A Sum Formula for Casson's λ-Invariant

Shinji FUKUHARA and Noriko MARUYAMA
Tsuda College

Dedicated to Professor Itiro Tamura on his 60th birthday
A. Casson [1] defined an integer valued invariant $\lambda(M)$ for an oriented homology 3 -sphere M.

In [4] J. Hoste gave a formula to calculate $\lambda(M)$ from a special framed link description of M. He required the framed link to satisfy the condition that linking numbers of any two components of the link are zero.

In this note, we give a sum formula to calculate Casson's λ-invariant for an oriented homology 3 -sphere which is constructed by gluing two knot exteriors in homology 3 -spheres with some diffeomorphism between their boundaries. Our result is just the λ-invariant version of C. Gordon's theorem [2, Theorem 2] for μ-invariant.

§ 1. Preliminaries.

Casson proved the following theorem.
Theorem 1 (Casson). Let M be an oriented homology 3-sphere. There exists an integer valued invariant $\lambda(M)$ with the following properties.
(1) If $\pi_{1}(M)=1$, then $\lambda(M)=0$.
(2) $\lambda(-M)=-\lambda(M)$, where $-M$ denotes M with the opposite orientation.
(3) Let K be a knot in M and $\left(K_{n} ; M\right)$ be the oriented homology 3sphere obtained by performing $1 / n$-Dehn surgery on M along $K, n \in \boldsymbol{Z}$. $\lambda\left(K_{n+1} ; M\right)-\lambda\left(K_{n} ; M\right)$ is determined independently of n.
(4) $\lambda(M)$ reduces, mod 2 , to the Rohlin invariant $\mu(M)$.

By the property (3), $\lambda^{\prime}(K ; M)=\lambda\left(K_{n+1} ; M\right)-\lambda\left(K_{n} ; M\right)$ is well defined. By the induction on n, we have:

Corollary 1.

$$
\lambda\left(K_{n} ; M\right)=\lambda(M)+n \lambda^{\prime}(K, M) .
$$

As Alexander polynomial of a knot K, we consider only normalized Alexander polynomial $\Delta_{K ; K}(t)$, that is, $\Delta_{K ; K}(t)$ has the form $a_{n} t^{-n}+\cdots+$ $a_{1} t^{-1}+a_{0}+a_{1} t+\cdots+a_{n} t^{t}$ and $\Delta_{K ; K}(1)=1$. Casson's second theorem shows that the λ-invariant is related to the Alexander polynomial.

Theorem 2 (Casson).

$$
\lambda^{\prime}(K ; M)=\frac{1}{2} \Delta_{K ; M}^{\prime \prime}(1),
$$

where $\Delta_{K ; K}^{\prime \prime}(t)$ is the second derivative of the normalized Alexander polynomial of K.

We begin with the following trivial lemma.
Lemma 1. Let M and M^{\prime} be homology 3 -spheres and K be a knot in M. Let K_{0} be the knot in $M \# M^{\prime}$ which corresponds to K. Then

Proof. Let F be a Seifert surface of K. Then we obtain a Seifert surface F_{0} of K_{0} which corresponds to F. Their Seifert forms are naturally isomorphic and Lemma 1 follows.

Lemma 2. Let K^{*} be a 0 -parallel knot of K in M. Let K_{N}^{*} be the knot in $N=\left(K_{n} ; M\right)$ which corresponds to K^{*}. Then $\Delta_{R_{N}^{*} ; N}(t)=\Delta_{E ; M}(t)$.

Proof. Let $N(K)$ be a tubular neighbourhood of K in M, and $E=$ $\overline{M-N(K)}$. We consider K^{*} as a 0 -parallel knot of K which lies on $\partial N(K)$. N is represented as $N=E \cup_{h} V$ with a solid torus V and a diffeomorphism $h: \partial E \rightarrow \partial V$. Since $K^{*} \subset E$, we can consider a knot K_{N}^{*} in N which corresponds to K^{*}. Let F be a Seifert surface of K^{*}. We can assume that $F \subset E$. Hence we obtain a Seifert surface F_{N} of K_{N}^{*} which corresponds to F. Since the homomorphism $H_{1}(F) \rightarrow H_{1}(E)$ induced from inclusion is zero map, for any 1 -cycle z on F, there is a 2 -chain c which lies on E and $\partial c=z$. The corresponding fact holds for F_{N}. Hence K^{*} and K_{N}^{*} have isomorphic Seifert forms. This implies $\Delta_{K^{*} ; K_{K}}(t)=\Delta_{K_{X}^{*} ; N}(t)$. Since K^{*} is isotopic to K in $M, \Delta_{K^{*} ; \mathbb{K}}(t)=\Delta_{K ; K}(t)$. We obtain the lemma.

