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Abstract. In 1983, J. H. Conway and C. $McA$ . Gordon showed in [11 that every embedding
of the complete graph $K_{7}$ in the three-dimensional Euclidean space $R^{3}$ contains a knotted
cycle. In this paper we generalize their method and show that every embedding of the
complete bipartite graph $K_{5,b}$ in $R^{3}$ contains a knotted cycle.

\S 1. Introduction.

By a spatial embedding of a graph $G$ we mean an embedding of $G$

in the 3-space $R^{3}$ , which is tame, i.e., which has a polygonal representation
and we call the image of a spatial embedding a spatial graph. In this
paper, we consider knots in spatial embeddings of graphs.

A cycle of a spatial graph is said to be knotted if it bounds no 2-cell
in $R^{3}$ . A graph $G$ is self-knotted if every spatial embedding of $G$ contains
a knotted cycle. Conway and Gordon [1] proved that the complete graph
$K_{7}$ is self-knotted and showed a spatial embedding of $K_{7}$ which contains
exactly one knotted Hamiltonian cycle. Since the graph obtained from
$K_{7}$ by removing one edge from the knotted cycle has no knotted cycles,
any graph with $n\leqq 7$ vertices except $K_{7}$ is not self-knotted. The spatial
embedding of the complete bipartite graph $K_{4,b}$ shown in Figure 1 has no
knotted cycles. In this paper, we prove the following.

THEOREM 1. The complete bipartite graph $K_{5,b}$ is self-knotted.
Sharper statements of Theorem 1 will be given in Theorem 2 and its

corollary. For the definitions and elementary terminology, we refer to
Harary [2] in graph theory and Rolfsen [4] in knot theory.

\S 2. Lemmas.

For a spatial embedding $f:G\rightarrow R^{3}$ of a graph $G$ , we may suppose
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FIGURE 1

that, after a small ambient isotopy, the projection of $f(G)$ to the horizontal
plane is regular, i.e., its multiple points are double points in the interiors
of two edges of $G$ . The projection of $f(G)$ indicating which edge is above
and which edge is below at each double point is called the diagram of
$f(G)$ and is denoted by $G_{f}$ . We often consider a diagram of $f(G)$ as $f(G)$

itself. The following proposition is a standard fact in knot theory.

PROPOSITION 1. For any spatial embeddings $f$ and $g$ of $G$ , therc
exist a diagram $G_{f}$ of $f(G)$ and a diagram $G_{9}$ of $g(G)$ such that $G_{g}$ is
obtained from $G_{f}$ by crossing-changes at some double points of $G_{f}$ .

Let $A$ and $B$ be disjoint oriented arcs or circles in $R^{s}$ . We define
the writhe $\epsilon(c)$ at each crossing $c$ in a regular diagram of $A\cup B$ as shown
in Figure 2, and we define $\zeta(A, B)=\sum_{c}\epsilon(c)$ , the summation being taken
over all crossings $c$ where $A$ crosses ”under” $B$ in the diagram. If $A$ and
$B$ are circles, then $\zeta(A, B)$ is equal to the linking number $1k(A, B)$ of $A$

and $B$ (see Rolfsen [4, p. 132]).

$\epsilon(c)=+1$ $\epsilon(\epsilon)=\leftrightarrow 1$

FIGURE 2

The Conway polynomial $\nabla_{K}(z)$ of an oriented knot or link $K$ is thc
element of $Z[z]$ defined recursively by

$\nabla_{K+}(z)-\nabla_{K-}(z)=z\cdot\nabla_{L}(z)$ , $\nabla_{0}(z)=1$ ,
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where $0$ is the trivial knot, and the oriented knots and links $K_{+},$ $K_{-},$ $L$

have regular projections which are identical outside a small disk where
they differ as indicated in Figure 3. Let $a_{n}(K)$ denote the coefficient of
$z^{n}$ in $\nabla_{K}(z)$ . The following is shown by Kauffman [3].

