Complete Space-Like Surfaces with Constant Mean Curvature in the Minkowski 3-Space

Kotaro YAMADA

Keio University
(Communicated by M. Obata)

Introduction.

Let L^{3} be the Minkowski 3-space, that is, \boldsymbol{R}^{3} with the indefinite metric $\langle\rangle=,\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}$. A surface in L^{3} is called space-like if the induced metric on the surface is positive definite. On a space-like surface, the notions of the first fundamental form, the second fundamental form, and the mean curvature are defined in the same way as on a surface in the euclidean space.

In particular, we shall consider complete space-like surfaces with constant mean curvature H. For example, in [2] and [4], Calabi and Cheng-Yau established the Bernstein-type theorem when $H \equiv 0$, maximal space-like surface. In other words, the uniqueness theorem holds for maximal surfaces.

In this paper, we investigate complete space-like surfaces with nonzero constant mean curvature H. In this case, uniqueness does not hold and there are several examples. The most well-known example of such a surface is the pseudosphere:

$$
\begin{equation*}
S(H)=\left\{\left(x^{1}, x^{2}, x^{3}\right) \in L^{3} ;\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}=-\frac{1}{H^{2}}, x^{3}>0\right\} \tag{0.1}
\end{equation*}
$$

which is the only complete, totally umbilical space-like surface with constant mean curvature H. Note that $S(H)$ is isometric to the Poincare disc with constant Gaussian curvature $-H^{2}$.

Among non-umbilical space-like surfaces, the following hyperbolic cylinder is the simplest one:

$$
\begin{equation*}
C(H)=\left\{\left(x^{1}, x^{2}, x^{3}\right) \in L^{3} ;\left(x^{1}\right)^{2}-\left(x^{3}\right)^{2}=-\frac{1}{4 H^{2}}, x^{3}>0\right\} \tag{0.2}
\end{equation*}
$$

This is the only complete, flat space-like surface with non-zero constant mean curvature H.

Although many other constant mean curvature surfaces are constructed by Treibergs [9] as entire graphs on the $x^{1} x^{2}$-plane which solve his asymptotic Dirichlet problem, $S(H)$ and $C(H)$ are distinctive among such surfaces. For example, Choquet-Bruhat [3] characterized $S(H)$ as the only constant mean curvature slices in L^{8} with some assumptions, and Goddard [5] showed that any perturbation of $S(H)$ with constant mean curvature must be a translation of L^{3}.

In this paper, we shall give a new proof of the following theorem characterizing the hyperbolic cylinder $C(H)$ among the complete space-like surfaces with non-zero constant mean curvature H which are "uniformly" non-umbilical.

Theorem. The hyperbolic cylinder $C(H)$ is the only complete spacelike surface in L^{3} with non-zero constant mean curvature H whose principal curvatures k_{1} and k_{2} satisfy

$$
\begin{equation*}
\left(k_{1}-k_{2}\right)^{2} \geqq \varepsilon^{2} \tag{0.3}
\end{equation*}
$$

for some positive number ε.
This theorem was firstly proved by T. K. Milnor [7]. In her proof, the theorem is the consequence of the fact that Gaussian curvature of the surface must be non-positive [4], and of Liouville's theorem. On the other hand, we use a maximum principle for a non-linear elliptic equation on \boldsymbol{R}^{2} to prove the theorem. More precisely, outline of our proof is the following.

In §1, the fundamental equations for a space-like surface are reviewed. Using these equations, we show in $\S 2$ that the second fundamental form of a space-like surface satisfying the assumption of the theorem is determined when the surface is conformal to \boldsymbol{R}^{2}. In this case, the Gauss equation shows that there exists an entire solution of the equation $\Delta \rho=$ $\lambda \sinh \rho$ on \boldsymbol{R}^{2}, where λ is a positive constant. As a consequence of the maximum principle, we prove in § 3 that the only entire solution of this equation is the trivial one, which gives $C(H)$. The proof of the theorem follows immediately from this fact.

Note that the assumption (0.3) is necessary. In fact, we can construct complete non-umbilical space-like surfaces with constant mean curvature H on which $\left(k_{1}-k_{2}\right)^{2}$ tends to 0 at infinity (see § 4 Remark 1).