Lemma 3. Let M and M^{\prime} be oriented homology 3 -spheres. Then $\lambda\left(M \# M^{\prime}\right)=\lambda(M)+\lambda\left(M^{\prime}\right)$.

Proof. Suppose that M is obtained by Dehn surgery on a framed link $L=\left\{K_{1}, K_{2}, \cdots, K_{n}\right\}$. We can assume that the linking number $\operatorname{lk}\left(K_{i}, K_{j}\right)=$ 0 for every pair $K_{i}, K_{j}(i \neq j)$ of components of L and (the framing of $\left.K_{i}\right)=$ $\varepsilon_{i}= \pm 1(i=1, \cdots, n)$. Let N_{j} be the manifold obtained by the Dehn surgery on the framed link $\left\{K_{1}, \cdots, K_{j}\right\}$. We can regard K_{j+1}, \cdots, K_{n} as knots in N_{j}.

First we see that the framings of K_{j+1}, \cdots, K_{n} in N_{j} is the same as those of K_{j+1}, \cdots, K_{n} in S^{3}. Since the linking number of any pair of components of L is zero, for any component K_{k}, there exists a Seifert surface F_{k} such that $F_{k} \cap K_{i}=\varnothing(i \neq k)$. Hence F_{k} can be also regarded as a Seifert surface of surgered manifold N_{j}. This means that the 0 framings of K_{k} in M and N_{j} coincide $(j<k)$. Hence the framing of K_{k} in N_{j} is $\varepsilon_{k}= \pm 1$.

Thus we obtain that $N_{j+1}=\left(\left(K_{j+1}\right)_{\varepsilon_{j+1}} ; N_{j}\right)$ is also a homology 3-sphere. By the induction on j, we obtain

$$
\begin{equation*}
\lambda(M)=\sum_{j=1}^{n} \varepsilon_{j} \frac{1}{2} d_{K_{j} ; N_{j-1}}^{\prime \prime}(1) . \tag{1}
\end{equation*}
$$

Next we regard the framed link L as the framed link in $S^{3} \# M^{\prime}$, which we will denote by $L^{*}=\left\{K_{1}^{*}, \cdots, K_{n}^{*}\right\}$. Similarly we regard K_{j+1} as a knot in $N_{j} \# M^{\prime}$, which we will denote by K_{j+1}^{*}. By Lemma 1 , we have

$$
\begin{equation*}
\Delta_{K_{j+1} ; N_{j}}(t)=\Delta_{K_{j+1}^{*} ; N_{j} \neq M^{\prime}}(t) . \tag{2}
\end{equation*}
$$

Since $M \# M^{\prime}$ can be obtained from $S^{3} \# M^{\prime}$ by the sequence of surgeries on $K_{1}^{*}, K_{2}^{*}, \cdots, K_{n}^{*}$, we obtain

$$
\begin{align*}
\lambda\left(M \# M^{\prime}\right) & =\sum_{j=1}^{n} \varepsilon_{j} \frac{1}{2} 厶_{K_{j}^{\prime *} ; N_{j-1} \neq M^{\prime}}(1)+\lambda\left(M^{\prime}\right) \\
& =\sum_{j=1}^{n} \varepsilon_{j} \frac{1}{2} \Delta_{K_{j} ; N_{j-1}}^{\prime \prime}(1)+\lambda\left(M^{\prime}\right) \tag{2}\\
& =\lambda(M)+\lambda\left(M^{\prime}\right) \tag{1}
\end{align*}
$$

This completes the proof.

§ 2. Homology spheres constructed from knot exteriors.

We will study oriented homology 3 -spheres which are constructed by C. Gordon [2].

