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Flow-Spines and Seifert Fibred Structure of 3-Manifolds
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The concept of a flow-spine of a closed 3-manifold $M$ was introduced
in [5]. In this paper, we shall give a sufficient condition for $M$ represented
by a flow-spine to be Seifert fibred (Theorem 1 in \S 2). In \S 3 the orbit
manifold and exceptional fibres are completely determined by a DS-diagram
which is induced by a flow-spine. We give an example in \S 4. And in
\S 5, we study Seifert fibred submanifolds and embedded tori determined
by a DS-diagram.

\S 1. A flow-spine and a DS-diagram with E-cycle.

A normal pair $(\psi_{t}, \Sigma)$ on a closed 3-manifold $M$ is a pair of a non-
singular flow $\psi_{t}$ on $M$ and its compact local section $\Sigma$ satisfying that

(i) $\Sigma$ is homeomorphic to a compact 2-disk,
(ii) $T_{-}(x)=\sup\{t<0|\psi_{t}(x)\in\Sigma\}$ and $T_{+}(x)=\inf\{t>0|\psi_{t}(x)\in\Sigma\}$ are both

finite for any $x\in M$, and
(iii) $\partial\Sigma$ is $\psi_{t}$-transversal at $(x, T_{+}(x))e\partial\Sigma\times R$ for any $ x\in\partial\Sigma$ ,

(for the precise definition, see [5]). Flow-spines $P_{\pm}=P_{\pm}(\psi_{t}, \Sigma)$ are defined
by

$P_{-}=\Sigma\cup\{\psi_{t}(x)|x\in\partial\Sigma, T_{-}(x)\leqq\psi_{t}(x)\leqq 0\}$ ,
$P_{+}=\Sigma\cup\{\psi_{t}(x)|xe\partial\Sigma, 0\leqq\psi_{t}(x)\leqq T_{+}(x)\}$ ,

each of which forms a standard spine of $M$. It was shown in [5] that
any closed 3-manifold admits a normal pair on it.

On the other hand, the notion of a closed fake surface and a DS-
diagram was introduced in [2] and [3]. For a closed fake surface $P$, we
denote by $\mathfrak{S}_{j}(P)(j=1,2,3)$ the set of the j-th singularities of $P$ (see [2]
for the definition). Let $P$ be a closed fake surface which admits a local
homeomorphism $f:S^{2}\rightarrow P$ ( $S^{2}$ is the 2-sphere) such that $\# f^{-1}(x)=j+1$ for
$x\in \mathfrak{S}_{j}(P)(j=1,2,3)$ . Such an $f$ is called an identification map. Then
$G=f^{-1}(\mathfrak{S}_{2}(P))$ is a 3-regular graph on $S^{2}$ . We call $(S^{2}, P, G, f)$ a DS-
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diagram (see [3], for the precise), which we simply write $(G, f)$ in what
follows. Considering $S^{2}$ as the boundary of a 3-ball $B^{3}$ and identifying
the points on $S^{2}=\partial B^{3}$ by $f$ (i.e., $x\sim y$ iff $f(x)=f(y)$), we get a closed
3-manifold $M=B^{8}/f$ which has a closed fake surface $P=S^{2}/f$ as its standard
spine. Conversely every closed 3-manifold and its standard spine are rep-
resented by a DS-diagram (see [31). For a graph $G$ on $S^{2}$ , we denote
by $V(G),$ $E(G)$ and $F(G)$ the set of vertexes, edges and faces of $G$ re-
spectively (see [3] for the precise definition). Also the underlying space
of $G$ is denoted by the same letter $G$ .

A special class of DS-diagrams, DS-diagrams with E-cycle, was in-
troduced in [4], and it was shown in [6] that DS-diagrams of this class
exactly correspond to those determined by flow-spines. A simple closed
curve $e\subset G$ is called an E-cycle of a DS-diagram $(G, f)$ , if there are a
cycle $(\epsilon_{1}, \cdots, \epsilon_{n})(\epsilon_{j}\in E(G))$ of $G$ and faces $X_{1},$ $\cdots,$ $X_{m}\in F(G)$ such that

(i) $e=U_{j=1}^{n}\overline{\epsilon}_{j}=\partial(\bigcup_{k=1}^{n}\overline{X}_{k})$ ,
(ii) $f(\epsilon_{\dot{f}})\neq f(\epsilon_{i^{\prime}})$ for $1\leqq j<j^{\prime}\leqq n$ ,
(iii) $f(X_{k})\neq f(X_{k^{\prime}})$ for $1\leqq k<k’\leqq m$ , and
(iv) $f(\bigcup_{k=1}^{n}\overline{X}_{k})=S^{2}/f$ .

