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An Observation on the First Case of Fermat’s Last Theorem
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Waseda University

Let $p$ be an odd prime number. We consider Fermat’s equation

(1) $x^{p}+y^{p}+z^{p}=0$

under the condition

(2) $xyz\not\equiv 0$ $(mod p)$ .
We abbreviate as $FLT_{1}(p)$ the statement that the equation (1) has

no solutions in integers under the condition (2). It is well-known that
if $p$ does not divide the (relative) class number of the cyclotomic field
$L=Q(\zeta)$ , where $\zeta$ is a primitive p-th root of unity, then $FLT_{1}(p)$ is true.

In the present paper, we study what we can say about $FLT_{1}(p)$ ,
supposing the relative class number of an imaginary subfield of $L$ is not
divisible by $p$ . We prove the following:

THEOREM. Suppose that $FLT_{1}(p)$ is not true, and let $x,$ $y,$ $z$ be non-
zero integers satisfying (1) and (2). Put $t=x/y$ and let

$H=\{t,$ $\frac{1}{t}$ $-\frac{1}{1+t},$ $-(1+t),$ $-\frac{t}{1+t},$ $-(1+\frac{1}{t})\}$ .

Let $M$ be an arbitrarily fixed imaginary proper subfield of the cyclotomic

field L. Put

$\Phi(T)=N_{L/M}(T+\zeta)-N_{L/K}(T+\zeta^{-1})$ ,

where $N_{L/M}$ denotes the relative norm map from $L$ to M. If $p$ does not
divide the relative class number $h_{M}^{-}$ of the field $M$, then any number in
the set $H$ satisfies the congruence

(3) $\Phi(T)\equiv 0$ $(mod p)$ .
As an example, we consider the case $M$ is a quadratic field $Q(\sqrt{-p})$
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with $p\equiv-1(mod 4)$ . Then it is well-known that $p$ does not divide the
class number of the quadratic field; in fact, it is easily seen that the class
number is less than $p$ (cf. for example, Lemma 2 in [2]). In \S 2, we will
give the table of the solutions of (3) for any prime number $p\leqq 199$ , by
which we will know that $FLT_{1}(p)$ is true for these prime numbers.

We note that $p$ divides the relative class number $h_{H}^{-}$ of the imaginary
field $M$ with $m=[L:M]$ , if and only if $p$ divides the Bernoulli number
$B_{fnj+1}$ for some $j=1,3,5,$ $\cdots,$ $(p-4)/m$ : This was first proved by Carlitz,
later by Mets\"ankyl\"a and also by the author; cf. Theorem A in [1].

\S 1. Proof.

Suppose that the assumptions in the theorem are all satisfied. We
may assume that $x,$ $y,$ $z$ are pairwise relatively prime. Then it is well-
known (and easily shown) that $x+\zeta^{j}y’ s$ are pairwise relatively prime for
$j=1,2,$ $\cdots,$ $p-1$ . Therefore $N_{L/H}(x+\zeta y)=A^{p}$ for some ideal $A$ of $M$.

The p-Sylow subgroup $C_{0}$ of the ideal class group of the maximal real
subfield $M_{0}$ of $M$ naturally injects into the p-Sylow subgroup $C$ of the
ideal class group of $M$, since $[M:M_{0}]=2$ is prime to $p$ . As the relative
class number $h_{H}^{-}$ is not divisible by $p$ , the injection of $C_{0}$ to $C$ is, in fact,
surjective. Therefore the ideal $A$ can be written $(\rho)S$ with $\rho\in M$ and $S$

an ideal of $M_{0}$ , so
$N_{L/H}(x+\zeta y)=(\rho^{p})S^{p}$ .

