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Abstract. In 1983, J. H. Conway and C. McA. Gordon showed in [1] that every embedding
of the complete graph K; in the three-dimensional Euclidean space R® contains a knotted
cycle. In this paper we generalize their method and show that every embedding of the
complete bipartite graph Ks,s in R® contains a knotted cycle.

§1. Introduction.

By a spatial embedding of a graph G we mean an embedding of G
in the 3-space R?, which is tame, i.e., which has a polygonal representation
and we call the image of a spatial embedding a spatial graph. In this
paper, we consider knots in spatial embeddings of graphs.

A cycle of a spatial graph is said to be knotted if it bounds no 2-cell
in R®. A graph G is self-knotted if every spatial embedding of G contains
a knotted cycle. Conway and Gordon [1] proved that the complete graph
K, is self-knotted and showed a spatial embedding of K, which contains
exactly one knotted Hamiltonian cycle. Since the graph obtained from
K, by removing one edge from the knotted cycle has no knotted cycles,
any graph with <7 vertices except K, is not self-knotted. The spatial
embedding of the complete bipartite graph K, , shown in Figure 1 has no
knotted cyecles. In this paper, we prove the following.

THEOREM 1. The complete bipartite graph K., is self-knotted.

Sharper statements of Theorem 1 will be given in Theorem 2 and its
corollary. For the definitions and elementary terminology, we refer to
Harary [2] in graph theory and Rolfsen [4] in knot theory.

§2. Lemmas.

For a spatial embedding f: G— R? of a graph G, we may suppose
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FIGURE 1

that, after a small ambient isotopy, the projection of f(G) to the horizontal
plane is regular, i.e., its multiple points are double points in the interiors
of two edges of G. The projection of f(G) indicating which edge is above
and which edge is below at each double point is called the diagram of
f(@) and is denoted by G,. We often consider a diagram of f(G) as f(G)
itself. The following proposition is a standard fact in knot theory.

PROPOSITION 1. For any spatial embeddings f and g of G, there
exist a diagram G; of f(G) and a diagram G, of g(G) such that G, is
obtained from G, by crossing-changes at some double points of Gj.

Let A and B be disjoint oriented arcs or circles in R®. We define
the writhe &(c) at each crossing ¢ in a regular diagram of AUB as shown
in Figure 2, and we define {(A, B)=3,¢(c), the summation being taken
over all crossings ¢ where A crosses “under” B in the diagram. If A and
B are circles, then (A, B) is equal to the linking number 1k(A, B) of A
and B (see Rolfsen [4, p. 132]).
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FIGURE 2

The Conway polynomial V.(z) of an oriented knot or link K is the
element of Z[z] defined recursively by

Ve (2)—Vg_(2)=2-V (2), VJ(2)=1,
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where o is the trivial knot, and the oriented knots and links K., K, L
have regular projections which are identical outside a small disk where
they differ as indicated in Figure 3. Let a,(K) denote the coefficient of
2" in V¢(z). The following is shown by Kauffman [3].
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ProPOSITION 2 (Kauffmé.n [3, Proposition 5.3 and p. 91)).
(1) Let K* be the knot obtained by reversing the orientation of an
ortented knot K in R®, then

Vgl2)=V(2), and in hpa/rt'icula'r a,(K*)=a,K) .

(2) Let K, and K_ be the oriented knots and L= L, U L, the oriented
link in R® which are identical except in a small ball where they differ
as wndicated in Figure 8. Then

az(K-l-) = az(K—-) +1k(L1, Lz) .

DEFINITION 1. Let I" be a set of cycles in a graph G. For a spatial
embedding f of G, define 1,(G, I'; n) € Z, by

1:(G, I'; )= TZ‘; a,(f(7)  (modm),

where >),.ris the summation over all cycles v in I'.
REMARK 1. By Proposition 2(1), p(G, I'; n) is well defined.

REMARK 2. Since the reduction of a,(K) modulo 2 gives the Arf
invariant of K by Corollary 10.8 in Kauffman [3], u#,(K, I';2) is equal
to Conway and Gordon’s invariant ¢ in [1], where I" is the set of all
Hamiltonian cycles in K..

From now on, we consider directed graphs but any cycle below is an
undirected one. Let E, and E, be two edges lying on a cycle v. We say
that E, and E, are coherent on v if the directions of E, and E, induce
the same orientation of ~.

For any distinct edges A, B and E, let n, denote the number of
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cycles in I' containing AUBUZE on which A and E are coherent, and =,
the number of cycles in I containing AUBUZFE on which A and FE is not
coherent. Let y,(I"; A, B, E) be |n,—n,|.