$K_{+}$ $K_{-}$ $L$

FIGURE 3

PROPOSITION 2 (Kauffman [3, Proposition 5.3 and p. 91]).
(1) Let $K^{*}$ be the knot obtained by reversing the orientation of an

oriented knot $K$ in $R^{3}$ , then

$\nabla_{K}.(z)=\nabla_{K}(z)$ , and in particular $a_{2}(K^{*})=a_{2}(K)$ .
(2) Let $K_{+}$ and K-be the oriented knots and $L=L_{1}\cup L_{2}$ the oriented

link in $R^{3}$ which are identical except in a small ball where they differ
as indicated in Figure 3. Then

$a_{2}(K_{+})=a_{2}(K_{-})+1k(L_{1}, L_{2})$ .
DEFINITION 1. Let $\Gamma$ be a set of cycles in a graph $G$ . For a spatial

embedding $f$ of $G$ , define $\mu_{f}(G, \Gamma;n)\in Z_{n}$ by

$\mu_{f}(G, \Gamma;n)\equiv\sum_{\gamma e\Gamma}a_{2}(f(\gamma))$ $(mod n)$ ,

where $\sum_{\gamma e\Gamma}$ is the summation over all cycles $\gamma$ in $\Gamma$ .
REMARK 1. By Proposition 2 (1), $\mu_{f}(G, \Gamma;n)$ is well defined.

REMARK 2. Since the reduction of $a_{2}(K)$ modulo 2 gives the Arf
invariant of $K$ by Corollary 10.8 in Kauffman [3], $\mu_{f}(K_{7}, \Gamma;2)$ is equal
to Conway and Gordon’s invariant $\sigma$ in [1], where $\Gamma$ is the set of all
Hamiltonian cycles in $K_{7}$ .

From now on, we consider directed graphs but any cycle below is an
undirected one. Let $E_{1}$ and $E_{2}$ be two edges lying on a cycle $\gamma$ . We say
that $E_{1}$ and $E_{2}$ are coherent on $\gamma$ if the directions of $E_{1}$ and $E_{2}$ induce
the same orientation of $\gamma$ .

For any distinct edges $A,$ $B$ and $E$, let $n_{1}$ denote the number of
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cycles in $\Gamma$ containing $A\cup B\cup E$ on which $A$ and $E$ are coherent, and $n_{2}$

the number of cycles in $\Gamma$ containing $A\cup BUE$ on which $A$ and $E$ is not
coherent. Let $\nu_{1}(\Gamma;A, B, E)$ be $|n_{1}-n_{2}|$ .

For any pairs of non-adjacent edges $\{A, B\}$ and $\{E, F\}$ , let $\Gamma_{1}$ denote
the set of cycles in $\Gamma$ along which the edges $A,$ $E,$ $B,$ $F$ lie in this order
(see Figure 4). Let $n_{3}$ denote the number of cycles in $\Gamma_{1}$ on which even
number of pairs of edges $A,$ $B,$ $E,$ $F$ are coherent, and $n_{4}$ the number of
cycles in $\Gamma_{1}$ on which odd number of pairs of edges $A,$ $B,$ $E,$ $F$ are coherent.
Let $\nu_{2}(\Gamma;A, B;E, F)$ be $|n_{3}-n_{4}|$ . Then we have:

$\nearrow\rightarrow\overline{E}\sim\backslash $

A
$I^{l}$ $[B$

$\iota$ $l$

$\backslash \sim\leftrightarrow^{F}\rightarrow J$

FIGURE 4

LEMMA 1. (1) The number $\nu_{2}(\Gamma;A, B;E, F)$ is equal to the numbers
$\nu_{2}(\Gamma;A, B;F, E),$ $\nu_{2}(\Gamma;B, A;E, F)$ and $\nu_{2}(\Gamma;B, A;F, E)$ .

(2) The numbers $\nu_{1}(\Gamma;A, B, E)$ and $\nu_{2}(\Gamma;A, B;E, F)$ are independent
of the direction of a graph $G$ .

PROOF. (1) It is clear by the definition of $\nu_{2}(\Gamma;A, B;E, F)$ . (2) Any
combination of reversing the direction of $A,$ $B,$ $E,$ $F$ fixes or interchanges
the values of $n_{1}$ and $n_{2}$ and those of $n_{3}$ and $n_{4}$ , respectively, and hence
it does not change the values of $\nu_{1}(\Gamma;A, B, E)=|n_{1}-n_{2}|$ and $\nu_{2}(\Gamma;A,$ $B$;
$E,$ $F$) $=|n_{3}-n_{4}|$ . $\square $

By (2) of Lemma 1, these two invariants $\nu_{1}(\Gamma;A, B, E)$ and $\nu_{2}(\Gamma;A$ ,
$B;E,$ $F$) can be regarded as ones for undirected graphs. The following
lemma for $n=2$ is essentially used by Conway and Gordon [1].