The author would like to thank Dr. Masahiko Kanai and the referee for their helpful remarks.

§ 1. Space-like surfaces with constant mean curvature.

Let Σ be a space-like surface in L^{8} with constant mean curvature
H. Then the first fundamental form, i.e., the induced metric $g=\left.\langle\rangle\right|_{,\Sigma}$ gives a riemannian metric on Σ. So we can take isothermal parameters (u, v) as local coordinates of Σ in which g is written as

$$
\begin{equation*}
g=e^{\sigma}\left(d u^{2}+d v^{2}\right) \tag{1.1}
\end{equation*}
$$

with some smooth function $\sigma(u, v)$. Using a complex parameter $z=u+$ $\sqrt{-1} v$, we can also write

$$
g=e^{\sigma} d z d \bar{z}
$$

Take the unit normal vector field of Σ, i.e., a vector field ν along Σ which satisfies $\langle\nu, \nu\rangle=-1$. So, the second fundamental form h of Σ is defined as a symmetric 2 -tensor on Σ by

$$
h(X, Y)=-\left\langle\bar{\nabla}_{X} \nu, Y\right\rangle \quad \text { for } \quad X, Y \in T_{p} \Sigma
$$

at each point p on Σ, where $\bar{\nabla}$ is the canonical connection of L^{3}. Since the mean curvature $H=(1 / 2)$ trace $_{g} h, h$ is written as

$$
h=L d u^{2}+2 M d u d v+\left(2 e^{\sigma} H-L\right) d v^{2}
$$

in the present isothermal coordinates.
Let k_{1} and k_{2} be principal curvatures of Σ, i.e., the eigenvalues of h with respect to the metric g. So, the Gaussian curvature K and the mean curvature H are written as

$$
\begin{gathered}
K=-k_{1} k_{2}=e^{-2 \sigma}\left\{M^{2}-L\left(2 e^{\sigma} H-L\right)\right\}, \\
H=\frac{1}{2}\left(k_{1}+k_{2}\right),
\end{gathered}
$$

and

$$
\begin{equation*}
\left(k_{1}-k_{2}\right)^{2}=4\left(H^{2}+K\right)=4 e^{-2 a}\left\{\left(L-e^{\sigma} H\right)^{2}+M^{2}\right\} \tag{1.2}
\end{equation*}
$$

holds.
Define a function Φ on Σ locally as

$$
\begin{equation*}
\Phi(z)=\left(L-e^{o} H\right)-\sqrt{-1} M \tag{1.3}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left(k_{1}-k_{2}\right)^{2}=4|\Phi|^{2} e^{-2 \sigma} . \tag{1.4}
\end{equation*}
$$

Note that a point p of Σ with a complex coordinate z is an umbilical point if and only if $\Phi(z)=0$.

In the present coordinates, the fundamental equations of Σ imply the following:

Lemma 1.1. Let Σ be a space-like surface in L^{s} with constant mean curvature H, and (u, v) its isothermal coordinates in which the first fundamental form g is written as (1.1). Then,
(1) (Codazzi equation) The locally defined function $\Phi(z)$ in (1.3) is holomorphic.
(2) (Gauss equation) The Gaussian curvature K of Σ is the intrinsic sectional curvature of (Σ, g), i.e.,

$$
K=-\frac{1}{2} e^{-\sigma} \Delta \sigma=-e^{-\sigma}\left(H^{2} e^{\sigma}-|\Phi|^{2} e^{-\sigma}\right), \quad \text { where } \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}
$$

For example, let $\Sigma=C(H)$, the hyperbolic cylinder defined in (0.2). Putting $u=(2 H)^{-1} \tanh ^{-1}\left(x^{1}\left(x^{3}\right)\right.$ and $v=x^{2}$, we have the global isothermal coordinates (u, v) of Σ in which g, h and Φ are written as:

$$
\left\{\begin{array}{l}
g=d u^{2}+d v^{2} \tag{1.5}\\
h=2 H d u^{2} \\
\Phi=H=\text { constant }
\end{array}\right.
$$

In particular, $C(H)$ is isometric to the euclidean plane \boldsymbol{R}^{2}.
Conversely, a flat, complete space-like surface with non-zero constant mean curvature H is congruent to $C(H)$.

