Flow-Spines and Seifert Fibred Structure of 3-Manifolds

Ippei ISHII

Keio University

The concept of a flow-spine of a closed 3 -manifold M was introduced in [5]. In this paper, we shall give a sufficient condition for M represented by a flow-spine to be Seifert fibred (Theorem 1 in §2). In §3 the orbit manifold and exceptional fibres are completely determined by a DS-diagram which is induced by a flow-spine. We give an example in §4. And in $\S 5$, we study Seifert fibred submanifolds and embedded tori determined by a DS-diagram.
§1. A flow-spine and a DS-diagram with E-cycle.
A normal pair $\left(\psi_{t}, \Sigma\right)$ on a closed 3 -manifold M is a pair of a nonsingular flow ψ_{t} on M and its compact local section Σ satisfying that
(i) Σ is homeomorphic to a compact 2-disk,
(ii) $\quad T_{-}(x)=\sup \left\{t<0 \mid \psi_{t}(x) \in \Sigma\right\}$ and $T_{+}(x)=\inf \left\{t>0 \mid \psi_{t}(x) \in \Sigma\right\}$ are both finite for any $x \in M$, and
(iii) $\partial \Sigma$ is ψ_{t}-transversal at $\left(x, T_{+}(x)\right) \in \partial \Sigma \times \boldsymbol{R}$ for any $x \in \partial \Sigma$, (for the precise definition, see [5]). Flow-spines $P_{ \pm}=P_{ \pm}\left(\psi_{t}, \Sigma\right)$ are defined by

$$
\begin{aligned}
& P_{-}=\Sigma \cup\left\{\psi_{t}(x) \mid x \in \partial \Sigma, T_{-}(x) \leqq \psi_{t}(x) \leqq 0\right\}, \\
& P_{+}=\Sigma \cup\left\{\psi_{t}(x) \mid x \in \partial \Sigma, 0 \leqq \psi_{t}(x) \leqq T_{+}(x)\right\},
\end{aligned}
$$

each of which forms a standard spine of M. It was shown in [5] that any closed 3 -manifold admits a normal pair on it.

On the other hand, the notion of a closed fake surface and a DSdiagram was introduced in [2] and [3]. For a closed fake surface P, we denote by $\mathscr{S}_{j}(P)(j=1,2,3)$ the set of the j-th singularities of P (see [2] for the definition). Let P be a closed fake surface which admits a local homeomorphism $f: S^{2} \rightarrow P\left(S^{2}\right.$ is the 2 -sphere) such that $\# f^{-1}(x)=j+1$ for $x \in \mathbb{S}_{j}(P)(j=1,2,3)$. Such an f is called an identification map. Then $G=f^{-1}\left(\mathscr{G}_{2}(P)\right)$ is a 3 -regular graph on S^{2}. We call (S^{2}, P, G, f) a DS-
diagram (see [3], for the precise), which we simply write (G, f) in what follows. Considering S^{2} as the boundary of a 3 -ball B^{3} and identifying the points on $S^{2}=\partial B^{3}$ by f (i.e., $x \sim y$ iff $f(x)=f(y)$), we get a closed 3-manifold $M=B^{3} / f$ which has a closed fake surface $P=S^{2} / f$ as its standard spine. Conversely every closed 3 -manifold and its standard spine are represented by a DS-diagram (see [3]). For a graph G on S^{2}, we denote by $V(G), E(G)$ and $F(G)$ the set of vertexes, edges and faces of G respectively (see [3] for the precise definition). Also the underlying space of G is denoted by the same letter G.

A special class of DS-diagrams, DS-diagrams with E-cycle, was introduced in [4], and it was shown in [6] that DS-diagrams of this class exactly correspond to those determined by flow-spines. A simple closed curve $e \subset G$ is called an E-cycle of a DS-diagram (G, f), if there are a cycle $\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)\left(\varepsilon_{j} \in E(G)\right)$ of G and faces $X_{1}, \cdots, X_{m} \in F(G)$ such that
(i) $e=\bigcup_{j=1}^{n} \bar{\varepsilon}_{j}=\partial\left(\bigcup_{k=1}^{m} \bar{X}_{k}\right)$,
(ii) $f\left(\varepsilon_{j}\right) \neq f\left(\varepsilon_{j^{\prime}}\right)$ for $1 \leqq j<j^{\prime} \leqq n$,
(iii) $f\left(X_{k}\right) \neq f\left(X_{k^{\prime}}\right)$ for $1 \leqq k<k^{\prime} \leqq m$, and
(iv) $f\left(\cup_{k=1}^{m} \bar{X}_{k}\right)=S^{2} / f$.

