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Introduction.

Let $J(\cdot)$ be a functional on some functional space $X$, and $u_{0}eX$ be
a critical point of $J(\cdot)$ , i.e., the solution of the variational problem

$gradJ(u_{0})=0$ ,

where $-gradJ(\cdot)$ is the Euler-Lagrangian operator of $J(\cdot)$ .
Concerning the variational problems, there are two important prob-

lems, the existence of critical points and their stability.
The classical Morse theory covers the analysis of the variational

problems on finite-dimensional spaces. In differential geometry, we find
several variational problems on infinite-dimensional spaces. For such
problems in discussing the properties of a critical point, several authors
study those of the corresponding gradient flow. The gradient flow $u(t)$

of $J(\cdot)$ with the initial value $v$ is, if exists, a C’-flow satisfying

$\left\{\begin{array}{ll}\frac{du(t)}{dt}=-gradJ(u(t)) & te(0, \infty),\\u(0)=v. & \end{array}\right.$

A typical variational problem in differential geometry is the harmonic
map problem, i.e., that of critical maps of the energy integral defined
on maps $f$: between two Riemannian manifolds:

$J(f)=E(f)=\frac{1}{2}\int_{r}|df|^{2}*1$ .
In 1964 Eells and Sampson showed the existence of harmonic maps

by use of the gradient flow corresponding to the energy integral (the
Eells-Sampson equation) in [2]. Recently, Naito [13] has clarified the
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relations between the stability of a harmonic map and the asymptotic
behavior of the Eells-Sampson equation.

Concerning more general results on such relations we refer to the
papers of Simon [15], Natio [14] and so on.

Another important variational problem in geometry is that of the
Yang-Mills functional, which is given by the square integral of the curva-
ture $R$“ associated to a metric connection $\nabla$ on a Riemannian vector
bundle $E$ over a Riemannian manifold $M$:

$J(\nabla)=\mathscr{F}\mathscr{M}(\nabla)=\frac{1}{2}\int_{H}|R^{\nabla}|^{2}*1$ .

In this paper, we discuss the asymptotical stability of some critical
point for the Yang-Mills functional. We say that the critical point $u_{0}$

is asymptotically stable if there exists a neighborhood $U(u_{0})$ of $u_{0}$ in $X$

such that for any $veU(u_{0})$ the gradient flow of $J(\cdot)$ with the initial
value $v$ exists and converges to $u_{0}$ as $ t\rightarrow\infty$ in some topology.

Before stating our problem, we shortly discuss the variational problem
for the Yang-Mills functional. Let $\nabla_{0}$ be a fixed flat connection. It is
well-known that every connection $\nabla$ is uniquely expressed as

$\nabla=\nabla_{0}+A$ ,

where $A$ is an element of $\Omega^{1}(\mathfrak{g}_{B})$ (for the definition of $\Omega^{1}(\mathfrak{g}_{B})$ , see \S 1).
Then the Euler-Lagrange equation for the Yang-Mills functional, called
the Yang-Mills equation, is written as

$\delta^{\nabla_{0}}d^{\nabla_{0}}A+\delta^{\nabla_{0}}[A, A]-[A, d^{v_{0}}A]-[A, [A, A]]=0$ ,

where $d^{v_{0}}$ is the covariant exterior derivation operator of $\nabla_{0}$ and $\delta^{v_{0}}$ is
its formal adjoint operator. The operator $\delta^{v_{0}}d^{\nabla_{0}}$ is not uniformly elliptic.
To recover the ellipticity, we impose farther the gauge condition

$\delta^{\nabla_{0}}A=0$ .
A gauge $A$ satisfying this condition is called the Coulomb gauge. Under
this condition, the Yang-Mills equation has uniform ellipticity, and one
can use the argument in the framework of the elliptic partial differential
equations. We refer to $[16]-[18]$ and the references cited therein for the
information of such gauges.

A similar situation occurs in studying Yang-Mills’ gradient flow, that
is, the system of equations defining the flow is not uniformly parabolic.
However, it seems difficult for the authors to show the existence of the
gradient flow satisfying the condition $\delta^{v_{0}}A=0$ .
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Therefore in this paper we impose a different condition (2.2) on $A$

which is weaker than $\delta^{\nabla_{0}}A=0$ and reduce the system to that of the semi-
linear heat equations. We shall find easily that if there exists a stationary
flow satisfying condition (2.2), then the flow gives a Coulomb gauge.
This approach is due to Yokotani’s paper [21] in which he proved the
local existence of Yang-Mills’ gradient flow.

By use of the standard technique for the semi-linear heat equations,
we shall show the weak asymptotical stability of some critical points of
the Yang-Mills functional. The meaning of the word “weak“ will be
clarified in \S 1.

\S 1. Main result.

First we introduce terminology used in our paper (basically we follow
the notation in [10]). Let $(M, g)$ be a smooth n-dimensional Riemannian
manifold, where $n\geqq 2$ . Suppose that $(E, \langle, \rangle)$ is a Riemannian vector
bundle over $(M, g)$ of rank $m$ . We denote the space of all smooth metric
connections on $E$ by $\mathscr{G}$. For $\nabla\in \mathscr{G}$ we can define a naturally induced
connection on $Hom(E, E)\cong E^{*}\otimes E$ in a canonical way. Namely, for $\nabla\in \mathscr{G}$

and a section $L\in Hom(E, E)$ , we define $\nabla(L)$ by

$\nabla(L)(\varphi)=\nabla(L\varphi)-L(\nabla\varphi)$ for any $\varphi\in\Gamma(E)$ .
The $Hom(E, E)$-valued 2-form $R^{\nabla}$ defined as follows is called the curvature
of a connection V:

$R_{V,W}^{\nabla}=\nabla_{V}\nabla_{W}-\nabla_{W}\nabla_{V}-\nabla_{[V,W]}$

for any smooth vector field $V,$ $W$ on M. $G_{B}$ and $\mathfrak{g}_{E}$ denote the bundles
defined by

$G_{B}=$ {$L\in Hom(E,$ $E);\langle L\varphi,$ $L\psi\rangle=\langle\varphi,$ $\psi\rangle$ for all $\varphi,$ $\psi eE$} ,
$\mathfrak{g}_{B}=$ {$L\in Hom(E,$ $E);\langle L\varphi,$ $\psi\rangle=-\langle\varphi,$ $ L\psi\rangle$ for all $\varphi,$ $\psi\in E$}.

