On Some Integral Invariants, Lefschetz Numbers and Induction Maps

Akito FUTAKI and Kenji TSUBOI
Chiba University and Tokyo University of Fisheries
(Communicated by N. Iwahori)
Dedicated to Professor Hiroshi Toda on his 60th birthday

§ 1. Introduction.

Let M be a compact complex manifold, G any compact subgroup of the complex Lie group of all holomorphic automorphisms of M and (8) the Lie algebra of G which consists of holomorphic vector fields on M. In [5], the first author defined a character $f: \mathbb{B} \rightarrow \boldsymbol{C}$ (more generally defined a C-character of the complex Lie algebra of all holomorphic vector fields on M) which depends only on the complex structure of M and vanishes if M admits a Kaehler-Einstein metric. In this paper, we first see that characters of this kind appear naturally in the Lefschetz numbers. More precisely, let \mathscr{D} be the Dolbeault complex of M with values in a certain holomorphic vector bundle over M and H^{i} the i-th cohomology group of \mathscr{O}. Then the Lefschetz number $L(g)$, for $g \in G$, is by definition

$$
L(g)=\sum_{i}(-1)^{i} \operatorname{tr}\left(\left.g\right|_{H^{i}}\right)
$$

In Theorem 4.3, we show that $f(X)$, for $X \in \mathbb{S}$, coincides up to constant with the second term of the Taylor expansion of $L(\exp t X)$ whose first term is of course the arithmetic genus of \mathscr{D}. Then it becomes clear that f depends only on the complex structure of M and that $f(\operatorname{Ad}(g) X)=f(X)$ for any $g \in G$.

Now we wish to put this view point into a single diagram. Let G and H be compact Lie groups with Lie algebras \mathbb{C} and \mathscr{S}. Let M be a compact oriented manifold of dimension $2 m$ and P a principal right H bundle over M. Suppose that G acts on $P \rightarrow M$ on the left as bundle automorphisms and that the action of G on M is orientation-preserving. Let θ be a G-invariant connection of P. Then, as in [4], an H-equivariant

[^0]\mathfrak{S}-valued 0 -form $J(X)$ on P is defined for $X \in \mathbb{B}$ by
\[

$$
\begin{equation*}
J(X)(p)=\theta\left(X_{p}^{*}\right) \quad \text { for } \quad p \in P \tag{1.1}
\end{equation*}
$$

\]

where X^{*} denotes the vector field on P induced by the flow $\exp t X$ and $\mathscr{F}(\phi): \otimes^{k}(\mathbb{S} \rightarrow C$ is defined for an H-invariant polynomial ϕ of degree $m+k$ by

$$
\begin{equation*}
\mathscr{F}(\phi)\left(X_{1}, \cdots, X_{k}\right)=\binom{m+k}{k}\left(\frac{\sqrt{-1}}{2 \pi}\right)^{m} \int_{M} \phi\left(J\left(X_{1}\right) \wedge \cdots \wedge J\left(X_{k}\right) \wedge\left(\wedge^{m} \theta\right)\right) \tag{1.2}
\end{equation*}
$$

where $X_{i} \in(\mathbb{S}$ and Θ denotes the curvature form of θ. It can be seen from the left G-invariance of θ that $\mathscr{F}(\phi)$ is $\operatorname{Ad}(G)$-invariant and thus we get a C-linear map $\mathscr{F}: I^{m+k}(H) \rightarrow I^{k}(G)$ where $I^{l}(G)$ denotes the set of all G-invariant polynomials of degree l with C-coefficients. Clearly, when $\operatorname{deg} \phi=m, \mathscr{F}(\phi)$ is a characteristic number and when $\operatorname{deg} \phi=m+1$, $\mathscr{F}(\phi)$ is a character of \mathbb{F} into C. In Theorem 3.11, we give relations between \mathscr{F} and the Lefschetz number (or the Atiyah-Singer index). In particular when M is a compact complex manifold, G is a compact subgroup of the (biholomorphic) automorphism group of M and P is the unitary frame bundle with respect to a G-invariant Hermitian metric, $f: \mathbb{B} \rightarrow C$ coincides $u p$ to constant with $\mathscr{F}\left(c_{1}{ }^{m+1}\right)$ where c_{1} is the first Chern polynomial (this can be seen using Yau's solution to the Calabi conjecture, see [6]) and Theorem 4.3 follows from Theorem 3.11.

With these understood, it would be clear that Theorem 3.11 can be applied to other geometric cases such as the signature complex for an oriented manifold and the Dirac operator for a spin manifold. Note that, in these cases, G may be any closed subgroup of the automorphism group $\operatorname{Aut}(M)$ of M because $\operatorname{Aut}(M)$ itself is compact. In Section 5, we shall apply Theorem 3.11 to the homogeneous space G / H (where H is a closed subgroup of a compact Lie group G) and get an induction homomorphism $I^{*}(H) \rightarrow I^{*}(G)$ which is expressed by the integration over G / H and coincides with the induced representation $R(H) \rightarrow R(G)$ (where $R(H)$ denotes the representation ring of H) (see Segal [9]) and with the transfer map $H^{*}(B H) \rightarrow H^{*}(B G)$ (see Becker-Gottlieb [3]) under the natural correspondence between R, I^{*} and H^{*}.

We have benefited from the conversations with Professor Morita, who made many valuable suggestions to us. We are also indebted to Professor Kôno, who helped us in proving Lemma (2.5).

§ 2. Chern characters.

Let $R(G)$ be the representation ring of a compact Lie group G. Namely, $R(G)=K_{G}(\mathrm{pt})$ is the Grothendieck construction of the commutative
semiring of all complex G-modules. $\quad R(G)$ is isomorphic to a free Z-module with the irreducible complex G-modules A_{i} 's or the irreducible characters χ_{i} 's of A_{i} 's as its basis and is also regarded as a subring of the ring of all real analytic functions on G generated by χ_{i} 's.