The next lemma immediately follows from the method for constructing a normal pair generating a given DS-diagram with E-cycle (see [6]).

Lemma 1. Let (G, f) be a DS-diagram with an E-cycle e, $\Sigma_{j}(j=1,2)$ be the closure of the components of $S^{2}-e$, and h be a homeomorphism from Σ_{2} onto Σ_{1} such that $\left.h\right|_{\partial \Sigma_{2}}$ is the identity map of e. Then we can construct a normal pair (ψ_{t}, Σ) on $M=B^{3} / f$ such that there is an embedding ८: $\Sigma_{1} \rightarrow M$ satisfying that $\iota\left(G \cap \Sigma_{1}\right)=\partial \Sigma \cup \hat{T}_{-}(\partial \Sigma)$ and $\iota\left(h\left(G \cap \Sigma_{2}\right)\right)=\partial \Sigma \cup \hat{T}_{+}(\partial \Sigma)$, where $\widehat{T}_{ \pm}(x)=\psi_{\sigma}(x)\left(\sigma=T_{ \pm}(x)\right)$.

§2. A characterization of a DS-diagram of a Seifert fibred manifold.

Let (G, f) be a DS-diagram with an E-cycle $e, \Sigma_{j}^{\prime}(j=1,2)$ be the components of $S^{2}-e$, and Σ_{j} be the closure of Σ_{j}^{\prime}. Let $a \in \mathbb{S}_{3}(P)$ be one of the third singularities of $P=S^{2} / f$. Then $f^{-1}(a) \subset V(G)$ consists of four points, two of which are on e. For a point $x \in V(G) \cap e$, we denote by A_{x} an edge of G such that $x \in \partial A_{x}$ and $A_{x} \not \subset e$. For convenience, we divide $V(G) \cap e$ into two sets $V_{1}(G)$ and $V_{2}(G)$ as follows: $x \in V_{j}(G)$ iff $A_{x} \subset \Sigma_{j}$ ($j=1,2$). As is shown in [4], for any $x \in V(G) \cap \Sigma_{1}^{\prime}$ there are uniquely determined points x_{1}, x_{2} and x_{3} such that $f(x)=f\left(x_{j}\right)(j=1,2,3), x_{j} \in V_{j}(G)$ ($j=1,2$) and $x_{3} \in \Sigma_{2}^{\prime}$. And, for a point $x \in G-V(G)$, there are points x_{1} and x_{2} such that $f(x)=f\left(x_{j}\right) \quad(j=1,2), x_{1} \in e$ and $x_{2} \in \Sigma_{2}^{\prime}$. Hence we can
define a map $g: \Sigma_{1} \rightarrow \Sigma_{2}$ as follows:
(i) for $x \in V(G) \cap \Sigma_{1}^{\prime}$,

$$
y=g(x) \quad \text { iff } \quad y \in V_{1}(G) \text { and } f(y)=f(x),
$$

(ii) for $x \in V_{1}(G)$,

$$
y=g(x) \quad \text { iff } \quad y \in V_{2}(G) \text { and } f(y)=f(x),
$$

(iii) for $x \in V_{2}(G)$,

$$
y=g(x) \quad \text { iff } \quad y \in V(G) \cap \Sigma_{2}^{\prime} \text { and } f(y)=f(x)
$$

(iv) for $x \in(G-V(G)) \cap \Sigma_{1}^{\prime}$,

$$
y=g(x) \quad \text { iff } \quad y \in e-V(G) \text { and } f(y)=f(x),
$$

(v) for $x \in e-V(G)$,

$$
y=f(x) \quad \text { iff } \quad y \in(G-V(G)) \cap \Sigma_{2}^{\prime} \text { and } f(y)=f(x),
$$

(vi) for $x \in \Sigma_{1}^{\prime}-G$,

$$
y=f(x) \quad \text { iff } \quad y \in \Sigma_{2}^{\prime}-G \text { and } f(y)=f(x)
$$

We call such a g a reversing map of (G, f). A reversing map is not continuous. Using this notion of a reversing map, we can state a condition for $M=B^{3} / f$ to be Seifert fibred as follows.