$\mathscr{G}$ and $\mathscr{F}$ are spaces of all smooth sections of $G_{B}$ and $\mathfrak{g}_{B}$ respectively.
$ g\in$ S7 acts on $\nabla\in \mathscr{G}$ in the following way:

$g(\nabla)=g\nabla g^{-1}$

DEFINITION 1.1. The Yang-Mills functional $\mathscr{F}\mathscr{M}:\mathscr{G}\rightarrow[0, \infty]$ is given
by

$\mathscr{F}\mathscr{M}(\nabla)=\frac{1}{2}\Vert R^{\nabla}\Vert_{2}^{2}=\frac{1}{2}\int_{H}^{\langle R^{\nabla}},$
$R^{\nabla}\rangle_{x}$ .
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REMARK 1. It is obvious that the Yang-Mills functional is gauge-
invariant, i.e.,

$\mathscr{F}\mathscr{M}(\nabla)=\mathscr{F}\mathscr{M}(g(\nabla))$ for V $e\mathscr{G},$ $ge$ S7.

Let $\Omega_{0}^{1}(\mathfrak{g}_{B})$ be the subset of $\Omega^{1}(\mathfrak{g}_{B})$ consisting of all elements with
compact support. By direct calculation we find that if $\mathscr{F}\mathscr{M}(\nabla)<\infty$ ,
then for $\nabla^{e}=\nabla+\epsilon A,$ $A\in\Omega_{0}^{1}(\mathfrak{g}_{B})$ ,

$\frac{d}{d\epsilon}\mathscr{F}\mathscr{M}(\nabla)|_{=0}=\int_{H}\langle R^{\nabla}, d^{\nabla}A\rangle_{\iota}=\int_{K}\langle\delta^{\nabla}R^{\nabla}, A\rangle_{g}$ .

Keeping this in mind, we define $grad\mathscr{F}\mathscr{M}(\nabla)$ by

$grad\mathscr{F}\mathscr{M}(\nabla)=\delta^{\nabla}R^{\nabla}$

even for $\nabla$ with $\mathscr{F}\mathscr{M}(\nabla)=\infty$ .
DEFINITION 1.2. A connection $\nabla e\mathscr{G}$ is called the Yang-Mills con-

nection, if
$\delta^{\nabla}R^{\nabla}=0$

is satisfied.

Now we fix a base connection $\nabla_{0}$ . Let $\tilde{\Omega}_{0}^{1}(\mathfrak{g}_{B})$ be the completion of
$\Omega_{0}^{1}(\mathfrak{g}_{B})$ by the topology of $W_{0}^{1,n}(M)$ and we define $\tilde{\mathscr{G}}$ by

$\tilde{\mathscr{G}}=$ { $\nabla;\nabla=\nabla_{0}+A,$ A $e\tilde{\Omega}_{0}^{1}(\mathfrak{g}_{B})$ }.

The completion of $g$ by the topology of $L^{\infty}(M)$ is denoted by $\tilde{\mathscr{G}}$. We
can define the above operations for the element $\nabla$ in $\tilde{\mathscr{G}}$ and the action
of the element $g$ in $\tilde{\mathscr{G}}$ on $\tilde{\mathscr{G}}$ in the generalized sense.

In the following we restrict ourselves to the case where $M$ is the
Euclidean $8paceR$“ or a bounded domain $\Omega\subset R^{n}$ with smooth boundary,
where $n\geqq 2$ . Suppose $E$ be the trivial Riemannian vector bundle over
$(M, g_{0})$ of rank $m$ , where $g_{0}$ is the standard metric on $R$ . We denote
by $\nabla_{0}$ a canonical flat connection determined by the trivialization of the
bundle $E$. Clearly $\nabla_{0}$ is a Yang-Mills connection since it is flat. Then
the connection $\nabla_{0}$ is weakly asymptotically stable in the following sense:

THEOREM 1. There exists a neighborhood $U(\nabla_{0})$ of $\nabla_{0}$ in $\tilde{\mathscr{G}}$ such that

for any V $eU(\nabla_{0})$ there exist a $C$’-curve $g(t)$ in $\tilde{\mathscr{G}}$ with $g(O)=id.$ , and a
$C$’-flow $\nabla(t)$ whieh satisfy $g^{-1}(t)\nabla(t)g(t)e\tilde{\mathscr{G}}$ and
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(1.1) $\left\{\begin{array}{ll}\frac{d\nabla(t)}{dt}=-grad\mathscr{F}_{-}\ovalbox{\tt\small REJECT}(\nabla(t)) & te(0, \infty),\\\nabla(0)=\nabla, & \end{array}\right.$

(1.2) $\lim_{\rightarrow\infty}g^{-1}(t)\nabla(t)g(t)=\nabla_{0}$ in $L^{p}(M)$ for $ n<p\leqq\infty$ .
REMARK 2. The rate of convergence (1.2) is evaluated by

$\Vert g^{-1}(t)\nabla(t)g(t)-\nabla_{0}\Vert_{L^{p}(H)}\leqq C(n, p)t^{-(1-n/p)/2}$ for $ n<p\leqq\infty$ .
This estimate is valid even for $p=n$ .

REMARK 3. The stability of $\nabla_{0}$ is “weak” in the following sense:
(1) Uniqueness of the gradient flow is uncertain.
(2) Large-time behavior of $g(t)$ is unknown.
(3) It is uncertain that $\nabla(t)$ is a flow in $\tilde{\mathscr{G}}$. We interpret the

right-hand side of the first equation of (1.1) as
$-grad\mathscr{F}\mathscr{M}(\nabla(t))=-grad\mathscr{F}_{\vee}\ovalbox{\tt\small REJECT}(g^{-1}(t)\nabla(t)g(t))$

by virtue of Remark 1.

\S 2. Reduction of the proof of Theorem 1.

In this section, we reduce the assertions in Theorem 1 to the stability
problem of the system of the semi-linear heat equations.

We shall seek $\nabla(t)$ in the form
$\nabla(t)=g(t)\tilde{\nabla}(t)g^{-1}(t)$ .

By simple calculations, the equation (1.1) takes the form

(2.1) $\frac{d\tilde{\nabla}(t)}{dt}-d^{\nabla(t)}Y(t)=\sim-\delta^{\nabla(t)}R^{\nabla(t)}\sim\sim$ ,

where

$Y(t)=g^{-1}(t)\frac{dg(t)}{dt}$ .
The right-hand side of (2.1) is degenerate. To avoid this difficulty, we
utilize Yokotani’s idea [21], i.e., we assume that $Y(t)$ satisfies the gauge
condition

(2.2) $Y(t)=g^{-1}(t)\frac{dg(t)}{dt}=-\delta^{v0}A(t)$ ,
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where
$A(t)=\tilde{\nabla}(t)-\nabla_{0}=g^{-1}(t)\nabla(t)g(t)-\nabla_{0}$

is a $Hom(E, E)$-valued l-form vanishing on $\partial M$ if $\partial M\neq\emptyset$ . As we stated
in Introduction, we can say that condition (2.2) is weaker than the
Coulomb gauge condition.