For any $R(G) \ni z=\sum_{i} n_{i} A_{i}$ (finite sum), $n_{i} \in Z$, the Chern character $\operatorname{ch}(\boldsymbol{z}) \in H_{G}^{* *}=H^{* *}(B G ; \boldsymbol{C})=\prod_{k=0}^{\infty} H^{2 k}(B G ; \boldsymbol{C})$ is defined by $\operatorname{ch}(\boldsymbol{z})=$ $\sum_{i} n_{i} \mathscr{C} \hbar\left(E G \times_{G} A_{i}\right)$ where $\mathscr{C} \hbar$ is the usual Chern character of a complex vector bundle $E G \times{ }_{G} A_{i}$ over $B G$.

On the other hand, a counterpart in $I^{* *}(G)=\prod_{k=0}^{\infty} I^{k}(G)$ is defined as follows. For any $R(G) \ni z=\sum_{i} n_{i} A_{i}$, an $\operatorname{Ad}(G)$-invariant real analytic function α_{z} on (s) is defined by

$$
\alpha_{z}(X)=z(\exp X)=\operatorname{tr}\left(\left.\exp X\right|_{z}\right)=\sum_{i} n_{i} \operatorname{tr}\left(\left.\exp X\right|_{A_{i}}\right) \quad \text { for } \quad X \in \mathbb{S}
$$

Definition 2.1. Let $\operatorname{ch}(z) \in I^{* *}(G)$ denote the image of α_{z} under the invariant Taylor homomorphism of [7]. Namely, $\{\operatorname{ch}(z)\}_{(k)} \in I^{k}(G)$ (where $\Psi_{(k)} \in I^{k}(G)$ denotes the degree k term of $\Psi \in I^{* *}(G)$) is characterized by the Taylor expansion

$$
\alpha_{z}(t X)=\sum_{k=0}^{\infty}\{\operatorname{ch}(z)\}_{(k)}(X, \cdots, X) t^{k} \quad \text { for any } \quad X \in \mathbb{B} .
$$

Thus ch: $R(G) \rightarrow H_{G}^{* *}$ and $\operatorname{ch}: R(G) \rightarrow I^{* *}(G)$ are defined and easily seen to be ring homomorphisms. These two ch's correspond to each other under the Weil homomorphism $W_{G}: I^{k}(G) \rightarrow H_{G}^{2 k}$. Throughout this paper, the Weil homomorphism always means the modified Weil homomorphism of [7]. Namely, W_{G} is normalized by the property that, for $G=U(1)=S^{1}$, $q^{*} W_{U^{(1)}}(x)=\{(\sqrt{-1} / 2 \pi) \Omega\}$ where $x: \mathfrak{u}(1) \rightarrow C$ is an invariant polynomial on the Lie algebra $\mathfrak{u}(1)=\sqrt{-1} R$ given by the inclusion map and Ω is a curvature form in the principal bundle $q: E U(1) \rightarrow B U(1)$.

The next lemma follows immediately from the definition of ch's and [7, p. 453].

Lemma 2.2. The following diagram is commutative.

ch's are obviously extended to C-algebra homomorphisms, and if G is connected, then $R(G) \otimes C, I^{* *}(G)$ and $H_{G}^{* *}$ may be identified under the
above diagram in the sense of the next lemma.
Lemma. If G is connected (and compact), then
(2.3) $W_{G}: I^{* *}(G) \rightarrow H_{G}^{* *}$ is a C-algebra isomorphism,
(2.4) ch: $R(G) \otimes C \rightarrow I^{* *}(G)$ is an injective C-algebra homomorphism,
(2.5) for any finite sum $\phi \in \sum_{k=0}^{N} I^{k}(G)$, there exists $z \in R(G) \otimes C$ such that $\operatorname{ch}(z)=\phi$ modulo higher terms of degree $\geqq N+1$.
(2.4) and (2.5) assert that $R(G) \otimes C$ becomes a "dense" subalgebra of $I^{* *}(G) \cong H_{G}^{* *}$ under ch.

Proof of (2.4). For $R(G) \otimes C \ni z=\sum_{i} c_{i} \chi_{i}, c_{i} \in C, \operatorname{ch}(z)=0$ means that $\sum_{i} c_{i} \chi_{i}(\exp X)=0$ for any $X \in \mathbb{E}$. This means that $\sum_{i} c_{i} \chi_{i}=0$ because G is connected.

Proof of (2.3) AND (2.5). Let $T^{r} \subset G$ be a maximal torus and W the Weyl group which acts on T^{r} as inner automorphisms. Then (2.3) follows immediately from the well-known facts that both $I^{k}(G)$ and $H_{G}^{2 k}$ consist of W-invariant elements of $I^{k}\left(T^{r}\right)$ and $H_{T^{r}}^{2 k}$ respectively and that W_{G} maps $I^{k}\left(T^{r}\right)$ isomorphically onto $H_{T_{r}}^{2 k}$ commuting with the W-action.