Theorem 1. Let (G, f) be a DS-diagram with an E-cycle e, Σ_{1} and Σ_{2} be as above, and $g: \Sigma_{1} \rightarrow \Sigma_{2}$ be the reversing map. Then B^{3} / f is a Seifert fibred manifold if there are a graph \widetilde{G} in Σ_{1} and a homeomorphism h from Σ_{2} onto Σ_{1} such that
(a) $G \cap \Sigma_{1} \subset \widetilde{G}$ and $V(G) \cap \Sigma_{1} \subset V(\widetilde{G})$,
(b) $\left.h\right|_{\partial \Sigma_{2}}=$ identity,
(c) $h(g(\widetilde{G}))=\widetilde{G}$,
(d) $h(g(V(\widetilde{G})))=V(\widetilde{G})$.

Proof. By Lemma 1 there is a normal pair (ψ_{t}, Σ) on $M=B^{3} / f$ satisfying the conditions in the lemma. Let $c: \Sigma_{1} \rightarrow \Sigma$ be an embedding as in Lemma 1. By this \subset we identify Σ with Σ_{1}. Then it also follows from the way for constructing (ψ_{t}, Σ) that \hat{T}_{+}is continuous on $\widetilde{G}-V(\widetilde{G})$ and on $\Sigma-\widetilde{G}$, because $G \cap \Sigma_{1}$ is included in \widetilde{G} and g is continuous both on $(G-V(G)) \cap \Sigma_{1}$ and on $\Sigma_{1}-G$.

The condition (d) implies that for any $x \in V(\widetilde{G})$ there is a positive integer n such that $\widehat{T}_{+}^{n}(x)=x$. And by the condition (c), deforming h if
necessary, we can see that \hat{T}_{+}is periodic on \widetilde{G}. Therefore, using this property and the continuity of \hat{T}_{+}on $\Sigma-\widetilde{G}$, we can deform h so that \hat{T}_{+}is periodic whole on Σ. This shows that, as a non-singular flow of the normal pair generating the DS-diagram (G, f), we can take a flow whose orbits are all homeomorphic to a circle S^{1}. Hence $M=B^{3} / f$ admits an S^{1}-action, and so M is Seifert fibred (cf. [1]). This completes the proof.

The converse of this theorem is partially true, that is, we have
Theorem 2. If M is Seifert fibred closed 3-manifold, then there is a normal pair on M whose DS-diagram satisfies the conditions in Theorem 1.

Proof. Let ψ_{t} be a flow on M whose orbits are fibres of the Seifert fibration of M. Then, taking an adequate compact local section Σ, we get a normal pair (ψ_{t}, Σ) with the desired conditions. This proves the theorem.

§ 3. Orbit manifold and exceptional fibres.

In this section, we shall explain how we can decide the orbit manifold and the exceptional fibres of a Seifert fibred manifold represented by a DS-diagram with E-cycle satisfying the conditions in Theorem 1.

For simplicity, we consider the case where (G, f) satisfies the following additional conditions (e)-(g) besides (a)-(d).
(e) For any component Δ of $\Sigma_{1}-\widetilde{G}, \bar{\Delta}$ is homeomorphic to a compact 2-disc.
(f) If $\varepsilon \in E(\widetilde{G}), a \in \partial \varepsilon \cap V(\widetilde{G})$ and $(h \circ g)^{k}(\varepsilon)=\varepsilon$, then $(h \circ g)^{k}\left(x_{j}\right) \rightarrow a(j \rightarrow \infty)$ as $x_{j} \rightarrow a$ within ε.
(g) If Δ is a component of $\Sigma_{1}-\widetilde{G}, a \in \partial \Delta \cap V(\widetilde{G}),(h \circ g)^{k}(a)=a$ and $(h \circ g)^{k}\left(x_{j}\right) \rightarrow(h \circ g)^{k}(a)(j \rightarrow \infty)$ as $x_{j} \rightarrow a$ within Δ, then $(h \circ g)^{k}(\Delta)=\Delta$.