Under the condition (2.2) we find that $A(t)$ must satisfy the system
of semi-linear heat equations

(2.3) $\left\{\begin{array}{ll}\frac{dA(t)}{dt}=\Delta A(t & )+F_{1}(A, \partial A)+F_{2}(A),\\A(t)|_{\partial r}=0 & if \partial M\neq\emptyset ,\end{array}\right.$

where the nonlinear terms $F_{1}$ and $F_{2}$ are respectively polynomials of
order

(2.4) $\left\{\begin{array}{l}F_{1}(A, B)\sim const.\\F_{2}(A)\sim constA^{8}\end{array}\right.$

We should refer to [21] for the detail derivation of (2.3) and (2.4).

In \S 3 we shall prove

THEOREM 2. (i) Let $b$ be in $L(M)$ . Then there exists a positive
constant $\lambda$ such that if $||b||_{n}<x$ then there exists a unique solution $ a(t)\in$

$W_{0}^{1,n}(M)\cap W^{2.n}(M)$ for $t>0$ to

(2.5) $\left\{\begin{array}{ll}a=\Delta a+F_{1}(a, \partial a)+F_{2}(a) & on M ,\\a(0)=b, & \\a|_{\partial K}=0 if \partial M\neq\emptyset , & \end{array}\right.$

such that

(2.6) $\left\{\begin{array}{ll}t^{(1-/p)/2}a\in BC([0, \infty);L^{p}(M)) & for n\leqq p<\infty ,\\t^{(1-n/(2q))}\partial aeBC([0, \infty);L^{q}(M)) & for n\leqq q<\infty ,\end{array}\right.$

with values zero at $t=0$ except for the case $p=n$ in which $a(O)=b$ . More $\cdot$

over $a(t)$ belongs to $C^{0}([0, \infty);L^{n}(M))\cap C^{1}((0, \infty);L^{n}(M))$ .
(ii) We assume the hypothesis in (i) and $beW_{0}^{1,n}(M)$ . Then the solu-

tion $a(t)$ constructed as above satisfies

(2.7) $\left\{\begin{array}{ll}t^{1/2}\partial aeBC([0, \infty);L^{\infty}(M)) & for M=R ,\\t^{1/4+\mathfrak{p}/2}\partial a\in BC([0, \infty);L^{\infty}(M)) & for M=\Omega (1/2<\beta<1).\end{array}\right.$

Moreover $a(t)$ belongs to $C^{0}([0, \infty);W_{0}^{1,n}(M))\cap C^{1}((0, \infty);W_{0}^{1,n}(M))$ .
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Applying Theorem 2 to (2.3), we find that under the hypotheses of
Theorem 2 there exists an $A(t)$ satisfying (2.3) uniquely. It is clear that
$\tilde{\nabla}(t)=\nabla_{0}+A(t)\in\tilde{\mathscr{G}}$. Besides Theorem 2 (ii) asserts the existence of a
positive constant $C_{0}$ such that

(2.8) $\left\{\begin{array}{ll}\Vert u\delta^{v_{0}}A(t)\Vert_{L^{\infty}tH)}\leqq C_{0}t^{-1/2}\Vert u\Vert_{L^{\infty}(H)} & for M=R^{n} ,\\\Vert u\delta^{v_{0}}A(t)\Vert_{L^{\infty}tH)}\leqq C_{0}(\beta)t^{-1/4-\rho/2}||u||_{L^{\infty}(H)} & for M=\Omega (1/2<\beta<1).\end{array}\right.$

Next we seek $g(t)\in\tilde{\mathscr{G}}$ satisfying (2.2) and $g(O)=id$ . If we put

$u(t)=g(t)-id.$ ,

then $u(t)$ must satisfy the system of integral equations

$u(t)=-\int_{0}^{t}u(s)\delta^{\nabla_{0}}A(s)ds-\int_{0}^{t}\delta^{\nabla_{0}}A(s)ds$ .
Keeping in mind the estimates (2.8), we shall establish the following
existence theorem in \S 4.

THEOREM 3. Let $B(t)$ be a $ one- pa\gamma ameterk\times$ k-matrix-valued funct,ion
on $M$ which satisfies
(2.9) $\Vert uB(t)\Vert_{L^{\infty}tH)}\leqq Ct^{-\gamma}\Vert u\Vert_{L^{\infty}tH)}$ for $k\times k$-matrix $u$

for some $\gamma\in(0,1)$ . Then there exists a unique solution to the system

(2.10) $u(t)=-\int_{0}^{t}u(s)B(s)ds-\int_{0}^{t}B(s)ds$

in $u(t)\in C^{0}([0, \infty);L^{\infty}(M))\cap C^{1}((0, \infty);L^{\infty}(M))$ .
This theorem yields the existence of $g(t)$ . It is obvious that $g(t)\in\tilde{\mathscr{G}}$.
The $L^{p}$-estimate $(n\leqq p<\infty)$ in Remark 2 of \S 1 follows from (2.6).

The $L^{\infty}$-estimate follows from (2.6) and Gagliado-Nirenberg’s inequality
[11]:

$\Vert g^{-1}(t)\nabla(t)g(t)-\nabla_{0}\Vert_{L^{\infty}(M)}=\Vert A(t)\Vert_{L^{\infty}tH)}$

$\leqq C(n)||\partial A(t)\Vert_{L(H)}^{1/2}2n||A(t)\Vert_{L(H)}^{1/2}2n$ for $M=R^{n}$ ,

$\Vert g^{-1}(t)\nabla(t)g(t)-\nabla_{0}||_{L^{\infty}tM)}=||A(t)||_{L^{\infty}1H)}$

$\leqq C(n)||A(t)||_{W^{1,2n}(H)}^{1/2}||A(t)\Vert_{L(H)}^{1/_{2n}}2$ for $ M=\Omega$ .
In the case of $ M=\Omega$ , the $W^{1,2n}(M)$-norm of $A(t)$ is majorized by the
$L^{2n}(M)$-norm of $\partial A(t)$ because $\Omega$ is bounded and $A(t)$ vanishes on the
boundary, [6, (7.44)]. Thus the convergence (1.2) follows.
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Consequently Theorems 2 and 3 give Theorem 1.