For the proof of (2.5), it suffices to show that for any $\phi \in I^{k}(G)$ there exists $z \in R(G) \otimes C$ such that $\operatorname{ch}(z)=\phi$ modulo terms of degree $\geqq k+1$. As described above, ϕ is a W-invariant element of $I^{k}\left(T^{r}\right)=$ polynomials of degree k in $\left.C\left[x_{1}, \cdots, x_{r}\right]\right\}$ where x_{i} is an $\operatorname{Ad}\left(T^{r}\right)$-invariant polynomial of degree 1 given by

$$
\begin{align*}
& x_{i}(X)=\sqrt{-1} \theta_{i} \in C \text { for an element } X=\left(\sqrt{-1} \theta_{1}, \cdots, \sqrt{-1} \theta_{r}\right) \tag{2.6}\\
& \text { of the Lie algebra of } T^{r} .
\end{align*}
$$

On the other hand, it is also well-known that $R(G) \otimes C$ consists of W invariant elements of $R\left(T^{r}\right) \otimes C=C\left[t_{1}, t_{1}^{-1}, \cdots, t_{r}, t_{r}^{-1}\right]$ where t_{i} is an irreducible character of T^{r} given by $t_{i}(g)=e^{\sqrt{-1} \theta_{i}}$ for $g=\left(e^{\sqrt{-1} \theta_{1}}, \cdots, e^{\sqrt{-1} \theta_{r}}\right) \in T^{r}$. Now it is easy to see from the definition of ch that

$$
\operatorname{ch}\left(t_{i}\right)=e^{\pi_{i}}=1+x_{i}+\frac{1}{2} x_{i}^{2}+\cdots \in I^{* *}\left(T^{r}\right)
$$

Furthermore, it is clear that ch commutes with the W-action because the W-action is induced from an automorphism of T^{r}. Now, for $\phi=\phi\left(x_{1}, \cdots, x_{r}\right)$, put $z=|W|^{-1} \sum_{\sigma \in W} \sigma \cdot \phi\left(t_{1}-1, \cdots, t_{r}-1\right)$ where $|W|$ is the order of W. Then it follows from the properties of ch described above and the W-invariance of ϕ that

$$
\begin{aligned}
\operatorname{ch}(z) & =|W|^{-1} \sum_{\sigma \in W} \sigma \cdot \phi\left(e^{x_{1}}-1, \cdots, e^{x_{r}}-1\right) \\
& =|W|^{-1} \sum_{\sigma \in W} \sigma \cdot \phi\left(x_{1}+\text { higher }, \cdots, x_{r}+\text { higher }\right) \\
& =|W|^{-1} \sum_{\sigma \in W} \sigma \cdot \phi\left(x_{1}, \cdots, x_{r}\right)+\text { higher } \\
& =\phi\left(x_{1}, \cdots, x_{r}\right)+\text { higher } .
\end{aligned}
$$

Q.E.D.

COROLLARY 2.7. For any compact (not necessarily connected) Lie group G, W_{G} is injective.

Proof. Let G_{0} be the identity component of G and $i: G_{0} \rightarrow G$ the inclusion. Then $i^{*}: I^{* *}(G) \rightarrow I^{* *}\left(G_{0}\right)$ is clearly injective. Thus the corollary follows from (2.3) because $i^{\prime} \circ W_{G}$ coincides with $W_{G_{0}} \circ i^{*}$ for $i^{\prime}=$ $i^{*}: H_{G}^{* *} \rightarrow H_{\sigma_{0}}^{* *}$.
Q.E.D.

The next lemma is an obvious consequence of (2.5).
Lemma 2.8. If G is connected (and compact), then for any $\Psi \in I^{* *}(G)$ such that $\Psi_{(0)} \neq 0$ and any $\phi \in I^{m+k}(G)$, there exists $z \in R(G) \otimes C$ such that $\{\Psi \cdot \operatorname{ch}(z)\}_{(m+k)}=\phi$.
§3. \mathscr{F} and the Atiyah-Singer index.
Now we come back to the situation of Section 1. Let $M_{G}=E G \times_{G} M$ be the associated oriented M-fiber bundle over $B G$ with projection $\pi_{M}: M_{G} \rightarrow B G$ and $P_{G}=E G \times_{G} P$ the associated P-fiber bundle over $B G$ with projection $\pi_{P}: P_{G} \rightarrow B G$. Note that, in arguments of this section, $B G, E G$, M_{G} and P_{G} are regarded as compact smooth manifolds by considering their finite skeletons. P_{G} is also regarded as a principal H-bundle over M_{G} with classifying map $c: M_{G} \rightarrow B H$. Then

Definition 3.1. A C-linear map $\mathscr{G}: H_{H}^{2 m+2 k} \rightarrow H_{G}^{2 k}$ is defined to be the composition of $c^{*}: H_{H}^{2 m+2 k} \rightarrow H^{2 m+2 k}\left(M_{G} ; C\right)$ and the Gysin homomorphism (i.e. the integration over the fiber) $\pi_{M *}: H^{2 m+2 k}\left(M_{G} ; \boldsymbol{C}\right) \rightarrow H_{G}^{2 k}$.

The next proposition is a generalization of a result in [6] and is proved similarly by use of the G-invariance of θ.

Proposition 3.2. The following diagram is commutative.

Proof. A fixed connection ω in $E G \rightarrow B G$ (with curvature form Ω) defines a splitting of tangent spaces $T_{(0, p)} P_{G}=T_{(0, p)}^{Y} P_{G} \oplus H_{(e, p)}$ for any $(e, p) \in E G \times_{G} P=P_{G}\left((e, p)=\left(e \cdot g^{-1}, g \cdot p\right)\right.$ in P_{G} for any $\left.g \in G\right)$ where $H_{(o, p)}$ denotes the horizontal subspace and $T^{v} P_{G} \cong E G \times_{G} T P$ denotes the vertical subbundle of the tangent bundle $T P_{G}$. This splitting defines the vertical projection $\kappa_{(0, p)}: T_{(0, p)} P_{G} \rightarrow T_{(e, p)}^{Y} P_{G}$. Furthermore, θ defines a splitting $T_{p} P=$ $\mathfrak{G} \oplus \hat{H}_{p}$ for any $p \in P$ with \hat{H}_{p} as its horizontal subspace, and this splitting defines the vertical projection $\theta_{p}: T_{p} P \rightarrow \mathfrak{G}$. Here $T_{(0, p)}^{\nu} P_{G}$ is naturally identified with $T_{p} P$ and θ_{p} defines $\tilde{\theta}_{(\sigma, p)}: T_{(e, p)}^{V_{p}} P_{\sigma} \rightarrow \mathfrak{G}$. By use of the left G-invariance of θ, it is easy to verify that $\tilde{\theta}_{(c, p)}$ is independent of the choice of the identification $T_{(\varepsilon, p)}^{V} P_{G}=T_{p} P$ (i.e. the choice of the representative ($e, p) \in E G \times{ }_{G} P=P_{G}$). Thus a \mathfrak{G}-valued 1 -form ψ on P_{G} is defined by $\psi=\tilde{\theta} \circ \kappa$ and is easily verified to give a connection in principal H bundle $P_{\sigma} \rightarrow M_{G}$. Straightforward calculations show that the curvature form Ψ of ψ is given by

