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Abstract. Let $x^{p^{k}}-a$ be irreducible over $Q$ . The first part of this paper is to ex-
plicitly give the decomposition rules for the factorization of $p$ in the ring of integers of
$Q(a^{1/p^{k}})$ .

As an application of the above we use these results to determine the genus field of
$Q(a^{1/n})$ , where $x^{n}-a$ is irreducible over $Q$ and we make no restrictions on $a$ .

Let $K/F$ be a finite extension of algebraic number fields, $O_{F}$ the
ring of integers in $F$ , and $P$ a prime ideal in $O_{F}$ . The question of the
factorization of $PO_{K}$ into prime ideals is an old one and plays an important
role in algebraic number theory.

The determination of the number of distinct prime divisors is quite
easy to answer for it only depends on the number of distinct prime
factors of $h(x)=Irr(\theta, F)$ (where $K=F(\theta),$ $\theta\in O_{K}$ with $Irr(\theta, F)$ monic, of
course) either modulo $P$ or over $F_{P}$ , the P-adic completion of $F$. We
shall prefer to work in $F_{P}$ . So, if $h(x)=h_{1}(x)\cdots h_{\sigma}(x)$ is the factorization
of $h(x)$ into irreducible factors over $F_{P}$ , then $PO_{K}$ factors into $g$ distinct
prime ideals, $P_{1},$

$\cdots,$ $Pff$ . Furthermore, $K_{P_{i}}\cong F_{P}(\theta_{i})$ , where $h_{i}(\theta_{i})=0$ and
the relative inertial and ramification degrees, $e_{\dot{t}},$

$f_{i}$ , of $P_{i}$ over $P$ are the
relative inertial and ramification degrees of $F_{P}(\theta_{i})/F_{P}$ and $e_{i}f_{i}=\deg h_{i}(x)$ .

Even though the deg $h_{i}(x)$ is easily available, the determination of $e_{i}$

and $f_{i}$ is not. In fact, even for the case when $K=F(a^{1/p^{k}})$ , where $p$ is
prime, the determination of the relative inertial and ramification degrees
has not been accomplished, in general. Several special case however have
been solved. For example, if $P\sqrt{}^{\prime}p$ , then the $e_{1},$ $f_{i}$ were determined by
Mann and V\’elez [19]. If $P|p$ , then this has appeared to be the much
more intractable case, and in the literature we have found only the case
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$k=1$ treated.
Thus, for the case $F(a^{1/p})/F,$ $P|p$ , we have found the following

published results (of course, we ignore $p=2$).
a) $F=Q,$ $p=3$ (p. 156, [3]).
b) $F=Q$ , any odd prime $p$ ([27]).
c) $F$ contains a primitive p-th root of unity (pp. 254-257 of [11]).
d) Any algebraic number field $F$ ([25]).

Thus for the case $k=1$ the determination of the relative inertial and
ramification degrees has been resolved. However, nowhere in the litera-
ture do we see any results for the case $k\geqq 2$ , even when $F=Q$ .

There has recently been some activity in studying fields defined by
roots of binomials, $x^{n}-a$ , and various questions have been posed and
resolved. Since these results are rather recent, let us mention at least
some of the questions that have been posed and where one can find these
results.

Let char $F\int n$ and let $x^{n}-a$ be irreducible over $F$.
1) If $x^{n}-b$ is irreducible over $F$ and $F(a^{1/n})\cong F(b^{1/n})$ , then what is the
relationship between $a$ and $b?[1,21]$ .
2) If $b^{1/k}\in F(a^{1/n})$ , how are $k,$ $n$ and $a,$

$b$ related? $[2, 9]$ .
3) What can one say about the lattice of subfields of $F(a^{1/n})/F?[1]$ .
4) When is $F(a^{1/n})/F$ a normal extension [1, 7, 8, 20, 24] and in particular
when is its Galois group abelian? [22, 24, 28].
5) When are $Q(a^{1/n}),$ $Q(b^{1/n})$ arithmetically equivalent? [15, 17, 18].

The main purpose of this paper is to show that by using some very
simple results from the theory of radical extensions of fields, we can
completely determine how $p$ factors in the extension $Q(a^{1/p^{k}})/Q$ .

These results have an immediate application. For $F$ an algebraic
number field, let $F^{*}$ denote the maximal abelian extension of $F$ which
is the composite of an absolute abelian field $L$ with $F$ and $F^{*}/F$ is
unramified at all of the finite prime ideals of $F$.

Various authors [4, 5, 10, 12, 13, 14] have considered the problem of
determining $Q(a^{1/n})^{*}$ . However in all the previous investigations they
have put the condition that if $p^{r}$ exactly divides $a$ then $(r, n)=1$ . Thi8
condition yields that $p$ is totally ramified in $Q(a^{1/n})/Q$ , and this makes the
determination of $Q(a^{1/n})^{*}$ much easier.

By using the results on the decomposition of $p$ in $Q(a^{1/p^{k}})$ we shall
be able to completely determine $Q(a^{1/n})^{*}$ , without having to make as-
sumptions as to how the primes divide $a$ .

In order to make this paper self-contained, we shall prove the few
results on radical extensions that we shall need.
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Perhaps our success at realizing a solution arises from a different
point of view than in our previous attempts. Our method of attack
before had been to induct on $k$ and this led to rather complicated com-
putations in the residue system modulo $P^{r}$ . In this paper we take a
much more local point of view and consider the properties of $x^{p^{k}}-a$

over $Q_{p}$ .
Since we shall be working over p-adic fields we shall use the general

results concerning them (for example, the material contained in the first
four chapters of Weiss [26]). Moreover, we wish to single out the
following results, which are quite standard.

Throughout this paper $\zeta_{n}$ shall denote a primitive n-th root of unity.

PROPOSITION 1. a) Let $E/Q_{p}$ be .finite with $|\overline{E}|=q(\overline{E}$ denotes the
residue class field). Then for each $f,$ $E(\zeta_{q^{f}-1})$ is the unique unramified
extension of $E$ of degree $f$ over $E$.
b) Let $F/E,$ $E/Q_{p}$ be finite extensions and $f=f(F/E)$ the relative inertial
degree. Then $E(\zeta_{q^{f}-1})\subset F$ and $F/E(\zeta_{q^{f}-1})$ is totally ramified.
c) If $a\equiv 1(mod 2^{r+2})$ then $a\in Q_{2}^{z^{r}}$ . $\square $

Let $\phi_{n}(x)=\prod_{i}(x-\zeta_{n}^{i})$ , where $1\leqq i\leqq n$ and $(i, n)=1$ . Given $b,$ $b\neq 0$ , let
$\phi_{n}(x, b)=\prod_{i}(x-b\zeta_{n}^{i})$ , where $i$ ranges over the same set as above. It is
obvious that $\phi_{n}(x),$ $\phi_{n}(x, b)$ factor in the same way over $F$ and in fact
the roots of $\phi_{n}(x),$ $\phi_{n}(x, b)$ determine the same field extensions.

Let us first dispose of the trivial case. Throughout this paper $K=$

$Q(a^{1/p^{k}})$ .
THEOREM 2. a) If $p|a,$ $p^{2}$ \dagger $a$ , then $pO_{K}=P^{p^{k}},$ $f(P/p)=1$ .

b) If $a\in Q_{p}^{p^{k}}$ , then $pO_{K}=P_{0}(P_{1}P_{2}^{p}\cdots P_{k}^{p^{k-1}})^{p-1},$ $f(P_{t}/p)=1$ for all $i$ .
PROOF. a) is trivial since $x^{p^{k}}-a$ is Eisenstein.
For b) let $a=b^{p^{k}},$ $b\in Q_{p}$ . Then $x^{p^{k}}-a=x^{p^{k}}-b^{p^{k}}=\prod_{i=0}^{k}\phi_{p^{i}}(x, b)$ . How-

ever, $\phi_{p^{i}}(x, b)$ is irreducible over $Q_{p}$ and its roots yield totally ramified
extensions of $Q_{p}$ . $\square $

The following proposition collects together the results that we shall
need from the theory of radical extensions, but first a definition.

DEFINITION. Let $E/F$ be a finite extension. We say that $E/F$ has
the unique subfield property, abbreviated usp, if for every divisor $m$ of
$[E:F]$ there exists a unique field $L$ with $E\supset L\supset F$ such that $[L:F]=m$ .

PROPOSITION 3. Let $E$ be a field, char $E\downarrow p$ , and $x^{p}-a$ irreducible
over $E$.
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a) If $p$ is odd or if $\zeta_{4}\in E$ , then $x^{p^{k}}-a$ is irreducible over $E$ for all $k$ .
If $p=2$ , then $x^{2^{k}}-a$ is irreducible over $E$ iff $x^{4}-a$ is irreducible over $E$

iff $-4a\not\in E^{4}$ .
Suppose that $x^{p^{k}}-a$ is irreducible over $E$ for all $k\geqq 1$ .

b) $\zeta_{4}\in E(a^{1/2^{k}})\backslash E$ (set theoretic drfference) iff $E(\zeta_{4})=E(a^{1/2})$ iff $-a\in E^{2}$ .
$c^{1})$ If $k>1$ , then $E(a^{1/p^{k}})/E$ has the usp iff $\zeta_{2p}\not\in E(a^{1/p^{k}})\backslash E$.
d) If $\zeta_{4}eE(a^{1/2^{k}})$ then $E(a^{1/2^{k}})/E(\zeta_{4})$ has the $usp$ .