LEMMA 2. Let $\Gamma$ be a set of cycles in an undirected graph G. The
invariant $\mu_{f}(G, \Gamma;n)$ does not depend on the spatial embedding $f$ of $G$

if the following two conditions hold:
(1) For any edges $A,$ $B,$ $E$ such that $A$ is adjacent to $B$, the re-

duction of $\nu_{1}(\Gamma;A, B, E)$ modulo $n$ is equal to $0$ .
(2) For any pairs of non-adjacent edges $\{A, B\}$ and $\{E, F\}$ , the

reduction of $\nu_{2}(\Gamma;A, B;E, F)$ modulo $n$ is equal to $0$ .
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PROOF. Suppose that $G$ is a directed graph. We consider what
happens to $\mu_{f}(G, \Gamma;n)$ under a crossing change on a diagram $G_{f}$ of $f(G)$ .
The crossing change of an edge with itself can be always replaced by the
crossing changes of distinct edges (see Figure 5). If we want to change
a crossing of edges $A$ and $B$ , we may assume that $G_{j}$ near the crossing
point $c$ is as shown in Figure 6 (a-1) or (b-1), possibly with the crossing
reversed, according to whether $A$ and $B$ are adjacent or not. It suffices
to show that $\mu_{f}$ is invariant under these two kinds of crossing changes
by Proposition 1.

7 $t$

$1$

’
$\downarrow$

’

FIGURE 5

$’---\sim\gamma\backslash $

$(b\cdot 2)$

FIGURE 6

Consider the spatial embedding $g$ of $G$ obtained from changing the
crossing point in $G_{f}$ . If a cycle $\gamma$ in $\Gamma$ does not contain both $A$ and $B$ ,
then the coefficient $a_{2}(\gamma)$ of $z^{2}$ in $\nabla_{\gamma}(z)$ is unchanged. We may assume
that the orientation of $\gamma\supset A\cup B$ is induced from the direction of $A$ . Let
$\epsilon(c)$ be the writhe of the crossing $c$ , which depends on the orientation of
$\gamma$ but not on the direction of $B$ , as shown in Figure 2, and $L=L_{1}\cup L_{2}$

the oriented link determined by $f(\gamma)$ as shown in Figure 6. Let $\delta(\mu)$ be
$\mu_{f}(G, \Gamma;n)-\mu_{g}(G, \Gamma;n)$ , then we have by Proposition 2 (2)

$\delta(\mu)\equiv\sum_{\gamma e\Gamma,\gamma\supset A\cup B}\epsilon(c)\cdot 1k(L_{1}, L_{2})$
$(mod n)$ .

To prove the invariance of $\mu_{f}(G, \Gamma;n)$ , it suffices to show that $\delta(\mu)\equiv 0$

$(mod n)$ for the following two cases.
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Case 1. The edge $A$ is adjacent to $B$. Let $f_{\gamma}(E)$ be an edge $f(E)$

with direction induced by the orientation of $\gamma$ , and $\zeta(f_{r}(E), L_{2})$ the total
of the writhe of the crossings where $f_{\gamma}(E)$ crosses under $L_{2}$ . Then

$\delta(\mu)\equiv\sum_{1\gamma e\Gamma,\gamma\supset 4\cup B}\epsilon(c)\cdot(\sum_{E\subset\gamma-A\cup B}\zeta(f_{\gamma}(E), L_{2}))$

$=\epsilon(c)\cdot\sum_{F_{r}}(\sum_{\gamma e\Gamma,\gamma\supset 4\cup B\cup F_{d}}\zeta(f_{\gamma}(E), L_{2}))$ ,

where the summation $\sum_{E\subset r-A\cup B}$ is taken over all edges $E\subset\gamma,$ $E\neq A,$ $B$ in
$G$ , and $\sum_{E}$ is taken over all edges $E\neq A,$ $B$ in $G$ . Let $f_{\gamma}^{*}(E)$ be the edge
$f_{\gamma}(E)$ with direction reversed, then $\zeta(f_{\gamma}(E), L_{2})=-\zeta(f_{\gamma}^{*}(E), L_{2})$ . Hence

$\sum_{\gamma e\Gamma,\gamma\supset A\cup B\cup E}\zeta(f_{\gamma}(E), L_{2})=(n_{1}-n_{2})\cdot\zeta(f(E), L_{2})$ $(mod n)$ .
If $\nu_{1}(\Gamma;A, B, E)=|n_{1}-n_{2}|\equiv 0(mod n)$ for any three edges $A,$ $B$ and $E$,

then $\delta(\mu)\equiv 0(mod n)$ .
Case 2. The edge $A$ i8 not adjacent to $B$ . In this case, the oriented

link $L=L_{1}\cup L_{2}$ is as indicated in Figure 6 (b-2). Then we have;