$$
\begin{equation*}
\Psi=\widetilde{\Theta} \circ \kappa \otimes \kappa+J(\Omega) \tag{3.3}
\end{equation*}
$$

where $\widetilde{\Theta}: T^{v} P_{G} \otimes T^{v} P_{\sigma} \rightarrow \mathscr{E}$ is given by the curvature form θ and $J(\Omega)$ is an H-equivariant \mathfrak{G}-valued ω-horizontal 2 -form on P_{G} defined as follows. For any $A \in T_{b} B G, b \in B G$, let A^{*} denote the right G-invariant ω-horizontal lift of A on $E G$. Then, for any $A, B \in T_{(0, p)} P_{G}$, put

$$
J(\Omega)_{(e, p)}(A, B)=J\left(\Omega_{0}\left(\left(\pi_{P *} A\right)^{*},\left(\pi_{P *} B\right)^{*}\right)\right)(p) \in \mathfrak{B} .
$$

Using the right G-invariance of $\left(\pi_{P *} A\right)^{*},\left(\pi_{P *} B\right)^{*}$ and the property of J that $J(\operatorname{Ad}(g) X)(p)=J(X)\left(g^{-1} \cdot p\right)$ for any $g \in G$, any $X \in \mathbb{G}$, it is easy to verify that $J(\Omega)_{(0, p)}$ is independent of the choice of the representative $(e, p) \in E G \times_{G} P=P_{G}$.

Now it follows from the definition of $\pi_{\mu *}, \mathscr{F}$ and the (modified) Weil homomorphisms that

$$
\begin{aligned}
\mathscr{G} \circ W_{H}(\phi) & =\pi_{M *} \circ c^{*} \circ W_{H}(\phi)=\pi_{M *}\left(\left(\frac{\sqrt{-1}}{2 \pi}\right)^{m+k} \phi\left(\wedge^{m+k} \Psi\right)\right) \\
& =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{k}\binom{m+k}{k}\left(\frac{\sqrt{-1}}{2 \pi}\right)^{m} \pi_{M *}\left\{\phi\left(\left(\wedge^{k} J(\Omega)\right) \wedge\left(\wedge^{m} \widetilde{\Theta} \circ \kappa \otimes \kappa\right)\right)\right\} \\
& =W_{G^{\circ}} \circ \mathscr{T}(\phi)
\end{aligned}
$$

for any $\phi \in I^{m+k}(H)$.
Q.E.D.

For the rest of this paper, we shall work under the following assumption.

AsSUMPTION 3.4. There exists a real oriented H-module V with a representation $\rho: H \rightarrow S O_{R}(V) \cong S O(2 m)$ such that $\rho^{*} e \in H_{H}^{2 m}$ does not vanish for the Euler class $e \in H_{S O(2 m)}^{2 m}$ and that $P \times_{H} V$ is isomorphic to the tangent bundle TM.

Assumption 3.4 means that P is an oriented H-structure over M, and then G acts on M as oriented H-structure preserving automorphisms.

Now, let W^{0}, \cdots, W^{N} be a sequence of complex H-modules and let $\sigma_{i}: V \rightarrow \operatorname{Hom}\left(W^{i-1}, W^{i}\right) \quad(1 \leqq i \leqq N)$ be H-equivariant maps (i.e. $\sigma_{\imath}(h \cdot \xi)=$ $h \cdot \sigma_{i}(\xi) \cdot h^{-1}$ for any $\left.h \in H, \xi \in V\right)$ such that, for $V \ni \xi \neq 0$,

$$
0 \longrightarrow W^{0} \xrightarrow{\sigma_{1}(\xi)} W^{1} \longrightarrow \cdots \xrightarrow{\sigma_{N}(\xi)} W^{N} \longrightarrow 0
$$

is exact. Then the universal elliptic symbol class $v \in K_{H}(V)$ is defined by the compactly supported complex

$$
\begin{align*}
& \left\{0 \rightarrow \cdots \rightarrow V \times W^{i-1} \rightarrow V \times W^{i} \rightarrow \cdots \rightarrow 0\right\} \tag{3.5}
\end{align*}
$$

on V. And, for a fixed universal elliptic symbol class $v \in K_{H}(V)$, the v index class $\mathscr{J}_{v} \in H_{H}^{* *}$ is defined as in [1, p. 559] by

$$
\begin{equation*}
\mathscr{I}_{v}=(-1)^{m}\left\{\frac{\sum_{i=0}^{N}(-1)^{i} \mathscr{C} \not \approx\left(E H \times_{H} W^{i}\right)}{\rho^{*} e} \cdot \rho^{*} \mathscr{\mathscr { F }}\right\} \tag{3.6}
\end{equation*}
$$

