K-Groups and λ-Invariants of Algebraic Number Fields

Keiichi KOMATSU
Tokyo University of Agriculture and Technology
(Communicated by H. Wada)
Dedicated to the late Professor Suguru Hamada

Introduction.

Let F be a totally real algebraic number field, O_{F} the integer ring of F and $K_{m}\left(O_{F}\right)$ Quillen's higher K-group of O_{F} for each non-negative integer m. According to Quillen [8], $K_{m}\left(O_{F}\right)$ is a finite abelian group for even $m=2 n(n \geqq 1)$. Let p be an odd prime number and F^{\prime} a Galois p extension of F. In this paper, we investigate whether the prime p divides the order of $K_{2 n}\left(O_{F^{\prime}}\right)$. (The order of $K_{2}\left(O_{F^{\prime}}\right)$ has been treated by several authors [2], [4], [9].) We shall state our main theorem in §1. In §2, we prove group-theoretical lemmas on \boldsymbol{Z}_{p}-modules on which a finite group acts, whose order is prime to p.

In the final part §3, we prove our main theorem in using first a result of Soule, according to which we translate the language of K-theory into that of Iwasawa theory, then a result of Iwasawa (Lemma 4), with the help of which we refine Kida's formula (Lemma 5), which leads immediately to our theorem.

§ 1. Main theorem.

Throughout the following, let p be a fixed odd prime number. For a finite algebraic number field F, we denote by F_{∞} the cyclotomic $Z_{p^{-}}$ extension of F.

Theorem. Let F be a totally real algebraic number field of finite degree, F^{\prime} a Galois p-extension of F, ζ a primitive p-th root of 1 and n an odd positive integer. Let k denote $F(\zeta)$ and d the degree $(k: F)$. We assume that the μ-invariant μ_{k} of k_{∞} / k is zero. Then we have the
following:
(1) We assume that $n \not \equiv-1(\bmod d)$. If there exists a prime ideal $\&$ of F_{∞} which ramifies tamely in $F_{\infty}^{\prime} / F_{\infty}$, then the prime p divides the order of the K-group $K_{2 n}\left(O_{F^{\prime}}\right)$.
(2) We assume that $n \equiv-1(\bmod d)$. If there exist two distinct prime ideals $\mathbb{R}_{1}, \mathcal{R}_{2}$ of F_{∞} which ramify tamely in $F_{\infty}^{\prime} / F_{\infty}$, then the prime p divides the order of $K_{2 n}\left(O_{F^{\prime}}\right)$.
(3) We assume that $d \neq 2$ and that F^{\prime} / F is unramified outside p. The prime p divides the order of $K_{2}\left(O_{F}\right)$ if and only if p divides the order of $K_{2}\left(O_{F^{\prime}}\right)$.
(4) We assume that $d=2$ and that at most one prime ideal ramifies tamely in $F_{\infty}^{\prime} / F_{\infty}$. The prime p divides the order of $K_{2}\left(O_{F}\right)$ if and only if p divides the order of $K_{2}\left(O_{F},\right)$.

REmARK. Let \mathfrak{l} be a prime ideal of F and \mathfrak{Z} a prime ideal of F_{∞} lying above \mathfrak{l}. Then if \mathfrak{l} ramifies tamely in $F^{\prime} / F, \&$ ramifies tamely in $F_{\infty}^{\prime} / F_{\infty}$.

§2. Group-theoretical lemmas.

Let G be a topological group and H_{1}, H_{2} closed subgroups of G. We denote by $\left(H_{1}, H_{2}\right)$ the topological commutator group of H_{1} and H_{2}. The following two lemmas play important roles in this paper.

Lemma 1. Let Δ be a finite group whose order is prime to p. Let G be a finitely generated pro-p-group on which Δ acts. Let N be an open normal Δ-subgroup of G and x an element of G such that the coset $\delta(x) N$ coincides with $x N$ for any element δ of Δ. Then there exists an element y in $x N$ such that $\delta(y)=y$ for any element δ of Δ.

Proof. We put $N_{0}=N$ and $N_{i+1}=N_{i}^{p}\left(N_{i}, N\right)$. Then the system $\left\{N_{i}\right\}_{i=0}^{\infty}$ is a fundamental system of neighborhoods of unity. We put $x_{0}=x$ and $f(\delta)=\delta\left(x_{0}\right)^{-1} x_{0} N_{1}$ for each element $\delta \in \Delta$. Then the mapping $f: \Delta \rightarrow N_{0} / N_{1}$ is a 1-cocycle, where N_{0} / N_{1} is a factor group of N_{0} over N_{1}. Since the order of Δ is prime to p, the cohomology group $H^{1}\left(\Delta, N_{0} / N_{1}\right)$ is trivial. Hence there exists an element n_{0} of N_{0} such that $\delta\left(x_{0}\right)^{-1} x_{0} N_{1}=\delta\left(n_{0}\right)^{-1} n_{0} N_{1}$. We put $x_{1}=x_{0} n_{0}^{-1}$. Then we have $\delta\left(x_{1}\right) N_{1}=x_{1} N_{1}$. We repeat the above procedure and obtain x_{i} for $i=0,1,2, \cdots$. We put $y=\lim _{i} x_{i}$. Then we have $y N=x N$ and $\delta(y)=y$ for any element δ of Δ.