PROOF. a) is quite standard (see pp. 60-62 of [16]).
b) Suppose $\zeta_{4}\in E(a^{1/2^{k}})\backslash E$. If $E(\zeta_{4})\neq E(a^{1/2})$ , then $x^{2}-a$ is irreducible

over $E(\zeta_{4})$ . However, $[E(a^{1/2^{k}}):E(\zeta_{4})]=2^{k-1}$ , so $x^{z^{k}}-a$ must be reducible
over $E(\zeta_{4})$ , thus by a), $-4a\in E(\zeta_{4})^{4}$ . However, $(1+\zeta_{4})^{4}=-4$ , so this implies
that $a\in E(\zeta_{4})^{4}$ , contradicting the assumption that $x^{2}-a$ is irreducible over
$E(\zeta_{4})$ . Thus $E(\zeta_{4})=E(a^{1/2})$ . The rest of b) is quite standard.

c) Let $E(a^{1/p^{k}})\supset L\supset E$ with $[L:E]=p^{r}$ . Suppose $\zeta_{2p}\not\in E(a^{1/p^{k}})\backslash E$ (of
course if $p$ is odd this always holds). Let $\alpha=a^{1/p^{k}}$ and define $t$ by $\alpha^{p^{t}}\in L$ ,
$\alpha^{p^{t-1}}\not\in L$ (since $\alpha^{p^{k}}eE\subset L,$ $t\leqq k$). Then $\alpha$ satisfies the binomial $x^{p^{t}}-\alpha^{p^{t}}$

over $L$ . However, by a), it follows that $x^{p^{t}}-\alpha^{p^{t}}$ is irreducible over $L$ .
Thus $p^{t}=[E(\alpha):L]$ , so $[L:E]=p^{r}=p^{k-t}$ . On the other hand $[E(\alpha^{p^{t}}):E]=$

$p^{k-t}$ , thus since $L\supset E(\alpha^{p^{t}})$ , we have that $L=E(\alpha^{p^{t}})=E(a^{1/p^{r}})$ .
This takes care of the case of odd primes.
Finally, assume that $p=2$ and for each $0\leqq r\leqq k$ we have that $E(a^{1/2^{r}})$

is the unique subfield of $E(a^{1/2^{k}})$ of degree 2‘ over $E$. If $\zeta_{4}eE(a^{1/2^{k}})\backslash E$ ,
then by b), we have that $E(\zeta_{4})=E(a^{1/2})$ . Thus $\zeta_{4}\in E(a^{1/4})$ , so $E(a^{1/4})/E$ is
a normal extension and it is easy to show that the Galois group of this
extension is $Z_{2}+Z_{2}$ . This implies that there are 3 quadratic subfields of
$E(a^{1/2^{k}})/E$, contradicting the hypothesis. Thus $\zeta_{4}\not\in E(a^{1/2^{k}})\backslash E$.

d) follows easily from b) and c). $\square $

We remark that c) is a special case of Theorem 2.1 of [1].

We can now settle the case of an odd prime. The following lemma
contains the essential information needed for this case.

LEMMA 4. Let $p$ be odd, $b\not\in Q_{p}^{p}$ . Then $Q_{p}(\zeta_{p^{*}}, b^{1/p^{r}})/Q_{p}$ is totally ramifiea
for all $\gamma s$ . Further, if $s>0$ , the ramification degree is $p^{t+*-1}(p-1)$ .

PROOF. We begin by making the following observation. Again, let
$E$ be any field of characteristic different from $p$ . If $\zeta_{p}\not\in E$ and $a\not\in E_{l}^{p}$

then $a^{1/p}$ cannot be in any abelian extension of $E$ , for if it were, this
would imply that $E(a^{1/p})/E$ is abelian, thus $\zeta_{p}\in E(a^{1/p})$ , yet $[E(\zeta_{p}):E]|p-1$ ,

Since $b\not\in Q_{p}^{p}$ , we have that $x^{p^{r}}-b$ is irreducible over $Q_{p}$ for all $r$ ,

$T_{*}af$ $\prime Q=h^{1/p^{r}}$ Tf $O(\beta)/O$ $\backslash x\gamma p\gamma Q$ not $\star t$) $\star al1\tau r$ rflmifipd then $+ho\iota\cdot a\backslash xr\cap 1\rceil 1d$ $h$
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an unramified extension of degree $p$ in $Q_{p}(\beta)/Q_{p}$ . However by Prop. 3 c)
we would have that this unramified extension would be $Q_{p}(b^{1/p})$ . However,
unramified extensions are abelian, thus giving us a contradiction, so
$Q_{p}(\beta)/Q_{p}$ is totally ramified.

Since $Q_{p}(\zeta_{p^{\delta}})/Q_{p}$ is abelian, $b^{1/p}\not\in Q_{p}(\zeta_{p^{\epsilon}})$ , so by Prop. $3a$), $x^{p^{r}}-b$ is
irreducible over $Q_{p}(\zeta_{p^{\epsilon}})$ , thus $p^{r}=[Q_{p}(\zeta_{p^{\delta}}, \beta):Q_{p}(\zeta_{p^{s}})]$ . If this extension
were not totally ramified, then iust as in the preceding paragraph, we
would have that $Q_{p}(\zeta_{p^{\epsilon}}, b^{1/p})/Q_{p}(\zeta_{p^{\epsilon}})$ is unramified. However, this implies
that $Q_{p}(\zeta_{p}., b^{1/p})=Q_{p}(\zeta_{p^{s}}, \zeta_{p^{p}-1})$ , and this last field is an abelian extension
of $Q_{p}$ , which yields that $b^{1/p}$ is in an abelian extension of $Q_{p}$ , a contra-
diction. $\square $

THEOREM 5. Let $p$ be odd and define $s$ by $a\in Q_{p}^{p^{S}}$ and $a\not\in Q_{p}^{p^{s+1}}$ if
$s<k$ , then $pO_{K}=P_{0}^{p^{k-\epsilon}}(P_{1}P_{2}^{p}\cdots P_{\epsilon}^{p^{s-1}})^{(p-1)p^{k-s}}$ .

PROOF. Let $a=b^{p^{*}}$ , where $b\in Q_{p},$ $b\not\in Q_{p}^{p}$ . Then the following is a
factorization into irreducibles:

$x^{p*}-a=x^{p^{*}}-b^{p^{\epsilon}}=(x-b)\phi_{p}(x, b)\cdots\phi_{p^{\partial}}(x, b)$ .
If $(b\zeta_{p}:)^{1/p}\in Q_{p}(\zeta_{p^{i}})\subset Q_{p}(\zeta_{p^{i+1}})$ , this would imply that $b^{1/p}$ is in an abelian

extension of $Q_{p}$ , which cannot occur. Thus $(b\zeta_{p^{i}})^{1/p}\not\in Q_{p}(\zeta_{p^{i}})$ , which in turn
implies that $\phi_{p^{i}}(x^{p}$

‘
$)$ is irreducible for all $i,$ $j$ . Thus the following is a

factorization into irreducibles:
$x^{p^{k}}-a=(x^{p^{k-*}}-b)\phi_{p}(x^{p^{k-\epsilon}}, b)\cdots\phi_{p^{t}}(x^{p^{k-\epsilon}}, b)$ .

Now, a root of $\phi_{p^{i}}(x^{p^{k-s}}, b)$ is of the form $b^{1/p^{k-\epsilon}}\zeta_{p^{k-s+i}}$ , which is an
element of the field $Q_{p}(\zeta_{p^{k-s+i}}, b^{1/p^{k-\epsilon}})$ . However, this last field is totally
ramified, so every subfield is totally ramified. Thus, each of the above
factors of $x^{p^{k}}-a$ yields a totally ramified extension. $\square $

We now want to consider the case $p=2$ . The following lemma is
the even analogue of Lemma 4 and in fact is the key result needed to
determine the decomposition of 2.

LEMMA 6. Let $x^{2}t-b$ be irreducible over $Q_{2}$ , then $f(Q_{2}(b^{1/2^{t}}, \zeta_{2^{\epsilon}})/Q_{2})\leqq 2$

for all $s$ .
PROOF. Set $M=Q_{2}(\beta, \zeta_{2^{*}})$ , where $\beta=b^{1/2^{t}}$ , and $f=f(M/Q_{2})$ .
Let us first consider the case when $\zeta_{2^{\partial}}\in Q_{2}(\beta)$ . Suppose that $f\geqq 4$ .

Then there exists a subfield $L$ of $M$ with $L/Q_{2}$ unramified and $[L:Q_{2}]=4$ .
If $\zeta_{4}\not\in M$, then by Prop. $3c$), we have that $L=Q_{2}(b^{1/4})$ , implying that
$Q_{2}(b^{1/4})$ is normal, so $\zeta_{4}\in Q_{2}(b^{1/4})$ . However, $Q_{2}(\zeta_{4})/Q_{2}$ is ramified while
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$Q_{2}(b^{1/4})/Q_{2}$ is unramified, yielding a contradiction. Thus we may assume
that $\zeta_{4}\in M$. Then by Prop. $3b$), $Q_{2}(b^{1/2})=Q_{2}(\zeta_{4})$ and thus $L\cap Q_{2}(b^{1/2})=Q_{2}$

since one field is unramified while the other is totally ramified. So
$[L(\zeta_{4}):Q_{2}]=8$ and $f(L(\zeta_{4})/Q_{2})=4,$ $e(L(\zeta_{4})/Q_{2})=2$ . By Prop. 3 d), $L(\zeta_{4})=$

$Q_{2}(b^{1/8})$ . However, since $L/Q_{2}$ is abelian, we have that $L(\zeta_{4})=Q_{2}(b^{1/8})$ must
be abelian over $Q_{2}$ . This implies that $\zeta_{8}\in L(\zeta_{4})$ , yet $e(Q_{2}(\zeta_{8})/Q_{2})=4$ while
$e(L(\zeta_{4})/Q_{2})=2$ , a contradiction.