These conditions assure that exceptional fibres do not meet with \widetilde{G}. Moreover we can easily see that if (G, f) satisfies the conditions (a)-(d), then we can always take \widetilde{G} and h so that they satisfy also the additional conditions (e), (f) and (g).

Let $\Delta_{j}^{k}\left(k=1, \cdots, s, j=1, \cdots, r_{k}\right)$ be components of $\Sigma_{1}-\widetilde{G}$, where Δ_{j}^{k} are so classified that $(h \circ g)\left(\Delta_{j}^{k}\right)=\Delta_{j+1}^{k}\left(j=1, \cdots, r_{k}\right.$ and $\left.\Delta_{r_{k}+1}^{k}=\Delta_{1}^{k}\right)$. Then the restriction of $(h \circ g)^{r_{k}+1}$ onto Δ_{k}^{1} is a homeomorphism of Δ_{k}^{1}, and moreover by the condition (e) it can be extended to a homeomorphism of $\overline{\Delta_{k}^{\bar{T}}}$. We denote by h_{k} this extended homeomorphism of $\overline{\Delta_{1}^{k}}$, and by a_{j}^{k} ($j=1$, \cdots, q_{k}) the points on $V(\widetilde{G}) \cap \partial \Delta_{1}^{k}$. We assume that $a_{1}^{k}, \cdots, a_{q_{k}}^{k}$ are arranged
in the cyclic order on $\partial \Delta_{1}^{k}$.
Now let $a_{p_{k}}=h_{k}\left(a_{1}^{k}\right)$. If $p_{k}=1$, then, deforming h if necessary, we may assume that h_{k} is the identity map. In the case where $p_{k}>1$, we may assume that h_{k} has only one fixed point $w_{k} \in \Delta_{1}^{k}$ and is equivalent to a rotation around w_{k} by an angle $2 \pi\left(p_{k}-1\right) / q_{k}$. Hence, considering the corresponding normal pair ($\left.\psi_{t}, \Sigma\right)$, we can see that the orbit of ψ_{t} through w_{k} is an exceptional fibre of index $\left(p_{k}-1\right) / q_{k}$, and the other orbits through the points on Δ_{1}^{k} are regular fibres. As is stated above, the conditions (\mathbf{f}) and (g) implies that there is no other exceptional fibre.

The orbit manifold is quite easily determined. Define an equivalence relation " \sim " on Σ_{1} as follows:

$$
x \sim y \quad \text { iff } \quad(h \circ g)^{k}(x)=y \text { for some } k
$$

Then it is evident that the orbit manifold is Σ_{1} / \sim.

§4. An example.

In this section, we shall apply the results in the previous sections to the DS-diagram indicated in Fig. 1. In Fig. 1, the vertexes and edges with the same names are identified by the identification map in the indicated direction. And faces X_{k}^{+}and X_{k}^{-}are identified in the direction naturally determined by the direction of $\partial X_{k}^{ \pm}$(see [3] for the precise usage of such a representation of a DS-diagram).

This DS-diagram has an E-cycle $e=\partial\left(\cup_{k=1}^{6} \overline{X_{k}^{+}}\right)$. We define Σ_{1} and Σ_{2} by $\Sigma_{1}=\cup \overline{X_{k}^{+}}$and $\Sigma_{2}=\cup \overline{X_{k}^{-}}$. Now define the graph \widetilde{G} to be one obtained

Figure 1
by adding to $G \cap \Sigma_{1}$ the edges drown by broken lines in Fig. 2, and name the components of $\Sigma_{1}-\widetilde{G}$ as indicated in Fig. 2.

