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Introduction.

Let $L^{3}$ be the Minkowski 3-space, that is, $R^{8}$ with the indefinite metric
$\langle, \rangle=(dx^{1})^{2}+(dx^{2})^{2}-(dx^{8})^{2}$ . A surface in $L^{3}$ is called space-like if the in-
duced metric on the surface is positive definite. On a space-like surface,
the notions of the first fundamental form, the second fundamental form,
and the mean curvature are defined in the same way as on a surface in
the euclidean space.

In particular, we shall consider complete space-like surfaces with
constant mean curvature $H$. For example, in [2] and [4], Calabi and
Cheng-Yau established the Bernstein-type theorem when $H\equiv 0$ , maximal
space-like surface. In other words, the uniqueness theorem holds for
maximal surfaces.

In this paper, we investigate complete space-like surfaces with non-
zero constant mean curvature $H$. In this case, uniqueness does not hold
and there are several examples. The most well-known example of such
a surface is the pseudosphere:

(0.1) $S(H)=\{(x^{1}, x^{2}, x^{3})eL^{s}$ ; $(x^{1})^{2}+(x^{2})^{2}-(x^{a})^{2}=-\frac{1}{H^{2}},$ $x^{8}>0\}$ ,

which is the only complete, totally umbilical space-like surface with con-
stant mean curvature $H$. Note that $S(H)$ is isometric to the Poincar\’e
disc with constant Gaussian curvature $-H^{2}$ .

Among non-umbilical space-like surfaces, the following hyperbolic
cylinder is the simplest one:

(0.2) $C(H)=\{(x^{1}, x^{2}, x^{8})\in L^{3}$ ; $(x^{1})^{2}-(x^{3})^{2}=-\frac{1}{4H^{2}},$ $x^{3}>0\}$ .
This is the only complete, flat space-like surface with non-zero constant
mean curvature $H$.
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Although many other constant mean curvature surfaces are con-
structed by Treibergs [9] as entire graphs on the $x^{1}x^{2}$-plane which solve
his asymptotic Dirichlet problem, $S(H)$ and $C(H)$ are distinctive among
such surfaces. For example, Choquet-Bruhat [3] characterized $S(H)$ as
the only constant mean curvature slices in $L^{8}$ with some assumptions,
and Goddard [5] showed that any perturbation of $S(H)$ with $\infty nstant$

mean curvature must be a translation of $L^{\theta}$ .
In this paper, we shall give a new proof of the following theorem

characterizing the hyperbolic cylinder $C(H)$ among the complete space-like
surfaces with non-zero constant mean curvature $H$ which are ”uniformly”
non-umbilical.

THEOREM. The hyperbolic cylinder $C(H)$ is the only complete space-
like surface in $L^{8}$ with non-zero constant mean curvature $H$ whose prin-
cipal curvatures $k_{1}$ and $k_{2}$ satisfy

(0.3) $(k_{1}-k_{2})^{2}\geqq\epsilon^{2}$

for some positive number $\epsilon$ .
This theorem was firstly proved by T. K. Milnor [7]. In her proof,

the theorem is the consequence of the fact that Gaussian curvature of the
surface must be non-positive [4], and of Liouville’s theorem. On the other
hand, we use a maximum principle for a non-linear elliptic equation on $R^{2}$

to prove the theorem. More precisely, outline of our proof is the following.
In \S 1, the fundamental equations for a space-like surface are re-

viewed. Using these equations, we show in \S 2 that the second fundamental
form of a space-like surface satisfying the assumption of the theorem is
determined when the surface is conformal to $R^{2}$ . In this case, the Gauss
equation shows that there exists an entire solution of the equation $\Delta\rho=$

$\lambda$ sinh $\rho$ on $R^{2}$ , where $\lambda$ is a positive constant. As a consequence of the
maximum principle, we prove in \S 3 that the only entire solution of this
equation is the trivial one, which gives $C(H)$ . The proof of the theorem
follows immediately from this fact.