The next lemma immediately follows from the method for constructing
a normal pair generating a given DS-diagram with E-cycle (see [6]).

LEMMA 1. Let $(G, f)$ be a DS-diagram with an E-cycle $e,$ $\Sigma_{j}(j=1,2)$

be the closure of the components of $S^{2}-e$ , and $h$ be a homeomorphism

from $\Sigma_{2}$ onto $\Sigma_{1}$ such that $h|_{\partial\Sigma_{2}}$ is the identity map of $e$ . Then we can
construct a normal pair $(\psi_{t}, \Sigma)$ on $M=B^{3}/f$ such that there is an embedding
$c:\Sigma_{1}\rightarrow M$ satisfying that $c(G\cap\Sigma_{1})=\partial\Sigma\cup\hat{T}_{-}(\partial\Sigma)$ and $c(h(G\cap\Sigma_{2}))=\partial\Sigma\cup\hat{T}_{+}(\partial\Sigma)$ ,
where $\hat{T}_{\pm}(x)=\psi_{\sigma}(x)(\sigma=T_{\pm}(x))$ .

\S 2. A characterization of a DS-diagram of a Seifert fibred mani-

fold.

Let $(G, f)$ be a DS-diagram with an E-cycle $e,$ $\Sigma_{j}^{\prime}(j=1,2)$ be the
components of $S^{2}-e$ , and $\Sigma_{j}$ be the closure of $\Sigma_{j}^{\prime}$ . Let $a$ $e\mathfrak{S}_{3}(P)$ be one
of the third singularities of $P=S^{2}/f$. Then $f^{-1}(a)\subset V(G)$ consists of four
points, two of which are on $e$ . For a point $x\in V(G)\cap e$ , we denote by
$A_{x}$ an edge of $G$ such that $xe\partial A$. and $A_{x}\not\subset e$ . For convenience, we divide
$V(G)\cap e$ into two sets $V_{1}(G)$ and $V_{2}(G)$ as follows: $x\in V_{j}(G)$ iff $A_{x}\subset\Sigma_{:}$

$(j=1,2)$ . As is shown in [4], for any $x\in V(G)\cap\Sigma_{1}$ there are uniquely
determined points $x_{1},$ $x_{2}$ and $x_{3}$ such that $f(x)=f(x_{j})(j=1,2,3),$ $x_{j}eV_{j}(G)$

$(j=1,2)$ and $x_{8}\in\Sigma_{2}^{\prime}$ . And, for a point $x\in G-V(G)$ , there are points $x_{J}$

and $x_{0}$ such that $f(x)=f(x_{;})(i=1,2),$ $x_{t}\in e$ and $x_{2}\in\Sigma_{2}^{\prime}$ . Hence we can
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define a map $g:\Sigma_{1}\rightarrow\Sigma_{2}$ as follows:
(i) for $x\in V(G)\cap\Sigma_{1}$ ,

$y=g(x)$ iff $y\in V_{1}(G)$ and $f(y)=f(x)$ ,

(ii) for $x\in V_{1}(G)$ ,

$y=g(x)$ iff $y\in V_{2}(G)$ and $f(y)=f(x)$ ,

(iii) for $x\in V_{2}(G)$ ,

$y=g(x)$ iff $y\in V(G)\cap\Sigma_{2}$ and $f(y)=f(x)$ ,

(iv) for $x\in(G-V(G))\cap\Sigma_{1}^{\prime}$ ,

$y=g(x)$ iff $y\in e-V(G)$ and $f(y)=f(x)$ ,

(v) for $x\in e-V(G)$ ,

$y=f(x)$ iff $y\in(G-V(G))\cap\Sigma_{2}^{\prime}$ and $f(y)=f(x)$ ,

(vi) for $x\in\Sigma_{1}^{\prime}-G$ ,

$y=f(x)$ iff $y\in\Sigma_{2}^{\prime}-G$ and $f(y)=f(x)$ .
We call such a $g$ a reversing map of $(G, f)$ . A reversing map is not
continuous. Using this notion of a reversing map, we can state a con-
dition for $M=B^{3}/f$ to be Seifert fibred as follows.