Figure 2
Then it is easy to see that for this \widetilde{G} we can take a homeomorphism $h: \Sigma_{2} \rightarrow \Sigma_{1}$ satisfying the conditions (a)-(g) in $\S \S 2,3$. Hence the manifold represented by this DS-diagram is Seifert fibred. Moreover $h \circ g\left(U_{j}^{k}\right)=\Delta_{j+1}^{k}$ for any $k=1, \cdots, 7$ and $j=1, \cdots, r_{k}$, where $r_{1}=r_{2}=r_{3}=r_{7}=1, r_{4}=3, r_{5}=$ $r_{6}=2$. The integers p_{k} and q_{k} defined in $\S 3$ are given by $q_{1}=q_{2}=q_{4}=3$, $q_{3}=q_{5}=q_{6}=4, q_{7}=5, p_{1}=p_{2}=2, p_{3}=3$ and $p_{4}=p_{5}=p_{6}=p_{7}=1$. Thus there are two exceptional fibres of index $1 / 3$, and one exceptional fibre of index $1 / 2$. The orbit manifold Σ_{1} / \sim is obtained from the shaded domain in Fig. 3 (a) by identifying its boundary as indicated in Fig. 3 (b). Hence the orbit manifold is a 2 -sphere.

Figure 3

§5. Seifert fibred submanifold and embedded tori.

In this section, using the same technique as in the previous sections, we shall investigate a method for finding Seifert fibred submanifolds and embedded tori. We use the same notation as in §§1-3.

Let (G, f) be a DS-diagram with an E-cycle e, and let a graph \widetilde{G} and $h: \Sigma_{2} \rightarrow \Sigma_{1}$ be those satisfying the conditions (a) and (b) in Theorem 1. And moreover, suppose that there is a compact subset Δ of Σ_{1} such that
(c') $\partial \Delta \subset \widetilde{G}$ and $h(g(\Delta \cap \widetilde{G}))=\Delta \cap \widetilde{G}$, and
$\left(\mathrm{d}^{\prime}\right) \quad h(g(\Delta \cap V(\widetilde{G})))=\Delta \cap V(\widetilde{G})$,
where g is the reversing map. Now let $\left(\psi_{t}, \Sigma\right)$ be a normal pair as in Lemma 1 for which $\hat{T}_{+}=h \circ g$, and let $X=X(\Delta)$ be the set of points on orbits of ψ_{t} through Δ. If $\partial \Delta$ forms a 1-manifold, then X is a Seifert fibred submanifold of $M=B^{3} / f$.

Let X be a Seifert fibred submanifold obtained as above, and let Y be a component of ∂X. Then Y is an embedded torus or a Klein bottle, and $Y \cap \Sigma$ consists of circles in Σ and arcs in Σ connecting two points on $\partial \Sigma$. If $Y \cap \Sigma$ includes a circle, then obviously Y is compressible. Therefore $Y \cap \Sigma$ consists of mutually disjoint ares if Y is incompressible.

In what follows, we investigate embedded tori. First we shall show that

Lemma 2. Let $\alpha=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be a set of mutually disjoint compact arcs α_{j} on Σ_{1} such that (i) $\partial \alpha_{j}=\alpha_{j} \cap \partial \Sigma_{1}$ for any j, (ii) $h \circ g\left(\cup \alpha_{j}\right)=\cup \alpha_{j}$ and (iii) for any α_{i} and α_{j} there is a k with $\alpha_{j} \cap(h \circ g)^{k}\left(\alpha_{i}\right) \neq \varnothing$. Then the set of points on the orbits of ψ_{t} through $\cup \alpha_{j}$ is a torus or a Klein bottle, which we denote by $Y(\alpha)$.

Proof. Define Y to be

$$
Y=\left\{\psi_{t}(x) \mid x \in \cup \alpha_{j}, t \in \boldsymbol{R}\right\} .
$$

Then, according to the condition (i), Y is a two dimensional submanifold invariant under ψ_{t}. Moreover Y is closed by the condition (ii), and is connected by (iii). Hence Y must be a closed 2 -manifold with the Euler characteristic number zero. This proves the lemma.

In the rest of this paper, for simplicity, we shall consider only the case where α in the above lemma consists of exactly one arc, which we denote by the same letter α. The next proposition gives a condition for an arc $\alpha \subset \Sigma_{1}$ with the condition (i) in the above lemma to admit a homeomorphism h for which α satisfies the other conditions.