Note that the assumption (0.3) is necessary. In fact, we can con-
struct complete non-umbilical space-like surfaces with constant mean $cur$.
vature $H$ on which $(k_{1}-k_{2})^{2}$ tends to $0$ at infinity (see \S 4 Remark 1).

The author would like to thank Dr. Masahiko Kanai and the referee
for their helpful remarks.

\S 1. Space-like surfaces with constant mean curvature.

Let $\Sigma$ be a space-like surface in $L^{8}$ with constant mean curvature
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$H$. Then the first fundamental form, i.e., the induced metric $g=\langle, \rangle|_{\Sigma}$

gives a riemannian metric on $\Sigma$ . So we can take isothermal parameters
$(u, v)$ as local coordinates of $\Sigma$ in which $g$ is written as

(1.1) $g=e^{\sigma}(du^{2}+dv^{2})$

with some smooth function $\sigma(u, v)$ . Using a complex parameter $z=u+$
$\sqrt{-1}v$ , we can also write

$g=e^{\sigma}dzd\overline{z}$ .
Take the unit normal vector field of $\Sigma$ , i.e., a vector field $\nu$ along

$\Sigma$ which satisfies $\langle\nu, \nu\rangle=-1$ . So, the second fundamental form $h$ of $\Sigma$

is defined as a symmetric 2-tensor on $\Sigma$ by

$ h(X, Y)=-\langle\overline{\nabla}_{X}\nu, Y\rangle$ for $X$, Ye $ T_{p}\Sigma$

at each point $p$ on $\Sigma$ , where V is the canonical connection of $L^{6}$ . Since
the mean curvature $H=(1/2)trace_{g}h,$ $h$ is written as

$h=Ldu^{2}+2Mdudv+(2e^{\sigma}H-L)dv^{2}$

in the present isothermal coordinates.
Let $k_{1}$ and $k_{2}$ be principal curvatures of $\Sigma$ , i.e., the eigenvalues of $h$

with respect to the metric $g$ . So, the Gaussian curvature $K$ and the
mean curvature $H$ are written as

$K=-k_{1}k_{2}=e^{-2\sigma}\{M^{2}-L(2e^{\sigma}H-L)\}$ ,

$H=\frac{1}{2}(k_{1}+k_{2})$ ,

and

(1.2) $(k_{1}-k_{2})^{2}=4(H^{2}+K)=4e^{-2a}\{(L-e^{\sigma}H)^{2}+M^{2}\}$

holds.
Define a function $\Phi$ on $\Sigma$ locally as

(1.3) $\Phi(z)=(L-e^{\sigma}H)-\sqrt{-1}M$ .
So,

(1.4) $(k_{1}-k_{2})^{2}=4|\Phi|^{2}e^{-2\sigma}$ .
Note that a point $p$ of $\Sigma$ with a complex coordinate $z$ is an umbilical
point if and only if $\Phi(z)=0$ .
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In the present coordinates, the fundamental equations of $\Sigma$ imply the
following:

LEMMA 1.1. Let $\Sigma$ be a space-like surface in $L^{\epsilon}$ with constant mean
curvature $H$, and $(u, v)$ its isothermal coordinates in which the first
fundamental form $g$ is written as (1.1). Then,

(1) (Codazzi equation) The locally defined function $\Phi(z)$ in (1.3) is
holomorphic.

(2) (Gauss equation) The Gaussian curvature $K$ of $\Sigma$ is the intrinsic
sectional curvature of $(\Sigma, g)$ , i.e.,

$K=-\frac{1}{2}e^{-\sigma}\Delta\sigma=-e^{-\sigma}(H^{2}e^{\sigma}-|\Phi|^{t}e^{-\sigma})$ , where $\Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ .
For example, let $\Sigma=C(H)$ , the hyperbolic cylinder defined in (0.2).