For $i=1,2$, let K_{i} be an oriented knot in an oriented homology 3 -sphere M_{i} with the exterior X_{i}. We always identify ∂X_{i} with $S^{1} \times \partial D^{2}$ and parametrize ∂X_{i} by an angular coordinate (θ, ϕ). If $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a 2×2
integral matrix with $\operatorname{det} A=-1$, then A determines an orientation reversing diffeomorphism $h: \partial X_{1} \rightarrow \partial X_{2}$ by $h(\theta, \phi)=(\alpha \theta+\beta \phi, \gamma \theta+\delta \phi)$. We denote the naturally oriented closed 3 -manifold obtained by gluing two knot exteriors with $h, X_{1} \cup_{h} X_{2}$ by $M\left(K_{1}, K_{2} ; A\right)$ or $M\left(K_{1}, K_{2} ; \alpha, \beta, \gamma, \delta\right)$. By the explicit computation of the first homology group of $M\left(K_{1}, K_{2} ; \alpha, \beta, \gamma, \delta\right)$, it is known that $M\left(K_{1}, K_{2} ; \alpha, \beta, \gamma, \delta\right)$ becomes a homology 3 -sphere if and only if $|\gamma|=1$.

In the following section, we always assume $|\gamma|=1$. Since $\operatorname{det} A=$ $\alpha \delta-\beta \gamma=\alpha \delta- \pm \beta=-1, \beta= \pm(\alpha \delta+1)$ is determined by α, δ and $\varepsilon=($ the sign of γ). TThe oriented homology 3 -sphere $M\left(K_{1}, K_{2} ; \alpha, \pm(\alpha \delta+1), \gamma, \delta\right)$ will be denoted by $M^{c}\left(K_{1}, K_{2} ; \alpha, \delta\right)$.

§ 3. Calculation of Casson's $\boldsymbol{\lambda}$-invariant.

Let M_{i} be an oriented homology 3 -sphere and K_{i} be an oriented knot in $M_{i}(i=1,2)$. In the sense of the normalized Alexander polynomial, the following equation holds:

Lemma 4.

$$
\Delta_{K_{1} ; K_{2} ; M_{1} \ddagger M_{2}}(t)=\Delta_{K_{1} ; M_{1}}(t) \cdot \Delta_{K_{2} ; M_{2}}(t) .
$$

Proof. Let F_{i} be an oriented Seifert surface of K_{i} in M_{i} with genus h_{i} for $i=1$, 2. Then $F=F_{1} \boxminus F_{2}$ is a Seifert surface of genus $h_{1}+h_{2}$ of $K_{1} \# K_{2}$ in $M_{1} \# M_{2}$. The normalized Alexander polynomial of $K_{1} \# K_{2}$ in $M_{1} \# M_{2}$ is given as follows:

$$
\Delta_{K_{1} * K_{2} ; M_{1} * M_{2}}(t)=t^{-\left(h_{1}+h_{2}\right)} \operatorname{det}\left(V-t V^{T}\right),
$$

where V is a Seifert matrix of F. Since $V=\left(\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right)$ for Seifert matrix V_{i} of $K_{i}, i=1,2$, we have $\Delta_{K_{1} \ddagger K_{2} ; M_{1} \ddagger M_{2}}(t)=t^{-\left(h_{1}+h_{2}\right)} \operatorname{det}\left(V^{2}-t V^{T}\right)=t^{\left(-h_{1}\right)} \operatorname{det}\left(V_{1}-\right.$ $\left.t V_{1}^{T}\right) \cdot t^{\left(-h_{2}\right)} \operatorname{det}\left(V_{2}-t V_{2}^{T}\right)=\Delta_{K_{1} ; M_{1}}(t) \cdot \Delta_{K_{2} ; M_{2}}(t)$. This completes the proof.

For a knot K in a homology 3 -sphere M and its normalized Alexander polynomial $\Delta_{K ; M}(t)$, it holds that $\Delta_{K ; M}^{\prime}(1)=0$. Computing second derivatives of the equation of Lemma 4 , we have:

Lemma 5.

$$
\lambda^{\prime}\left(K_{1} \# K_{2} ; M_{1} \# M_{2}\right)=\lambda^{\prime}\left(K_{1} ; M_{1}\right)+\lambda^{\prime}\left(K_{2} ; M_{2}\right) .
$$

By Corollary 1, $\lambda\left(\left(K_{1} \# K_{2}\right)_{n} ; M_{1} \# M_{2}\right)=\lambda\left(M_{1} \# M_{2}\right)+n \lambda^{\prime}\left(K_{1} \# K_{2} ; M_{1} \# M_{2}\right)$. Using Lemma 3 and Lemma 5, we obtain:

Corollary 2.

$$
\lambda\left(\left(K_{1} \# K_{2}\right)_{n} ; M_{1} \# M_{2}\right)=\lambda\left(\left(K_{1}\right)_{n} ; M_{1}\right)+\lambda\left(\left(K_{2}\right)_{n} ; M_{2}\right) .
$$