THEOREM 1. Let $(G, f)$ be a DS-diagram with an E-cycle $e,$ $\Sigma_{1}$ and
$\Sigma_{2}$ be as above, and $g:\Sigma_{1}\rightarrow\Sigma_{2}$ be the reversing map. Then $B^{3}/f$ is a
Seifert fibred manifold if there are a graph $\tilde{G}$ in $\Sigma_{1}$ and a homeomor-
phism $h$ from $\Sigma_{2}$ onto $\Sigma_{1}$ such that

(a) $G\cap\Sigma_{1}\subset\tilde{G}$ and $V(G)\cap\Sigma_{1}\subset V(\tilde{G})$ ,
(b) $h|_{\partial\Sigma_{2}}=identity$ ,
(c) $h(g(\tilde{G}))=\tilde{G}$ ,
(d) $h(g(V(\tilde{G})))=V(\tilde{G})$ .
PROOF. By Lemma 1 there is a normal pair $(\psi_{t}, \Sigma)$ on $M=B^{3}/f$

satisfying the conditions in the lemma. Let $ c:\Sigma_{1}\rightarrow\Sigma$ be an embedding
as in Lemma 1. By this $f$ we identify $\Sigma$ with $\Sigma_{1}$ . Then it also follows
from the way for constructing $(\psi_{t}, \Sigma)$ that $\hat{T}_{+}$ is continuous on $\tilde{G}-V(\tilde{G})$

and on $\Sigma-\tilde{G}$ , because $G\cap\Sigma_{1}$ is included in $\tilde{G}$ and $g$ is continuous both
on $(G-V(G))\cap\Sigma_{1}$ and on $\Sigma_{1}-G$ .

The condition (d) implies that for any $x\in V(\tilde{G})$ there is a positive
integer $n$ such that $\hat{T}_{+}^{n}(x)=x$ . And by the condition (c), deforming $h$ if
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necessary, we can see that $\hat{T}_{+}$ is periodic on $\tilde{G}$ . Therefore, using this
property and the continuity of $\hat{T}_{+}$ on $\Sigma-\tilde{G}$ , we can deform $h$ so that
$\hat{T}_{+}$ is periodic whole on $\Sigma$ . This shows that, as a non-singular flow of
the normal pair generating the DS-diagram $(G, f)$ , we can take a flow
whose orbits are all homeomorphic to a circle $S^{1}$ . Hence $M=B^{B}/f$ admits
an $S^{1}$-action, and so $M$ is Seifert fibred (cf. [1]). This completes the
proof.

The converse of this theorem is partially true, that is, we have

THEOREM 2. If $M$ is Seifert fibred closed 3-manifold, then there
is a normal pair on $M$ whose DS-diagram satisfies the conditions in
Theorem 1.

PROOF. Let $\psi_{t}$ be a flow on $M$ whose orbits are fibres of the Seifert
fibration of $M$. Then, taking an adequate compact local section $\Sigma$ , we
get a normal pair $(\psi_{t}, \Sigma)$ with the desired conditions. This proves the
theorem.

\S 3. Orbit manifold and exceptional fibres.

In this section, we shall explain how we can decide the orbit manifold
and the exceptional fibres of a Seifert fibred manifold represented by a
DS-diagram with E-cycle satisfying the conditions in Theorem 1.

For simplicity, we consider the case where $(G, f)$ satisfies the follow-
ing additional conditions $(e)-(g)$ besides $(a)-(d)$ .

(e) For any component $\Delta$ of $\Sigma_{1}-\tilde{G},\overline{\Delta}$ is homeomorphic to a compact
2-disc.

(f) If $\epsilon\in E(\tilde{G}),$ $a\in\partial\epsilon\cap V(\tilde{G})$ and $(h\circ g)^{k}(\epsilon)=\epsilon$ , then $(h\circ g)^{k}(x_{j})\rightarrow a(j\rightarrow\infty)$

as $x_{j}\rightarrow a$ within $\epsilon$ .
(g) If $\Delta$ is a component of $\Sigma_{1}-\tilde{G},$ $ae\partial\Delta\cap V(\tilde{G}),$ $(h\circ g)^{k}(a)=a$ and

$(h\circ g)^{k}(x_{j})\rightarrow(h\circ g)^{k}(a)(j\rightarrow\infty)$ as $x_{\dot{f}}\rightarrow a$ within $\Delta$ , then $(h\circ g)^{k}(\Delta)=\Delta$ .
These conditions assure that exceptional fibres do not meet with $\tilde{G}$ .