\S 3. Proof of Theorem 2.

In the remainder of this paper, for the sake of notational simplicity
we denote the norms of $L^{p}(M)$ and $W^{1,p}(M)$ by $||\cdot||_{p}$ and $||\cdot||_{1,p}$ respec-
tively. The symbol $C$ denotes a generic constant with various values
even in the same sentence.

In this section we shall prove Theorem 2 by a method similar to
Kato [9].

Let $\Delta=\sum_{=\iota}\partial_{i}^{2}$ be the Laplace operator in $L^{p}(M)(1<p<\infty)$ with the
domain $\mathscr{G}(\Delta)=W_{0}(M)\cap W^{p}(M)$ . The following lemma is well-known:

LEMMA 8.1. $\Delta$ generates a strongly continuous $semig\gamma oup\{e^{A}\}_{t\Xi 0}$

simultaneously on all $L^{p}(M)(1<p<\infty)$ , and satisfies

$\left\{\begin{array}{ll}\Vert e^{A}a||_{\beta}\leqq C(\alpha. \beta, n)t^{-(1/\alpha-1/\rho)n/2}||a||_{\alpha} & (1<\alpha\leqq\beta<\infty),\\\Vert\partial e^{tA}a||_{l}\leqq C(\alpha, \beta, n)t^{-(1+/\alpha-n/\beta)/2}\Vert a||_{\alpha} & (1<\alpha\leqq\beta<\infty).\end{array}\right.$

PROOF. We only give a simple proof of the above estimates. The
estimates for $M=R$“ is a consequence of an application of Young’s con-
volution inequality to a Gaussian kernel and its gradient (see [9]).

For $ M=\Omega$ , the first estimate follows from the one for $M=R^{n}$ and
the maximum principle (see [20]). Because $\Omega$ is bounded, the Laplace
operator satisfies

$||\Delta e^{tA}||\leqq Ct^{-\iota}$

(see [7]). The second estimate of the lemma is given by the first one
and the above one using the interpolation argument (see [19]). $\square $

If $a(t)$ is a solution to (2.5) satisfying (2.6), then it is easy to see
that $a(t)$ is also a solution to the integral equation

(3.1) $\left\{\begin{array}{l}a=a_{0}+S_{\iota}a+S_{2}a\\a_{0}=e^{tA}b\\S_{\iota}a=\int_{0}e^{(-\cdot)A}F_{\iota}(a(\epsilon), \partial a(\epsilon))d\epsilon\\ S_{f}a=\int_{0}e^{(\iota-\cdot)A}F_{1}(a(s))d\epsilon\end{array}\right.$

satisfying (2.6).
Conversely let $a(t)$ be a solution to (3.1) satisfying (2.6). Let $A$ be
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$x-\Delta$ , where $x=1$ for $M=R^{n},$ $x=0$ for $ M=\Omega$ . $A$ is a sectional operator
satisfying $\Re\sigma(A)>\delta>0$ , and $-A$ generates a strongly continuous semi-
group $\{e^{-tA}\}_{t\geq 0}$ in $L^{p}(M)$ . Then (3.1) is equivalent to

$e^{-\lambda t}a(t)=e^{-tA}b+\int_{0}^{t}e^{-(t-\cdot)A}e^{-\lambda t}\{F_{1}(a(s), \partial a(s))+F_{2}(a(s))\}ds$ .
By virtue of [7, Theorem 1.4.3], we can define the fractional power $A^{\alpha}$

$(0<\alpha\leqq 1)$ of $A$ satisfying

$||(e^{-tA}-1)a||_{p}\leqq C(\alpha, p)t^{\alpha}||A^{\alpha}a||_{p}$ .
Since nonlinear terms $F_{1}(a(t), \partial a(t))$ and $F_{2}(a(t))$ are polynomial order of
their arguments, we can show their local Holder continuity for $t>0$ by
use of the above estimate and (2.6) in a similar manner to [5, Proposition
2.4]. An application of [8, Theorem 1.27] gives the fact that $e^{-\lambda t}a(t)$

belongs to $\mathscr{G}(A)$ for $t>0$ , which is equivalent to $a(t)e\mathscr{G}(\Delta)$ for $t>0$ ,
and satisfies (2.5). Moreover $a(t)\in C^{0}([0, \infty);L^{n}(M))\cap C^{1}((0, \infty);L^{n}(M))$ .

Therefore the equation (2.5) is converted into (3.1). Hence we shall
construct the solution to (3.1). First we show

PROPOSITION 3.1. Let $\gamma$ be a fixed index satisfying $(3/2)n<r<3n$ .
Under the hypotheses on $Theo\gamma em2(i)$ , there exists a unique solution $a=$

$a(t)$ to (3.1) such that

$t^{(1-n/r)/2}aeBC([0, \infty);L^{f}(M))$ , $t^{1/2}\partial aeBC([0, \infty);L^{n}(M))$

with
$t^{(1-n/r)/2}a(t)|_{t=0}=t^{1/2}\partial a(t)|_{t=0}=0$ .

We shall prove the existence of the solution via successive approxi-
mation

$\left\{\begin{array}{ll}a_{0}=e^{t\Delta}b, & \\a_{m+1}=a_{0}+S_{1}a_{m}+S_{2}a_{m} , & m=0,1,2, \cdots.\end{array}\right.$

Since the proof of Proposition 3.1 is lengthy, we divide it into 4 lemmas.

LEMMA 3.2. Let $K_{m},$ $K_{*}^{\prime}$ and $K_{n}$ be defined by

$K_{*}\equiv\sup_{t>0}t^{(1-n/r)/2}||a_{m}\Vert,$ , $K_{n}^{\prime}\equiv\sup_{t>0}t^{1/2}\Vert\partial a_{m}\Vert_{n}$ , $\overline{K_{m}}=\max\{K_{m}, K_{m}^{\prime}\}$ .
Then there exist pos’itive constants $C_{1}$ and $C_{2}$ such that

$\dagger\frac{\overline{K_{0}}=}{K_{n\cdot+1}}\frac{||b}{K_{0}}C_{1}||_{n}=+C_{2}\overline{K_{n}}^{2}(1+\overline{K_{n*}})$ .



348 KAZUYO KONO AND TAKEYUKI NAGASAWA

PROOF. By virtue of Lemma 3.1, we have

(3.2) $||a_{0}||_{f}\leqq Ct^{-(1-n/t)/2}||b||$ , $\Vert\partial a_{0}||_{n}\leqq Ct^{-1/2}||b||$ .
Therefore the existence of $C_{1}$ is obvious.