Putting $u=(2H)^{-1}\tanh^{-1}(x^{1}/x^{3})$ and $v=x^{2}$ , we have the global isothermal
coordinates $(u, v)$ of $\Sigma$ in which $g,$ $h$ and $\Phi$ are written as:

$g=du^{2}+dv^{2}$

(1.5) $h=2Hdu^{2}$

$\Phi=H=constant$ .
In particular, $C(H)$ is isometric to the euclidean plane $R^{2}$ .

Conversely, a flat, complete space-like surface with non-zero constant
mean curvature $H$ is congruent to $C(H)$ .

\S 2. Complete space-like surface conformal to $R^{2}$.
Let $\Sigma$ be a complete space-like surface with constant mean curvature

$H$. In this section, $\Sigma$ is assumed to be conformal to the euclidean plane
$R^{2}$ . So, we can take the standard coordinates $(u, v)$ of $R^{2}$ as the global
isothermal coordinates of $\Sigma$ in which the first fundamental form $g$ has
the form

(2.1) $g=e^{\sigma}(du^{2}+dv^{2})=e^{\sigma}dzd\overline{z}$

with some smooth function $\sigma$ on $R^{2}$ . Then the complex-valued function
$\Phi(z)$ is defined on the whole plane $C=R^{2}$ , and holomorphic because of
Lemma 1.1 (1). That is $\Phi$ is an entire holomorphic function on $R^{2}$ . Though
there are many entire functions on $C,$ $\Phi$ must be constant under the as-
sumptions of our theorem. Namely we have

LEMMA 2.1. Let $\Sigma$ be a complete surface as above whose principal
curvatures $k_{1}$ and $k_{2}$ satisfy
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(2.2) $(k_{1}-k_{2})^{2}\geqq\epsilon^{2}>0$

for some positive $\epsilon$ . Then the function $\Phi(z)$ in (1.3) must be constant.

PROOF. Substituting (1.4) into (2.2), we have

(2.3) $2\epsilon^{-1}|\Phi|\geqq e^{\sigma}$ .
Consider a riemannian metric

$\hat{g}=2\epsilon^{-1}|\Phi|(du^{2}+dv^{2})=2\epsilon^{-1}|\Phi|dzd\overline{z}$

on $R^{2}=C$. Then, (2.3) shows $\hat{g}\geqq g$ as quadratic forms on $TR^{2}$ . So, by

the completeness of $g,\hat{g}$ is also a complete metric on $R^{2}$ .
On the other hand, the Gaussian curvature of $\hat{g}$ is

$K_{g}\wedge=-\frac{\epsilon}{4}|\Phi|^{-1}\Delta\log|\Phi|=0$ ,

since $\Phi$ is holomorphic.
Hence $\hat{g}$ is the flat complete metric on $R^{2}$ . Then there exists an

isometry

$\mu:(C,\hat{g})\rightarrow(C, g_{0})$ ,

where $g_{0}$ is the standard metric of $C$. The isometry $\mu$ can be considered
as an entire holomorphic function which maps $C$ onto $C$ injectively, since
it is conformal. Moreover, the injectivity of $\mu$ shows that $\mu$ must have
a pole of order 1 at $\infty$ . Thus $\mu$ is linear, i.e.,

$\mu(z)=az+b$

for some constants $a\neq 0$ and $b$ .
Hence

$2\epsilon^{-1}|\Phi|dzd\overline{z}=\hat{g}=\mu^{*}g_{0}=|a|^{-2}dzd\overline{z}$ ,

and then, $\Phi$ must be constant. $\ovalbox{\tt\small REJECT}$

Substituting this into the Gauss equation, Lemma 1.1 (2), and putting
$x=4|H\Phi|$ , we have the following equation.

COROLLARY 2.2. Let $\Sigma$ be as in Lemma 2.1 and $\rho=\sigma+\log|H/\Phi|$ .
Then $\rho$ satisfies the equation

(2.4) $\Delta\rho=\lambda$ sinh $\rho$ on $R^{2}$ ,
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where $\Delta=\partial^{2}/\partial u^{2}+\partial^{2}/\partial v^{2}$ , and $x=4|H\Phi|$ , a positive constant.