where $\mathscr{\mathscr { J }} \in H_{\text {So(2m) }}^{* *}$ is the index class of [1, p. 555].
On the other hand, let $P \times_{H}: R(H) \rightarrow K_{G}(M)$ denote the homomorphism defined by the associating construction $z \rightarrow P \times_{H} z$ for an H-module z,

$$
\alpha_{P}: K_{H}(V) \xrightarrow{q_{1}^{*}} K_{G \times H}(V) \xrightarrow{q_{2}^{*}} K_{G \times H}(P \times V)=K_{G}\left(P \times_{H} V\right)=K_{G}(T M)
$$

the homomorphism defined by projections $q_{1}: G \times H \rightarrow H, q_{2}: P \times V \rightarrow V$ and, for $v \in K_{H}(V), \beta_{v}: K_{G}(M) \rightarrow K_{G}(T M)$ the homomorphism defined by the multiplication $u \rightarrow \tau^{*} u \cdot \alpha_{P}(v)$ for $u \in K_{G}(M)$ where $\tau: T M \rightarrow M$ is the projection. Then

Definition 3.7. For a fixed universal elliptic symbol class v, a homomorphism $\mathscr{E}_{v}: R(H) \rightarrow R(G)$ is defined to be the composition of $P \times_{H}$, β_{v} and the equivariant index homomorphism $K_{G}(T M) \rightarrow R(G)$. Namely, $\mathscr{E}_{v}(z)$ is the G-equivariant index of $P \times_{H} z$-valued v-elliptic complex on M for $z \in R(H)$. Note that \mathscr{E}_{v} is obviously extended to a C-linear map $\mathscr{E}_{v}: R(H) \otimes C \rightarrow R(G) \otimes C$.

This \mathscr{E}_{v} is related to \mathscr{G} as follows.
Proposition 3.8. The following diagram is commutative;

where \mathscr{F}_{v}-ch is defined by the multiplication $z \rightarrow \operatorname{ch}(z) \cdot \mathscr{I}_{v}$ for $z \in R(H)$.
Proof. Let $T M_{G}=E G \times_{G} T M$ be the tangent bundle along the fibers of M_{G} (i.e. $T M_{G}=T^{V} M_{G}$ in the notation of the proof of Proposition 3.2). $T M_{G}$ is an oriented vector bundle over M_{G} and is also an oriented TMfiber bundle over $B G$. Let $\Psi: H^{* *}\left(M_{G} ; C\right) \rightarrow H_{e}^{* *}\left(T M_{G} ; C\right)$ be the Thom isomorphism (where $H_{c}^{* *}$ denotes the cohomology with compact supports) and $\pi_{T M *}: H_{c}^{* *}\left(T M_{G} ; \boldsymbol{C}\right) \rightarrow H_{G}^{* *}$ the Gysin homomorphism for the projection $\pi_{T M}: T M_{G} \rightarrow B G$. Let $\tau_{G}: T M_{G} \rightarrow M_{G}$ be the projection given by $\tau_{G}(e, \xi)=$ $(e, \tau(\xi))$ for $(e, \xi) \in E G \times_{G} T M=T M_{G}, \tau: T M \rightarrow M$. Then, since $\pi_{M *}{ }^{\circ} \tau_{G *}=\pi_{T M *}$ for $\tau_{G *}: H_{c}^{* *}\left(T M_{G} ; C\right) \rightarrow H^{* *}\left(M_{G} ; C\right)$ and Ψ is equal to $\tau_{G *}{ }^{-1}$, it suffices for the proof of the proposition to show the commutativity of the following diagram:

where $E H \times_{H}, E G \times_{G}$ are the homomorphisms defined by the associating construction, G-ind is the G-equivariant index, f-ind is the index of families over $B G, \gamma_{v}$ is the homomorphism defined by $u \rightarrow \tau_{G}{ }^{*} u \cdot E G \times_{G} \alpha_{P}(v)$ for $u \in K\left(M_{G}\right), \delta_{v}$ is the homomorphism defined by $u \rightarrow \mathscr{C} h(u) \cdot \mathscr{F}_{v}$ for $u \in K(B H), \varepsilon_{v}$ is the homomorphism defined by $u \rightarrow \mathscr{C} h(u) \cdot c^{*} \mathscr{F}_{v}$ for $u \in K\left(M_{G}\right)$ and ζ is the homomorphism defined by $u \rightarrow(-1)^{m} \tau_{G}{ }^{*} \mathscr{J}\left(T M_{G}\right) \cdot \mathscr{C} \ell(u)$ for $u \in K\left(T M_{G}\right)$. Note that the index class $\mathscr{J}\left(T M_{G}\right) \in H^{* *}\left(M_{G} ; C\right)$ is equal to $c^{*} \rho^{*} \mathscr{J}$ because $\rho \circ c: M_{G} \rightarrow B S O(2 m)$ is the classifying map of $T M_{G}=$ $P_{G} \times_{H} V$.

Now, the commutativities of (i), (ii), (iii), (iv) are obvious and the commutativity of (vi) follows from the index theorem for families [2,