We next consider the case $\zeta_{z^{\epsilon}}\not\in Q_{2}(\beta)$ . Let $2^{h}$ denote the degree of
the maximal abelian extension of $Q_{2}(\beta)/Q_{2}$ . Then by Prop. 3 d), we have
that the maximal abelian extension must have the form $Q_{2}(b^{1/2^{h}})$ . Thus
$\zeta_{2^{h}}\in Q_{2}(b^{1/2^{h}})$ , so $s>h$ . Let $2^{r}=[Q_{2}(\beta)\cap Q_{2}(\zeta_{2^{\epsilon}}):Q_{2}]$ . Then $\gamma=h-1$ or $h$ . In
either case it follows that $Q_{2}(\beta)\cap Q_{2}(\zeta_{2^{\epsilon}})=Q_{2}(b^{1/2^{r}})$ , by Prop. 3. Thus we
have that $\beta^{2^{t-r}}\in Q_{2}(\zeta_{2^{\delta}})$ and in fact $[M:Q_{2}(\zeta_{2^{\partial}})]=2^{t-r}$ since $\zeta_{4}eQ_{2}(\zeta_{2^{s}})(s>$

$h\geqq 1$ , so $s\geqq 2$ and Prop. 3 now yields that $x^{2^{t-r}}-b^{1/z^{r}}$ is irreducible over
$Q_{2}(\zeta_{2^{\epsilon}}))$ . Also by Prop. 3 c), since $\zeta_{4}\in Q_{2}(\zeta_{2^{\theta}})$ , we have that $M/Q_{2}(\zeta_{2^{*}})$ has
the usp. If $f\geqq 4$ and since $Q_{2}(\zeta_{2^{8}})$ is totally ramified, we must have that
$f(M/Q_{2}(\zeta_{2^{t}}))\geqq 4$ , so $Q_{2}(\zeta_{2^{S}}, b^{1/2^{r+2}})$ must be unramified over $Q_{2}(\zeta_{2^{i}})$ . From the
structure of unramified extensions we see that

$Q_{2}(\zeta_{2^{g}}, b^{1/2^{r+2}})=Q_{2}(\zeta_{2^{S}}, \zeta_{2^{4}-1})$

which is an abelian extension of $Q_{2}$ , thus $Q_{2}(b^{1/2^{r+2}})/Q_{2}$ is an abelian ex-
tesion, yet $r+2>h$ , contradicting the maximality of $h$ .

So we must have that $f\leqq 2$ . $\square $

In studying the case when $p$ is odd, it was irrelevant how much $p$

divided $a$ . For the case $p=2$ , the behavior of the factorization exhibits
some peculiarities which depend upon the power of 2 dividing $a$ . This
behavior again verifies the old adage that 2 is the oddest prime.

We now want to write $a$ in a special form. If $a=2^{f}a_{1},$ $a_{1}$ odd $(a_{1}$

may be negative) and $(r, 2^{k})=2^{d}$ , then let $y$ be such that $(y, 2)=1$ and
$ry-x2^{k}=2^{d}$ . Then since $y$ is odd, $Q(a^{1/2^{k}})=Q(a^{y/2^{k}})=Q((2^{2^{d}}a_{1}^{y})^{1/2^{k}})$ . Thus, in
the following we will assume that $a$ has the form

$(*)$ $a=2^{2^{d}}a_{1}$ , $a_{1}$ odd , $0\leqq d\leqq k$ .
Note that if $d=k$ , then $Q(a^{1/2^{k}})=Q(a_{1}^{1/2^{k}})$ , so the case when $a$ is odd is
subsumed under the case $d=k$ .

We can now state the results for $p=2$ . Recall that by Th. 2, we
may assume that $d\neq 0$ and that if $d=k$ , then $a_{1}\not\in Q_{2}^{2^{k}}$ . Also we define $t$

as follows: If $a_{1}\in Q_{2}^{2^{k}}$ , then set $t=k$ , otherwise define $t$ by $a_{1}\in Q_{2}^{2^{t}}$ ,
$a,$ . $\not\in O_{\wedge-}^{2^{t+1}}$ We shall $asqllm\rho\dotplus hafk>9r\mathfrak{n}dt\hslash 7\partial saf\hslash^{r}=O(n^{1}/2^{k})$ A $1_{sn}\cap\swarrow^{\prime}d$
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since if $a$ is odd we may take $d=k$ .
THEOREM 7. A) If $a_{1}\equiv 3$ (mod8), then 2 $0_{K}=P^{2^{k}},$ $f(P/2)=1$ .

B) If $a_{1}\equiv 5(mod 8)$ and $d>0$ , then 2$0_{K}=P^{2^{k-1}},$ $f(P/2)=2$ .
C) If $a_{1}\equiv 7(mod 8)$ and $d\geqq 2$ , then 2 $0_{K}=P^{2^{k}},$ $f(P/2)=1$ .

If $d=1$ and $a_{1}\equiv 15(mod 16)$ , then $20_{K}=(P_{1}P_{2})^{2^{k-1}},$ $f(P_{i}/2)=1,$ $i=1,2$ .
If $d=1$ and $a_{1}\equiv 7(mod 16)$ , then 2 $0_{K}=P^{2^{k-1}},$ $f(P/2)=2$ .

D) If $a_{1}\equiv 1(mod 8)$ , then
i) If $d=k,$ $20_{K}=P_{0}^{2^{k-t-1}}(P_{1}P_{2}^{2}\cdots P_{t}^{2^{t-1}})^{2^{k-t}}$ ,

$f(P_{0}/2)=2$ and $f(P_{i}/2)=1,$ $i>0$ .
ii) If $0<d<k$ , then

a) If $t\geqq d+1$ , then
$’\dot{b}fk=2,20_{K}=(P_{0}P_{1})^{2},$ $f(P_{i}/2)=1,$ $i=0,1$ ,
if $k>2,20_{K}=(P_{0}P_{1}P_{2}P_{2}^{\prime}P_{3}^{4}\cdots P_{d}^{2^{d-1}})^{2^{k-d}}$ ,

$f(P_{l}/2)=f(P_{i}^{\prime}/2)=1$ , for all $i$ .
b) If $t=d$ then 2 $0_{K}=(P_{0}P_{1}P_{2}P_{3}^{4}\cdots P_{t}^{2^{t-1}})^{2^{k-t}}$ ,

$f(P_{0}/2)=2$ and $f(P_{i}/2)=1$ for $i>0$ .
c) If $t<d$ then 2 $0_{K}=P_{0}^{2^{k-t-1}}(P_{1}P_{2}^{2}\cdots P_{t}^{2^{t-1}})^{2^{k-1}}$ ,

$f(P_{0}/2)=2,$ $f(P_{i}/2)=1$ , for $i>0$ .
PROOF. A), B) If $a_{1}\equiv 3$ or 5 $(mod 8)$ , then by applying Prop. 3 a), we

see that $x^{2^{k}}-a$ is irreducible over $Q_{2}$ , so 2 has exactly one factor in $O_{K}$ .
If $a_{1}\equiv 3(mod 8)$ , then $Q_{2}(a^{1/2})=Q_{2}(3^{1/2})$ and this is ramified over $Q_{2}$ . Fur-
ther, $Q_{2}(3^{1/2})\neq Q_{2}(\zeta_{4})$ , so $Q_{2}(a^{1/2^{k}})/Q_{2}$ has the usp by Prop. $3c$). Thus if
$f(Q_{2}(a^{1/2^{k}})/Q_{2})\geqq 2$ then we would have that $Q_{2}(3^{1/2})/Q_{2}$ would be unramified.
So $f(Q_{2}(a^{1/2^{k}})/Q_{2})=1$ .

If $a_{1}\equiv 5\equiv-3(mod 8)$ and $d>0$ , then $Q_{2}(a^{1/2})=Q_{2}((-3)^{1/2})=Q_{2}(\zeta_{3})$ , which
is an unramified extension of $Q_{2}$ . However, by Lemma 6, $f(Q_{2}(a^{1/2^{k}})/Q_{2})\leqq 2$ ,
so $f(Q_{2}(a^{1/2^{k}})/Q_{2}(a^{1/2}))=1$ and the result follows.

C) If $a_{1}\equiv-1(mod 8)$ , then $a_{1}=-c^{2},$ $c\in Q_{2}$ . If $d\geqq 2$ , then $x^{2^{k}}-a$ is
irreducible over $Q_{2}$ by Prop. $3a$). Further, since $d\geqq 2,$ $Q_{2}(a^{1/4})=Q_{2}(a_{1}^{1/4})$ .
If $f(Q_{2}(a^{1/2^{k}})/Q_{2})=2$ , then $Q_{2}((-3)^{1/2})\subset Q_{2}(a^{1/2^{k}})$ , and thus $Q_{2}((-3)^{1/2}, \zeta_{4})=$

$Q_{2}(a_{1}^{1/4})$ by Prop. 3 d). However since $x^{2}-a$ is irreducible over $Q_{2}(\zeta_{3})$ , this
would imply $x^{4}-a_{1}$ is reducible over $Q_{2}(\zeta_{3})$ , thus $-4a_{1}\in Q_{2}(\zeta_{3})^{4}$ . Since $a_{1}$

is odd and 2 is prime in $Q_{2}(\zeta_{8})$ , this is impossible. Thus $f(Q_{2}(a^{1/2^{k}})/Q_{2})=1$

and $20_{K}=P^{2^{k}},$ $f(P/2)=1$ .
Now, let us assume that $d=1$ .
If $a_{1}\equiv-1(mod 16)$ , then

$a_{1,2^{k}}=-c^{4},$
$c\in Q_{2}$ , thus $x^{4}-a=x^{4}+4c^{4}=(x^{2}+2cx+$

$2c^{2})(x^{2}-2cx+2c^{2})$ and thus $x-a=(x^{2^{k-1}}+2cx^{2^{k-2}}+2c^{2})(x^{2^{k-1}}-2cx^{2^{k-2}}+2c^{2})$ ,
and both factors are Eisenstein at 2 over $Q_{2}$ , thus irreducible, and 2$0_{K}=$

$(P_{1}P_{2})^{2^{k-1}},$ $f(P_{i}/2)=1$ .
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If $a_{1}\equiv 7$ (mod16), then by Prop. $3a$), $x^{2^{k}}-a$ is irreducible over $Q_{2}$ .
However, $a_{1}=-c^{2}$ , where $c\equiv\pm 3(mod 8)$ and without loss of generality
we may take $c\equiv 3(mod 8)$ . Thus we have that $a=-(2\cdot 3)^{2}c_{2}^{4}$ , where $c_{2}\in Q_{2}$ .
So $Q_{2}(a^{1/2})=Q_{2}(\zeta_{4})$ and $Q_{2}(a^{1/4})=Q_{2}(\zeta_{8}2^{1/2}3^{1/2})=Q_{2}((1+\zeta_{4})3^{1/2})=Q_{2}(\zeta_{4}, (-3)^{1/2})$ , so
$f(Q_{2}(a^{1/4})/Q_{2})=2$ , thus by Lemma 6, we have that $f(Q_{2}(a^{1/2^{k}})/Q_{2}(a^{1/4}))=1$ , so
$f(Q_{2}(a^{1/2^{k}})/Q_{2})=2$ and 2 $0_{K}=P^{2^{k-1}}$ , where $f(P/2)=2$ .