Lemma 3.1 and (2.4) yield

$||S_{1}a_{m}(t)||_{f}\leqq C\int_{0}^{t}(t-s)^{-1/2}||a_{m}(s)\Vert,||\partial a_{n*}(s)||_{n}ds$

$\leqq CK_{n}K^{\prime},\int_{0}^{t}(t-s)^{-1/2}s^{-(2-n/f)/2}ds$

$\leqq CK_{n}K_{*}^{\prime}t^{-(1-n/t)/2}$ ,

which gives

(3.3) $\sup_{t>0}t^{\{\iota-n/r)/2}||S_{1}a_{n}||_{f}\leqq CK_{n}K_{l\hslash}^{\prime}$ ,

where $C$ is a positive constant independent of $m$ . In a similar way, we
can show

(3.4) $\sup_{>0}t^{(1-n/t)/2}||S_{2}a_{n}||,\leqq CK_{n}^{3}$ .
Differentiating (3.1) and applying Lemma 3.1 again, we have

(3.5) $\sup_{t>0}t^{1/2}\Vert\partial S_{1}a_{m}\Vert_{n}\leqq CK_{m}K_{m}^{\prime}$ , $\sup_{t>0}t^{1/2}\Vert\partial S_{2}a_{m}\Vert_{n}\leqq CK_{n}^{3}$ .
Here we use $(3/2)n<r<3n$ . Combining $(3.2)-(3.5)$ , we know the existence
of $C_{2}$ . $\square $

We may assume $C_{2}>1/4$ . Then we have

LEMMA 3.3. If $||b_{n}||<(8C_{1}C_{2})^{-1}$ holds, then there exists a positive con-
stant $K$ such that $K_{n}<K$ holds for all $m$ .

PROOF. Put

(3.6) $K=\frac{1-\sqrt{1-8C\overline{K_{0}}}2}{4C_{2}}$ :

By the assumption, $K$ is one of the positive roots for

$K=\overline{K_{0}}+2C_{2}K^{2}$

and satisfies $K<1$ . Consequently the assertion is proved by induction
on $m$ . $\square $
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We can replace the supremum taken over $t>0$ in the definition of $K_{\tau n}$

and $K_{r}^{\prime}$ by the supremum over $t\geqq 0$ . Indeed the following lemma holds.

LEMMA 3.4. $t^{(1-n/r)/2}a_{m}(t)$ and $t^{\iota/2}\partial a_{m}(t)$ are continuous at $t=0w^{i}ith$

values zero in the topology of $BC([0, \infty);L^{f}(M))$ and $BC([0, \infty);L^{n}(M))$

respectively.

PROOF. Define

$\overline{K_{n}}(t)\equiv\max\{\sup_{0<\tau\leq t}\tau^{(1-n/r)/2}\Vert a_{m}\Vert_{r},\sup_{0<r\leq t}\tau^{1/2}\Vert\partial a_{m}\Vert_{n}\}$ .
In the same way as Lemma 3.2 we can show

$\overline{K_{m+1}}(t)\leqq\overline{K_{0}}(t)+2C\overline{K_{m}}^{2}(t)$ .
Therefore to prove the assertion, it suffices to show

$\overline{K_{0}}(t)\rightarrow 0$ as $t\rightarrow 0$ .
This fact is a direct consequence of the facts that the operator $t^{(1-n/r)/2}e^{tA}$

is uniformly bounded from $L^{n}(M)$ to $L^{f}(M)$ and tends to zero strongly as
$t\rightarrow 0$ , and similarly for $t^{1/2}\partial e^{t\Delta}$ from $L^{n}(M)$ to itself. We can show these
facts by the density of $C_{0}^{\infty}(M)$ in $L^{n}(M)$ . $\square $

The above three lemmas show that $\{t^{(1-n/r)/2}a_{m}\}$ and $\{t^{1/2}\partial a_{m}\}$ are
bounded subsets in $BC([0, \infty);L^{f}(M))$ and $BC([0, \infty);L^{n}(M))$ respectively.
To show Proposition 3.1 it remains to prove the uniform convergence of
the sequences and the uniqueness of $a(t)$ . These assertions follow from

LEMMA 3.5. Let $\Phi$ be defined by

$\Phi(u)\equiv a_{0}+S_{1}u+S_{2}u$ ,

and $X$ be
$X\equiv\{u;|||u|||\leqq K<1\}$ ,

where
$|||u|||\equiv\max\{\sup_{t\geqq 0}t^{(1-n/\prime\cdot)/2}\Vert u||_{f}, \sup_{t\geqq 0}t^{1/2}||\partial u||_{n}\}$ .

Then $\Phi$ is contractive on $X$, i.e., for any $u,$ $weX$,

$|||\Phi(u)-\Phi(w)|||\leqq k|||u-w|||$ for some $ke(O, 1)$

holds.

PROOF. By use of (2.4), we have
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$||(S_{1}u-S_{1}w)(t)||_{f}\leqq C\int_{0}^{t}(t-s)^{-1/2}\{||u-w\Vert,||\partial u||+||w||_{f}||\partial u-\partial w||_{n}\}ds$

$\leqq CK|||u-w|||\int_{0}^{t}(t-s)^{-1/2}\epsilon^{-11-n/t2r))}ds$

$\leqq CK|||u-w|||t^{-(1-/f)/2}$ .
In a similar manner, we obtain

$||S_{2}u-S_{2}w||_{f}\leqq CK|||u-w|||t^{-(1-/t)/2}$ ,
$||\partial S_{i}u-\partial Sw||_{n}\leqq CK|||u-w|||t^{-1\beta}$ $(i=1,2)$ .

Here we use $K<1$ . These yield

$|||\Phi(u)-\Phi(w)|||\leqq 4C_{8}K|||u-w|||$

for some $C_{\epsilon}>0$ . Since $C_{8}$ is independent of $C_{2}$ in Lemma 3.2, we take $C_{2}$

greater than $C_{\theta}$ in advance. Then from (3.6) $4C_{s}K<1$ is valid. $\square $

Now we complete the proof of Proposition 3.1.

Proposition 3.1 shows Theorem 2 (i) except (2.6). To show this we
repeat an argument similar to that of the proof of Lemma 3.2.