§ 2. Complete space-like surface conformal to \boldsymbol{R}^{2}.

Let Σ be a complete space-like surface with constant mean curvature H. In this section, Σ is assumed to be conformal to the euclidean plane \boldsymbol{R}^{2}. So, we can take the standard coordinates (u, v) of \boldsymbol{R}^{2} as the global isothermal coordinates of Σ in which the first fundamental form g has the form

$$
\begin{equation*}
g=e^{\sigma}\left(d u^{2}+d v^{2}\right)=e^{\sigma} d z d \bar{z} \tag{2.1}
\end{equation*}
$$

with some smooth function σ on \boldsymbol{R}^{2}. Then the complex-valued function $\Phi(z)$ is defined on the whole plane $\boldsymbol{C}=\boldsymbol{R}^{2}$, and holomorphic because of Lemma 1.1 (1). That is Φ is an entire holomorphic function on \boldsymbol{R}^{2}. Though there are many entire functions on \boldsymbol{C}, Φ must be constant under the assumptions of our theorem. Namely we have

Lemma 2.1. Let Σ be a complete surface as above whose principal curvatures k_{1} and k_{2} satisfy

$$
\begin{equation*}
\left(k_{1}-k_{2}\right)^{2} \geqq \varepsilon^{2}>0 \tag{2.2}
\end{equation*}
$$

for some positive ε. Then the function $\Phi(z)$ in (1.3) must be constant.
Proof. Substituting (1.4) into (2.2), we have

$$
\begin{equation*}
2 \varepsilon^{-1}|\Phi| \geqq e^{\sigma} \tag{2.3}
\end{equation*}
$$

Consider a riemannian metric

$$
\widehat{g}=2 \varepsilon^{-1}|\Phi|\left(d u^{2}+d v^{2}\right)=2 \varepsilon^{-1}|\Phi| d z d \bar{z}
$$

on $\boldsymbol{R}^{2}=C$. Then, (2.3) shows $\hat{g} \geqq g$ as quadratic forms on $T \boldsymbol{R}^{2}$. So, by the completeness of g, \hat{g} is also a complete metric on \boldsymbol{R}^{2}.

On the other hand, the Gaussian curvature of \hat{g} is

$$
K_{\hat{g}}=-\frac{\varepsilon}{4}|\Phi|^{-1} \Delta \log |\Phi|=0
$$

since Φ is holomorphic.
Hence \widehat{g} is the flat complete metric on \boldsymbol{R}^{2}. Then there exists an isometry

$$
\mu:(C, \hat{g}) \longrightarrow\left(C, g_{0}\right),
$$

where g_{0} is the standard metric of C. The isometry μ can be considered as an entire holomorphic function which maps C onto C injectively, since it is conformal. Moreover, the injectivity of μ shows that μ must have a pole of order 1 at ∞. Thus μ is linear, i.e.,

$$
\mu(z)=a z+b
$$

for some constants $a \neq 0$ and b.
Hence

$$
2 \varepsilon^{-1}|\Phi| d z d \bar{z}=\hat{g}=\mu^{*} g_{0}=|a|^{-2} d z d \bar{z}
$$

and then, Φ must be constant.
Substituting this into the Gauss equation, Lemma 1.1 (2), and putting $\lambda=4|H \Phi|$, we have the following equation.

Corollary 2.2. Let Σ be as in Lemma 2.1 and $\rho=\sigma+\log |H / \Phi|$. Then ρ satisfies the equation

$$
\begin{equation*}
\Delta \rho=\lambda \sinh \rho \quad \text { on } \quad \boldsymbol{R}^{2} \tag{2.4}
\end{equation*}
$$

where $\Delta=\partial^{2} / \partial u^{2}+\partial^{2} / \partial v^{2}$, and $\lambda=4|H \Phi|$, a positive constant.
The trivial solution $\rho \equiv 0$ gives the flat metric on Σ, and hence, it corresponds to the hyperbolic cylinder $C(H)$.
§ 3. Non existence of non-trivial solutions of (2.4).
In this section, we shall prove the following proposition, the maximum principle for the equation (2.4).