D) Finally we come to the case $a_{1}\equiv 1(mod 8)$ . This situation is more
complicated than the preceding cases since $x^{2^{k}}-a$ may have many factors.

Case 1) $t\leqq d$ . If $d=k$ then since we have already treated the case
when $a\in Q_{2}^{2^{k}}$ , we may assume that $t<k$ . If $d<k$ , then since $t\leqq d$ , we
have that $t<k$ . Thus in all cases we have that $t<k$ so $a_{1}=b_{1}^{2^{t}},$ $\pm b_{1}\not\in Q_{2}^{2}$ .
Since $a_{1}$ is odd, this implies that $b_{1}\equiv\pm 3$ (mod8), and without loss of
generality we will take $b_{1}\equiv-3(mod 8)$ .

Set $b=2^{2^{d-t}}b_{1}$ , thus $a=b^{2^{t}}$ and
$x^{2^{t}}-a=x^{2^{t}}-b^{2^{t}}=(x-b)(x+b)(x^{2}+b^{2})\cdots(x^{2^{t-1}}+b^{2^{t-1}})$ .

Thus
$x^{l^{k}}-a=(x^{2^{k-t}}-b)(x^{2^{k-t}}+b^{2})\cdots(x^{2^{k-1}}+b^{2^{t-1}})$ .

By applying Prop. 3 a) we find that each of the factors of $x^{2^{k}}-a$ is
irreducible. Further since $-b^{2^{i}}\equiv-1(mod 8)$ , we can apply C) to all but
the first two or three factors (three when $t=d$ as we shall see below)
to conclude that each of the factors (that is all but possibly the first two
or three) gives rise to a totally ramified extension.

If $t<d$ , then since $b_{1}\equiv-3(mod 8)$ we can apply B) to conclude that
the first factor gives rise to a prime divisor $P_{0}$ of inertial degree 2 and
ramification degree $2^{k-t-1}$ . Since $-b_{1}\equiv 3(mod 8)$ we can apply A) to the
second factor to conclude that the second factor gives rise to a totally
ramified extension.

If $t=d$ , then $b=2b_{1}$ thus the first two factors are Eisenstein at 2 so
they give rise to totally ramified extensions. The third factor has the
form $x^{2^{k-t+1}}+2^{2}b_{1}^{2}$ . $Since-b_{1}^{2}\equiv 7(mod 8)$ , we may apply C), $d=1$ , to conclude
that this factor gives rise to a divisor $P_{0}$ with $f(P_{0}/2)=2$ . From the fourth
factor on we apply C), $d\geqq 2$ , to obtain totally ramified factors. Case 1
takes care of D) i) and D) ii) b), c).

Case 2) $t>d$ . Set $b=2b_{1}^{2^{t-d}}$ . Then $a=b^{2^{d}}$ and $ x^{2^{d}}-a=(x-b)(x+b)\times$

$(x^{2}+b^{2})(x^{4}+b^{4})\cdots(x^{2^{d-1}}+b^{2^{d-1}})$ , where each of these factors is irreducible.
Thus

$x^{2^{k}}-a=(x^{2^{k-d}}-b)(x^{2^{k-d}}+b)(x^{2^{k-d+1}}+b^{2})(x^{2^{k-d+2}}+b^{4})$ . . . $(x^{2^{k-1}}+b^{2^{d-1}})$ .
The first two factors are Eisenstein at 2 so give rise to totallv
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ramified extensions. Also from the fourth factor on we may apply Prop.
3 a) to conclude that each of the factors is irreducible and by C) each
gives rise to a totally ramified extension.

The third factor (if it appears at all, that is, if $k=2$ then under the
assumptions $k\geqq t>d>0$ , we obtain $t=2,$ $d=1$ ) however is reducible since
$b=2b_{1}^{2^{t-d}}$ and thus $b^{2}=4b_{1}^{2^{t-d+1}}=4c^{4}$ , where $c=b_{1}^{2^{t-d-1}}$ . Thus

$x^{2^{k-d+1}}+b^{2}=x^{2^{k-d+1}}+4c^{4}=(x^{2^{k-d}}-2cx^{2^{k-d-1}}+2c^{2})(x^{2^{k-d}}+2cx^{2^{k-d-1}}+2c^{2})$ .
Since both factors are Eisenstein at 2 they give rise to totally ramified
extensions. Thus the third factor gives rise to 2 totally ramified ex-
tensions of degree $2^{k-d}$ . $\square $

In the case when $K/Q$ is an abelian extension and $p$ is a prime of
$Z$, then in constructing the Hilbert tower we see that there is a sequence
of fields $K\supset T\supset U\supset Q$ where $p$ splits into $g$ factors in $U$, each of these
factors pick up their inertial degrees from $U$ to $T$, and then each totally
ramifies from $T$ to $K$. For the case when $K/Q$ is not normal one usually
expects splitting, followed by inertial degrees and then ramification. In
general this does not happen, not even for the class of radical extensions.

For example, if $d=1$ and $a_{1}\equiv 15(mod 16)$ , then (by looking back to
the proof) we see that 2 ramifies in $Q(a^{1/2})$ , then this unique factor of 2
in $Q(a^{1/2})$ splits in $Q(a^{1/4})/Q(a^{1/2})$ and then total ramification for both factors
in $Q(a^{1/2^{k}})/Q(a^{1/4})$ .

If $d=1$ and $a_{1}\equiv 7$ (mod16), then 2 ramifies in $Q(a^{1/2})$ and then the
unique prime factor of 2 in $Q(a^{1/2})$ remains inert in $Q(a^{1/4})/Q(a^{1/2})$ and then
totally ramifies in $Q(a^{1/2^{k}})/Q(a^{1/4})$ .

Furthermore if $Q(a^{1/2})\neq Q(\zeta_{4})$ , then $Q(a^{1/2})$ is the unique quadratic sub-
field of $Q(a^{1/2^{k}})$ so it is not possible to circumvent this phenomenon in this
situation.

When $a_{1}\equiv 1(mod 8)$ the factorization behavior of 2 in the tower of
fields $Q\subset Q(a^{1/2})\subset Q(a^{1/4})\subset\cdots\subset Q(a^{1/2^{k}})$ is even more complicated.

As an application of our results we shall determine the genus field
of $Q(a^{1/n})$ . We shall develop the few results that we need on genus fields.
This development is different from that found in [12] and should be of
interest in its own right.

Genus theory of fields. Let $[F:Q]<\infty$ . The genus field $F^{*}$ of $F$

is the maximal abelian extension of $F$ which is a composite of an absolute
abelian field $L$ with $F$ and is unramified at all of the finite prime ideals
of $F$. Set $F_{*}$ to be the maximal abelian number field of $F^{*}$ . Clearly
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$F^{*}=F\cdot F_{*}$ . Set $g_{F}=[F^{*} : F]$ . The number $g_{F}$ is called the genus number
of $F$.

LEMMA 8. Let $p_{1},$ $\cdots,$ $p$. be $s$ distinct primes, $L_{i}\subset Q(\zeta_{p_{i}}f_{i})$ , and $F=$

$ L_{1}\cdots$ L., then $F^{*}=F$.
PROOF. We shall induct on $s$ . If $s=1$ then $F^{*}/F$ is unramified at

all finite primes. However since $F^{*}/Q$ is abelian over $Q$ and the only
ramified prime of $F^{*}$ is $p_{1}$ , we have that $F^{*}\subset Q(\zeta_{p}i)$ , for some $t$ . But
$Q(\zeta_{p^{t}})/Q$ is totally ramified, so $F^{*}/Q,$ $F^{*}/F$ is totally ramified, thus $F^{*}=F$.

Now assume that the induction hypothesis is true when $k=s-1$ and
let $F_{1}=L_{1}\cdots L_{*-1},$ $F_{2}=L_{*}$ , and $g_{p}=[F^{*} : F]$ . Let $e_{i}=e(p_{i}, L_{i}/Q)$ . Clearly
$e_{i}=e(p_{i}, F^{*}/Q)$ . Let $V$ be the ramification field for $p$. in $F^{*}$ , then $e.=$

$[F^{*} : V]$ and $V\supset F_{1}$ since $p$. is unramified in $F_{1}$ . Since $e(p_{i}, F^{*}/Q)=$

$e(p_{i}, F_{1}/Q)=e(p_{l}, V/Q)$ for $i<s$ and $p_{*}$ is unramified in $V$, we see that
$V/F_{1}$ is unramified at all finite primes, thus $V=F_{1}$ by the induction
hypothesis, and then $[F^{*} : Q]=[F^{*} : F_{1}]\cdot[F_{1} : Q]=e_{1}\cdots e_{\epsilon}=[F:Q]$ , so $F^{*}=$

F. $\square $

COROLLARY 9. If $F=Q(\zeta_{m})$ , then $Q(\zeta_{m})^{*}=Q(\zeta_{m})$ . $\square $

A useful tool for constructing abelian unramified extensions is the
following lemma. See [23] for a proof.