Our result is as follows:
Theorem 3. Let K_{i} be an oriented knot in an oriented homology 3sphere $M_{i}, i=1,2$. Then

$$
\lambda\left(M^{s}\left(K_{1}, K_{2} ; \alpha, \delta\right)\right)=\lambda\left(M_{1}\right)+\lambda\left(M_{2}\right)-\varepsilon \delta \lambda^{\prime}\left(K_{1} ; M_{1}\right)+\varepsilon \alpha \lambda^{\prime}\left(K_{2} ; M_{2}\right) .
$$

Remark. It is known that $\lambda^{\prime}(K ; M)=(1 / 2) \Delta_{K ; M}^{\prime \prime}(1)$ reduces, $\bmod 2$, to the Arf invariant $c(K ; M)$. The theorem above is λ-invariant version of Gordon's formula [2, Theorem 2] for μ-invariant of the oriented homology 3 -sphere $M^{\varepsilon}\left(K_{1}, K_{2} ; \alpha, \delta\right)$.

In the proof of Theorem 3, we need the following lemma.
Lemma 6. Under the same assumption as in Theorem 3,

$$
\left(\left(K_{1} \# K_{2}\right)_{\mp_{1}} ; M_{1} \# M_{2}\right) \cong M\left(K_{1}, K_{2} ;-1,0, \pm 1,1\right)
$$

Remark. Gordon [3] noted that the same conclusion holds in the case of a knot in S^{3}. The following proof is essentially due to Gordon.

Proof. Let X be the exterior of $K=K_{1} \# K_{2}$ in $M=M_{1} \# M_{2}$. Then there exists an annulus A in ∂X such that A is a meridional annulus in ∂X_{i} and that $X \cong X_{1} \cup_{A} X_{2}$. Let $\lambda_{i}, \mu_{i} \in H_{1}\left(\partial X_{i}\right)$ (resp. $\lambda, \mu \in H_{1}(\partial X)$) be a longitudemeridian pair of $K_{i}, i=1,2$ (resp. K), U be a solid torus and $\lambda_{0}, \mu_{0} \in H_{1}(\partial U)$ be a longitude-meridian pair of U.
$\left(K_{\mp 1} ; M\right)$ is the oriented homology 3 -sphere $X \cup_{f} U$, where $f: \partial U \rightarrow \partial X$ is an orientation preserving diffeomorphism which satisfies $f_{*}\left(\mu_{0}\right)=\mp \mu+\lambda$, $f_{*}\left(\lambda_{0}\right)=-\mu$. Since $f_{*}^{-1}(\mu)=-\lambda_{0}$, and $f_{*}^{-1}(\lambda)=\mu_{0} \mp \lambda_{0}, X \cup_{f} U \cong\left(X_{1} \cup_{A} X_{2}\right) \cup_{f} U \cong$ $\left(X_{1} \cup_{A^{\prime}} U\right) \cup X_{2}$, where A^{\prime} is the annulus $\partial X_{1}-\operatorname{int} A$ in ∂X_{1} and longitudinal annulus in ∂U. Hence $X_{1} \cup_{A^{\prime}} U \cong X_{1}$. Moreover the computation yields that the gluing diffeomorphism $h: \partial X_{1} \rightarrow \partial X_{2}$ is given by $h_{*}\left(\lambda_{1}\right)=-\lambda_{2} \pm \mu_{2}$ and $h_{*}\left(\mu_{1}\right)=\mu_{2}$. It follows that $\left(\left(K_{1} \# K_{2}\right)_{\mp 1} ; M_{1} \# M_{2}\right) \cong X_{1} \cup_{h} X_{2} \cong M\left(K_{1}, K_{2}\right.$; $-1,0, \pm 1,1)$.