For any pairs of non-adjacent edges {A, B} and {E, F}, let I, denote
the set of cycles in I" along which the edges A, E, B, F lie in this order
(see Figure 4). Let n, denote the number of cycles in I', on which even
number of pairs of edges A, B, E, F' are coherent, and n, the number of
cycles in I", on which odd number of pairs of edges A, B, E, F are coherent.
Let v(I'; A, B; E, F') be |n;—n,]. Then we have:

FIGURE 4

LEMMA 1. (1) The number v, (I"; A, B; E, F') is equal to the numbers
v(I'; A, B; F, E), v(I'; B, A; E, F) and v(I"; B, A; F, E).

(2) The numbers v (I'; A, B, E) and v,(I"; A, B; E, F) are independent
of the direction of a graph G.

ProoF. (1) It is clear by the definition of v,(I"; A, B; E, F). (2) Any
combination of reversing the direction of A, B, E, F' fixes or interchanges
the values of », and 7, and those of »n, and n,, respectively, and hence
it does not change the values of v, (I'; A, B, E)=|n,—n,] and »,("; A, B;
E, F)=|n,—mn,|. ]

By (2) of Lemma 1, these two invariants y,(I"; A, B, E) and v,([; A,
B; E, F') can be regarded as ones for undirected graphs. The following
lemma for n=2 is essentially used by Conway and Gordon [1].

LEMMA 2. Let I" be a set of cycles in an undirected graph G. The
wnvariant LG, I'; n) does not depend on the spatial embedding f of G
2f the following two conditions hold:

(1) For any edges A, B, E such that A s adjacent to B, the re-
duction of v,(I'; A, B, E) modulo n is equal to O.

(2) For any pairs of mom-adjacent edges {A, B} and {E, F'}, the
reduction of v,(I'; A, B; E, F') modulo n is equal to O.
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PrOOF. Suppose that G is a directed graph. We consider what
happens to #,(G, I'; n) under a crossing change on a diagram G, of f(G).
The crossing change of an edge with itself can be always replaced by the
crossing changes of distinct edges (see Figure 5). If we want to change
a crossing of edges A and B, we may assume that G, near the crossing
point ¢ is as shown in Figure 6 (a-1) or (b-1), possibly with the crossing
reversed, according to whether A and B are adjacent or not. It suffices
to show that g, is invariant under these two kinds of crossing changes
by Proposition 1.
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Consider the spatial embedding g of G obtained from changing the
crossing point in G,. If a cycle v in I" does not contain both A and B,
then the coefficient a,(v) of 2* in F,(z) is unchanged. We may assume
that the orientation of YD AUB is induced from the direction of A. Let
g(c) be the writhe of the crossing ¢, which depends on the orientation of
v but not on the direction of B, as shown in Figure 2, and L=L,UL,
the oriented link determined by f(7v) as shown in Figure 6. Let d(y) be
pAG, I'; n)— (G, I'; n), then we have by Proposition 2 (2)

o= > &) lk(Ly, L) (mod n) .

r,yDAUB

To prove the invariance of u/(G, I'; n), it suffices to show that o(x)=0
(mod n) for the following two cases.
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Case 1. The edge A is adjacent to B. Let f(F) be an edge f(E)
with direction induced by the orientation of v, and {(f;(E), L,) the total
of the writhe of the crossings where f,(E) crosses under L,. Then

o= > e)( 2  C(FHE) L))

rer,yDAU

=e(c)-§E.‘.( DI C(fr(E), L)) ,

el',roAuy

where the summation .., .5 is taken over all edges ECv, E+#A, Bin
G, and 3, is taken over all edges E+A, B in G. Let f* (E) be the edge

f+(E) with direction reversed, then {(f,(E), L,)=—{(f*(¥), L Hence
e L), Ly=(m,—n)-((f(E), L) (mod n).

If v(I'; A, B, E)=|n,—n,/=0 (mod n) for any three edges A, Band E,
then () =0 (mod n). e :
Case 2. The edge A is not adJacent ta B In this case, the oriented
link L=L,UL, is as indicated in Figure 6 (b-2). Then we have;
o= 2, Z &(e)-C(f(E), f(F))

7elr,y7DAUB E

=E,2F 7%‘16(6) C(fT(E)r f(F))
=3, (0 —m)-L(f(E), f(F))  (mod m) .

For each summation, E and F run over all distinct pairs of edges in G
with {4, B}N{E, F}= @, but they are assumed to lie along v in the order
as shown .in Figure 4 if 7 contains them. Therefore for any pairs of
disjoint edges {A, B} and (E, F'}, if v(["; A, B; E, F)=|n;—n,/=0 (mod »)
then 6(z)=0 (mod n). ]

§3. Proof of the theorem.

Let G—{e} denote a rgraph obtained from a graph G by removing an
edge and let K,, , denote a complete tripartite graph with part sizes
l, m, n.

THEOREM 2. Let G be one of the graphs K,,—{e}, K,,, and K, .,
(m=5), and I the set of all Hamiltonian cycles in G. For any spatial
embedding f of G, p/G, I'; 2)=0 and p (K, I'; 4)=2.