ABHYANKAR’S LEMMA. Let $F_{1},$ $F_{2}$ be algebraic number fields and
$L=F_{1}F_{2}$ . Let $P$ be a prime ideal of $L$ dividing prime ideals $P_{1},$ $P_{2}$ and
$p$ of $F_{1},$ $F_{2}$ and $Q$ respectively. Let $e_{i}=e(P_{i}, F_{i}/Q)$ . If $pfe_{1}$ and $e_{1}|e_{2}$

then $P$ is unramified over $F_{2}$ . $\square $

If $F/Q$ is an abelian extension then we know that there exists an
$m$ such that $F\subset Q(\zeta.)$ . We remark that we can choose $m$ so that $m$ is
divisible only by the primes that ramify in $F/Q$ and further if $p^{d}||e(p, F/Q)$

then if $p$ is odd $p^{d+1}||m$ and if $p=2$ , then either $2^{d+1}||m$ or $2^{d+2}\Vert m$ .
The following result describes the structure of $F_{*}$ .
THEOREA 10. Let $F/Q$ be finite and $\{p_{1}, \cdots, p.\}$ the set of all distinct

primes that ramify in $F_{*}/Q$ . Then there exist fields $L_{1},$ $\cdots$ , L. such that
$L_{i}\subset Q(\zeta_{p_{i}}f_{i})$ and $ F_{*}=L_{1}\cdots$ L.. Further, if $p_{i}$ is odd then $L$ is the unique
subfield of $Q(\zeta_{p_{i}^{f_{i}}})$ of degree $e(p_{i}, F_{*}/Q)$ over Q. If $p_{i}=2$ , then $L_{i}$ is one
of the three fields

$Q(\zeta_{2^{+1}}.)$ , $Q(\zeta_{2^{*+2}}+\zeta_{2*+2}^{-1})$ , $Q(\zeta_{4}(\zeta_{2^{\epsilon+2}}+\zeta_{2^{l+2}}^{-1}))$ ,

where $2=e(2. F_{*}/Q)$ .
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PROOF. Since $F_{*}$ is abelian, $F_{*}\subset Q(\zeta_{m})$ for some $m$ . With $e=$

$e(p_{i}, F_{*}/Q)$ we have that $e_{i}|(p_{i}-1)p_{i}^{f_{i}}$ for some $f_{i}$ . Set $e_{i}=n_{i}p_{i}^{d_{i}}$ , where
$n_{i}|p_{i}-1$ . Let $F_{i}$ be the unique subfield of $Q(\zeta_{p_{l}})$ of degree $n_{i}$ over $Q$ .
Then by Abhyankhar’s Lemma, we have that $F_{i}F_{*}/F_{*}$ is unramified at all
finite primes, so $F_{i}F_{*}F/F$ is unramified at all finite primes, hence $F_{i}\subset F_{*}$ ,
since $F_{*}$ is the maximal abelian subfield of $F_{*}$ .

Now, let us consider the power $p_{l}^{d_{i}}$ .
If $p_{i}$ is odd then there exists exactly one subfield of $Q(\zeta_{p_{i}^{d_{l}+1}})$ of degree

$p_{i}^{d_{l}}$ over $Q$ . Call this field $F_{i}^{\prime}$ . Recall that $F_{*}\subset Q(\zeta_{m})$ , where $p_{i^{i+1}}^{d}\Vert m$ .
Thus $F_{i}^{\prime}\cdot F_{*}\subset Q(\zeta_{m})$ . However, since $p_{l}^{a_{i}}\Vert e(p_{l}, F_{*}/Q)$ and $p_{i}^{d_{i}}\Vert e(p_{i}, Q(\zeta_{n})/Q)$ ,
we must have that $F_{i}^{\prime}\cdot F_{*}/F_{*}$ is unramified at all finite primes, which
yields that $F_{i}^{\prime}\subset F_{*}$ , thus we may set $L_{i}=F_{i}\cdot F_{i}^{\prime}$ and we obtain that
$[L_{i} : Q]=e_{i}$ and $L_{i}\subset Q(\zeta_{p_{i^{i}}^{d+1}})$ .

Next consider $p=p_{i}=2$ and set $2^{e}=e_{i}$ . Then of course there are
exactly three subfields of $Q(\zeta_{2^{e+2}})$ of degree 2e over $Q$ . Further, since
$e(2, F_{*}/Q)=2^{e}$ , we have that $F_{*}\subset Q(\zeta_{m})$ , where $2^{e+2}\Vert m$ . Thus only the
factors of 2 in $F_{*}$ ramify in $F_{*}(\zeta_{2^{6+2}})/F_{*}$ . Let $P$ be any prime divisor
of 2 in $F_{*}(\zeta_{2^{e+2}})$ and let $V$ be its ramification field in $F_{*}(\zeta_{2^{e+2}})/F_{*}$ . Thus
$2=[F_{*}(\zeta_{2^{e+2}}):V]$ . Since $F_{*}\subset V\subset F_{*}(\zeta_{2^{6+2}})$ only the divisors of 2 can ramify
in the extension $V/F_{*}$ . However by definition of $V$ , the divisors of 2 in
$F_{*}$ do not ramify, so $V/F_{*}$ is unramified at all finite primes, and the
same holds for $VF_{*}F/F$, thus $V=F_{*}$ . So $[F_{*}(\zeta_{2^{e+2}}):F_{*}]=2$ , thus
$[F_{*}\cap Q(\zeta_{2^{e+2}}):Q]=2^{e}$ and since $Q(\zeta_{2^{e+2}})$ contains exactly three subfields of
degree $2^{e},$ $F_{*}$ must contain exactly one of them.

Thus, for $p_{i},$ $i=1,$ $\cdots,$ $s$ , we have a field $L_{l}$ with $L_{i}\subset Q(\zeta_{p_{i}^{f_{i}}}),$ $L_{i}\subset F_{*}$

and $e_{i}=[L_{i} : Q]$ . Clearly $[L_{1}\cdots L_{\epsilon} : Q]=e_{1}\cdots e_{s}$ and $F_{*}\supset L_{1}\cdots L_{\epsilon}$ . If
$F_{*}\neq L_{1}\cdots L_{*}$ , then since $e(p_{t}, F_{*}/Q)=e(p_{i}, L_{t}/Q)$ , we have that $F_{*}/L_{1}\cdots L_{*}$

is unramified
$sat$

all finite primes. However by Lemma 8,
$(L_{1}\cdots L_{*})^{*}=\square $

$L_{1}\cdots L_{*}$ , thus $F_{*}=L_{1}\cdots L_{\epsilon}$ .
Let $a\in Z$ be such that $x^{n}-a$ is irreducible over $Q$ . For a prime $p$

let $v_{p}(a)$ denote that exponent for which $p^{v_{p}(\sigma)}\Vert a$ . For the rest of this
paper set $K=Q(a^{1/n})$ . We are now ready to compute $K_{*}$ , however the
following lemma, whose proof can be found on page 46 of [12], will prove
useful.

LEMMA 11. Let $F=F_{1}\cdot F_{2}$ where $[F_{1} : Q]=n_{i},$ $(n_{1}, n_{2})=1$ and $[F:Q]=$

$n_{I}n_{2}$ . Then $F^{*}=F_{1}^{*}\cdot F_{2}^{*}$ and $F_{*}=F_{1*}\cdot F_{2*}$ .
Using the notation of Theorem 10 we have that $K_{*}=L_{1}\cdots L_{\epsilon}$ . We

wish to give a local characterization of the $L_{i}$ . Thus let us fix $i$ and
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set $L=L_{i},$ $p=p_{i}$ and suppose that $pO_{K}=P_{1}^{e_{1}}\cdots P_{a}^{eff}$ . Since $KL/K$ is un-
ramified at all finite primes and $p$ is totally ramified in $L/Q$ , we see that
$[L:Q]|(e_{1}, \cdots, e_{g})$ . So if $(e_{1}, \cdots, e_{g})=1$ then $L=Q$ . It is easy to see that
$L$ is the maximal subfield of $Q(\zeta_{p^{\infty}})$ (the field of $p^{n}$-th roots of unity for
all n) with the property that $i(L)\cdot K_{p_{j}}/K_{p_{j}}$ is unramified for all $j$ , where
$i(L)$ denotes an appropriate embedding of $L$ into an algebraic closure of
$Q_{p}$ . From this it follows that if there is at least one $j$ for which
$i(L^{\prime})K_{p_{\dot{g}}}/K_{p_{j}}$ is ramified for all subfields $L^{\prime}(\neq Q)$ of $Q(\zeta_{p^{\infty}})$ , then necessarily
$L=Q$ .

If $p_{i}$ is odd then $L_{i}\subset Q(\zeta_{p_{i}}\infty)$ . Further we may decompose $L_{i}$ into
$L_{i}=L_{l}^{\prime}\cdot L^{\prime\prime}$ where $L_{i}^{\prime}\subset Q(\zeta_{p_{i}})$ , $[Lt^{\prime} : Q]$ is a power of $p$ . The following
lemma determines $L_{i}^{\prime}$ and Lemma 13 will show that $L_{i}^{\prime}=Q$ .

LEMMA 12. Suppose that $(n, p)=1,$ $d=(v_{p}(a), n)$ and let $K_{(p)}$ denote
the maximal subfield of $Q(\zeta_{p^{\infty}})$ contained in $K_{*}$ . Then $K_{(p)}$ is the unique
subfield of $Q(\zeta_{p})$ of degree $(n/d, p-1)$ over $Q$ .

PROOF. Let us first determine the factorization of $p$ in $K$. Let
$h=v_{p}(a)$ and $a=p^{h}a_{1},$ $(a_{1}, p)=1$ . Write $d=hx-ny$ with $(x, n)=1$ . Since
$(x, n)=1$ we have that $K=Q(a^{l/n})$ . Now $a^{x}=p^{hx}a_{1}^{x}=(p^{y})^{n}p^{d}a_{1}^{x}$ and obviously
$K=Q((p^{d}a_{1}^{x})^{1/n})=Q((pa_{1}^{x/d})^{1/r})$ , where $r=n/d$ .

If $M=Q(a_{1}^{x/d})$ , then since $(p, da_{1}^{x})=1$ , we have that $p$ is unramified
in $M/Q$ . However $K$ is obtained from $M$ by adjoining a root of $x^{f}-pa_{1}^{x/d}$

to $M$. If $P$ is any divisor of $p$ in $O_{H}$ , then the polynomial $x-pa_{1}^{x/d}$ is
Eisenstein at $P$, so

$pO_{K}=(P_{1}\cdots P_{g})$‘ , where $\gamma|n$ .
Since $(p, r)=1,$ $K_{(p)}\subset Q(\zeta_{p^{\infty}})$ and $[K_{(p)} : Q]|\gamma$ , we see that $K_{(p)}\subset Q(\zeta_{p})$ .

Thus the maximal possible such field is of degree $(p-1, r)$ . However, if
$K_{(p)}$ is the unique subfield of $Q(\zeta_{p})$ of degree $(p-1, r)$ over $Q$ , then by
applying Abhyankhar’s Lemma to $K_{(p)}$ and $K$, we see that $K_{\{p)}K/K$ is
unramified at all finite primes. $\square $

LEMMA 13. Let $p$ be an odd prime, $n=p^{k}$ and let $K_{(p)}$ denote the
maximal subfield of $Q(\zeta_{p^{\infty}})$ contained in $K_{*}$ . Then $K_{(p)}=Q$ .

