An Observation on the First Case of Fermat's Last Theorem

Norio ADACHI

Waseda University

Let p be an odd prime number. We consider Fermat's equation

$$
\begin{equation*}
x^{p}+y^{p}+z^{p}=0 \tag{1}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
x y z \not \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

We abbreviate as $\mathrm{FLT}_{1}(p)$ the statement that the equation (1) has no solutions in integers under the condition (2). It is well-known that if p does not divide the (relative) class number of the cyclotomic field $L=\boldsymbol{Q}(\zeta)$, where ζ is a primitive p-th root of unity, then $\operatorname{FLT}_{1}(p)$ is true.

In the present paper, we study what we can say about $\operatorname{FLT}_{1}(p)$, supposing the relative class number of an imaginary subfield of L is not divisible by p. We prove the following:

Theorem. Suppose that $F L T_{1}(p)$ is not true, and let x, y, z be nonzero integers satisfying (1) and (2). Put $t=x / y$ and let

$$
H=\left\{t, \frac{1}{t},-\frac{1}{1+t},-(1+t),-\frac{t}{1+t},-\left(1+\frac{1}{t}\right)\right\}
$$

Let M be an arbitrarily fixed imaginary proper subfield of the cyclotomic field L. Put

$$
\Phi(T)=N_{L / M}(T+\zeta)-N_{L / M}\left(T+\zeta^{-1}\right)
$$

where $N_{L / M}$ denotes the relative norm map from L to M. If p does not divide the relative class number h_{M}^{-}of the field M, then any number in the set H satisfies the congruence

$$
\begin{equation*}
\Phi(T) \equiv 0 \quad(\bmod p) \tag{3}
\end{equation*}
$$

As an example, we consider the case M is a quadratic field $\boldsymbol{Q}(\sqrt{-p})$

[^0]with $p \equiv-1(\bmod 4)$. Then it is well-known that p does not divide the class number of the quadratic field; in fact, it is easily seen that the class number is less than p (cf. for example, Lemma 2 in [2]). In §2, we will give the table of the solutions of (3) for any prime number $p \leqq 199$, by which we will know that $\mathrm{FLT}_{1}(p)$ is true for these prime numbers.

We note that p divides the relative class number h_{M}^{-}of the imaginary field M with $m=[L: M]$, if and only if p divides the Bernoulli number B_{m+1} for some $j=1,3,5, \cdots,(p-4) / m$: This was first proved by Carlitz, later by Metsänkylä and also by the author; cf. Theorem A in [1].

§ 1. Proof.

Suppose that the assumptions in the theorem are all satisfied. We may assume that x, y, z are pairwise relatively prime. Then it is wellknown (and easily shown) that $x+\zeta^{j} y^{\prime}$ s are pairwise relatively prime for $j=1,2, \cdots, p-1$. Therefore $N_{L / M}(x+\zeta y)=A^{p}$ for some ideal A of M.

The p-Sylow subgroup C_{0} of the ideal class group of the maximal real subfield M_{0} of M naturally injects into the p-Sylow subgroup C of the ideal class group of M, since $\left[M: M_{0}\right]=2$ is prime to p. As the relative class number $h_{\bar{M}}$ is not divisible by p, the injection of C_{0} to C is, in fact, surjective. Therefore the ideal A can be written $(\rho) S$ with $\rho \in M$ and S an ideal of M_{0}, so

$$
N_{L / M}(x+\zeta y)=\left(\rho^{p}\right) S^{p}
$$

Since the left-hand side is prime to p, we may assume that ρ and S are prime to p. The above implies that S^{p} is principal in M. Since the natural map of C_{0} to C is injective, S^{p} is principal in M_{0} from the first beginning: $S^{p}=(\alpha)$ with $\alpha \in M_{0}$. Thus we obtain

$$
N_{L / w}(x+\zeta y)=\varepsilon \alpha \rho^{p}
$$

where ε is a unit of M. By Kummer's lemma ε can be written $\zeta^{\circ} \varepsilon_{0}$ with ε_{0} a real unit. Then $\zeta^{2 s}=\varepsilon / \bar{\varepsilon} \in M$. Here, and in what follows, $\bar{\alpha}$ denotes the complex conjugate of α. But M contains none of the p-th roots of unity other than 1 , since $M \varsubsetneqq L$. Therefore s is divisible by $p: \varepsilon=\varepsilon_{0} \in M_{0}$. We have

$$
\bar{\rho}^{p} \equiv \rho^{p} \quad(\bmod p)
$$

for any $\rho \in M$. Therefore we obtain

$$
N_{L / M}(x+\zeta y) \equiv N_{L / M}\left(x+\zeta^{-1} y\right) \quad(\bmod p)
$$