Moreover we can easily see that if $(G, f)$ satisfies the conditions $(a)-(d)$ ,
then we can always take $\tilde{G}$ and $h$ so that they satisfy also the additional
conditions (e), (f) and (g).

Let $\Delta_{\dot{f}}^{k}(k=1, \cdots, s, j=1, \cdots, \gamma_{k})$ be components of $\Sigma_{1}-\tilde{G}$ , where $\Delta_{4}^{l}$

are so classified that $(h\circ g)(\Delta_{j}^{k})=\Delta_{j+1}^{k}$ ($j=1,$ $\cdots,$ $r_{k}$ and $\Delta_{f}^{k}k+1=\Delta_{1}^{k}$). Then
the restriction of $(h\circ g)^{\prime}k+1$ onto $\Delta_{k}^{1}$ is a homeomorphism of $\Delta_{k}^{1}$ , and more $\cdot$

over by the condition (e) it can be extended to a homeomorphism of 4.
We denote by $h_{k}$ this extended homeomorphism of $\overline{\Delta_{1}^{k}}$, and by $a_{j}^{k}(j=1$ ,
$\ldots q_{A})$ the points on $V(\tilde{G})\cap\partial\Delta^{k}$ . We assume that $a^{k}$. $\cdots$ . $a_{n}^{k}$ . are arranxed
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in the cyclic order on $\partial\Delta_{1}^{k}$ .
Now let $a_{p_{k}}=h_{k}(a_{1}^{k})$ . If $p_{k}=1$ , then, deforming $h$ if necessary, we

may assume that $h_{k}$ is the identity map. In the case where $p_{k}>1$ , we
may assume that $h_{k}$ has only one fixed point $w_{k}\in\Delta_{1}^{k}$ and is equivalent to
a rotation around $w_{k}$ by an angle $2\pi(p_{k}-1)/q_{k}$ . Hence, considering the
corresponding normal pair $(\psi_{t}, \Sigma)$ , we can see that the orbit of $\psi_{t}$ through
$w_{k}$ is an exceptional fibre of index $(p_{k}-1)/q_{k}$ , and the other orbits through
the points on $\Delta_{1}^{k}$ are regular fibres. As is stated above, the conditions
(f) and (g) implies that there is no other exceptional fibre.

The orbit manifold is quite easily determined. Define an equivalence
relation $‘‘\sim$ on $\Sigma_{1}$ as follows:

$x\sim y$ iff $(h\circ g)^{k}(x)=y$ for some $k$ .
Then it is evident that the orbit manifold is $\Sigma_{1}/\sim$ .

\S 4. An example.

In this section, we shall apply the results in the previous sections
to the DS-diagram indicated in Fig. 1. In Fig. 1, the vertexes and edges
with the same names are identified by the identification map in the
indicated direction. And faces $X_{k}^{+}$ and $X_{k}^{-}$ are identified in the direction
naturally determined by the direction of $\partial X_{k}^{\pm}$ (see [3] for the precise
usage of such a representation of a DS-diagram).

This DS-diagram has an E-cycle $e=\partial(\bigcup_{k\Rightarrow 1}^{6}\overline{X_{k}^{\prime^{-}}\prime})$ . We define $\Sigma_{1}$ and $\Sigma_{2}$

by $\Sigma_{1}=\cup\overline{X_{k}^{+}}$ and $\Sigma_{2}=\cup\overline{X_{k}^{-}}$. Now define the graph $\tilde{G}$ to be one obtained
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by adding to $G\cap\Sigma_{1}$ the edges drown by broken lines in Fig. 2, and namt
the components of $\Sigma_{1}-\tilde{G}$ as indicated in Fig. 2.