Proposition 3.1. Let λ be a positive number. Then the equation

$$
\begin{equation*}
\Delta \rho=\lambda \sinh \rho \quad \text { on } \quad R^{2} \tag{3.1}
\end{equation*}
$$

has no entire solutions except $\rho \equiv 0$.
To prove this, we look at radially symmetric solution of (3.1).
Consider the ordinary differential equation

$$
\begin{equation*}
\varphi^{\prime \prime}(r)+\frac{1}{r} \varphi^{\prime}(r)=\lambda \sinh \varphi(r) \quad \text { for } \quad r \geqq 0 \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(0)=a>0, \quad \varphi^{\prime}(0)=0, \tag{3.2}
\end{equation*}
$$

where ' is the derivation with respect to r. So, the solution of (3.2) is a radially symmetric solution of (3.1) with $r=\sqrt{u^{2}+v^{2}}$. First, we claim the local existence of a solution of (3.2).

Lemma 3.2. There exists a local solution of (3.2) (a) and (3.2)(b).
Proof. Write (3.2) as

$$
\varphi(r)=a+\int_{0}^{r} \frac{d s}{s} \int_{0}^{t} t \lambda \sinh \varphi(t) d t,
$$

and use a usual iteration argument.
Nevertheless, there exist no global solutions of (3.1) except the trivial solution $\rho \equiv 0$.

Lemma 3.3. There exists no entire, radially symmetric solution $\varphi(r)$ of (3.1) with $\varphi(0)>0$.

Proof. Suppose $\varphi(r)$ be an entire radially symmetric solution of (3.1) with $\varphi(0)=a>0$. So, φ satisfies (3.2).

Write the equation (3.2) (a) as

$$
\begin{equation*}
\left(r \varphi^{\prime}\right)^{\prime}=r \lambda \sinh \varphi \tag{3.3}
\end{equation*}
$$

By (3.2) (b) and (3.3),

$$
\begin{equation*}
\varphi^{\prime}(r)>0 \quad \text { for } \quad r>0 \tag{3.4}
\end{equation*}
$$

holds, and then, φ is an increasing function of r. In particular, $\sinh \varphi(r) \geqq$ $\sinh a$ for $r>0$. Substituting this into (3.3), we have

$$
\left(r \varphi^{\prime}\right)^{\prime} \geqq r \lambda \sinh a
$$

Integrating this twice, the inequality

$$
\begin{equation*}
\varphi-a \geqq \frac{r^{2}}{4} \lambda \sinh a \tag{3.5}
\end{equation*}
$$

holds, and hence φ tends to $+\infty$ as $r \rightarrow \infty$.
On the other hand,

$$
\lambda \sinh \varphi \geqq \varphi^{\prime \prime}
$$

because of (3.2) (a) and (3.4). Integrating this,

$$
\begin{aligned}
\left\{\varphi^{\prime}(r)\right\}^{2} & =\int_{0}^{r}\left\{\varphi^{\prime}(s)^{2}\right\}^{\prime} d s=2 \int_{0}^{r} \varphi^{\prime \prime}(s) \varphi^{\prime}(s) d s \\
& \leqq 2 \lambda \int_{0}^{r} \sinh \varphi(s) \cdot \varphi^{\prime}(s) d s=2 \lambda \int_{a}^{\varphi(r)} \sinh x d x \\
& =2 \lambda(\cosh \varphi(r)-\cosh a) \\
& \leqq 2 \lambda\left(\cosh ^{2} \varphi(r)-1\right)=2 \lambda \sinh ^{2} \varphi(r)
\end{aligned}
$$

since $\cosh \varphi(r) \geqq 1$. Then,

$$
\begin{aligned}
\frac{\varphi^{\prime}}{r} & \leqq \frac{\sqrt{2 \lambda}}{r} \sinh \varphi \\
& \leqq \frac{1}{2} \lambda \sinh \varphi \quad \text { for } \quad r>r_{1}
\end{aligned}
$$

where $r_{1}=2 \sqrt{2 / \lambda}$. Substituting this into (3.2) (a), we have

$$
\varphi^{\prime \prime} \geqq \frac{1}{2} \lambda \sinh \varphi \quad \text { for } \quad r>r_{1} .
$$