The trivial solution $\rho\equiv 0$ gives the flat metric on $\Sigma$ , and hence, it
corresponds to the hyperbolic cylinder $C(H)$ .

\S 3. Non existence of non-trivial solutions of (2.4).

In this section, we shall prove the following proposition, the maximum
principle for the equation (2.4).

PROPOSITION 3.1. Let $\lambda$ be a positive number. Then the equation

(3.1) $\Delta\rho=x$ sinh $\rho$ on $R^{a}$

has no entire solutions except $\rho\equiv 0$ .
To prove this, we look at radially symmetric solution of (3.1).
Consider the ordinary differential equation

(3.2) (a) $\varphi^{\prime}’(r)+\frac{1}{r}\varphi^{\prime}(r)=x$ sinh $\varphi(r)$ for $r\geqq 0$ ,

(3.2) (b) $\varphi(0)=a>0$ , $\varphi^{\prime}(0)=0$ ,

where ‘ is the derivation with respect to $r$ . So, the solution of (3.2) is
a radially symmetric solution of (3.1) with $r=\sqrt{u^{2}+v^{2}}$. First, we claim
the local existence of a solution of (3.2).

LEMMA 3.2. There exists a local solution of (3.2) (a) and (3.2) (b).

PROOF. Write (3.2) as

$\varphi(r)=a+\int_{0}^{\prime}\frac{ds}{s}\int_{0}^{l}tx$ sinh $\varphi(t)dt$ ,

and use a usual iteration argument.

Nevertheless, there exist no global solutions of (3.1) except the trivial
solution $\rho\equiv 0$ .

LEMMA 3.3. There exists no entire, radially symmetric solution $\varphi(r)$

of (3.1) with $\varphi(0)>0$ .
PROOF. Suppose $\varphi(r)$ be an entire radially symmetric solution of (3.1)

with $\varphi(0)=a>0$ . So, $\varphi$ satisfies (3.2).
Write the equation (3.2) (a) as
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(3.3) $(\gamma\varphi^{\prime})^{\prime}=r\lambda$ sinh $\varphi$ .
By (3.2) (b) and (3.3),

(3.4) $\varphi^{\prime}(r)>0$ for $r>0$

holds, and then, $\varphi$ is an increasing function of $r$ . In particular, sinh $\varphi(r)\geqq$

sinh $a$ for $r>0$ . Substituting this into (3.3), we have

$(r\varphi^{\prime})\geqq rx$ sinh $a$ .
Integrating this twice, the inequality

(3.5) $\varphi-a\geqq\frac{r^{2}}{4}\lambda$ sinh $a$

holds, and hence $\varphi$ tends to $+\infty$ as $ r\rightarrow\infty$ .
On the other hand,

$\lambda$ sinh $\varphi\geqq\varphi$
’

because of (3.2) (a) and (3.4). Integrating this,

$\{\varphi^{\prime}(r)\}^{2}=\int_{0}^{f}\{\varphi^{\prime}(s)^{2}\}^{\prime}ds=2\int_{0}^{r}\varphi^{\prime}’(s)\varphi’(s)ds$

$\leqq 2x\int_{0}^{\prime}\sinh\varphi(s)\cdot\varphi^{\prime}(s)ds=2x\int_{a}^{\varphi^{(f)}}\sinh xdx$

$=2x(\cosh\varphi(\gamma)-\cosh a)$

$\leqq 2x(\cosh^{2}\varphi(r)-1)=2x$ sinh2 $\varphi(r)$ ,

since cosh $\varphi(\gamma)\geqq 1$ . Then,

$\frac{\varphi’}{\gamma}\leqq\frac{\sqrt{2x}}{r}$ sinh $\varphi$

$\leqq\frac{1}{2}\lambda$ sinh $\varphi$ for $r>r_{1}$ ,

where $\gamma_{1}=2\sqrt{2}/\lambda$ . Substituting this into (3.2) (a), we have

$\varphi^{\prime\prime}\geqq\frac{1}{2}x$ sinh $\varphi$ for $r>r_{1}$ .
Thus, for $r>\gamma_{1}$ ,