Ppoof of Theorem 3. Let $A=\left(\begin{array}{cc}\alpha \\ \pm 1 & \pm(\alpha \delta+1) \\ \delta\end{array}\right)$ be a 2×2 integral matrix, K_{i} be a knot in an oriented homology 3 -sphere M_{i} and K_{i}^{*} be a 0 -parallel knot of $K_{i}, i=1,2$. Then K_{i}^{*} can be considered as a knot in $N_{i}=\left(\left(K_{i}\right)_{n_{i}} ; M_{i}\right)$, where $n_{1}= \pm(1-\delta)$ and $n_{2}= \pm(\alpha+1)$. Let $M=\left(\left(K_{1}^{*} \# K_{2}^{*}\right)_{\mp_{1}}\right.$; $N_{1} \# N_{2}$). By Lemma $6, M \cong M\left(K_{1}^{*}, K_{2}^{*} ;-1,0, \pm 1,1\right) \cong X_{1}^{*} \cup_{h} X_{2}^{*}$, where X_{i}^{*}
is the exterior of K_{i}^{*} in N_{i} for $i=1,2$.
Next we examine the exterior X_{i}^{*} as follows. We choose regular neighbourhoods $N\left(K_{i}\right)$ and $N\left(K_{i}^{*}\right)$ so that $N\left(K_{i}\right) \subset N\left(K_{i}^{*}\right)$ and $N\left(K_{i}\right) \cap K_{i}^{*}=\varnothing$. Let $Y_{i}=\overline{N\left(K_{i}^{*}\right)-N\left(K_{i}\right)}$, then $Y_{i} \cong S^{1} \times \partial D^{2} \times I$ and $Y_{i} \supset K_{i}^{*}$. By X_{i} (resp. $\left.\tilde{X}_{i}^{*}\right)$ we denote the exterior of K_{i} (resp. K_{i}^{*}) in M_{i} (resp. N_{i}). Then $X_{i}=$ $\tilde{X}_{i}^{*} \cup_{i d} Y_{i}$, where id: $\partial N\left(K_{i}^{*}\right)\left(=\right.$ the outer boundary of $\left.Y_{i}\right) \rightarrow \partial \widetilde{X}_{i}^{*}$. Note that $X_{i} \cong \widetilde{X}_{i}^{*}$, since K_{i}^{*} is a 0 -parallel knot of K_{i}.

We consider $N_{i}=\left(\left(K_{i}\right)_{n_{i}} ; M_{i}\right)$ as follows. For a solid torus V_{i} and an orientation preserving diffeomorphism $h_{i}: \partial V_{i} \rightarrow \partial X_{i}=\partial N\left(K_{i}\right)$ ($=$ the inner boundary of Y_{i}) given by $\left(\begin{array}{cc}1 & n_{i} \\ 0 & 1\end{array}\right), \quad N_{i}=X_{i} \cup_{h_{i}} V_{i}=\widetilde{X}_{i}^{*} \cup_{1 d}\left(Y_{i} \cup_{h_{i}} V_{i}\right)$. Since $K_{i}^{*} \subset Y_{i}$, we choose a small regular neighbourhood $N^{\prime}\left(K_{i}^{*}\right)$ of K_{i}^{*} such that $N^{\prime}\left(K_{i}^{*}\right) \subset Y_{i} . \quad L e t Y_{i}^{*}=\left(Y_{i} \cup_{h_{i}} V_{i}\right)-N^{\prime}\left(K_{i}^{*}\right)$ and $\lambda_{1 i}, \mu_{1 i}\left(\right.$ resp. λ_{i}, μ_{i} and $\left.\lambda_{i}^{*}, \mu_{i}^{*}\right)$ be a longitude-meridian pair of $\partial N\left(K_{i}^{*}\right)$ (resp. $\partial N\left(K_{i}\right)$ and $\left.\partial N^{\prime}\left(K_{i}^{*}\right)\right)$. By the definition of h_{i}, h_{i} maps a longitude l_{i} of V_{i} to λ_{i}, and l_{i} is isotopic to $\lambda_{1 i}$ and λ_{i}^{*} in Y_{i}. Moreover in $Y_{i} \cup_{h_{i}} V_{i}, \mu_{i}^{\prime}=\mu_{1 i}+n_{i} \lambda_{1 i}$ bounds a disk which is obtained by attaching a meridian disk in V_{i} to an annulus consisting of parallel curves in Y_{i} by h_{i}. Thus we parametrize $Y_{i} \cup_{h_{i}} V_{i} \cong$ $S^{1} \times D^{2}$ so that K_{i}^{*} (resp. μ_{i}^{\prime}) corresponds to $S^{1} \times 0$ (resp. pt $\times \partial D^{2}$). Hence $Y_{i}^{*} \cong S^{1} \times \partial D^{2} \times I$ and the identification f_{i} of the outer boundaries of Y_{i}^{*} and Y_{i} is given by $\left(\begin{array}{cc}1 & n_{i} \\ 0 & 1\end{array}\right)$. Therefore

$$
\begin{aligned}
X_{i}^{*} & =\overline{N_{i}-N^{\prime}\left(K_{i}^{*}\right)} \\
& =\tilde{X}_{i}^{*} \cup_{1 d}\left(\overline{\left.Y_{i} U_{i d} V_{i}\right)-N^{\prime}\left(K_{i}^{*}\right)}\right. \\
& \cong X_{i} \cup_{f_{i}} Y_{i}^{*} .
\end{aligned}
$$