FIGURE 2

Then it is easy to see that for this $\tilde{G}$ we can take a homeomorphisn
$h:\Sigma_{2}\rightarrow\Sigma_{1}$ satisfying the conditions $(a)-(g)$ in \S \S 2, 3. Hence the $manifol\langle$

represented by this DS-diagram is Seifert fibred. Moreover $h\circ g(\Delta_{j}^{k})=\Delta_{\dot{g}+}^{k}$

for any $k=1,$ $\cdots,$
$7$ and $j=1,$ $\cdots,$ $r_{k}$ , where $r_{1}=r_{2}=r_{3}=r_{\tau}=1,$ $r_{4}=3,$ $r_{b}=$

$r_{6}=2$ . The integers $p_{k}$ and $q_{k}$ defined in \S 3 are given by $q_{1}=q_{2}=q_{4}=3$

$q_{3}=q_{b}=q_{6}=4,$ $q_{7}=5,$ $p_{1}=p_{2}=2,$ $p_{s}=3$ and $p_{4}=p_{b}=p_{6}=p_{7}=1$ . Thus ther $($

are two exceptional fibres of index 1/3, and one exceptional fibre of $inde^{\backslash }\lrcorner$

$1/2$ . The orbit manifold $\Sigma_{1}/\sim$ is obtained from the shaded domain $il$

Fig. 3 (a) by identifying its boundary as indicated in Fig. 3 (b). Henc $($

the orbit manifold is a 2-sphere.

$\nearrow F^{\backslash }EE\nearrow\urcorner_{A}^{F}$

$DAL_{\vee}^{\sim}!cD’.1_{c}^{B}B$

(a) (b)

$t^{1_{\vee--r\circ}}$
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\S 5. Seifert fibred submanifold and embedded tori.

In this section, using the same technique as in the previous sections,
we shall investigate a method for finding Seifert fibred submanifolds and
embedded tori. We use the same notation as in \S \S 1-3.

Let $(G, f)$ be a DS-diagram with an E-cycle $e$ , and let a graph $\tilde{G}$

and $h:\Sigma_{2}\rightarrow\Sigma_{1}$ be those satisfying the conditions (a) and (b) in Theorem
1. And moreover, suppose that there is a compact subset $\Delta$ of $\Sigma_{1}$ such
that

$(c’)$
$\partial\Delta\subset\tilde{G}$ and $h(g(\Delta\cap\tilde{G}))=\Delta\cap\tilde{G}$ , and

$(d^{\prime})$ $h(g(\Delta\cap V(\tilde{G})))=\Delta\cap V(\tilde{G})$ ,
where $g$ is the reversing map. Now let $(\psi_{t}, \Sigma)$ be a normal pair as in
Lemma 1 for which $\hat{T}_{+}=h\circ g$ , and let $X=X(\Delta)$ be the set of points on
orbits of $\psi_{t}$ through $\Delta$ . If $\partial\Delta$ forms a l-manifold, then $X$ is a Seifert
fibred submanifold of $M=B^{3}/f$.

Let $X$ be a Seifert fibred submanifold obtained as above, and let $Y$

be a component of $\partial X$. Then $Y$ is an embedded torus or a Klein bottle,
and $Y\cap\Sigma$ consists of circles in $\Sigma$ and arcs in $\Sigma$ connecting two points
on $\partial\Sigma$ . If $Y\cap\Sigma$ includes a circle, then obviously $Y$ is compressible.
Therefore $Y\cap\Sigma$ consists of mutually disjoint arcs if $Y$ is incompressible.

In what follows, we investigate embedded tori. First we shall show
that

LEMMA 2. Let $\alpha=\{\alpha_{1}, \cdots, \alpha_{r}\}$ be a set of mutually disjoint compact
arcs $\alpha_{j}$ on $\Sigma_{1}$ such that (i) $\partial\alpha_{j}=\alpha_{j}\cap\partial\Sigma_{1}$ for any $j$ , (ii) $h\circ g(\cup\alpha_{j})=\cup\alpha_{j}$

and (iii) for any $\alpha_{i}$ and $\alpha_{j}$ there is a $k$ with $\alpha_{j}\cap(h\circ g)^{k}(\alpha_{i})\neq\emptyset$ . Then
the set of $po$ints on the orbits of $\psi_{t}$ through $U\alpha_{j}$ is a torus or a Klein
bottle, which we denote by $Y(\alpha)$ .

PBOOF. Define $Y$ to be
$Y=\{\psi_{t}(x)|x\in U\alpha_{j}, t\in R\}$ .