PROPOSITION 3.2. The solution $a(t)$ constructed in Proposition 3.1
satisfies (2.6) and

$||a(t)||_{p}\leqq C(K)t^{-(1-n/p)/2}$ $(n\leqq p<\infty)$ ,
(3.7)

$||\partial a(t)||_{q}\leqq C(K)t^{-(1-/(2q))}$ $(n\leqq q<\infty)$ ,

where $C(K)$ is a positive constant with the property

$C(K)\rightarrow 0$ as $K\rightarrow 0$ ,

and $ Ki\epsilon$ given by (3.6).

PROOF. It is enough to show the above assertion for $a.(t)$ instead
of $a(t)$ . Lemma 3.1 gives the $as8ertion$ for $a_{0}(t)$ . Since we have already
known

$||a.(t)||_{f}\leqq C(K)t^{-(1-/r)/2}$ , $||\partial a_{n}(t)||\leqq C(K)t^{-1/2}$

by Lemmas 3.2 and 8.3, where $r$ is given in Proposition 3.1, we can show

$||S_{1}a_{n}(t)||_{p}\leqq C\int_{0}^{l}(t-s)^{-(1/f+1/-1/p)n/2}||a_{n}(s)||_{f}||\partial a_{n}(\epsilon)||_{n}ds$

$\leqq C(K)\int_{0}^{t}(t-\epsilon)^{-(1/r+1/n-1/p)n/2}\epsilon^{-1+n/(2r)}d\epsilon$
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$\leqq C(K)t^{-(1-n/p)/2}$ for $ n\leqq p<\infty$ .
For a similar reason,

$||S_{2}a_{m}(t)||_{p}\leqq C(K)t^{-(1-n/p)/2}$ ,
$||\partial S_{1}a_{m}(t)\Vert_{q}+\Vert\partial S_{2}a_{n*}(t)||_{q}\leqq C(K)t^{-(\iota-n/(2q))}$

hold.
The continuity up to $t=0$ is proved in the same way as in Lemma

3.4. $\square $

Next we shall prove Theorem 2 (ii). First we consider the case when
$M=R^{n}$ . By virtue of Gagliado-Nirenberg’s inequality

$\Vert a||_{\infty}\leqq C||\partial a\Vert_{2n}^{\iota/2}||a\Vert_{2n}^{1/2}$ ,

we have to show

PROPOSITION 3.3. Under the hypotheses on Theorem 2 (ii), there exists
a positive constant $C_{4}$ suoh that

$||\partial a||_{2n}\leqq C_{4}t^{-1/4}$ , $\Vert\partial^{2}a||_{2n}\leqq C_{4}t^{-\epsilon/4}$ .
PROOF. We shall show the above estimate for $a_{m}$ instead of $a$ . Since

the operator $\partial$ can commute with $e^{A}$ when $M=R^{n},$ $\{a.\}$ satisfies

(3.8) $\partial a_{m+1}(t)=e^{tA}\partial b+\int_{0}^{t}e^{(t-\cdot)A}\partial(F_{1}(a_{m}(s), \partial a_{n}(s))+F_{2}(a_{n}(s)))ds$ .
Lemma 3.1 yields

$||e^{A}\partial b||_{2n}\leqq Ct^{-1/4}||\partial b||_{n}$ .
Now we choose indices $p,$ $q,$ $r$ such that

$\frac{2}{3}n<p<n$ , $q\geqq n$ , $r\geqq n$ , $\frac{1}{p}=\frac{1}{q}+\frac{1}{2n}=\frac{2}{r}+\frac{1}{2n}$ .
It follows from (2.4) and Gagliado-Nirenberg’s inequality that the
estimates

$\Vert\partial F_{1}(a_{m}\partial a_{n}.)||_{p}\leqq C(||\partial a,.||_{2p}^{2}+||a_{n}.||||\partial^{2}a_{\alpha}.||_{2n})$

$\leqq C||a_{n}||_{q}||\partial^{2}a_{n}.||_{2n}$ ,

$||\partial F_{f}(a_{n})||_{p}\leqq C||\partial a_{n}||_{ln}||a_{*}||^{2}$,

hold. Therefore by use of Lemma 3.1 and (3.7) for $a_{n}$ (see the proof of
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Proposition 3.2) we have

$\Vert\int_{0}^{t}e^{(t-\cdot)A}\partial F_{1}(a_{n}(s), \partial a_{n}(s))ds\Vert_{2n}$

$\leqq C\int_{0}(t-s)^{-(/p-1/2)/2}||a.(s)||_{q}||\partial^{2}a.(s)||_{2}ds$

$\leqq C(K)\sup_{\tau>0}\tau^{s/4}||\partial^{2}a_{n}(\tau)||_{2n}\int_{0}^{t}(t-s)^{-(n/p-1/2)/2}s^{-\langle 3-n/p)/2}ds$

$\leqq C(K)t^{-1/4}\sup_{\tau>0}\tau^{\epsilon/\iota}||\partial^{2}a_{m}(\tau)||_{2n}$ ,

$\Vert\int_{0}e^{t-\cdot)A}\partial F_{2}(a_{n}(s))ds\Vert_{2}$

$\leqq C\int_{0}^{t}(t-s)^{-(n/p-\iota/2)/2}||\partial a_{n}(s)||_{2n}||a_{n}(s)||_{f}^{2}ds$

$\leqq C(K)\sup_{\tau>0}\tau^{1/4}||\partial a_{t*}(\tau)||_{2n}\int_{0}^{t}(t-s)^{-(n/p-1/2)/2}s^{-(\epsilon-n/p)/2}ds$

$\leqq C(K)t^{-1/4}\sup_{\tau>0}\tau^{1/}||\partial a_{n}(\tau)\Vert_{2n}$ .
For a similar reason, we also have

$||\partial e^{A}\partial b||_{2}\leqq Ct^{-\epsilon/}||\partial b||_{2}$. ,

$\Vert\int_{0}^{t}\partial e^{(\iota-\cdot)A}\partial F_{1}(a_{*}(s), \partial a_{n}(\epsilon))ds\Vert_{2n}\leqq C(K)t^{-\epsilon/4}\sup_{\wedge>0}\tau^{\epsilon/4}||\partial^{2}a_{n}(\tau)||_{2n}$ ,

$\Vert\int_{0}\partial e^{t-\cdot)A}\partial F_{2}(a_{n}(s))d\epsilon\Vert_{2}\leqq C(K)t^{-\epsilon/}\sup_{\tau>0}\tau^{1/4}||\partial a_{n}(\tau)||_{2}$ .
Summing up these estimates we get

$\left\{\begin{array}{ll}\sup_{t>0}t^{1/4}||\partial a_{0}(t)||_{2}+\sup_{>0}t^{s/4}||\partial^{2}a_{0}(t)||_{2n}\leqq C||\partial b||_{n}, & \\\sup_{\succ 0}t^{1/4}||\partial a_{n+1}(t)||_{2n}+\sup_{>0}t^{S/4}||\partial^{2}a_{n+1}(t)||_{2n} & \\\leqq C||\partial b||_{n}+C(K)\{\sup_{l>0}t^{1/4}||\partial a_{n}(t)||_{2n}+\sup_{>0}t^{\$/4}||\partial^{2}a_{n}(t)||_{2n}\}, & m=0,1,2, \cdots.\end{array}\right.$

Put

$C_{4}=\frac{C||\partial b||_{n}}{1-C(K)}$ .