PROOF. By Th. 5 we see that there is a divisor $P_{0}$ of $p$ in $O_{K}$ with
the property that

$K_{P_{0}}=Q_{p}(b^{1/p^{k-\epsilon}})$ where $b\not\in Q_{p}^{p}$ if $k-s>0$ .
If $k-s=0$ , then $e(P_{0}/p)=1$ so $K_{(\emptyset)}=Q$ . Thus we may take $k-s>0$ .
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However, by Lemma 4, we have that $Q_{p}(b^{1/p^{k-\epsilon}}, \zeta_{p^{t}})$ is totally ramified
over $Q_{p}$ for all $t$ and $[Q_{p}(b^{1/p^{k-}}, \zeta_{p^{t}}):Q_{p}]=p^{k-*+t-1}(p-1)$ . This degree
statement shows that $Q_{p}(b^{1/p^{k-\epsilon}})\cap Q_{p}(\zeta_{p^{\infty}})=Q_{p}$ .

There is a $t$ for which $K_{(p)}\subset Q(\zeta_{p^{t}})$ , thus $K_{P_{0}}\cap i(K_{(p)})=Q_{p}$ (we take
the natural embedding in $\overline{Q}_{p}$) and $K_{P_{0}}\cdot K_{(p)}/K_{P_{0}}$ is totally ramified thus
$K_{(p)}=Q$ .

The following notation will be in force for the rest of this paper.
Given $K$, let $K_{(p_{i})}$ denote the maximal subfield of $Q(\zeta_{p}\infty)$ contained in $K_{*}$ .
Thus

$K_{*}=K_{(p_{1})}\cdots K_{(p_{S})}$ ,

where $\{p_{1}, \cdots, p_{\epsilon}\}$ is the set of primes that ramify in $K_{*}$ . Further if $p_{i}$

is odd we shall write $K_{(p_{i})}=K_{(p_{i})}^{\prime}\cdot K_{(p_{i})}^{\prime\prime}$ , where $K_{(p_{i})}^{\prime}\subset Q(\zeta_{p_{i}})$ and $[K_{(p_{i})}^{\prime\prime} : Q]$

is a power of $p$ .
COROLLARY 14. Let $p$ be an odd prime, $n=p^{r}m,$ $(m, p)=1$ , and

$d=(v_{p}(a), m)$ and $K=Q(a^{1/n})$ . Then $K_{(p)}$ is the unique subfield of $Q(\zeta_{p})$

of degree $(m/d, p-1)$ over $Q$ .
PROOF. Let $K_{1}=Q(a^{1/p^{r}}),$ $K_{2}=Q(a^{1/m})$ . Then by Lemma 11 we have

that $K_{*}=K_{1*}\cdot K_{2*}$ , and thus
$K_{(p)}=K_{1(p)}\cdot K_{2(p)}$ .

By Lemma 13, $K_{1(p)}=Q$ and Lemma 12 yields $K_{(p)}=K_{2(p)}$ .
For $K=Q(a^{1/n})$ it only remains to determine $K_{(2)}$ . If $n=2^{k}m,$ $m$ odd,

then by Lemma 12, $Q(a^{1/m})_{(2)}=Q$ , thus $Q(a^{1/n})_{(2)}=Q(a^{1/2^{k}})_{(2)}$ . For the rest
of this paper we shall take $m=1$ so $K=Q(a^{1/2^{k}})$ . Furthermore we may
assume that $a$ has the form

$(*)$ $a=2^{2^{d}}a_{1}$ , $a_{1}$ odd, $n\leqq d\leqq k$ .
We shall determine $K_{(2)}$ using local methods and so we first set some

generic terminology.

If $[F:Q_{2}]=2^{t}$ then $2^{h}$ is the degree of the maximal abelian subfield
of $F/Q_{2}$ . If $F=Q_{2}(b^{1/2^{t}})$ then by Prop. 3 c), d), the maximal abelian

$(**)$ subfield has the form $Q_{2}(b^{1/2^{h}})$ . Finally given $F,$ $T$ shall denote the
maximal subfield of $Q_{2}(\zeta_{2^{\infty}})$ with the property that $FT/F$ is unrami-
fied. Obviously $[FT:F]=[T:T\cap F]$ and we denote this common
degree by $2^{r}$ .

We have previously shown that if $x^{2^{k}}-b$ is irreducible over $Q_{2}$ then
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$f(Q_{2}(b^{1/2^{k}}, \zeta_{2}.)/Q_{2})\leqq 2$ . It shall be important to determine when this inertial
degree is actually 2. This is accomplished in Lemma 16 but first one more
result from the theory of radical extensions.

PROPOSITION 15. Let $x^{2^{k}}-b_{1},$ $x^{2^{k}}-b_{2}$ be irreducible over $Q_{2}$ . Then
there are roots $\beta_{1}^{2^{k}}=b_{1},$ $\beta_{2}^{2^{k}}=b_{2}$ with $Q_{2}(\beta_{1})=Q_{2}(\beta_{2})$ iff either (1) $b_{1}b_{2}^{i}\in Q_{2}^{2^{k}}$

for some odd $i$ or (2) $k\geqq 3,$ $-b_{1}\in Q_{2}^{2},$ $-b_{2}\in Q_{2}^{2}$ and $b_{1}b_{2}^{i}2^{2^{k-1}}\in Q_{2}^{2^{k}}$ for some
odd $i$ .

Proposition 15 is a special case of Corollary 4.1 of [1]. $\square $

LEMMA 16. Let $x^{2^{k}}-a$ be irreducible, $a$ has form $(*)$ , assume $(**)$

and $f=f(Q_{2}(a^{1/2^{k}}, \zeta_{2^{*}})/Q_{2})$ . Then $f=2$ iff either
(A) $s\leqq h$ and either $a=-3c^{2}$ or if $k\geqq 2,$ $a=-(2\cdot 3)^{2}c^{4}$ , for some $c\in Q_{2}$ ,
(B) $s>h$ then $Q_{2}(a^{1/2^{h}})\not\subset Q_{2}(\zeta_{2^{\partial}})$ and either $s\geqq 3$ or if $s=2$ then $a=(\pm 3)c^{2}$ ,
$c\in Q_{2}$ .

PROOF. Recall that $Q_{2}(a^{1/2^{h}})$ is the maximal abelian subfield of $Q_{2}(a^{1/2^{k}})$ .
Since $x^{2^{h}}-a$ is irreducible, this implies that $\zeta_{2^{h}}\in Q_{2}(a^{1/2^{h}})$ and in fact since
$2^{h-1}=[Q_{2}(\zeta_{2}h):Q_{2}]$ , we have by Prop. 3 d) that $Q_{2}(a^{1/2^{h-1}})=Q_{2}(\zeta_{2^{h}})$ . By Lemma
6 we know that $f\leqq 2$ .

If $s\leqq h$ then of course, $Q_{2}(a^{1/2^{k}}, \zeta_{2^{*}})=Q_{2}(a^{1/2^{k}})$ . In order to determine $f$

we have to apply Th. 7, or rather a local version of Th. 7. However,
the proof of Th. 7 is local anyway. By Th. 7 we see that $f=2$ iff either
(i) $d>0$ and $a=2^{2^{d}}(-3)c^{2}$ (so $Q_{2}(a^{1/2})=Q_{2}((-3)^{1/2})=Q_{2}(\zeta_{8})$ ) or (ii) if $k\geqq 2,$ $d=1$

and $a=-(2\cdot 3)^{2}c^{4}$ (so $Q_{2}(a^{1/2})=Q_{2}(\zeta_{4})$ and $Q_{2}(a^{1/4})=Q_{2}(\zeta_{4},3^{1/2})=Q_{2}(\zeta_{4},$ $\zeta_{8})$).
Let now $s>h$ and set $2^{t}=[Q_{2}(a^{1/2^{k}})\cap Q_{2}(\zeta_{2^{S}}):Q_{2}]$ . Since $\zeta_{2^{h}}\in Q_{2}(a^{1/2^{k}})$ and

$2^{h}$ is the degree of the maximal abelian subfield we have that $t=h-1$ or
$t=h$ . In either case it follows that $Q_{2}(a^{1/2^{k}})\cap Q_{2}(\zeta_{2^{*}})=Q_{2}(a^{1/2^{t}})$ . Let $M=$
$Q_{2}(a^{1/2^{k}}, \zeta_{2^{*}})$ .

If $t=h$ then $Q_{2}(a^{1/2^{h}})\subset Q_{2}(\zeta_{2}.)$ . Since $\zeta_{4}\in Q_{2}(\zeta_{2^{\delta}})$ we have by Prop. $3c$)
that $Q_{2}(\zeta_{2^{\ell}}, a^{1/2^{h+1}})$ is the unique quadratic subfield of $M$ over $Q_{2}(\zeta_{2^{*}})$ . How-
ever, $Q_{2}(\zeta_{2}.)/Q_{2}$ is totally ramified so $f=2$ iff $f(M/Q_{2}(\zeta_{2}.))=2$ iff $Q_{2}(\zeta_{2}., a^{1/2^{h+1}})$

is unramified over $Q_{2}(\zeta_{2^{\epsilon}})$ . If $Q_{2}(\zeta_{2^{\delta}}, a^{1/2^{h+1}})/Q_{2}(\zeta_{2^{\delta}})$ is unramified then
$Q_{2}(\zeta_{2^{s}}, a^{1/2^{h+1}})=Q_{2}(\zeta_{2^{\delta}}, \zeta_{3})$ , which is abelian over $Q_{2}$ . This implies that
$Q_{2}(a^{1/2^{h+1}})/Q_{2}$ is abelian. If $k>h$ then this contradicts the maximality of
$h$ . If $k=h$ , then $M=Q_{2}(\zeta_{2}.)$ . Thus, If $t=h$ , then $f=1$ .