Then, according to the condition (i), $Y$ is a two dimensional submanifold
invariant under $\psi_{t}$ . Moreover $Y$ is closed by the condition (ii), and is
connected by (iii). Hence $Y$ must be a closed 2-manifold with the Euler
characteristic number zero. This proves the lemma.

In the rest of this paper, for simplicity, we shall consider only the
case where $\alpha$ in the above lemma consists of exactly one arc, which we
denote by the same letter $\alpha$ . The next proposition gives a condition for
an arc $\alpha\subset\Sigma_{1}$ with the condition (i) in the above lemma to admit a
homeomorphism $h$ for which $\alpha$ satisfies the other conditions.
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PROPOSITION 1. Let $\alpha$ be an arc in $\Sigma_{1}$ with $\partial\alpha\subset e=\partial\Sigma_{1}$ . Then we
can choose a homeomorphism $h:\Sigma_{2}\rightarrow\Sigma_{1}$ for which $\alpha$ satisfies the conditio$ns$

$(i)-(iii)$ in Lemma 2 if and only if $\alpha$ has the following properties (i)
and (ii):

(i) $\partial\alpha\cap(G-e)$ consists of exactly two points $x_{0}$ and $x_{1}$ , and they
satisfy that $f(x_{\dot{f}})ef(\partial\alpha)(j=0,1)$ ,

(ii) $ g(\overline{\beta})\cap e\neq\emptyset$ for any component $\beta$ of $\alpha-\{x_{0}, x_{1}\}$ with $\overline{\beta}\cap e\neq\emptyset$ ,
where $g$ is the reversing map.

PROOF. Suppose that $\alpha$ satisfies the conditions in Lemma 2 for a
suitable $h$ , and $(\psi_{t}, \Sigma)$ is the corresponding normal pair. Then $\alpha$ is a
local section for $\psi_{t}$ restricted on $Y(\alpha)$ , and intersects with every orbit
of this restricted flow. And each of $\hat{T}_{-}(\partial\alpha)$ and $\hat{T}_{+}(\partial\alpha)$ consists of exactly
two points. Obviously the points on $\hat{T}_{-}(\partial\alpha)$ correspond to $x_{0}$ and $x_{1}$ (cf.
Lemma 1). Let $\beta$ be the component of $\alpha-\hat{T}_{-}(\partial\alpha)$ with $\overline{\beta}$ cInt $\Sigma$ , and $\gamma$

be the component of $\alpha-\hat{T}_{+}(\partial\alpha)$ with $\overline{\gamma}$ cInt $\Sigma$ . Then it is easy to see
that $\hat{T}_{-}(\gamma)=\beta$ This fact implies the condition (ii) of the proposition,
and proves the “only if” part.

Now let $\alpha$ be an arc satisfying the above condition (i) and (ii), and
let $\beta_{0},$ $\beta_{1}$ and $\beta_{2}$ be the three components of $\alpha-\{x_{0}, x_{1}\}$ such that $x_{\dot{f}}\in\overline{\beta}_{j}$

$(j=0,1)$ and $\overline{\beta}_{2}\subset Int\Sigma_{1}$ . We put $y_{j}=g(x_{\dot{f}})$ and $\{z_{j}\}=\beta_{j}\cap e$ for $j=0and1$ .
Notice that $\{y_{0}, y_{1}\}=\{z_{0}, z_{1}\}$ by the condition (i). Hence, using the con-
dition $(iI)$ , we have that $hog(\beta_{0})$ is an arc in $\Sigma_{1}$ connecting $y_{0}$ to $h\circ g(z_{0})$ ,
$h\circ g(\beta_{1})$ is one connecting $y_{1}$ to $h\circ g(z_{1})$ and $h\circ g(\beta_{2})$ is one connecting
$h\circ g(z_{0})$ to $h\circ g(z_{1})$ . Therefore $h\circ g(\alpha)$ is an arc in $\Sigma_{1}$ which connects the
two end points of $\alpha$ . This shows that we can deform $h$ so that $ h\circ g(\alpha)=\alpha$ ,
namely $\alpha$ satisfies the conditions in Lemma 2. This completes the proof.