$\delta(\mu)\equiv\sum_{\Gamma\gamma e,\gamma\supset A\cup B}\sum_{E,F\subset\gamma}\epsilon(c)\cdot\zeta(f_{\gamma}(E), f(F))$

$=\sum_{B,F}\sum_{\gamma e\Gamma_{1}}\epsilon(c)\cdot\zeta(f_{\gamma}(E), f(F))$

$=\sum_{E,F}(n_{\theta}-n_{4})\cdot\zeta(f(E), f(F))$ $(mod n)$ .
For each summation, $E$ and $F$ run over all distinct pairs of edges in $G$

with $\{A, B\}\cap\{E, F\}=\emptyset$ , but they are assumed to lie along $\gamma$ in the order
as shown in Figure 4 if $\gamma$ contains them. Therefore for any pairs of
disjoint edges $\{A, B\}$ and $\{E, F\}$ , if $\nu_{2}(\Gamma;A, B;E, F)\equiv|n_{S}-n_{4}|\equiv 0(mod n)$

then $\delta(\mu)\equiv 0(mod n)$ . $\square $

\S 3. Proof of the theorem.

Let $G-\{e\}$ denote a graph obtained from a graph $G$ by removing an
edge and let $K_{l,,*.n}$ denote a complete tripartite graph with part sizes
$l,$ $m,$ $n$ .

THEOREM 2. Let $G$ be one of the graphs $K_{ff}-\{e\},$ $K_{4,4,1}$ and $K_{n,m}$

$(m\geqq 5)$ , and $\Gamma$ the set of all Hamiltonian cycles in G. For any spatial
embedding $f$ of $G,$ $\mu_{f}(G, \Gamma;2)=0$ and $\mu_{f}(K_{ff}, \Gamma;4)=2$ .

PROOF. Let $V_{1}=\{1,2,3,4,5\}$ and $ V_{2}=\{1\hat{2},\hat{3},\hat{4},\hat{5}\}\wedge$, be the canonical
partite sets of $K_{b,b}$ and assume that each edge of $K_{b,b}$ is directed from $V_{1}$

to $V_{2}$ (see Figure 1). We shall evaluate $\nu_{1}(\Gamma;A, B, E)$ and $\nu_{2}(\Gamma;A, B;E, F)$
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to show the invariance of $\mu_{f}(G, \Gamma;n)$ .
Let $A,$ $B,$ $E$ be edges as in (1) of Lemma 2. If $A,$ $B,$ $E$ have a common

vertex then the number of cycles in $\Gamma$ containing $A\cup B\cup E$ is equal to
$0$ . Hence $\nu_{1}(\Gamma;A, B, E)=0$ . If $E$ is adjacent to precisely one of $A$ and
$B$ , say $A$ (resp. $B$), then the number of cycles containing $A\cup B\cup E$ is
equal to $3!\times 3$ ] $=36,$ $n_{1}=0$ and $n_{2}=36$ (resp. $n_{1}=36$ and $n_{2}=0$). Hence
$\nu_{1}(\Gamma;A, B, E)=36$ . If $E$ is adjacent to neither $A$ nor $B$, then the number
of cycles containing $A\cup B\cup E$ is equal to $72=3$ ] $\times 2$ ] $\times 6$ and $n_{1}=n_{2}=36$ .
Hence $\nu_{1}(\Gamma;A, B, E)=0$ . Therefore, in each case, the reduction of
$\nu_{1}(\Gamma;A, B, E)$ modulo 4 is equal to $0$ .

Let $\{A, B\}$ and $\{E, F\}$ be pairs of non-adjacent edges as in (2) of
Lemma 2. We may assume that $A=(11)\wedge,$ $B=(2\hat{2})$ . We consider the other
pairs of edges $\{E, F\}$ . By the condition as shown in Figure 4 and the
fact described in Lemma 1 (1), it suffices to examine only the cases in
which $E$ and $F$ are: (a) $(21)\wedge(3\hat{2})$ , (b) $(21)\wedge(3\hat{3})$ , (c) $(3\hat{2})(41)\wedge$ , (d) $(2\hat{3})(31)\wedge$ ,
(e) $(2\hat{3})(3\hat{2})$ , (f) $(2\hat{3})(3\hat{4})$ , (g) $(3\hat{3})(4\hat{4})$ . (See Figure 7.)

