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Introduction.

Let L® be the Minkowski 3-space, that is, R® with the indefinite metric
<, Y =(det)? + (da?)*—(dx®)®>. A surface in L° is called space-like if the in-
duced metric on the surface is positive definite. On a space-like surface,
the notions of the first fundamental form, the second fundamental form,
and the mean curvature are defined in the same way as on a surface in
the euclidean space.

In particular, we shall consider complete space-like surfaces with
constant mean curvature H. For example, in [2] and [4], Calabi and
Cheng-Yau established the Bernstein-type theorem when H=0, maximal
space-like surface. In other words, the uniqueness theorem holds for
maximal surfaces.

In this paper, we investigate complete space-like surfaces with non-
zero constant mean curvature H. In this case, uniqueness does not hold
and there are several examples. The most well-known example of such
a surface is the pseudosphere:

1
H2
which is the only complete, totally umbilical space-like surface with con-
stant mean curvature H. Note that S(H) is isometric to the Poincaré
disc with constant Gaussian curvature —H?.

Among non-umbilical space-like surfaces, the following hyperbolic
cylinder is the simplest one:

(0.1) S(H )={(w1, a?, &) € L*; (@) + (@) — (@°)'= ——, w3>0} ,

. (el — 1 '
(0.2) CH)= {(x‘, x%, x¥) e L*; (') —(x®)= Yo w3>0} .
This is the only complete, flat space-like surface with non-zero constant

mean curvature H.
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Although many other constant mean curvature surfaces are con-
structed by Treibergs [9] as entire graphs on the z'x’-plane which solve
his asymptotic Dirichlet problem, S(H) and C(H) are distinctive among
such surfaces. For example, Choquet-Bruhat [3] characterized S(H) as
the only constant mean curvature slices in IL? with some assumptions,
and Goddard [5] showed that any perturbation of S(H) with constant
mean curvature must be a translation of L°.

In this paper, we shall give a new proof of the following theorem
characterizing the hyperbolic cylinder C(H) among the complete space-like
surfaces with non-zero constant mean curvature H which are “uniformly”
non-umbilical.

THEOREM. The hyperbolic cylinder C(H) 18 the only complete space-
like surface tn L® with mon-zero constant mean curvature H whose prin-
cipal curvatures k, and k, satisfy

0.3) (k,—k,)}*=¢
Jor some positive number e.

This theorem was firstly proved by T.K. Milnor [7]. In her proof,
the theorem is the consequence of the fact that Gaussian curvature of the
surface must be non-positive [4], and of Liouville’s theorem. On the other
hand, we use a maximum principle for a non-linear elliptic equation on R?
to prove the theorem. More precisely, outline of our proof is the following.

In §1, the fundamental equations for a space-like surface are re-
viewed. Using these equations, we show in § 2 that the second fundamental
form of a space-like surface satisfying the assumption of the theorem is
determined when the surface is conformal to R: In this case, the Gauss
equation shows that there exists an entire solution of the equation Ap=
A sinh o on R? where A is a positive constant. As a consequence of the
maximum principle, we prove in §3 that the only entire solution of this
equation is the trivial one, which gives C(H). The proof of the theorem
follows immediately from this fact.

Note that the assumption (0.3) is necessary. In fact, we can con-
struct complete non-umbilical space-like surfaces with constant mean cur-
vature H on which (k,—k,)* tends to 0 at infinity (see §4 Remark 1).

The author would like to thank Dr. Masahiko Kanai and the referee
for their helpful remarks. '

§1. Space-like surfaces with constant mean curvature.

Let 3 be a space-like surface in L® with constant mean curvature




SPACE-LIKE SURFACES 331

H. Then the first fundamental form, i.e., the induced metric g={, )|;
gives a riemannian metric on . So we can take isothermal parameters
(u, v) as local coordinates of 3 in which g is written as

1.1) g=e’(du*+dv?)

Wii:_l}_ some smooth function o(u, v). Using a complex parameter z=wu-
v —1v, we can also write

g=e’dzdz .