$\{\varphi^{\prime}(r)\}^{2}-\{\varphi^{\prime}(\gamma_{1})\}^{2}=2\int_{f}^{r_{1}}\varphi^{\prime}(s)\varphi^{\prime}(s)ds$

$\geqq x\int_{\varphi(\prime_{1})}^{\varphi^{(r)}}sInh(x)dx$

$=x${$\cosh\varphi(r)$ -cosh $\varphi(r_{1})$}.
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Hence, there exists a positive number $r_{2}$ such that for $r\geqq r_{2}$ ,

$\varphi^{\prime}(r)\geqq\sqrt{x\{\cosh\varphi(r)-\cosh\varphi(r_{1})\}+\{\varphi^{\prime}(r_{1})\}^{2}}$

$\geqq C_{\iota}\exp(\frac{\varphi(r)}{2})$ ,

where $C_{1}$ is a positive constant. Integrating this inequality, we have

(3.6) $\exp(-\frac{\varphi(r)}{2})\leqq-\frac{C_{1}}{2}r+C_{2}$

with some constant $C_{2}$ . Here, $\lim_{f\rightarrow\infty}\varphi(r)=+\infty$ because of (3.5). Then,
the left-hand side of (3.6) tends to $0$ when $\gamma\rightarrow+\infty$ . This shows that $\gamma$

is bounded, and contradicts the assumption. $\square $

COROLLARY 3.4. Let $\varphi$ be a non-trivial radially $symmetr\dot{j}C$ solution
of (3.1) with $\varphi(0)>0$ . Then, there exists a positive number $R$ for which
$\lim_{r\rightarrow R}\varphi(r)=+\infty$ .

PROOF. By (3.4), $\varphi(r)$ is an increasing function of $r$ . On the other
hand, $\varphi$ is a solution of (3.2) (a) in a finite interval $[0, R$) because of
Lemma 3.2. Hence, $\varphi$ tends to $+\infty$ as $r\rightarrow R$ . $\square $

PROOF OF PROPOSITION 3.1. Let $\rho$ be an entire solution of (3.1) which
is not identically $0$ . So, we can suppose $\rho(0)\neq 0$ . Assume $\rho(0)=2a>0$

and take a radially symmetric solution of (3.1) with $\varphi(0)=a$ . So, there
exists a positive number $R$ such that $\lim_{r\rightarrow R}\varphi(r)=+\infty$ because of Co-
rollary 3.4.

Let $ f=\varphi-\rho$ , a function defined on $B_{R}=\{(u, v);r=\sqrt{u^{2}+v^{2}}<R\}$ with
$\lim_{r\rightarrow R}f=+\infty$ . Then, $f$ takes a minimum at some point $p$ in $B_{R}$ . As-
sume $f(p)<0$ . So,

$\Delta f(p)=\Delta\varphi(p)-\Delta\rho(p)$

$=x\{\sinh\varphi(p)-\sinh\rho(p)\}$

$=2x\cosh\frac{\varphi(p)+\rho(p)}{2}\sinh\frac{f(p)}{2}$

$<0$ .
This contradicts the fact that $f$ takes its minimum at $p$ . Hence $f=\varphi-$

$\rho\geqq 0$ in $B_{R}$ . In particular, $f(O)=\varphi(O)-\rho(O)=a-2a=-a\geqq 0$ . This is im-
possible. Thus there exists no entire solution $\rho$ of (3.1) which takes a
positive value.