$\nu_{1}(\Gamma;A, B, E)=0$ $\nu_{1}(\Gamma;A, B, E)=36$ $\nu_{1}(\Gamma;A, B, E)=0$

The case of Lemma 2 (1)

(b) (d)

$\nu_{2}(\Gamma;A, B;E, F)=12$ $\nu_{2}(\Gamma;A, B;E, F)=4$ $\nu_{2}(\Gamma;A, B;E, F)=12$ $\nu_{2}(\Gamma;A, B;E, F)=12$

(f)

$\nu_{2}(\Gamma;A, B;E, F)=4$ $\nu_{2}(\Gamma;A, B;E, F)=4$ $\nu_{2}(\Gamma;A, B;E, F)=4$

The case of Lemma 2 (2)

FIGURE 7

Let $n(A, B;E, F)$ be the number of Hamiltonian cycles in $\Gamma$ contain-
ing $A\cup B\cup E\cup F$. It is a routine to determine the values of $n(A, B;E, F)$ ,
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$n_{3}$ and $n_{4}$ for each case.
(a) $n(A, B;E, F)=3$ ] $\times 2$ ] $=12,$ $n_{3}=12$ and $n_{4}=0$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=$

$|n_{8}-n_{4}|=12$ .
(b) $n(A, B;E, F)=20,$ $n_{\epsilon}=8$ and $n_{4}=12$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=4$ .
(c) $n(A, B;E, F)=12,$ $n_{s}=12$ and $n_{4}=0$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=12$ .
(d) $n(A, B;E, F)=12$ , and $n_{3}=12$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=12$ .
(e) $n(A, B;E, F)=20$ , and $n_{3}=8$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=4$ .
(f) $n(A, B;E, F)=20$ , and $n_{3}=8$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=4$ .
(g) $n(A, B;E, F)=20$ , and $n_{3}=12$ . Hence $\nu_{2}(\Gamma;A, B;E, F)=4$ .

Therefore the reduction of $\nu_{2}(\Gamma;A, B;E, F)$ modulo 4 is equal to $0$ .
We can divide the set $\Gamma$ of 1440 Hamiltonian cycles of $K_{b,b}$ into ten

disjoint subsets of 144 cycles so that cycles in each subset contains the
following two edges, respectively: (1) $(11)\wedge(12)\wedge$ , (2) $(11)\wedge(13)\wedge$ , (3) $(11)\wedge(14)\wedge$ ,
(4) (1i) $(15)\wedge$ , (5) $(21)\wedge(13)\wedge$ , (6) $(21)\wedge(14)\wedge$ , (7) $(21)\wedge(15)\wedge$ , (8) $(31)\wedge(14)\wedge$ ,
(9) $(31)\wedge(15)\wedge$ , (10) $(41)\wedge(15)\wedge$ . (See Figure 1.)

For the spatial embedding of $K_{b,b}$ in Figure 1, there is a homeomor-
phism $h:R^{3}\rightarrow R^{3}$ such that $h(K_{b,b})=K_{fb},$ $ h(i)=i\wedge\wedge$ and $h(i)=i+1(mod 5)$ for
vertices $ i\wedge$ and $i$ . So we consider the knottedness of cycles in the only
two sets (1) and (2). We note that if the number of crossing of a cycle
is less than 3, then the cycle can not be knotted. Then we find that
every cycle in the set (1) is a trivial knot, and that the set (2) contains
exactly two knotted cycles which are trefoil knots such that they are
the mirror images of each other. Hence the embedding of $K_{b,b}$ shown in
Figure 1 contains exactly ten Hamiltonian cycles which are trefoil knots.
Since the Conway polynomial of the trefoil knot is $z^{2}+1,$ $\mu_{f}(K_{b,b}, \Gamma;4)=2$

and the proof is complete.
The cases for graphs $K_{f,b}-\{e\},$ $K_{4,4,1}$ and $K_{m,n}(m\geqq 5)$ can be proved

by the same method. $\square $

We note that Theorem 2 contains Theorem 1, for if there were an
embedding of $K_{5,b}$ such that every cycle of the embedding was a trivial
knot, then $\mu_{f}(K_{5,b}, \Gamma;4)$ would be $0$ .

By Remark 2, we have the following:

COROLLARY. Every spatial embedding of the graphs $K_{b,b}-\{e\},$ $K_{4.4.1}$

and $K_{m,m}(m\geqq 5)$ has even number of Hamiltonian cycles whose Arf in-
variants are one.
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