Take the unit normal vector field of X, i.e., a vector field v along

S which satisfies (v, v)=—1. So, the second fundamental form h of ¥
is defined as a symmetric 2-tensor on Y by

WX, Y)=—(V»,Y> for X,YeT,>

at each point p on ¥, where V is the canonical connection of L®. Since
the mean curvature H = (1/2)trace, h, h is written as

h=Ldu*+2Mdudv+ (2¢’H— L)dv*

in the present isothermal coordinates.
Let k, and %, be principal curvatures of 3, i.e., the eigenvalues of h

with respect to the metric g. So, the Gaussian curvature K and the
mean curvature H are written as

K= —Ik,=e™*{M*—L(2¢°’H— L)},

H=L1(c+k),
2
and
(1.2) (k,—k.))=4(H*+ K)=4e *{(L—e’H)*+ M?}
holds.
Define a function @ on X locally as
(1.3) O()=(L—e’H)—V —1M .
So,
(1.4) (k,— k) =4|0e™ .

Note that a point p of I with a complex coordinate z is an umbilical
point if and only if @(z)=0.
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In the present coordinates, the fundamental equations of 3 imply the
following:

LEMMA 1.1. Let 3 be a space-like surface in L® with constant mean
curvature H, and (u, v) its 18othermal coordinates im which the first
Jundamental form g is written as (1.1). Then,

(1) (Codazzi equation) The locally defined function @(z) in (1.8) is
holomorphic.

(2) (Gauss equation) The Gaussian curvature K of 3 8 the intrinsic

sectional curvature of (2, g), i.e.,

K=-YeAo=—c(H'e— |00, where a=2 1 2.
2 ow o’

For example, let ¥=C(H), the hyperbolic cylinder defined in (0.2).
Putting w=(2H) 'tanh~*(#'/2*) and v=2x? we have the global isothermal
coordinates (u, v) of X in which g, » and @ are written as:

g=du’+dv*
(1.5) h=2Hdu?
&= H=constant .

In particular, C(H) is isometric to the euclidean plane R:.
Conversely, a flat, complete space-like surface with non-zero constant
mean curvature H is congruent to C(H).

§2. Complete space-like surface conformal to R

Let 3 be a complete space-like surface with constant mean curvature
H. In this section, ¥ is assumed to be conformal to the euclidean plane
R?. So, we can take the standard coordinates (u, v) of R? as the global
isothermal coordinates of X in which the first fundamental form g has
the form

(2.1) g=e’(du*+dv*)=e’dzdz .

with some smooth function ¢ on R®:. Then the complex-valued function
&(z) is defined on the whole plane C=R? and holomorphic because of
Lemma 1.1 (1). That is @ is an entire holomorphic function on R:.. Though
there are many entire functions on C, ® must be constant under the as-
sumptions of our theorem. Namely we have

LEMMA 2.1. Let 3 be a complete surface as above whose principal
curvatures k, and k, satisfy
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2.2) (k,—k,)’ze*>0
for some positive ¢. Then the function @(z) in (1.3) must be constant.
PrROOF. Substituting (1.4) into (2.2), we have
(2.8) 2¢7YD| =€’ .
Consider a riemannian metric
§=2¢7Y0|(dut +dv*) =2¢7"|P|dzdz

on R*=C. Then, (2.3) shows =g as quadratic forms on TR®. So, by
the completeness of g, § is also a complete metric on R’

On the other hand, the Gaussian curvature of § is

K= ——Z—l@l‘lAlogl@l=0 ,

since @ is holomorphiec.
Hence § is the flat complete metric on R?. Then there exists an

isometry |
#: (Cy g\)__)(cy go) ’

where g, is the standard metric of C. The isometry z can be considered
as an entire holomorphic function which maps C onto C injectively, since
it is conformal. Moreover, the injectivity of ¢ shows that p must have
a pole of order 1 at o. Thus g is linear, i.e.,

pri)=az+b
for :some constants a0 and b.
Hence
267 P|dzdZ =G = p*g,=|a|*d2dZ ,
and then, @ must be constant. O

Substituting this into the Gauss equation, Lemma 1.1 (2), and putting
r=4|H®|, we have the following equation.