Now assume that $t=h-1$ , thus $Q_{2}(a^{1/2^{h}})\not\subset Q_{2}(\zeta_{2}.)$ . However, we do
have that $Q_{2}(a^{1/2^{h-1}})=Q_{2}(\zeta_{2^{h}})$ . Since $a^{1/2^{h-1}},$ $\zeta_{2^{h}}$ both satisfy irreducible bi-
nomials of degree $2^{h-1}$ , we have by Prop. 15 that either $a^{1/2^{h-1}}=c\zeta_{2^{h}}$ or
if $8|2^{h-1}$ then $a^{1/2^{h-1}}=c2^{1/2}\zeta_{2^{h}}$ , for some $c\in Q_{2}$ . If the latter then $a^{1/2^{h}}=$

$ 1/291/4rb\perp$
’ However $\star his$ imnlias $\dotplus ha\dotplus$ $2^{1/4}eO_{-(a}.1/2^{h}r^{1/2}\zeta_{hA-}\sim’)_{-}$ which is
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an abelian extension of $Q_{2}$ , yet $Q_{2}(2^{1/4})/Q_{2}$ isn’t even a normal extension.
So $a^{1/2^{h}}=c^{1/2}\zeta_{2^{h+1}}$ . By assumption $(Q_{2}(a^{1/2^{h}})\not\subset Q_{2}(\zeta_{2^{*}})),$ $a^{1/2^{h}}\not\in Q_{2}(\zeta_{2^{\epsilon}})$ , so $ c^{1/2}\not\in$

$Q_{2}(\zeta_{2^{s}})$ (recall $s>h$).
If $s\geqq 3$ , then $Q_{2}(\zeta_{2^{s}})$ contains $(-1)^{1/2},$ $(\pm 2)^{1/2}$ , thus since there are only

7 quadratic extensions of $Q_{2}$ , this implies that $c=\pm 3c_{1}^{2}$ or $c=\pm 6c_{1}^{2}$ . In
both instances we have

$Q_{2}(\zeta_{2^{s}}, a^{1/2^{h}})=Q_{2}(\zeta_{2^{\epsilon}}, (-3)^{1/2})$

which has inertial degree 2 over $Q_{2}$ .
If $s=2$ then $s>h$ implies that $h=1$ and thus $t=h-1=0$ , so

$Q_{2}(a^{1/2^{k}})\cap Q_{2}(\zeta_{4})=Q_{2}$ . Since $(-1)^{1/2}$ is the only square root in $Q_{2}(\zeta_{4})$ and
$Q_{2}(a^{1/2})\cap Q_{2}(\zeta_{4})=Q_{2}$ we have that $a=\pm 2c^{2},$ $\pm 3c^{2},$ $\pm 6c^{2}$ . However, $f=2$ iff
$Q_{2}(\zeta_{4}, a^{1/2})/Q_{2}(\zeta_{4})$ is unramified, and this occurs iff $a=(\pm 3)c^{2},$ $c\in Q_{2}$ . $\square $

COROLLARY 17. Let $x^{2^{k}}-b$ be irreducible over $Q_{2},$ $F=Q_{2}(b^{1/2^{k}}),$ $r$ and
$T$ as in $(**)$ for $F$ and $s$ such that $T\subset Q_{2}(\zeta_{2^{s}})$ . If $f(F(\zeta_{2^{0}})/Q_{2})=1$ or
$f(F/Q_{2})=2$ then $r=0$ . If $f(F/Q_{2})=1$ then $r\leqq 1$ .

PROOF. From $(**)$ we see that

$2^{r}f(F/Q_{2})=f(FT/Q_{2})\leqq f(F(\zeta_{2^{*}})/Q_{2})\leqq 2$

by Lemma 6. If $f(F(\zeta_{2^{*}})/Q_{2})=1$ or $f(F/Q_{2})=2$ , then $r=0$ . If $f(F/Q_{2})=1$

then $r\leqq 1$ . $\square $

For $a$ having form $(*)$ we can now determine $K_{(2)}$ when $d=0$ .
THEOREM 18. Let $K=Q(a^{1/2^{k}})$ , $a$ have form $(*)$ and $d=0$ . If $a_{1}\equiv 1$

$(mod 4)$ then $K_{(2)}=Q(2^{1/2})$ . If $a_{1}\equiv 3(mod 4)$ then $K_{(2)}=Q((-2)^{1/2})$ .
PROOF. Let $F=Q_{2}(a^{1/2^{k}})$ . Since $a=2a_{1},$ $Q_{2}(a^{1/2})=Q_{2}((2a_{1})^{1/2})\neq Q_{2}(\zeta_{4})$ , thus

$\zeta_{4}\not\in Fby$ Prop. $3b$ ) and $F/Q_{2}$ has the usp by Prop. $3c$). Further, $Q_{2}(a^{1/2})$

is the maximal abelian subfield of $F/Q_{2}$ , so $h=1$ . Let $s$ be such that
$T\subset Q_{2}(\zeta_{2}.)$ . The cases $a_{1}\equiv\pm 3$ (mod8), $a_{1}\equiv\pm 1$ (mod8) are handled identically
so we shall do one argument and carry the other in brackets.

If $a_{1}\equiv 1(mod 8)$ [ $a_{1}\equiv-1$ (mod8)], then $Q_{2}(a^{1/2})\subset Q_{2}(\zeta_{2^{8}})$ . Thus by Lemma
16 B), $f(F(\zeta_{2}.)/Q_{2})=1$ , so by Cor. 17, $r=0$ , thus $T=Q_{2}(a^{1/2})=Q_{2}(2^{1/2})[T=$

$Q_{2}((-2)^{1/2})]$ .
If $a_{1}\equiv\pm 3$ (mod8), then $F\cap Q_{2}(\zeta_{2^{\infty}})=Q_{2}$ . By Cor. 17, $r\leqq 1$ , so $T$ must

be one of the four fields, $Q_{2},$ $Q_{2}((\pm 2)^{1/2}),$ $Q_{2}(\zeta_{4})$ . It is easy to check that
$Q_{2}((2(-3))^{1/2},2^{1/2})/Q_{2}((2(-3))^{1/2}),$ $Q_{2}((2\cdot 3)^{1/2}, (-2)^{1/2})/Q_{2}((2\cdot 3)^{1/2})$ are unramified
extensions, thus $T=Q_{2}(2^{1/2})$ if $a_{1}\equiv-3(mod 8)$ and $T=Q_{2}((-2)^{1/2})$ if $a_{1}\equiv 3$

(mod8). $\square $
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In the following we may assume that $0<d\leqq k$ .
THEOREM 19. Let $K=Q(a^{1/2^{k}})$ , $a$ has form $(*)$ and $d>0$ . If $a_{1}\equiv-3$

$(mod 8)$ then $K_{(2)}=Q$ . If $a_{1}\equiv 3(mod 8)$ then $K_{(2)}=Q(\zeta_{4})$ .
PROOF. If $a_{1}\equiv\pm 3(mod 8)$ then $x^{2^{k}}-a$ is irreducible over $Q_{2}$ . Set

$F=Q_{2}(a^{1/2^{k}})$ and let $s$ be such that $T\subset Q_{2}(\zeta_{2^{*}})$ .
Since $Q_{2}(a^{1/2})\neq Q_{2}(\zeta_{4})$ we see that $\zeta_{4}\not\in F,$ $F/Q_{2}$ has the usp by Prop.

3 b), c), $h=1$ , and $F\cap Q_{2}(\zeta_{2}\infty)=Q_{2}$ . By Cor. 17 we have that $[T:Q_{2}]\leqq 2$ .
Further since $f(F/Q_{2})=2$ if $a_{1}\equiv-3(mod 8)$ , Cor. 17 gives that $T=Q_{2}$ , so
$K_{(2)}=Q$ .

If $a_{1}\equiv 3$ (mod8) then $Q_{2}(a^{1/2})=Q_{2}(3^{1/2})$ and it is easy to check that
$Q_{2}(3^{1/2}, \zeta_{4})/Q_{2}(3^{1/l})$ is unramified thus $F(\zeta_{4})/F$ is unramified, so

$T=Q_{2}(\zeta_{4})\square $

thus $K_{(2)}=Q(\zeta)$ .
THEOREM 20. Let $K=(a^{1/2^{k}})$ , $a$ has form $(*)$ and $d>0$ . If $a_{1}\equiv 1$ (mod8)

then $K_{(2)}=0$ .
PROOF. In order to prove this theorem we must go back to the proof

of Th. 7 for the case $a_{1}\equiv 1(mod 8)$ . We will use the notation developed
there.

There are two cases to be considered, $t\leqq d$ and $t>d$ , where $a_{1}=b_{1}^{2^{t}}$

and if $t<k$ then $b_{1}\equiv\pm 3(mod 8)$ . If $t=d=k$ , then 2 $0_{K}$ has a divisor $P$

with $K_{P}=Q_{2}$ , which implies that $K_{\langle 2)}=Q$ . Thus we may assume that if
$k=d$ then $t<k$ .

In both cases, that is, $t\leqq d$ and $t>d,$ $x^{2^{k}}-a$ has two irreducible
factors of the form

$x^{2^{r}}-b$ , $x^{2^{r}}+b$

where (i) if $t\leqq d,$ $r=k-t$ and $b=2^{2^{d-t}}b_{1},$ $b_{1}\equiv-3$ (mod8) and (ii) if $t>d$ ,
$r=k-d$ and $b=2b_{1}^{2^{t-d}}$ .

Let $T_{1},$ $T_{2}$ be the maximal subfields of $Q_{2}(\zeta_{2^{\infty}})$ with the property that
$T_{1}Q_{2}(b^{1/z^{r}})/Q_{2}(b^{1/2^{r}})$ and $T_{2}Q_{2}((-b)^{1/2^{f}})/Q_{2}((-b)^{1/2^{r}})$ are unramified.

If $t\leqq d$ , then by Th. 19, $T_{1}=Q_{2}$ , so $K_{(2)}=Q$ .
If

$t>dthent$
by the local interpretation of Th. 18, $T_{1}=Q_{2}(2^{1/2}),$

$T_{2}=\square $

$Q_{2}((-2)^{1/2})$ , thus $T_{1}\cap T_{2}=Q_{2}$ , so $K_{(2)}=Q$ .
If $a_{1}\equiv-1(mod 8)$ then $-a_{1}eQ_{2}^{2}$ . Define $s$ to be the maximal integer

$\leqq k$ for which $-a_{1}\in Q_{2}^{2^{\delta}}$ . Thus $-a_{1}=b_{1}^{2^{\delta}}$ . If $s<k$ then $b_{1}\equiv\pm 3$ (mod8).