Proposition 1. Let α be an arc in Σ_{1} with $\partial \alpha \subset e=\partial \Sigma_{1}$. Then we can choose a homeomorphism $h: \Sigma_{2} \rightarrow \Sigma_{1}$ for which α satisfies the conditions (i)-(iii) in Lemma 2 if and only if α has the following properties (i) and (ii):
(i) $\partial \alpha \cap(G-e)$ consists of exactly two points x_{0} and x_{1}, and they satisfy that $f\left(x_{j}\right) \in f(\partial \alpha)(j=0,1)$,
(ii) $g(\bar{\beta}) \cap e \neq \varnothing$ for any component β of $\alpha-\left\{x_{0}, x_{1}\right\}$ with $\bar{\beta} \cap e \neq \varnothing$, where g is the reversing map.

Proof. Suppose that α satisfies the conditions in Lemma 2 for a suitable h, and (ψ_{t}, Σ) is the corresponding normal pair. Then α is a local section for ψ_{t} restricted on $Y(\alpha)$, and intersects with every orbit of this restricted flow. And each of $\widehat{T}_{-}(\partial \alpha)$ and $\widehat{T}_{+}(\partial \alpha)$ consists of exactly two points. Obviously the points on $\hat{T}_{-}(\partial \alpha)$ correspond to x_{0} and x_{1} (cf. Lemma 1). Let β be the component of $\alpha-\hat{T}_{-}(\partial \alpha)$ with $\bar{\beta} \subset \operatorname{Int} \Sigma$, and γ be the component of $\alpha-\widehat{T}_{+}(\partial \alpha)$ with $\bar{\gamma} \subset \operatorname{Int} \Sigma$. Then it is easy to see that $\widehat{T}_{-}(\gamma)=\beta$. This fact implies the condition (ii) of the proposition, and proves the "only if" part.

Now let α be an arc satisfying the above condition (i) and (ii), and let β_{0}, β_{1} and β_{2} be the three components of $\alpha-\left\{x_{0}, x_{1}\right\}$ such that $x_{j} \in \bar{\beta}_{j}$ $(j=0,1)$ and $\bar{\beta}_{2} \subset \operatorname{Int} \Sigma_{1}$. We put $y_{j}=g\left(x_{j}\right)$ and $\left\{z_{j}\right\}=\beta_{j} \cap e$ for $j=0$ and 1 . Notice that $\left\{y_{0}, y_{1}\right\}=\left\{z_{0}, z_{1}\right\}$ by the condition (i). Hence, using the condition (ii), we have that $h \circ g\left(\beta_{0}\right)$ is an arc in Σ_{1} connecting y_{0} to $h \circ g\left(z_{0}\right)$, $h \circ g\left(\beta_{1}\right)$ is one connecting y_{1} to $h \circ g\left(z_{1}\right)$ and $h \circ g\left(\beta_{2}\right)$ is one connecting $h \circ g\left(z_{0}\right)$ to $h \circ g\left(z_{1}\right)$. Therefore $h \circ g(\alpha)$ is an arc in Σ_{1} which connects the two end points of α. This shows that we can deform h so that $h \circ g(\alpha)=\alpha$, namely α satisfies the conditions in Lemma 2. This completes the proof.

Furthermore we have that
Proposition 2. Let α be an arc with the conditions in the above proposition, and $h: \Sigma_{2} \rightarrow \Sigma_{1}$ be a homeomorphism for which α satisfies the conditions in Lemma 2. Then it holds that
(i) $Y(\alpha)$ is a torus if and only if x_{0} and $g\left(x_{0}\right)$ are separated on α by x_{1}, and
(ii) $M-Y(\alpha)$ is connected if and only if, for some $a \in V_{1}(G)$, a and $g(a)$ are separated in Σ_{1} by α.

Proof. Let β be the subarc of α with the end points x_{0} and x_{1}. For this β we can choose a continuous function $\tau: \beta \rightarrow \boldsymbol{R}$ such that $\tau\left(x_{j}\right)=T_{+}\left(x_{j}\right) \quad(j=0,1)$ and $0<\tau(x)<T_{+}(x)$ for any $x \in \beta-\left\{x_{0}, x_{1}\right\}$. Then $\alpha \cup \hat{\tau}(\beta)$ is a cross-section of ψ_{t} restricted on $Y(\alpha)$, where $\hat{\tau}(x)=\psi_{\tau(x)}(x)$.