If $||b||_{n}$ is sufficiently small, then so is $K$, and $C_{4}$ is a positive constant.
The assertion of the proposition follows by induction on $m$ . $\square $

Next we consider the case when $ M=\Omega$ . In this case we shall use
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the fractional power of -A (see [1, 3, 7]). We denote by $(-\Delta)^{\alpha}$ and
$\mathscr{G}((-\Delta)^{\alpha})$ the fractional power of -A of order $\alpha(0<\alpha<1)$ and its
domain respectively. The $\mathscr{G}((-\Delta)^{\alpha})$-norm is defined by

$||a\Vert_{\ovalbox{\tt\small REJECT}((-A)^{\alpha})}=\Vert(-\Delta)^{\alpha}a\Vert_{n}$ ,

which is equivalent to the graph norm $||a||_{n}+\Vert(-\Delta)^{\alpha}a||_{n}$ for $\alpha>0$ and the
bounded domain $\Omega$ . It is well-known that

(3.9) $\Vert(-\Delta)^{\alpha}e^{t\Delta}a||_{\beta}\leqq C(\beta, \gamma, n)t^{-(2\alpha+n/\gamma-n/\beta)/2}||a||_{\gamma}$ $(1<\gamma\leqq\beta<\infty)$ ,

(3.10) $||a||_{k,p}\leqq C||(-\Delta)^{k/2}a||_{p}$

hold, where $||\cdot\Vert_{k,p}$ is the norm of the Bessel potential space $\mathscr{L}^{k,p}(M)$ (see
[4]). We shall prove

PROPOSITION 3.4. Under the hypotheses in Theorem 2 (ii), there exists
a positive constant $C_{b}$ such that

$||(-\Delta)^{1/2}a(t)||_{2n}\leqq C_{b}t^{-1/4}$ , $||(-\Delta)^{1/2+a}a(t)||_{2n}\leqq C_{b}t^{-1/4-\alpha}$ $(0<\alpha<1/2)$ .
PROOF. It suffices to show the estimates for $a_{m}(t)$ . Since $W_{0}^{1,n}(M)$

and $\mathscr{G}((-\Delta)^{1/2})$ coincide as vector spaces and carry equivalent norms ([1]),
our hypotheses imply $(-\Delta)^{1/2}b\in L^{n}(M)$ . The operators $(-\Delta)^{1/2}$ and
$(-\Delta)^{\iota/2+\alpha}$ commute with $e^{t\Delta}$ , and $\{a_{m}\}$ satisfies

(3.11) $(-\Delta)^{1/2}a_{m+1}(t)=e^{t\Delta}(-\Delta)^{1/2}b$

$+\int_{0}^{t}(-\Delta)^{1/2}e^{(t-\cdot)\Delta}(F_{1}(a_{m}(s), \partial a_{m}(s))+F_{2}(a_{m}(s)))ds$ ,

(3.12) $(-\Delta)^{1/2+\alpha}a_{m+1}(t)=(-\Delta)^{\alpha}e^{\Delta}(-\Delta)^{1/2}b$

$+\int_{0}^{t}(-\Delta)^{1/2+\alpha}e^{(t-\cdot)\Delta}(F_{1}(a_{m}(s), \partial a_{m}(s))+F_{2}(a_{m}(s)))ds$ .
From Lemma 3.1 and (3.9) we have

$||e^{tA}(-\Delta)^{1/2}b||_{2n}\leqq C_{6}t^{-1/4}\Vert(-\Delta)^{1/2}b||_{n}$ ,
$||(-\Delta)^{\alpha}e^{t\Delta}(-\Delta)^{1/2}b\Vert_{2n}\leqq C_{6}t^{-1/4-\alpha}\Vert(-\Delta)^{1/2}b\Vert_{n}$ .

It follows from (2.4), $H\ddot{o}lder’ s$ and Gagliado-Nirenberg’s inequalities,
(3.10) and (3.7) for $a_{m}(t)$ that

$||F_{1}(a_{m}(s), \partial a_{m}(s))||_{n}\leqq C||a_{m}(s)||_{2n}\Vert\partial a_{m}(s)\Vert_{2n}$

$\leqq C(K)s^{-1/4}||(-\Delta)^{1/2}a_{m}(s)\Vert_{2n}$ ,
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$||F_{2}(a_{r}(\epsilon))||_{2n}\leqq C||a.(\epsilon)||_{\infty}^{2}||a.(\epsilon)||_{n}$

$\leqq C||a.(\epsilon)||_{2}||(-\Delta)^{1p}a.(s)||_{2}$

$\leqq C(K)\epsilon^{-1/t}||(-\Delta)^{1/2}a.(\epsilon)||_{2n}$

hold. Using the above estimates and (3.9) appropriately, we have

$\Vert\int_{0}^{t}(-\Delta)^{1/2}e^{(t-\cdot)A}F_{1}(a.(s), \partial a_{n}(\epsilon))ds\Vert_{2n}$

$\leqq C(K)\sup_{\tau>0}\tau^{1/4}||(-\Delta)^{1/2}a.(\tau)||_{ln}\int_{0}(t-\epsilon)^{-\epsilon/}\epsilon^{-1/2}d\epsilon$

$\leqq C(K)t^{-1/4}\sup_{\tau>0}\tau^{1/}||(-\Delta)^{1/2}a_{n}(\tau)||_{2n}$ ,

$\Vert\int_{0}(-\Delta)^{1/2}e^{(-\cdot)A}F_{2}(a_{n}(\epsilon))d\epsilon\Vert_{2n}$

$\leqq C(K)\sup_{->0}\tau^{1/}\Vert(-\Delta)^{1/2}a_{n}(\tau)\Vert_{2n}\int_{0}(t-\epsilon)^{-1/2}s^{-f/4}d\epsilon$

$\leqq C(K)t^{-1/}\sup_{\tau>0}\tau^{1/}||(-\Delta)^{1/}a_{n}(\tau)||_{2}$ .