Theorem (5.1)]. Here the orientation of $T M_{G}$ in the definition of Ψ differs from that in [2] and the correct sign is $(-1)^{2 m(2 m+1) / 2}=(-1)^{m}$ (see [1, (2.13)]). The commutativity of (v) is verified as follows. Let $q: P_{G} \times V \rightarrow V$ be the proper projection and $\alpha_{P_{G}}=q^{*}: K_{H}(V) \rightarrow K_{H}\left(P_{G} \times V\right)=K\left(P_{G} \times_{H} V\right)=K\left(T M_{G}\right)$. Then $E G \times_{G} \alpha_{P}(v) \in K\left(T M_{G}\right)$ is clearly equal to $\alpha_{P_{G}}(v)$. Hence it follows that, for any $u \in K\left(M_{G}\right)$,

$$
\begin{aligned}
\zeta \circ \gamma_{v}(u) & =(-1)^{m} \tau_{G}{ }^{*} \mathscr{J}\left(T M_{G}\right) \cdot \mathscr{C} h\left(\gamma_{v}(u)\right) \\
& =(-1)^{m} \tau_{G}{ }^{*} c^{*} \rho^{*} \mathscr{\mathscr { J }} \cdot \tau_{G}{ }^{*} \mathscr{C} h(u) \cdot \mathscr{C} h\left(\alpha_{P_{G}}(v)\right) \\
& =\tau_{G}{ }^{*}\left(\mathscr{C} h(u) \cdot(-1)^{m} c^{*} \rho^{*} \mathscr{J}\right) \cdot \Psi \Psi^{-1} \mathscr{C} h\left(\alpha_{P_{G}}(v)\right) \\
& =\Psi\left\{\mathscr{C} h(u) \cdot(-1)^{m} \Psi^{-1} \mathscr{C} \hbar\left(\alpha_{P_{G}}(v)\right) \cdot c^{*} \rho^{*} \mathscr{J}\right\} .
\end{aligned}
$$

Here it follows from [1, (2.16)] that

$$
\Psi^{-1} \mathscr{C} \hbar\left(\alpha_{P_{G}}(v)\right)=c^{*}\left\{\frac{\sum_{i=0}^{N}(-1)^{i} \mathscr{C} \hbar\left(E H \times_{H} W^{i}\right)}{\rho^{*} e}\right\}
$$

and therefore $\zeta \circ \gamma_{v}(u)$ is equal to $\Psi\left(\mathscr{C} \hbar(u) \cdot c^{*} \mathscr{J}_{v}\right)=\Psi \circ \varepsilon_{v}(u)$.
Q.E.D.

Now, let $e \in I^{m}(S O(2 m))$ denote the Euler polynomial and $\mathscr{J} \in$ $I^{* *}(S O(2 m))$ the index polynomial which correspond to $e \in H_{S O(2 m)}^{2 m}$ and $\mathscr{I} \in H_{S O(2 m)}^{* *}$ respectively under the Weil isomorphism $W_{\text {so(2m) }}$ (see (2.3)). Then the v-index polynomial $\mathscr{J}_{v} \in I^{* *}(H)$ is defined by

$$
\begin{equation*}
\mathscr{\mathscr { V }}_{v}=(-1)^{m}\left\{\frac{\operatorname{ch}(W)}{\rho^{*} e} \cdot \rho^{*} \mathscr{\mathscr { J }}\right\} \tag{3.9}
\end{equation*}
$$

where $R(H) \ni W=\sum_{i=0}^{N}(-1)^{i} W^{i}$. Note that \mathscr{I}_{v} of (3.9) corresponds to \mathscr{I}_{v} of (3.6) under the Weil homomorphism W_{H} (see Lemma 2.2).

Definition 3.10. For a fixed universal elliptic symbol class v, $\mathscr{F}_{v}: I^{* *}(H) \rightarrow I^{* *}(G)$ is defined by $\mathscr{F}_{v}(\phi)=\mathscr{F}\left(\mathscr{J}_{v} \cdot \phi\right)$ for $\phi \in I^{* *}(H)$.

Now, we state our first theorem.
Theorem 3.11. The following diagram is commutative.

Proof. Consider the diagram;

where \mathscr{I}_{v}-ch: $R(H) \rightarrow I^{* *}(H)$ is defined by the multiplication $z \rightarrow \operatorname{ch}(z) \cdot \mathscr{I}_{v}$ for $z \in R(H)$. Now the theorem follows from Lemma 2.2, Corollary 2.7, Proposition 3.2, Proposition 3.8 and the above diagram.
Q.E.D.

§ 4. Infinitesimal Lefschetz numbers.

Let M be a compact complex manifold of complex dimension $m, H(M)$ the complex Lie group (see [8]) of all holomorphic automorphisms of M and G any compact subgroup of $H(M)$. Let P be the principal $U(m)$ bundle of unitary frames with respect to a G-invariant Hermitian metric on M. Then G acts on P on the left and the holomorphic tangent bundle $T M$ is isomorphic to $P \times_{H} V$ for $H=U(m), V=C^{m}, \rho=$ inclusion: $U(m) \rightarrow$ $G L(m ; C)$. Here ρ is identified with the standard inclusion $\rho: U(m) \rightarrow$ $S O(2 m)$ and Assumption 3.4 is satisfied. Furthermore, the Hermitian connection θ is left G-invariant and

$$
\mathscr{F}: I^{m+k}(U(m)) \longrightarrow I^{k}(G)
$$

is defined by (1.2).
Now, let $v \in K_{U(m)}\left(C^{m}\right)$ be the universal elliptic symbol class of the Dolbeault complex so that $W^{i}=\wedge^{i} C^{m}(0 \leqq i \leqq m)$. Then it follows from the same calculation as in $[1, \S 4]$ that $\mathscr{I}_{v} \in I^{* *}(U(m))$ is given by the Todd polynomial

$$
\mathscr{T}=\prod_{i=1}^{m} \frac{x_{i}}{1-e^{-x_{i}}}
$$

where x_{i} 's are those of (2.6), namely, $x_{1}(X), x_{2}(X), \cdots, x_{m}(X)$ are eigenvalues of a skew-Hermitian matrix $X \in \mathfrak{H}(m)$.