This implies

$$
\Phi(t) \equiv 0 \quad(\bmod p)
$$

On the other hand, we obtain $x+y+z \equiv 0(\bmod p)$ by (1). Therefore the elements of H are congruent modulo p to those of the set

$$
\left\{\frac{x}{y}, \frac{y}{x}, \frac{x}{z}, \frac{z}{x}, \frac{y}{z}, \frac{z}{y}\right\}
$$

By the symmetry of the equation (1), the fact that $T=t$ satisfies the congruence (3) implies that the elements of H other than t also satisfy the congruence (3). This completes the proof of the theorem.

§ 2. Some special cases.

In some special cases, the set H degenerates: If $t \equiv 1$, or -2 , or $-1 / 2(\bmod p)$, then $H=\{1,-2,-1 / 2\}$. If $t^{2}+t+1 \equiv 0(\bmod p)$, then $p \equiv 1$ (mod 6) and H has only 2 distinct elements. In all other cases, H has 6 distinct elements. However, Pollaczek proved that the second case never happens ([3]), that is, $t^{2}+t+1 \not \equiv 0(\bmod p)$.

We note that the congruence (3) is never trivial, because it is not satisfied by $T \equiv-1(\bmod p)$. We note also that (3) is always satisfied by $T \equiv 0,1(\bmod p)$. These are immediate consequences of the fact $N_{L / M} \zeta=1$. Therefore, if $\mathrm{FLT}_{1}(p)$ fails, and if $h_{\bar{M}}^{-}$is not divisible by p, the number of the solutions of (3) must be $\geqq 4$. If we admit using Pollaczek's result, then either -2 modulo p satisfies (3) or the number of the solutions of (3) must be $\geqq 8$.

If $m=[L: M]=3$, then the degree of Φ is 2 ; so 0 and 1 are all of the solutions of (3). Thus we obtain the following:

Corollary. Suppose $p \equiv 1(\bmod 3)$. If $F L T_{1}(p)$ fails, then p divides $B_{3 j+1}$ for some $j=1,3, \cdots,(p-4) / 3$.

This corollary is weaker than classical results derived from "Kummer's congruences". Our proof, however, is different from their proofs.

Finally, we list the solutions of $\Phi(T) \equiv 0(\bmod p)$ when $p \equiv-1(\bmod 4)$ and $M=\boldsymbol{Q}(\sqrt{-p})$. Incidentally, $\Phi(T) / \sqrt{-p}$ is a monic polynomial with integral coefficients of degree $(p-3) / 2$.

In the table below, the prime numbers for each of which there is a solution t of the congruence (3) such that the set H is contained in the set of solutions of (3) are $19,43,67,139$ and 163 . But these are of the
type $t^{2}+t+1 \equiv 0(\bmod p)$, which is excluded by Pollaczek's result.

p	the solutions modulo p					
7	0	1				
11	0	1				
19	0	1	17	11		
23	0	1	7	19		
31	0	1				
43	0	1	6	36		
47	0	1	17	35	36	43
59	0	1	22	51		
67	0	1	29	37		
71	0	1				
79	0	1				
83	0	1				
103	0	1				
107	0	1				
127	0	1				
131	0	1	10	118		
139	0	1	42	96		
151	0	1	66	135		
163	0	1	58	104		
167	0	1				
179	0	1	65	168		
191	0	1	56	58		
199	0	1				

The result in the present paper seems to have relation to Kummer's congruences. It is, however, still unknown to the author.

References

[1] N. Adachi, Generalization of Kummer's criterion for divisibility of class numbers, J. Number Theory, 5 (1973), 253-265.
[2] N. Adachi, The Diophantine equation $x^{2} \pm l y^{2}=z^{l}$ connected with Fermat's Last Theorem, Tokyo J. Math., 11 (1988), 85-94.
[3] F. Pollaczek, Uber den grossen Fermat'schen Satz, Sitzungsber. Akad. Wiss. Wien II a, 126 (1917), 45-59.

Present Address:

Department of Mathematics, School of Science and Engineering, Waseda University Okubo, Shinjuku-ku, Tokyo 160, Japan

[^0]: Received September 9, 1987