COROLLARY 2.2. Let 3 be as in Lemma 2.1 and p=oc+log|H/®|.
Then p satisfies the equation

(2.4) Apo=Xxsinh o on R?,




334 KOTARO YAMADA

where A=205%ou’+4d%0v?, and An=4|H®|, a positive constant.

The trivial solution o=0 gives the flat metric on 3, and hence, it
corresponds to the hyperbolic cylinder C(H).

§3. Non existence of non-trivial solutions of (2.4).

In this section, we shall prove the following proposition, the maximum
principle for the equation (2.4).

PROPOSITION 3.1. Let \ be a positive number. Then the equation
3.1) Ap=>s8inh p on R?
has no entire solutions except p=0.

To prove this, we look at radially symmetric solution of (8.1).
Consider the ordinary differential equation

3.2) (a) q>"(r)+—:-.—¢'(r)=>\, sinh o(#)  for 20,

(3.2) (b) P(0)=a>0, £(0)=0,

where ’ is the derivation with respect to ». So, the solution of (8.2) is
a radially symmetric solution of (3.1) with »=1v"u*++°. First, we claim
the local existence of a solution of (8.2).

LEMMA 3.2. There exists a local solution of (8.2) (a) and (8.2) (b).
PrOOF. Write (8.2) as

P(r)=a-+ S-‘?—Sm sinh p(t)dt ,

and use a usual iteration argument. O

Nevertheless, there exist no global solutions of (8.1) except the trivial
solution p=0.

LEMMA 3.8. There exists mo entire, radially symmetric solution o(r)
of (3.1) with (0)>0.

PROOF. Suppose ¢(r) be an entire radially symmetric solution of (3.1)
with ¢(0)=a>0. So, @ satisfies (3.2).
Write the equation (8.2) (a) as
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(3.8) (r@’) =rrnsinh @ .
By (3.2)(b) and (8.3),
(3.4) @'(r)>0 for >0

holds, and then, @ is an increasing function of . In particular, sinh (7)==
sinha for »>0. Substituting this into (3.3), we have

(re’) =rxnsinha .

Integrating this twice, the inequality
ri .
(3.5) cp—agZx, sinh a
holds, and hence @ tends to + o as r— oo,
On the other hand,
»\ sinh o ="

because of (3.2) (a) and (8.4). Integrating this,

(@)= @yds=2{ o" 0" (e)ds
§2>\,Srsinh P(8)+P'(8)ds= 27\.S¢msinh x de
0 a
=2\(cosh @(r)—cosh a)
<2x(cosh® p(r)—1)=2x\ sinh® @(7) ,
since cosh ¢(r)=1. Then,
r r

é-;—x sinh @ for r>r,,

sinh ¢

'

where r,=21"2/x. Substituﬁing this into (8.2) (a), we have
¢”_Z_—;—-7\, sinh @ for r>r,.
Thus, for r>7r,
{¢'(7‘)}2—{¢'(7‘1)}2=28:190'(3)¢"(S)d8

plr)
_ZA.S sinh(x)dx

?(Tl)

=\{cosh @(r)—cosh ¢(r,)} .
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Hence, there exists a positive number r, such that for r=r,,

@' (r)=V Ncosh @(r) —cosh p(r)} +{@ (7))

26 exp(222),
2
where C, is a positive constant. Integrating this inequality, we have
_9_@) _G
(8.6) exp( > = 5 r+C,

with some constant C,. Here, lim,_. ()= + ~ because of (3.5). Then,
the left-hand side of (3.6) tends to 0 when r— + . This shows that
is bounded, and contradicts the assumption. O

COROLLARY 3.4. Let @ be a non-trivial radially symmetric solution
of (8.1) with (0)>0. Then, there exists a positive number R for which
lim,_z (1) =+ .