Since the left-hand side is prime to $p$ , we may assume that $\rho$ and $S$ are
prime to $p$ . The above implies that $S^{p}$ is principal in $M$. Since the
natural map of $C_{0}$ to $C$ is injective, $S^{p}$ is principal in $M_{0}$ from the first
beginning: $S^{p}=(\alpha)$ with $\alpha eM_{0}$ . Thus we obtain

$N_{L/H}(x+\zeta y)=\epsilon\alpha\rho^{p}$ ,

where $\epsilon$ is a unit of $M$. By Kummer’s lemma $\epsilon$ can be written $\zeta\epsilon_{0}$ with
$\epsilon_{0}$ a real unit. Then $\zeta^{2}=\epsilon/\overline{\epsilon}eM$. Here, and in what follows, $\overline{\alpha}$ denotes
the complex conjugate of $\alpha$ . But $M$ contains none of the p-th roots of
unity other than 1, since $M\subsetneqq L$ . Therefore $s$ is divisible by $p:\epsilon=\epsilon_{0}\in M_{0}$ .
We have

$\overline{\rho}^{p}\equiv\rho^{p}$ $(mod p)$

for any $\rho\in M$. Therefore we obtain

$N_{L/H}(x+\zeta y)\equiv N_{L/p}(x+\zeta^{-1}y)$ $(mod p)$ .
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This implies

$\Phi(t)\equiv 0$ $(mod p)$ .
On the other hand, we obtain $x+y+z\equiv 0(mod p)$ by (1). Therefore

the elements of $H$ are congruent modulo $p$ to those of the set

$\{\frac{x}{y},$ $\frac{y}{x}\frac{x}{z}\frac{z}{x}\frac{y}{z}\frac{z}{y}\}$ .

By the symmetry of the equation (1), the fact that $T=t$ satisfies the
congruence (3) implies that the elements of $H$ other than $t$ also satisfy
the congruence (3). This completes the proof of the theorem.

\S 2. Some special cases.

In some special cases, the set $H$ degenerates: If $t\equiv 1$ , or $-2$ , or
$-1/2(mod p)$ , then $H=\{1, -2, -1/2\}$ . If $t^{2}+t+1\equiv 0(mod p)$ , then $p\equiv 1$

$(mod 6)$ and $H$ has only 2 distinct elements. In all other cases, $H$ has 6
distinct elements. However, Pollaczek proved that the second case never
happens ([3]), that is, $t^{2}+t+1\not\equiv 0(mod p)$ .

We note that the congruence (3) is never trivial, because it is not
satisfied by $T\equiv-1(mod p)$ . We note also that (3) is always satisfied by
$T\equiv 0,1(mod p)$ . These are immediate consequences of the fact $N_{L/H}\zeta=1$ .
Therefore, if $FLT_{1}(p)$ fails, and if $h_{M}^{-}$ is not divisible by $p$ , the number
of the solutions of (3) must be $\geqq 4$ . If we admit using Pollaczek’s result,
then either $-2$ modulo $p$ satisfies (3) or the number of the solutions of
(3) must be $\geqq 8$ .

If $m=[L:M]=3$ , then the degree of $\Phi$ is 2; so $0$ and 1 are all of
the solutions of (3). Thus we obtain the following:

COROLLARY. Suppose $p\equiv 1(mod 3)$ . If $FLT_{1}(p)$ fails, then $p$ divides
$B_{\epsilon j+1}$ for some $j=1,3,$ $\cdots,$ $(p-4)/3$ .

This corollary is weaker than classical results derived from “Kummer’s
congruences”. Our proof, however, is different from their proofs.

Finally, we list the solutions of $\Phi(T)\equiv 0(mod p)$ when $p\equiv-1(mod 4)$

and $M=Q(\sqrt{-p})$ . Incidentally, $\Phi(T)/\sqrt{-p}$ is a monic polynomial with
integral coefficients of degree $(p-3)/2$ .

In the table below, the prime numbers for each of which there is a
solution $t$ of the congruence (3) such that the set $H$ is contained in the
set of solutions of (3) are 19, 43, 67, 139 and 163. But these are of the
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type $t^{2}+t+1\equiv 0(mod p)$ , which is excluded by Pollaczek’s result.

The result in the present paper seems to have relation to Kummer’s
congruences. It is, however, still unknown to the author.
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