Thus, for $r>r_{1}$,

$$
\begin{aligned}
\left\{\varphi^{\prime}(r)\right\}^{2}-\left\{\varphi^{\prime}\left(r_{1}\right)\right\}^{2} & =2 \int_{r_{1}}^{r} \varphi^{\prime}(s) \varphi^{\prime \prime}(s) d s \\
& \geqq \lambda \int_{\varphi\left(r_{1}\right)}^{\varphi(r)} \sinh (x) d x \\
& =\lambda\left\{\cosh \varphi(r)-\cosh \varphi\left(r_{1}\right)\right\}
\end{aligned}
$$

Hence, there exists a positive number r_{2} such that for $r \geqq r_{2}$,

$$
\begin{aligned}
\varphi^{\prime}(r) & \geqq \sqrt{\lambda\left\{\cosh \varphi(r)-\cosh \varphi\left(r_{1}\right)\right\}+\left\{\varphi^{\prime}\left(r_{1}\right)\right\}^{2}} \\
& \geqq C_{1} \exp \left(\frac{\varphi(r)}{2}\right),
\end{aligned}
$$

where C_{1} is a positive constant. Integrating this inequality, we have

$$
\begin{equation*}
\exp \left(-\frac{\varphi(r)}{2}\right) \leqq-\frac{C_{1}}{2} r+C_{2} \tag{3.6}
\end{equation*}
$$

with some constant C_{2}. Here, $\lim _{r \rightarrow \infty} \varphi(r)=+\infty$ because of (3.5). Then, the left-hand side of (3.6) tends to 0 when $r \rightarrow+\infty$. This shows that r is bounded, and contradicts the assumption.

COROLLARY 3.4. Let ρ be a non-trivial radially symmetric solution of (3.1) with $\varphi(0)>0$. Then, there exists a positive number R for which $\lim _{r \rightarrow R} \varphi(r)=+\infty$.

Proof. By (3.4), $\varphi(r)$ is an increasing function of r. On the other hand, φ is a solution of (3.2) (a) in a finite interval [0,R) because of Lemma 3.2. Hence, φ tends to $+\infty$ as $r \rightarrow R$.

Proof of Proposition 3.1. Let ρ be an entire solution of (3.1) which is not identically 0 . So, we can suppose $\rho(0) \neq 0$. Assume $\rho(0)=2 a>0$ and take a radially symmetric solution of (3.1) with $\varphi(0)=a$. So, there exists a positive number R such that $\lim _{r \rightarrow R} \varphi(r)=+\infty$ because of Corollary 3.4.

Let $f=\varphi-\rho$, a function defined on $B_{R}=\left\{(u, v) ; r=\sqrt{u^{2}+v^{2}}<R\right\}$ with $\lim _{r \rightarrow R} f=+\infty$. Then, f takes a minimum at some point p in B_{R}. Assume $f(p)<0$. So,

$$
\begin{aligned}
\Delta f(p) & =\Delta \varphi(p)-\Delta \rho(p) \\
& =\lambda\{\sinh \varphi(p)-\sinh \rho(p)\} \\
& =2 \lambda \cosh \frac{\varphi(p)+\rho(p)}{2} \sinh \frac{f(p)}{2} \\
& <0
\end{aligned}
$$

This contradicts the fact that f takes its minimum at p. Hence $f=\varphi$ $\rho \geqq 0$ in B_{R}. In particular, $f(0)=\varphi(0)-\rho(0)=a-2 a=-a \geqq 0$. This is impossible. Thus there exists no entire solution ρ of (3.1) which takes a positive value.

When $\rho(0)<0$, we have the same conclusion by considering $-\rho$ instead of ρ.

Remark. In [8], Osserman showed the non-existence of entire solutions of $\Delta u \geqq f(u)$ on \boldsymbol{R}^{n}, where f is a positive, increasing function with large growth rate. Though our equation (2.4) does not satisfy his assumptions, almost all parts of his proof are valid for Proposition 3.1.

§ 4. Proof of the main theorem.

Let Σ be a complete space-like surface satisfying the assumptions of the theorem. Then,

$$
\begin{equation*}
2 \varepsilon^{-1}|\Phi| \geqq e^{\sigma} \tag{4.1}
\end{equation*}
$$

holds in the isothermal coordinates as in §2.
Note that a complete space-like surface can be represented as an entire graph on the $x^{1} x^{2}$-plane in L^{3}. In particular, Σ must be simply connected. Thus, Σ is conformal to either the Poincaré disc H^{2} or the euclidean plane R^{2}, since it is non-compact.