ProOF. By (8.4), o(r) is an increasing function of ». On the other
hand, @ is a solution of (8.2)(a) in a finite interval [0, R) because of
Lemma 3.2. Hence, ¢ tends to + as r—R. O

PROOF OF PROPOSITION 3.1. Let o be an entire solution of (3.1) which
is not identically 0. So, we can suppose p(0)#0. Assume pP(0)=2a>0
and take a radially symmetric solution of (8.1) with @(0)=a. So, there
exists a positive number R such that lim,.p ()= + -~ because of Co-
rollary 3.4.

Let f=¢—p, a function defined on B,={(u, v); r=V W+ v*<R} with
lim, . f=+ . Then, f takes a minimum at some point » in B;. As-
sume f(p)<0. So,

Af(p)=Ap(p)—Ap(D)
={sinh @(p) —sinh p(p)}

— 92 coshZ@)+0®) oo F(D)
2

<0.

This contradicts the fact that f takes its minimum at p. Hence f=¢p—
=0 in B;. In particular, f(0)=¢(0)—p(0)=a—2a=—a=0. This is im-
possible. Thus there exists no entire solution p of (3.1) which takes a
positive value.

When 0(0)<0, we have the same conclusion by considering —p in-
stead of p.
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REMARK. In [8], Osserman showed the non-existence of entire solu-
tions of Au=f(u) on R", where f is a positive, increasing function with
large growth rate. Though our equation (2.4) does not satisfy his as-
sumptions, almost all parts of his proof are valid for Proposition 3.1.

§4. Proof of the main theorem.

Let 3 be a complete space-like surface satisfying the assumptions of
the theorem. Then,

4.1) 27D =€

holds in the isothermal coordinates as in § 2.

Note that a complete space-like surface can be represented as an
entire graph on the zx'w*-plane in L:. In particular, ¥ must be simply
connected. Thus, Y is conformal to either the Poincaré disc H® or the
euclidean plane R? since it is non-compact.

Assume Y is conformal to H?*=(D, g,), where D={z¢eC; |z|<1} and
9,=4dzdz/(1 —|z|*)*. So, (Z, g) is isometric to (D, g=e°dzdz) for some funec-
tion ¢ on D. Here, the completeness of g implies

lim e’=+oo .
(u,v)—aD
Therefore the function @ is a non-vanishing holomorphic function on D
which satisfies
(4.2) lim |@|=4

‘ (u,v)—=3D
because of (4.1). Put ¥=0'. Then, ¥ is holomorphic on D and con-
tinuous on D with ¥|,,=0. Then, by Cauchy’s formula,

T(0) = —‘é?swwiz) dz=0 .

This is impossible. Therefore Y cannot be conformal to H:.

Hence 3 must be conformal to R:. Then we can take global coordi-
nates (u, v) of ¥ in which the first fundamental forms g is written as
(2.1). So, o in (2.1) satisfies the equation (2.4) and then, must be con-
stant because of Lemma 3.1. Thus g is the flat metric and hence, Y is
congruent to the hyperbolic cylinder C(H). This completes the proof of
the theorem. O

REMARK 1. Let o be a radially symmetric solution of (2.4) on B,
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and consider a metric g=|®/Hle’dzdZ on Br. When p(0)<0, the metric
g is not complete on B, since lim,., 0(r)=—oc. On the other hand, g
is a complete metric on B, when p(0)>0. Then g, # and H give a
complete space-like surface in L® with constant mean curvature H and
given @. This surface has no umbilical points, but lim,_ x(k,—k,)=0 since
lim,_ 0(r)=+o. So, the assumption (0.3) of the theorem is essential.

REMARK 2. For a surface in the enclidean space R? the Gauss equa-
tion implies that Ap=—)\sinh 0 in the same situation in §2, where )
is a positive constant. For this equation, the maximum principle like as
Proposition 3.1 does not hold. So the Gauss equation is expected to have
non-trivial solutions. This is one of the reasons why there are counter-
examples for Hopf conjecture; immersed tori in R® with constant mean
curvature [10].
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