On the other hand, $\mathscr{E}_{v}: R(U(m)) \rightarrow R(G)$ is expressed as follows. It is well-known that $R(U(m))$ is isomorphic to the polynomial ring $Z\left[\wedge^{1} C^{m}, \cdots, \wedge^{m} C^{m}, \wedge^{-m} C^{m}\right]$ and any complex $U(m)$-module A corresponds uniquely to a holomorphic $G L(m ; \boldsymbol{C})$-module. Thus a holomorphic vector bundle ξ_{A} over M is defined by

$$
\xi_{A}=P^{\prime} \times_{G L(m ; c)} A\left(\cong P \times_{U(m)} A\right)
$$

for principal $G L(m ; C)$-bundle P^{\prime} of holomorphic frames, and the ξ_{A}-valued Dolbeault operator (or complex)

$$
\mathscr{D}_{A}: 0 \longrightarrow \Omega^{0,0}\left(\xi_{A}\right) \xrightarrow{\bar{\partial}_{A}^{1}} \Omega^{0,1}\left(\xi_{A}\right) \longrightarrow \cdots \xrightarrow{\bar{\partial}_{A}^{m}} \Omega^{0, m}\left(\xi_{A}\right) \longrightarrow 0
$$

is defined where $\Omega^{0, q}\left(\xi_{A}\right)$ is the ξ_{A}-valued $(0, q)$-forms on M. Since this ξ_{4}-valued Dolbeault complex is an $H(M)$-equivariant elliptic complex, the j-th cohomology group $H_{A}^{j}=\operatorname{Ker} \bar{\partial}_{A}^{j+1} / \operatorname{Im} \bar{\partial}_{A}^{j}$ is a finite dimensional G-module. Then, for any $z=\sum_{i} n_{i} A_{i} \in R(U(m)), \mathscr{E}_{v}(z) \in R(G)$ is given by

$$
\begin{equation*}
\mathscr{E}_{v}(z)=\sum_{i} n_{i} \sum_{j=0}^{m}(-1)^{j} H_{A_{i}}^{j} \tag{4.1}
\end{equation*}
$$

which is the equivariant index of the elliptic complex $\sum_{i} n_{i} \mathscr{D}_{A_{i}}$. Hence, by the definition of $\operatorname{ch},\left\{\operatorname{ch} \circ \mathscr{E}_{v}(z)\right\}_{(k)} \in I^{k}(G)$ is characterized by

$$
\left\{\operatorname{ch} \circ \mathscr{E}_{v}(z)\right\}_{(k)}(X, \cdots, X)=\frac{1}{k!}\left[\left(\frac{d}{d t}\right)^{k} \operatorname{Lf}_{z}(\exp t X)\right]_{t=0}
$$

for any $X \in \mathbb{F}$ where Lf_{z} is the Lefschetz number of the elliptic complex $\sum_{i} n_{i} \mathscr{D}_{A_{i}}$ given by

$$
\operatorname{Lf}_{z}(g)=\sum_{i} n_{i} \operatorname{Lf}_{i}(g)
$$

where

$$
\begin{equation*}
\operatorname{Lf}_{i}(g)=\sum_{j=0}^{m}(-1)^{j} \operatorname{tr}\left(\left.g\right|_{H_{A_{i}}^{j}}\right) \quad \text { for } \quad g \in G \tag{4.2}
\end{equation*}
$$

Now, the next theorem follows from Theorem 3.11 and Lemma 2.8 because $\mathscr{T}_{(0)}=1 \neq 0$.

Theorem 4.3. For any $\phi \in I^{m+k}(U(m))$, there exists $z=\sum_{i} c_{i} A_{i} \in$ $R(U(m)) \otimes C$ such that $\mathscr{F}(\phi) \in I^{k}(G)$ is characterized by

$$
\begin{equation*}
\mathscr{F}(\phi)(X, \cdots, X)=\frac{1}{k!}\left[\left(\frac{d}{d t}\right)^{k} \sum_{i} c_{i} \operatorname{Lf}_{i}(\exp t X)\right]_{t=0} \tag{4.4}
\end{equation*}
$$

for any $X \in \mathbb{S}$ where Lf_{i} is the Lefschetz number of the $P \times_{U(m)} A_{i}$-valued Dolbeault complex $\mathscr{D}_{A_{i}}$ given by (4.2).

Remark 4.5. It is well-known that $I^{*}(U(m))$ is isomorphic to the polynomial ring $C\left[c_{1}, \cdots, c_{m}\right]$ of the Chern polynomials c_{i}. When the above $\phi \in I^{m+k}(U(m))$ is contained in $Z\left[c_{1}, \cdots, c_{m}\right]$, it is proved that the above
$z \in R(U(m)) \otimes C$ can be taken to be an element $z=\sum_{i} n_{i} A_{i}$ of $R(U(m))$, and therefore $\mathscr{F}(\phi)$ is expressed by the k-th derivative of the Lefschetz number of the single elliptic complex $\sum_{i} n_{i} \mathscr{D}_{A_{i}}$.

COROLLARY 4.6. If $P \times_{U(m)} A_{i}$-valued Dolbeault cohomology groups $H_{A_{i}}^{j}$'s in (4.1) can be embedded in some de Rham cohomology groups and hence have the homotopy-invariance, then the right-hand term of (4.4) and hence $\mathscr{F}(\phi)$ vanish for $k \geqq 1$. In particular, $\mathscr{F}\left(\mathscr{T}_{(m+k)}\right)$ which corresponds to $z=1 \in R(U(m)$) vanishes for $k \geqq 1$ if M is a Kaehler manifold.

§5. Induced invariant polynomials.

Let G be a compact Lie group with Lie algebra © 8 , H a closed subgroup with Lie algebra $\mathfrak{E} \subset(\mathscr{S}$ and $i: H \rightarrow G$ the inclusion map. Here we assume that $\operatorname{dim} G-\operatorname{dim} H=2 m$. Let $\rho: H \rightarrow O_{R}(\mathbb{S} / \mathscr{B}) \cong O(2 m)$ be the isotropy representation on the tangent space to the homogeneous space G / H at the identity coset which is induced by the adjoint representation. We assume that

> the image of ρ is contained in $S O(2 m)$ (i.e. $\operatorname{det} \rho(h)>0$ for any $h \in H)$.