PrROOF. Let V,={1, 2, 8, 4,5} and V,={(1, 2, 8, 4, 5} be the canonical
partite sets of K;, and assume that each edge of K, is directed from V,
to V, (see Figure 1). We shall evaluate v,(I"; A, B, E) and v(["; A, B; E, F)
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to show the invariance of p.(G, I'; n). -

Let A, B, E be edges as in (1) of Lemma 2. If A, B, E have a common
vertex then the number of cycles in I containing AUBUZE is equal to
0. Hence v,(I"; A, B, E)=0. If F is adjacent to precisely one of A and
B, say A (resp. B), then the number of cycles containing AUBUF is
equal to 3! x3!=36, n,=0 and 7n,=36 (resp. »,=36 and 7,=0). Hence
v(I'; A, B, EY=386. If E is adjacent to neither A nor B, then the number
of cycles containing AUBUZFE is equal to 72=8!x2! x6 and n,=n,=36.
Hence v,(I'; A, B, E)=0. Therefore, in each case, the reduction of
v,(I'; A, B, E) modulo 4 is equal to 0.

Let {A, B} and {E, F} be pairs of non-adjacent edges as in (2) of
Lemma 2. We may assume that A:(li), B=(2§). We consider the other
pairs of edges {F, F'}. By the condition as shown in Figure 4 and the
fact deseribed in Lemma 1 (1), it suffices to examine only the cases in

which E and F are: (a) (21) (832), (b) (21) (83), (c) (32) (41), (d) (23) (31),
e) (28) (82), (f) (23) (84), (g) (33) (44). (See Figure 7.)

vw(l'; A, B, E)=0 w(l'; A, B, E)=36 w(l'; A, B, E)=0
The case of Lemma 2(1)
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vo(I'; A, B; E,F)=4 vw(I'; A,B; E,F)=4 v(I'; A,B; E,F)=4

The case of Lemma 2(2)

FIGURE 7

Let n(A, B; E, F') be the number of Hamiltonian cycles in I" contain-
ing AUBUEUPF. 1t is a routine to determine the values of n(A, B; E, F),
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n; and n, for each case.

(a) n(A,B; E, F)=31x%x2!=12, n,=12 and n,=0. Hencey,(I'; A, B; E, F)=
ns—mn,|=12.

(b) n(A, B; E, F)=20, n,=8 and n,=12. Hence »,(I"; A, B; E, F')=4.

(¢) n(A, B; E, F)=12, n,=12 and n,=0. Hence v,(["; A, B; E, F)=12.

(d) n(A, B; E, F)=12, and n;=12. Hence v,(["; A, B; E, F)=12.

(e) n(A, B; E, F')=20, and n,=8. Hence v,(I"; A, B; E, F)=4.

(f) n(A, B; E, F)=20, and n,=8. Hence v,(["; A, B; E, F')=4.

(g) n(A, B; E, F)=20, and n,=12. Hence »,(I"; A, B; E, F')=A4.

Therefore the reduction of v, (I'"; A, B; E, F') modulo 4 is equal to O.

We can divide the set I' of 1440 Hamiltonian cycles of K, into ten
disjoint subsets of 144 cycles so that cycles in each subset contains the
following two edges, respectively: (1) (11) 12), (@) 1) d3), 3 1) d14),
(4) (1) d5), (6) (21) (13), (6) (21) (14), (7) (21) (15), (8) (31) (14),
(9) (81) (15), (10) (41) (15). (See Figure 1.)

For the spatial embedding of K;, in Figure 1, there is a homeomor-
phism h: R*— R® such that W(K,,)=K,, h(t)=1 and h(i)=1i+1 (mod5) for
vertices 7 and i. So we consider the knottedness of cycles in the only
two sets (1) and (2). We note that if the number of crossing of a cycle
is less than 3, then the cycle can not be knotted. Then we find that
every cycle in the set (1) is a trivial knot, and that the set (2) contains
exactly two knotted cycles which are trefoil knots such that they are
the mirror images of each other. Hence the embedding of K, shown in
Figure 1 contains exactly ten Hamiltonian cycles which are trefoil knots.
Since the Conway polynomial of the trefoil knot is 2°+1, pu(Ky,, I'; 4)=2
and the proof is complete.

The cases for graphs K,,—{e}, K,,, and K, , (m=5) can be proved
by the same method. |

We note that Theorem 2 contains Theorem 1, for if there were an
embedding of K, such that every cycle of the embedding was a trivial
knot, then pu.(K,, I'; 4) would be 0.

By Remark 2, we have the following:

COROLLARY. FEvery spatial embedding of the graphs K,,—{e}, K,.,
and K, , (m=5) has even number of Hamiltonian cycles whose Arf in-
variants are one.
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