a+(1-|a|)\zeta eD(a, 1)-\zeta\in D$ .
Therefore,

$|\phi_{-a}(w)|=\frac{|w-a|}{|1-\overline{a}w|}\leqq|\zeta|$ ,

and for each $weD(a, 1)$ ,

(5.2) $|x(w)-x(a)|\leqq\mu\tanh^{-1}|\phi_{-a}(w)|\leqq\mu\tanh^{-1}|\zeta|$ ,

so that

$\exp(c|x(w)-x(a)|)\leqq(\frac{1+|\zeta|}{1-|\zeta|})^{c\mu/2}$ .
Consequently,

$ mD(a,1)^{-1}\int\int_{\leqq\pi^{-1}\int\int_{D}}D(a,1)\exp(c|x(w)-x(a)|)dudv(\frac{1+|\zeta|}{1-|\zeta|})^{\iota\mu/2}d\xi d\eta,\zeta=\xi+i\eta$

;

the right-hand side is a positive constant independent of $a$ , so that (C)
holds.

Since $(C)\Rightarrow(D)$ is trivial by Lemma 5.1, it remains to be proved that
$(D)\Rightarrow(B)$ . Let $K$ be the supremum in (D). To estimate $(1-|a|^{2})|x_{*}(a)|$

at $a$ , we note that $-\infty\leqq\log|x_{u}(a)|<+\infty$ . It then follows from (1.2)
that
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(5.3) $\underline{|x(w)-x(a)|}\rightarrow|x_{u}(a)|$ as $w\rightarrow a$ .
$|w-a|$

Set
$V(w)=\log|x(w)-x(a)|-\log|w-a|$

for $w\in D\backslash \{a\}$ . Then, $V$ is subharmonic in $D\backslash \{a\}$ and is bounded from
above in a small punctured disk $\{0<|w-a|<r\}$ . From M. Brelot’s re-
movable singularity theorem [Rd, Section 7.15, p. 48] it follows that we
may define $V(a)$ so that $V$ is subharmonic in the whole disk $D$ . By the
upper semicontinuity of $V$ at $a$ , we then have by (5.3),

logl $x_{u}(a)|\leqq V(a)$ .
Therefore,

(5.4) $\log|x_{u}(a)|\leqq V(a)\leqq mD(a, \rho)^{-1}\int\int_{D(a,\rho)}V(w)dudv$

$=mD(a, \rho)^{-1}\int\int_{D(a,\rho)}\log|x(w)-x(a)|$ dudv

$-\log(1-|a|)\rho+2^{-1}$ ,

whence
$|x_{u}(a)|\leqq e^{1/2+K}\{(1-|a|)\rho\}^{-1}$ , or,
$(1-|a|^{2})|x_{u}(a)|\leqq 2\rho^{-1}e^{1/2+K}$ ,

which completes the proof of the theorem.

REMARK 1. It would be of interest to compare

$||x\Vert\equiv\sup_{aeD}mD(a, 1)^{-1}\int\int_{D(a,1)}|x(w)-x(a)|$ dudv

with $\mu(x)$ ; the result is

(5.5) $2^{-1}e^{-1/2}\mu(x)\leqq\Vert x\Vert\leqq\mu(x)$ .
Suppose that $\mu=\mu(x)<\infty$ . It then follows from (5.2) that at each

a $eD$ ,

$mD(a, 1)^{-1}\int\int_{D(a,1)}|x(w)-x(a)|$ dudv

$\leqq\mu\pi^{-1}\int\int_{D}\tanh^{-1}|\zeta|d\xi d\eta=\mu$ ,

whence the right-hand side of (5.5) follows.
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Suppose next that $\Vert x\Vert<\infty$ . At each point $a$ , and for $0<\rho<1$ , it
follows from (5.4) that

$|x_{u}(a)|=\exp$ logl $x_{*}(a)|$

$\leqq(1-|a|)^{-1}\rho^{-1}e^{1/2}mD(a, \rho)^{-1}\int\int_{D(a,\rho)}|x(w)-x(a)|$ dudv
$\leqq(1-|a|)^{-1}\rho^{-1}e^{1/2}||x\Vert$ ,

whence

$(1-|a|^{2})|x_{*}(a)|\leqq 2\rho^{-1}e^{1/2}||x\Vert$ .
Letting $\rho\rightarrow 1$ we obtain the left-hand side of (5.5).

REMARK 2. We have the following Schwarz lemma:

For $x:D\rightarrow R^{n}$ , bounded, $|x|<1$ , in $D$ , with $x(O)=0$ ,

(5.6) $|x(w)|\leqq|w|$

holds for each $w\in D$ and $|x_{\iota}(0)|\leqq 1$ . The equality in (5.6) holds for a
$w_{0},0<|w_{0}|<1$ , or $|x_{u}(0)|=1$ if and only if $x$ maps $D$ one-to-one onto a
unit disk lying in a plane.

See [BR, pp. 656-657] for the case $n=3$ . The subharmonic function
$V$ in $D$ for the present $x$ with $a=0$ (hence, $-\infty\leqq\log|x_{u}(0)|\leqq V(0)$ ) con-
sidered in the proof of Theorem 6 has the nonpositive supremum in $D$ .
Hence, logl $x(w)|\leqq\log|w|$ for $0<|w|<1$ , and logl $x_{u}(0)|\leqq 0$ . The “if” part
in the second half is obvious because $x$ can be considered as a holomor-
phic or antiholomorphic function in $D$ after a rotation of the plane about
the origin. To prove the “only if” part, we first note that $V(w)\equiv 0$ by
the maximum principle, whence $|x(w)|^{2}\equiv|w|^{2}$ . Then, for an admissible
system $(f_{1}, \cdots, f_{n})$ for $x$ we have

2 $\sum|f_{j}^{\prime}(w)|^{2}=4|x_{u}(w)|^{2}=\Delta(|x(w)|^{2})\equiv 4$ .
Therefore, $f_{j}(w)\equiv c_{\dot{f}}w+d_{j}$ , where $c_{j}=\alpha_{j}+i\beta_{j}$ and $d_{j}$ are $\infty nstants$ with
${\rm Re} d_{j}=0$ by $x(O)=0(1\leqq j\leqq n)$ , and

$\sum(\alpha_{\dot{f}}^{2}-\beta_{\dot{f}}^{2}+2i\alpha_{\dot{f}}\beta_{\dot{f}})\equiv\sum(f_{\dot{f}}(w))^{2}\equiv 0$ .
Thus, $x_{j}(w)=\alpha_{\dot{f}}u-\beta_{j}v,$ $1\leqq j\leqq n$ , so that, $x(D)$ is contained in the plane
generated by the (real) orthonormal vectors

$(\alpha_{1}, \cdots. \alpha_{n})$ and $(\mathcal{B},. \cdots. \mathcal{B}_{n})$ .
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After a suitable rotation, we can regard $x$ as a holomorphic or anti-
holomorphic function, and the Schwarz lemma in the complex analysis
now shows the conclusion.

Added in proof.

On the basis of pp. 184-185 in D. Gnuschke-Hauschild and C. Pom-
merenke’s paper: “On Bloch functions and gap series”, J. reine angew.
Math. 367 (1986), 172-186, the sentence citing Pommerenke’s paper just
after the display (4.6) should be deleted.
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