Then G / H has a G-invariant orientation and $G \times_{(H, \rho)} R^{2 m}$ is isomorphic to the oriented tangent bundle $T(G / H)$. Moreover, we assume that $H_{H}^{2 m} \ni \rho^{*} e$ does not vanish for the Euler class $e \in H_{s o(2 m)}^{2 m}$. If $\rho^{*} e$ vanishes or $\operatorname{dim} G-\operatorname{dim} H$ is odd, then i_{1} in Definition 5.2 should be defined to be the zero-mapping.

Now, put $P=G, M=G / H$ and let θ be a left G-invariant connection in the principal H-bundle $P \rightarrow M$. Then $\mathscr{F}: I^{m+k}(H) \rightarrow I^{k}(G)$ is defined by (1.2). Here, let $v \in K_{H}\left(\boldsymbol{R}^{2 m}\right)=K_{H}(\mathbb{S} / \mathfrak{G})$ be the universal elliptic symbol class of the de Rham operator so that $W^{0}=\bigoplus_{i: \text { even }} \wedge^{i} R^{2 m} \otimes C, W^{1}=$ $\bigoplus_{i: \text { odd }} \wedge^{i} R^{2 m} \otimes C$ (see [9, p. 119]). Then $\mathscr{I}_{v} \in I^{* *}(H)$ is equal to $\rho^{*} e \in I^{m}(H)$ for the Euler polynomial $e \in I^{m}\left(S O(2 m)\right.$) and $\mathscr{F}_{v}: I^{* *}(H) \rightarrow I^{* *}(G)$ is given by $\mathscr{F}_{v}(\phi)=\mathscr{F}\left(\rho^{*} e \cdot \phi\right)$ for $\phi \in I^{* *}(H)$.

DEFINITION 5.2. $i_{1}: I^{k}(H) \rightarrow I^{k}(G)$ is defined by $i_{1}(\phi)=\mathscr{F}_{v}(\phi)=\mathscr{F}\left(\rho^{*} e \cdot \phi\right)$ for $\phi \in I^{k}(H)$.

Note that i_{1} turns out to be independent of the choice of the G invariant orientations of G / H.

Now, it follows from Proposition 3.2 that $\mathscr{F}: I^{m+k}(H) \rightarrow I^{k}(G)$ corresponds to the Gysin homomorphism $\pi_{*}: H_{H}^{2 m+2 k} \rightarrow H_{G}^{2 k}$ under the Weil
homomorphisms for $\pi=i: B H \rightarrow B G$. Hence it can be verified from [3, Theorem 4.3] that i_{1} in Definition 5.2 corresponds to the transfer map $i_{1}: H_{H}^{2 k} \rightarrow H_{\theta}^{2 k}$ of Becker-Gottlieb [3].

On the other hand, for any $z \in R(H), \mathscr{E}_{v}(z) \in R(G)$ is equal to the index of $G \times_{H} z$-valued de Rham operator which coincides with $i_{1}(z)$ for the induced representation $i_{1}: R(H) \rightarrow R(G)$ (see Segal [9]).

Thus the next theorem follows from Lemma 2.2, Proposition 3.2, Proposition 3.8 and Theorem 3.11.

THEOREM 5.3. The following diagram is commutative.

Now the next corollaries follow from Corollary 2.7, Theorem 5.3 and the properties of the transfer map $i_{1}: H_{H}^{* *} \rightarrow H_{G}^{* *}$.

COROLLARY 5.4. $i_{1}: I^{* *}(H) \rightarrow I^{* *}(G)$ is independent of the choice of the G-invariant connection θ.

Corollary 5.5. Let K be a closed subgroup of H and $j: K \rightarrow H$ the inclusion map. Then $i_{1} \circ j_{1}=(i \circ j)_{1}: I^{* *}(K) \rightarrow I^{* *}(G)$.

Corollary 5.6. $\quad i_{1} \circ i^{*}(\phi)=\chi(G / H) \phi$ for any $\phi \in I^{k}(G)$ where $\chi(G / H)$ is the Euler characteristic of G / H. In particular, if $\operatorname{rank} H=\operatorname{rank} G$, then $i_{1}: I^{k}(H) \rightarrow I^{k}(G)$ is surjective for any k.

References

[1] M. F. Atiyah and I. M. Singer, The index of elliptic operators III, Ann. of Math., 87 (1968), 546-604.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators IV, Ann. of Math., 93 (1971), 119-138.
[3] J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology, 14 (1975), 1-12.
[4] N. Berline and M. Vergne, The equivariant index and Kirillov's character formula, Amer. J. Math., 107 (1985), 1159-1190.
[5] A. Futaki, An obstruction to the existence of Einstein-Kaehler metrics, Invent. Math., 73 (1983), 437-443.
[6] A. Futaki and S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geometry, 21 (1985), 135-142.
[7] W. Grevb, S. Halperin and R. Vanstone, Connections, Curvature, and Cohomology, Vol. II, Academic Press, 1973.
[8] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
[9] G. B. Segal, The representation ring of a compact Lie group, Publ. Math. I.H.E.S., 34 (1968), 113-128.

Present Address:
Akito Futaki
Department of Mathematics, faculty of Science, Chiba University Yayoicho 1-33, Chiba 260, Japan
Kenji Tsuboi
Department of Natural Sciences, Tokyo University of Fisheries Konan 4-5-7, Minato-ku, Tokyo 108, Japan

[^0]: Received August 10, 1987