When $\rho(0)<0$ , we have the same conclusion by considering $-\rho$ in-
stead of $\rho$ .
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REMARK. In [8], Osserman showed the non-existence of entire solu-
tions of $\Delta u\geqq f(u)$ on $R^{n}$ , where $f$ is a positive, increasing function with
large growth rate. Though our equation (2.4) does not satisfy his as-
sumptions, almost all parts of his proof are valid for Proposition 3.1.

\S 4. Proof of the main theorem.

Let $\Sigma$ be a complete space-like surface satisfying the assumptions of
the theorem. Then,

(4.1) $2\epsilon^{-1}|\Phi|\geqq e^{\sigma}$

holds in the isothermal coordinates as in \S 2.
Note that a complete space-like surface can be represented as an

entire graph on the $x^{1}x^{2}$-plane in $L^{3}$ . In particular, $\Sigma$ must be simply
connected. Thus, $\Sigma$ is conformal to either the Poincar\’e disc $H^{2}$ or the
euclidean plane $R^{2}$ , since it is non-compact.

Assume $\Sigma$ is conformal to $H^{2}=(D, g_{0})$ , where $D=\{z\in C;|z|<1\}$ and
$g_{0}=4dzd\overline{z}/(1-|z|^{2})^{2}$ . So, $(\Sigma, g)$ is isometric to $(D, g=e^{\sigma}dzd\overline{z})$ for some func-
tion $\sigma$ on $D$ . Here, the completeness of $g$ implies

$\lim_{(u,v)\rightarrow\partial D}e^{\sigma}=+\infty$ .

Therefore the function $\Phi$ is a non-vanishing holomorphic function on $D$

which satisfies

(4.2)
$\lim_{(u.v)\rightarrow\partial D}|\Phi|=+\infty$

because of (4.1). Put $\Psi=\Phi^{-1}$ . Then, $\Psi$ is holomorphic on $D$ and con-
tinuous on $\overline{D}$ with $\Psi|_{\partial D}=0$ . Then, by Cauchy’s formula,

$\Psi(0)=-\frac{\sqrt{}-1}{2\pi}\int_{\partial D}\frac{\Psi(z)}{z}dz=0$ .

This is impossible. Therefore $\Sigma$ cannot be conformal to $H^{2}$ .
Hence $\Sigma$ must be conformal to $R^{2}$ . Then we can take global coordi $\cdot$

nates $(u, v)$ of $\Sigma$ in which the first fundamental forms $g$ is written as
(2.1). So, $\sigma$ in (2.1) satisfies the equation (2.4) and then, must be con-
stant because of Lemma 3.1. Thus $g$ is the flat metric and hence, $\Sigma$ is
congruent to the hyperbolic cylinder $C(H)$ . This completes the proof of
the theorem. $\square $

REMARK 1. Let $\rho$ be a radially symmetric solution of (2.4) on $B_{R}$
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and consider a metric $g=|\Phi/H|e^{\rho}dzd\overline{z}$ on $B_{R}$ . When $\rho(0)<0$ , the metric
$g$ is not complete on $B_{R}$ since $\lim_{r\rightarrow R}\rho(r)=-\infty$ . On the other hand, $g$

is a complete metric on $B_{R}$ when $\rho(0)>0$ . Then $g,$ $\Phi$ and $H$ give a
complete space-like surface in $L^{\epsilon}$ with constant mean curvature $H$ and
given $\Phi$ . This surface has no umbilical points, but $\lim_{t^{\rightarrow R}}(k_{1}-k_{2})=0$ since
$\lim_{r\rightarrow R}\rho(r)=+\infty$ . So, the assumption (0.3) of the theorem is essential.

REMARK 2. For a surface in the enclidean space $R^{8}$ , the Gauss equa-
tion implies that $\Delta\rho=-x$ sinh $\rho$ in the same situation in \S 2, where $\lambda$

is a positive constant. For this equation, the maximum principle like as
Proposition 3.1 does not hold. So the Gausv equation is expected to have
non-trivial solutions. This is one of the reasons why there are counter-
examples for Hopf conjecture; immersed tori in $R^{s}$ with constant mean
curvature [10].
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