Finally $M=X_{1}^{*} \cup_{h} X_{2}^{*} \cong\left(X_{1} \cup_{f_{1}} Y_{1}^{*}\right) \cup_{h}\left(Y_{2}^{*} \cup_{f_{2}} X_{2}\right) \cong X_{1} \cup_{g} X_{2}$, where $g: \partial X_{1} \rightarrow \partial X_{2}$ is the composition $f_{2} \circ h \circ f_{1}^{-1}$ given by
$\left(\begin{array}{cc}1 & n_{2} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ \pm 1 & 1\end{array}\right)\left(\begin{array}{cc}1 & -n_{1} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-1 \pm n_{2} & n_{1}+n_{2} \mp n_{1} n_{2} \\ \pm 1 & \mp n_{1}+1\end{array}\right)=\left(\begin{array}{cc}\alpha & \pm(\alpha \delta+1) \\ \pm 1 & \delta\end{array}\right)=A$.
That is $M^{\bullet}\left(K_{1}, K_{2} ; \alpha, \delta\right) \cong\left(\left(K_{1}^{*} \# K_{2}^{*}\right)_{\mp_{1}} ; N_{1} \# N_{2}\right)$. Applying lemmas, we can compute $\lambda\left(M^{\bullet}\left(K_{1}, K_{2} ; \alpha, \delta\right)\right)$ as follows:

$$
\begin{aligned}
\lambda\left(M^{\bullet}\left(K_{1}, K_{2} ; \alpha, \delta\right)\right)= & \lambda\left(\left(K_{1}^{*} \# K_{2}^{*}\right)_{\mp 1} ; N_{1} \# N_{2}\right) \\
= & \lambda\left(N_{1} \# N_{2}\right) \mp \lambda^{\prime}\left(K_{1}^{* \#} \# K_{2}^{*} ; N_{1} \# N_{2}\right) \\
= & \lambda\left(N_{1}\right)+\lambda\left(N_{2}\right) \mp \lambda^{\prime}\left(K_{1}^{*} ; N_{1}\right) \mp \lambda^{\prime}\left(K_{2}^{*} ; N_{2}\right) \\
= & \lambda\left(M_{1}\right)+n_{1} \lambda^{\prime}\left(K_{1} ; M_{1}\right)+\lambda\left(M_{2}\right)+n_{2} \lambda^{\prime}\left(K_{2} ; M_{2}\right) \\
& \mp \lambda^{\prime}\left(K_{1}^{*} ; N_{1}\right) \mp \lambda^{\prime}\left(K_{2}^{*} ; N_{2}\right) .
\end{aligned}
$$

By Lemma 2 and Theorem 2, $\lambda^{\prime}\left(K_{i}^{*} ; N_{i}\right)=\lambda^{\prime}\left(K_{i} ; M_{i}\right)$. Hence

$$
\begin{aligned}
\lambda\left(M^{*}\left(K_{1}, K_{2} ; \alpha, \delta\right)\right) & =\lambda\left(M_{1}\right)+\lambda\left(M_{2}\right)+\left(n_{1} \mp 1\right) \lambda^{\prime}\left(K_{1} ; M_{1}\right)+\left(n_{2} \mp 1\right) \lambda^{\prime}\left(K_{2} ; M_{2}\right) \\
& =\lambda\left(M_{1}\right)+\lambda\left(M_{2}\right)-\varepsilon \delta \lambda^{\prime}\left(K_{1} ; M_{1}\right)+\varepsilon \alpha \lambda^{\prime}\left(K_{2} ; M_{2}\right)
\end{aligned}
$$

This completes the proof of Theorem 3.

References

[1] A. Casson, Lecture at M.S.R.I., Berkeley, Calif., March 1985.
[2] C. McA. Gordon, Knots, homology 3-spheres and contractible 4-manifolds, Topology, 14 (1975), 151-172.
[3] ——, Dehn surgery and satelite knots, Trans. Amer. Math. Soc., 275 (1983), 687-708.
[4] J. Hoste, A formula for Casson's invariant, Trans. Amer. Math. Soc., 297 (1986), 547-562.

Present Address:

Department of Mathematics, Tsuda College
Tsuda-machi, Kodaira, Tokyo 187, Japan