It is easy to see that the returning map for this cross-section is orientation preserving if and only if x_{0} and $g\left(x_{0}\right)$ are separated by x_{1}. This proves the first part.

Noticing that $M-Y(\alpha)$ is connected if and only if ψ_{t} has an orbit which meets with both components of $\Sigma-\alpha$, we can easily show the second part of the proposition. This completes the proof.

Let α and h be those in Proposition 2, and X be the closure of a connected component of $M-Y(\alpha)(X=M$ if $M-Y(\alpha)$ is connected). Define a subset Δ of Σ_{1} to be $\Delta=\left\{x \in \Sigma_{1} \mid f(x) \in X\right\}$. Then, applying the same method as in Theorem 1 to the graph $G \cap \Delta$, we can get a sufficient condition for X being Seifert fibred. In what follows, we shall give a presentation of the fundamental group $\pi_{1}(X)$ and determine its subgroup $\iota_{*}\left(\pi_{1}(Y(\alpha))\right)$, where ι_{*} is the homomorphism induced by the inclusion.

We denote by C_{1}, \cdots, C_{2} the components of $(G \cap \Delta)-V(G)$, and by $D_{0}, D_{1}, \cdots, D_{\mu}$ the components of $\Delta-G$. We assume that $g\left(x_{j}\right) \in D_{j}$ for $j=0,1$, where x_{0} and x_{1} are those in Proposition 1. And, for each $m=$ $1, \cdots, \lambda$, we define three integers $m\langle j\rangle(j=1,2,3,0 \leqq m\langle j\rangle \leqq \mu)$ as follows: $n_{j}=m\langle j\rangle$ iff $C_{m} \subset \partial D_{n_{j}}$ for $j=1,2, g\left(C_{m}\right) \subset \partial D_{n_{3}}$, and $g\left(C_{m}\right)$ is included in the boundary of $g\left(D_{n_{1}}\right)$. Then, by the same method as in Theorem 4.2 of [5], we get the following presentation of $\pi_{1}(X)$:

$$
\begin{aligned}
\pi_{1}(X)= & \left\langle y_{0}, y_{1}, \cdots, y_{\mu} ; r_{1}, \cdots, r_{\lambda}\right\rangle \\
& r_{m}=y_{m\langle 1\rangle} y_{m\langle 3\rangle} y_{m\langle 2\rangle}^{-1} \quad(m=1, \cdots, \lambda) .
\end{aligned}
$$

Moreover from the proof of Theorem 4.2 of [5] it follows that $\iota_{*}\left(\pi_{1}(Y(\alpha))\right)$ is generated by [y_{0}] and [y_{1}] in the above presentation.

Figure 4

Example I. The DS-diagram given by Fig. 4 has an arc α with the conditions in Proposition 1. By Proposition 2, $Y(\alpha)$ is a torus and does not separate M.

Example II. The DS-diagram given by Fig. 5 has arcs α and α^{\prime} with the conditions in Proposition 1. Using Proposition 2, we can see that $Y(\alpha)$ is a torus and $Y\left(\alpha^{\prime}\right)$ is a Klein bottle. And moreover $Y(\alpha)$ divide M into two components.

Figure 5

References

[1] D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math., 95 (1972), 66-82.
[2] H. Ikeda, Acyclic closed fake surfaces, Topology, 10 (1971), 9-36.
[3] H. Ikeda and Y. Inoue, Invitation to DS-diagrams, Kobe J. Math., 2 (1985), 169-186.
[4] H. Ikeda, DS-diagrams with E-cycle, Kobe J. Math., 3 (1986), 104-112.
[5] I. Ishir, Flows and spines, Tokyo J. Math., 9 (1986), 505-525.
[6] I. IsHir, Combinatorial construction of a non-singular flow on a 3-manifold, Kobe J. Math., 3 (1986), 201-208.

Present Address:
Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Kohoku-ku, Yokohama 223, Japan