Assume Σ is conformal to $\boldsymbol{H}^{2}=\left(D, g_{0}\right)$, where $D=\{z \in C ;|z|<1\}$ and $g_{0}=4 d z d \bar{z} /\left(1-|z|^{2}\right)^{2}$. So, (Σ, g) is isometric to ($D, g=e^{\sigma} d z d \bar{z}$) for some function σ on D. Here, the completeness of g implies

$$
\lim _{(u, v) \rightarrow \partial D} e^{\sigma}=+\infty
$$

Therefore the function Φ is a non-vanishing holomorphic function on D which satisfies

$$
\begin{equation*}
\lim _{(u, v) \rightarrow \infty D}|\Phi|=+\infty \tag{4.2}
\end{equation*}
$$

because of (4.1). Put $\Psi=\Phi^{-1}$. Then, Ψ is holomorphic on D and continuous on \bar{D} with $\left.\Psi\right|_{\partial D}=0$. Then, by Cauchy's formula,

$$
\Psi(0)=-\frac{\sqrt{-1}}{2 \pi} \int_{\partial D} \frac{\Psi(z)}{z} d z=0
$$

This is impossible. Therefore Σ cannot be conformal to \boldsymbol{H}^{2}.
Hence Σ must be conformal to \boldsymbol{R}^{2}. Then we can take global coordinates (u, v) of Σ in which the first fundamental forms g is written as (2.1). So, σ in (2.1) satisfies the equation (2.4) and then, must be constant because of Lemma 3.1. Thus g is the flat metric and hence, Σ is congruent to the hyperbolic cylinder $C(H)$. This completes the proof of the theorem.

Remark 1. Let ρ be a radially symmetric solution of (2.4) on B_{R}
and consider a metric $g=|\Phi / H| e^{\rho} d z d \bar{z}$ on B_{R}. When $\rho(0)<0$, the metric g is not complete on B_{R} since $\lim _{r \rightarrow R} \rho(r)=-\infty$. On the other hand, g is a complete metric on B_{R} when $\rho(0)>0$. Then g, Φ and H give a complete space-like surface in L^{8} with constant mean curvature H and given Φ. This surface has no umbilical points, but $\lim _{r \rightarrow R}\left(k_{1}-k_{2}\right)=0$ since $\lim _{r \rightarrow R} \rho(r)=+\infty$. So, the assumption (0.3) of the theorem is essential.

Remark 2. For a surface in the enclidean space \boldsymbol{R}^{3}, the Gauss equation implies that $\Delta \rho=-\lambda \sinh \rho$ in the same situation in $\S 2$, where λ is a positive constant. For this equation, the maximum principle like as Proposition 3.1 does not hold. So the Gauss equation is expected to have non-trivial solutions. This is one of the reasons why there are counterexamples for Hopf conjecture; immersed tori in $\boldsymbol{R}^{\mathbf{s}}$ with constant mean curvature [10].

References

[1] L. V. Ahlfors, Complex Analysis, 3rd. ed., McGraw-Hill, 1979.
[2] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Appl. Math., 15 (1968), 223-230.
[3] Y. Choquet-Bruhat, Maximal submanifolds and submanifolds of constant extrinsic curvature, Ann. Scuola Norm. Sup. Pisa, 3 (1976), 361-376.
[4] S.-Y. Cheng and S.-T. Yau, Maximal space-like surfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976), 407-419.
[5] A.J. Goddard, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc., 82 (1977), 489-495.
[6] H. Hopf, Differential Geometry in the Large, Lecture Notes in Math., 1000, SpringerVerlag, 1971.
[7] T. K. MilNor, Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc., 280 (1983), 161-185.
[8] R. Osserman, On the inequality $\Delta u \geqq f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
[9] A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982), 39-56.
[10] H. C. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math., 83 (1986), 193-243.

Present Address:

Department of Mathematics, faculty of Science and Technology, Keio University hiyoshi, Kohoru-ku, Yorohama 223, Japan