Furthermore we have that

PROPOSITION 2. Let $\alpha$ be an arc with the conditions in the above
proposition, and $h:\Sigma_{2}\rightarrow\Sigma_{1}$ be a homeomorphism for whic $ h\alpha$ satisfies the
conditions in Lemma 2. Then it holds that

(i) $Y(\alpha)$ is a torus if and only if $x_{0}$ and $g(x_{0})$ are separated on $\alpha$

by $x_{1}$ , and
(ii) $M-Y(\alpha)$ is connected if and only if, for some $a\in V_{1}(G)$ , $a$ and

$g(a)$ are separated in $\Sigma_{1}$ by $\alpha$ .
PROOF. Let $\beta$ be the subarc of $\alpha$ with the end points $x_{0}$ and $x_{1}$ .

For this $\beta$ we can choose a continuous function $\tau:\beta\rightarrow R$ such that
$\tau(x_{\dot{f}})=T_{+}(x_{\dot{f}})(j=0,1)$ and $0<\tau(x)<T_{+}(x)$ for any $x\in\beta-\{x_{0}, x_{1}\}$ . Then
$\alpha U\hat{\tau}(\beta)$ is a cross-section of $\psi_{t}$ restricted on $Y(\alpha)$ , where $\hat{\tau}(x)=\psi_{\tau(x)}(x)$ .
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It is easy to see that the returning map for this cross-section is orien-
tation preserving if and only if $x_{0}$ and $g(x_{0})$ are separated by $x_{1}$ . This
proves the first part.

Noticing that $M-Y(\alpha)$ is connected if and only if $\psi_{t}$ has an orbit
‘

which meets with both components of X-a, we can easily show the
second part of the proposition. This completes the proof.

Let $\alpha$ and $h$ be those in Proposition 2, and $X$ be the closure of a
connected component of $M-Y(\alpha)$ ($X=M$ if $M-Y(\alpha)$ is connected). Define
a subset $\Delta$ of $\Sigma_{1}$ to be $\Delta=\{x\in\Sigma_{1}|f(x)\in X\}$ . Then, applying the same
method as in Theorem 1 to the graph $ G\cap\Delta$ , we can get a sufficient
condition for $X$ being Seifert fibred. In what follows, we shall give a
presentation of the fundamental group $\pi_{1}(X)$ and determine its subgroup
$c_{*}(\pi_{1}(Y(\alpha)))$ , where $f_{*}$ is the homomorphism induced by the inclusion.

We denote by $C_{1},$
$\cdots,$

$C_{\lambda}$ the components of $(G\cap\Delta)-V(G)$ , and by
$D_{0},$ $D_{1},$

$\cdots,$ $D_{\mu}$ the components of $\Delta-G$ . We assume that $g(x_{\dot{f}})\in D_{j}$ for
$j=0,1$ , where $x_{0}$ and $x_{1}$ are those in Proposition 1. And, for each $m=$
$1,$ $\cdots,$

$\lambda$ , we define three integers $m\langle j\rangle(j=1,2,3,0\leqq m\langle j\rangle\leqq\mu)$ as follows:
$ n_{j}=m\langle j\rangle$ iff $C_{m}\subset\partial D_{nj}$ for $j=1,2,$ $g(C_{m})\subset\partial D_{n_{3}}$ , and $g(C.)$ is included in
the boundary of $g(D_{n_{1}})$ . Then, by the same method as in Theorem 4.2
of [5], we get the following presentation of $\pi_{1}(X)$ :

$\pi_{1}(X)=\langle y_{0}, y_{1}, \cdots, y_{\mu};r_{1}, \cdots, r_{\lambda}\rangle$

$\gamma_{m}=y_{m\langle 1\rangle}y_{m\langle 3\rangle}y_{m\langle 2\rangle}^{-1}$ $(m=1, \cdots, x)$ .
Moreover from the proof of Theorem 4.2 of [5] it follows that $c_{*}(\pi_{1}(Y(\alpha)))$

is generated by $[y_{0}]$ and $[y_{1}]$ in the above presentation.

FIGURE 4
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EXAMPLE I. The DS-diagram given by Fig. 4 has an arc $\alpha$ with the
conditions in Proposition 1. By Proposition 2, $Y(\alpha)$ is a torus and does
not separate $M$.

EXAMPLE II. The DS-diagram given by Fig. 5 has arcs $\alpha$ and $\alpha$

’

with the conditions in Proposition 1. Using Proposition 2, we can see
that $Y(\alpha)$ is a torus and $Y(\alpha’)$ is a Klein bottle. And moreover $Y(\alpha)$

divide $M$ into two components.

FIGURE 5
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