THEOREM 21. Let $K=Q(a^{1/2^{k}})$ , $a$ has form $(*),$ $d>0$ and $a_{1}\equiv-1$ (mod8).

If $d=1$ , then $K_{(2)}=Q(\zeta_{4})$ . If $d=k=s,$ $K_{(2)}=Q(\zeta_{2^{k+1}})$ . If $1<d<k$ or if
$\epsilon<d=k$ . then $K_{\alpha S}=O(C_{*r\neq 2})$ . $r=minfd$ . $s$}.
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PROOF. Since $d>0,$ $Q_{2}(a^{1/2})=Q_{2}(\zeta_{4})$ , thus $K_{(2)}\supset Q(\zeta_{4})$ .
If $d=1$ then there is an anomaly in the factorization of 2 in $O_{K}$ . If

$a_{1}\equiv 7$ (mod16) then by Th. $7C$) $20_{K}=P^{2^{k-1}},$ $f(P/2)=2$ . By Cor. 17 we
obtain that $\gamma=0$ , so $T\subset Q_{2}(a^{1/2^{k}})$ . However, from $a=-(2\cdot 3)^{2}c^{4},$ $Q_{2}(a^{1/4})=$

$Q_{2}(\zeta_{4}, \zeta_{3})$ (see the proof of Th. 7 $C$)). If $h\geqq 3$ then we would have $\zeta_{8}\in Q_{2}(a^{1/2^{k}})$ ,
so by Prop. 3 d) $Q_{2}(\zeta_{8})=Q_{2}(a^{1/4})=Q_{2}(\zeta_{4}, \zeta_{3})$ , an impossibility, thus $h=2$ and
$Q_{2}(a^{1/4})\cap Q_{2}(\zeta_{2^{\infty}})=Q_{2}(\zeta_{4})$ , so $T=Q_{2}(\zeta_{4})$ and $K_{(2)}=Q(\zeta_{4})$ .

If $a_{1}\equiv-1(mod 16)$ then $a=-4c^{4}$ and 2 $0_{K}=(P_{1}P_{2})^{2^{k-1}}$ . Now $Q_{2}(a^{1/2})=$

$Q_{2}(\zeta_{4})$ and $Q_{2}(a^{1/4})=Q_{2}(a^{1/2})$ . Further, $a^{1/2^{k}}$ satisfies the irreducible binomial
$x^{2^{k-2}}-a^{1/4}$ over $Q_{2}(\zeta_{4})$ , and thus by Prop. $3c$), $Q_{2}(a^{1/2^{k}})/Q_{2}(\zeta_{4})$ has the usp.
If $\zeta_{8}\in Q_{2}(a^{1/2^{k}})$ , then by Prop. 3 c), $Q_{2}(\zeta_{8})=Q_{2}(a^{1/8})$ . However, $a^{1/8}=\zeta_{16}2^{1/4}c^{1/2}$

and $2^{1/4}$ is not contained in any abelian extension of $Q_{2}$ , so $\zeta_{8}\not\in Q_{2}(a^{1/2^{k}})$ ,
so the maximal abelian subfield of $Q_{2}(a^{1/2^{k}})/Q_{2}$ is $Q_{2}(\zeta_{4})$ . Thus
$Q_{2}(a^{1/2^{k}})\cap Q_{2}(\zeta_{2^{\infty}})=Q_{2}(\zeta_{4})$ .

Recall that $2^{r}=[T:T\cap Q_{2}(a^{1/2^{k}})]=[T(a^{1/2^{k}}):Q_{2}(a^{1/2^{k}})]=f(T(a^{1/2^{k}})/Q_{2}(a^{1/2^{k}}))$ .
If $r>0$ , then since $T/Q_{2}$ is totally ramified, $f(T(a^{1/2^{k}})/T)>1$ . Since
$T(a^{1/2^{k}})/T$ has the usp ($x^{2^{k-2}}-a^{1/4}$ is irreducible over $T$ and $\zeta_{4}\in T$), we
would have that $T(a^{1/8})/T$ (this is a quadratic extension) would be unram-
ified. Thus $T(a^{1/8})=T(\zeta_{3})$ is an abelian extension of $Q_{2}$ . But $a^{1/8}=$

$\zeta_{16}2^{1/4}c^{1/2}$ , so $2^{1/4}$ would be in an abelian extension of $Q_{2}$ , a contradiction.
Thus $\gamma=0,$ $T=Q_{2}(\zeta_{4})$ , so $K_{(2)}=Q(\zeta_{4})$ .

In the following we may assume that $d\geqq 2$ , which in turn implies
that $x^{2^{k}}-a$ is irreducible over $Q_{2}$ .

If $s<d$ set $b=2^{2^{d-\epsilon}}b_{1},$ $b_{1}\equiv 3(mod 8)$ , thus $a=-b^{2^{\epsilon}},$ $Q_{2}(a^{1/2^{S}})=Q_{2}(\zeta_{2^{s+1}})$ and
$Q_{2}(a^{1/2^{\theta+1}})=Q_{2}(\zeta_{2^{8+2}}3^{1/2})\not\subset Q_{2}(\zeta_{2^{\infty}})$ , so $h=s+1$ and by Cor. 17, $[T:T\cap Q_{2}(a^{1/2^{k}})]\leqq$

2. However, an easy calculation shows $T=Q_{2}(\zeta_{2^{s+2}})$ , so $K_{(2)}=Q(\zeta_{2^{\epsilon+2}})$ .
If $s=d$ set $b=2b_{1}$ and $a=-b^{2^{d}}$ . If $d=k$ , then $Q_{2}(a^{1/2^{k}})=Q_{2}(\zeta_{2^{k+1}})$ , so

$K_{(2)}=Q(\zeta_{2^{k+1}})$ . If $d<k$ , then $s<k$ , so $b_{1}\equiv 3(mod 8)$ and $Q_{2}(a^{1/2^{\epsilon}})=Q_{2}(\zeta_{2^{\epsilon+1}})$ ,
$Q_{2}(a^{1/2^{\delta+1}})=Q_{2}(\zeta_{2^{s+2}}(2\cdot 3)^{1/2})\not\subset Q_{2}(\zeta_{2^{\infty}})$ , so $h=s+1$ . The same argument as for
the case $s<d$ applies and we have that $K_{(2)}=Q(\zeta_{2^{s+2}})$ .

If $s>d$ , set $b=2b_{1}^{2^{S-d}}$ , thus $a=-b^{2^{d}}$ and $Q_{2}(a^{1/2^{d}})=Q_{2}(\zeta_{2^{d+1}}),$ $Q_{2}(a^{1/2^{d+1}})=$

$Q_{2}(\zeta_{2}d+22^{1/2})=Q_{2}(\zeta_{2^{d+2}})$ , since $d\geqq 2$ . Now $Q_{2}(a^{1/2^{d+2}})=Q_{2}(\zeta_{2^{d+3}}2^{1/4}c^{1/2}),$ $c=b_{1}^{2^{\epsilon-d-1}}$

and this last field cannot be in an abelian extension of $Q_{2}$ because of
the factor $2^{1/4}$ . Thus $h=d+1$ . By Cor. 17, $[T:Q_{2}(a^{1/2^{k}})\cap T]\leqq 2$ and
$T\supset Q_{2}(\zeta_{2^{d+2}})$ yields that the only possibility for $T$ is $Q_{2}(\zeta_{2^{d+8}})$ . However, by
Lemma 16 we have that since $Q_{2}(a^{1/2^{h}})\subset Q_{2}(\zeta_{2^{d+3}}),$ $f(T\cdot Q_{2}(a^{1/2^{k}})/Q_{2}(a^{1/2^{k}}))=1$ ,
so $T(a^{1/2^{k}})/Q_{2}(a^{1/2^{k}})$ is ramified. Thus $T=Q_{2}(\zeta_{2^{d+2}})$ and $K_{(2)}=Q(\zeta_{2^{d+2}})$ . $\square $

Collecting all of these results together we have the following theorem.

THEOREM 22. Let $n=2^{k}m,$ $m$ odd, $x^{n}-a$ irreducible over $Q,$ $a\in Z$,
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$K=Q(a^{1/n})$ , and $p_{1},$ $\cdots,$ $p_{t}$ the distinct odd prime divisors of $a$ . Then
A) $K_{*}=K_{(2)}\cdot\prod^{t}K$ , where $K_{(2)}\subset Q(\zeta_{2^{\infty}}),$ $K_{(p)}\subset Q(\zeta_{p_{i}})$ .

Let $n=n/p_{i}^{v_{p_{i}}(n)}$ .
B) $K_{(p_{i})}$ is the unique subfield of $Q(\zeta_{p_{i}})$ of degree $(n_{i}/(v_{p_{i}}(a), n_{i}),$ $p_{i}-1$ )

over $Q$ .
Let $2^{d}=(v_{2}(a), 2^{k}),$ $a=2^{v_{2}(a)}a_{1}$ odd, where we take $d=k$ if $a$ is odd.

C) If $d=0$ then if $a_{1}\equiv 1$ (mod4), $K_{(2)}=Q(2^{1/2})$ , and if $a_{1}\equiv 3$ (mod4), $K_{(2)}=$

$Q((-2)^{1/2})$ .
If $d>0$ then (i) if $a_{1}\equiv 1$ or $-3$ (mod8), $K_{(2)}=Q$ ,

(ii) if $a_{1}\equiv 3(mod 8),$ $K_{(2)}=Q(\zeta_{4})$ .
If $d=1$ and $a_{1}\equiv-1(mod 8)$ then $K_{(2)}=Q(\zeta_{4})$ .
If $d>1$ and $a_{1}\equiv-1(mod 8)$ let $2^{+2}\Vert a_{1}+1$ . Then

(i) if $d=k$ and $s\geqq k$ , then $K_{(2)}=Q(\zeta_{2^{k+1}})$ ,
$(ii)\prime ifd<k$ or if $s<d=k$ then $K_{(2)}=Q(\zeta_{2^{r+2}}),$ $r=\min\{d, s\}$ . $\square $
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