Therefore we have

$\sup_{t>0}t^{1/4}\Vert(-\Delta)^{1/2}a_{*+1}(t)||_{2n}\leqq C_{0}\Vert(-\Delta)^{1/2}b||+C(K)\sup_{t>0}t^{1/}||(-\Delta)^{1/2}a_{n}(t)||_{2n}$

which yields the existence of $C_{7}>0$ such that

$\sup_{t>0}t^{1/}||(-\Delta)^{1/2}a_{n}(t)||_{2}\leqq C_{\tau}$

holds, if $||b||_{n}$ is sufficiently small.
By use of this estimate, (2.4), (3.7) for $a_{n}$ we have

$||F_{1}(a_{n}(s), \partial a_{n}(s))||_{2}\leqq C||a_{*}(\epsilon)||_{\infty}||\partial a_{n}(s)||_{2n}$

$\leqq C(||a_{r}(s)||_{\infty}^{2}+1)||\partial a_{n}(\epsilon)||_{2n}$

$\leqq C(||(-\Delta)^{1/2}a_{r}.(s)||i_{n}+||\partial a.(\epsilon)||_{2n})$

$\leqq C\epsilon^{-\epsilon/4}$ ,

$||F_{l}(a.(\epsilon))||_{2}.\leqq C||a.(s)||_{2n}^{2}||(-\Delta)^{1/2}a.(\epsilon)||_{2n}$

$\leqq C||(-\Delta)^{1/2}a_{n}(\epsilon)||_{2}^{\epsilon}$

$\leqq Cs^{-\epsilon/4}$ .
From these estimates and (3.9),
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$\Vert\int_{0}^{t}(-\Delta)^{1/2+\alpha}e^{(t-\cdot)A}(F_{1}(a_{m}(s), \partial a_{m}(s))+F_{2}(a_{f\hslash}(s))ds\Vert_{2n}$

$\leqq C\int_{0}^{t}(t-s)^{-(1/2+\alpha)}s^{-\epsilon/4}ds$

$\leqq Ct^{-1/4-a}$

follows. Thus we obtain

$\Vert(-\Delta)^{1/2+\alpha}a_{m+1}(t)\Vert_{2n}\leqq C_{8}t^{-1/4-\alpha}$ .
The assertion is valid for $C_{b}=\max\{C_{6}, C_{7}, C_{8}\}$ .

Sobolev’s imbedding theorem gives

$||\partial a||_{\infty}\leqq C(\beta)\Vert\partial a\Vert_{\rho_{2n}},\leqq C(\beta)||a\Vert_{1+\beta,2n}$ if $\beta>1/2$ .
Consequently Proposition 3.4 and (3.10) yield

$||\partial a||_{\infty}\leqq C(\beta)t^{-1/4-\beta/2}$ for $1/2<\beta<1$ .
The above arguments show $t^{1/2}\partial a$ (for $M=R^{n}$), $t^{1/4+\rho/2}\partial a$ (for $ M=\Omega$) $\in$

$L^{\infty}((O, \infty);L^{\infty}(M))$ . The continuity of these functions on $[0, \infty$ ) follows
from the property of $e^{t\Delta}$ .

Finally, repeating an argument similar to that of the paragraph just
before Proposition 3.1, we get the facts that $beW_{0}^{1,n}(M)$ implies $a(t)$ ,
$\partial a(t)$ (for $M=R^{n}$), $(-\Delta)^{1/2}a(t)$ (for $ M=\Omega$) $e\mathscr{G}(\Delta)$ for $t>0$ and that $a(t)e$

$C^{0}([0_{1}\infty);W_{0}^{1,n}(M))\cap C^{1}((0, \infty);W_{0}^{1,n}(M))$ .
Thus we complete the proof of Theorem 2.

\S 4. Proof of Theorem 3.

We solve the system of equations (2.10) by successive approximation

$u_{0}(t)=-\int_{0}^{t}B(s)ds$ ,

$u_{m+1}(t)=-\int_{0}^{t}u_{m}(s)B(s)ds+u_{0}(t)$ , $m=0,1,2,$ $\cdots$ .
It follows from (2.9) that

$||u_{0}(t)\Vert_{\infty}\leqq C\int_{0}^{t}s^{-\gamma}ds=\frac{Ct^{1-\gamma}}{1-\gamma}$

holds, where $C$ is a positive constant in (2.9). Hence by induction on $m$ ,
we have
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$||(u_{n+1}-u_{n})(t)\Vert_{\infty}\leqq(\frac{C}{1-\gamma})^{+2}\frac{t^{(m+2)(1-\gamma)}}{(m+2)!}$ , $m=0,1,2,$ $\cdots$ .

Consequently $\{u_{n}\}$ converges to $u$ , and $u$ satisfies

$u(t)=-u(t)B(t)-B(t)$ ,

$||u(t)||_{\infty}\leqq\exp\{\frac{Ct^{1-\gamma}}{1-\gamma}\}-1$ ,

which imply $ueC^{0}([0, \infty);L^{\infty}(M))\cap C^{1}((0, \infty);L^{\infty}(M))$ .
Next we prove the uniqueness. If $u$ and $v$ are solutions to (2.10),

then

$(u-v)(t)=-\int_{0}^{t}(u-v)(s)B(s)ds$

holds. Using (2.9) we have

(4.1) $||(u-v)(t)||_{\infty}\leqq C$ $\sup_{\wedge,0\leq.\leq t}||(u-v)(\tau)\Vert_{\infty}\int_{0}^{t}s^{-\gamma}ds$ .

Since there exists a $T>0$ such that

$C\int_{0}^{r}s^{-\gamma}ds=\frac{1}{2}$ ,

we have $u\equiv v$ on $[0, T]$ from (4.1).

We assume that $[0, T^{*}$ ) is the maximal interval on which $u\equiv v$ holds,

and that $ T^{*}<\infty$ . Using a similar argument, we have

$||(u-v)(t)||_{\infty}\leqq C\sup_{T\leq r\leq t}||(u-v)(\tau)\Vert_{\infty}\int_{T}^{t}.s^{-\gamma}ds$ for $t>T^{*}$ .

If $t-T^{*}$ is sufficiently small, then

$C\int_{r}^{t}s^{-\gamma}ds<1$ .

This contradicts the maximality of $T^{*}$ .
Thus the proof of Theorem 3 is complete.
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