Now let E be a finitely generated free pro- p-group and G_{0} a cyclic group of order d which acts on E. We assume that divides $p-1$. Let
N be an open normal G_{0}-subgroup of E with $(E: N)=p^{e}$, e being a given positive integer. We put $\widetilde{E}=(E, E), \tilde{N}=(N, N), X=E / \widetilde{E}$ and $X^{\prime}=N / \tilde{N}$. Let χ be a character (a homomorphism) of G_{0} into Z_{p}^{\times}with the order d. We put

$$
\varepsilon_{i}=\frac{1}{d} \sum_{g \in G_{0}} \chi(g)^{i} g^{-1} \in Z_{p}\left[G_{0}\right]
$$

for each integer i. We can consider X and X^{\prime} as $Z_{p}\left[G_{0}\right]$-modules in a natural way. Then we have the following:

Lemma 2. If G_{0} acts on E / N trivially, then

$$
\begin{aligned}
& \operatorname{rank}_{z_{p}} \varepsilon_{0} X^{\prime}-1=p^{\bullet}\left(\operatorname{rank}_{z_{p}} \varepsilon_{0} X-1\right) \quad \text { and } \\
& \operatorname{rank}_{z_{p}} \varepsilon_{i} X^{\prime}=p^{s}\left(\operatorname{rank}_{z_{p}} \varepsilon_{i} X\right) \quad \text { for } \quad i=1,2, \cdots, d-1
\end{aligned}
$$

Proof. First, we prove our assertion for the case $e=1$. Let x, y_{1}, \cdots, y_{n} be free generators of E. We may assume from Lemma 1 that $g(x)=x$ for every element $g \in G_{0}$ and that N contains y_{1}, \cdots, y_{n}. It is well known that

$$
\left\{x^{p}, y_{1}, \cdots, y_{n}, x y_{1} x^{-1}, \cdots, x y_{n} x^{-1}, \cdots, x^{p-1} y_{1} x^{-(p-1)}, \cdots, x^{p-1} y_{n} x^{-(p-1)}\right\}
$$

is a free generator system of N. We regard X and X^{\prime} as Z_{p}-modules. Then we have

$$
\begin{aligned}
X^{\prime} & =Z_{p}\left(\widetilde{N} x^{p}\right) \oplus\left(\underset{\substack{0 \leq i \leq i \leq p-1 \\
1 \leq j \leq n}}{ } Z_{p}\left(\widetilde{N} x^{i} y_{j} x^{-i}\right)\right. \\
& =Z_{p}\left(\widetilde{N} x^{p}\right) \oplus\left(\bigoplus_{j=1}^{n} Z_{p}\left(\widetilde{N} y_{j}\right)\right) \oplus\left(\underset{\substack{1 \leq i \leq p-1 \\
1 \leq j \leq n}}{\bigoplus_{p}}\left(\widetilde{N} x^{i} y_{j} x^{-i} y_{j}^{-1}\right)\right) \\
& =Z_{p}\left(\widetilde{N} x^{p}\right) \oplus\left(\bigoplus_{j=1}^{n} Z_{p}\left(\widetilde{N} y_{j}\right)\right) \oplus(\widetilde{E} / \widetilde{N})
\end{aligned}
$$

Since $Z_{p}\left(\widetilde{N} x^{p}\right) \oplus \widetilde{E} / \tilde{N}$ is a G_{0}-module and since d is prime to p, there exists a G_{0}-submodule Y / \widetilde{N} of N / \widetilde{N} such that $X^{\prime}=Z_{p}\left(\widetilde{N} x^{p}\right) \oplus Y / \widetilde{N} \oplus \widetilde{E} / \widetilde{N}$. Let $z_{i 1} \widetilde{N}, \cdots, z_{i r_{i}} \widetilde{N}$ be a basis of $\varepsilon_{i}(Y / \widetilde{N})$ for $0 \leqq i \leqq d-1$. Then x, z_{01}, \cdots, $z_{0 r_{0}}, \cdots, z_{d-1}, \cdots, z_{d-1 r_{d-1}}$ are free generators of E. Since we have

$$
g\left(x^{\nu} z_{i j} x^{-\nu}\right) \tilde{N}=x^{\nu} z_{i j}^{\chi(\rho) i} x^{-\nu} \tilde{N}=\left(x^{\nu} z_{i j} x^{-\nu} \tilde{N}\right)^{x(\theta) i}
$$

for any element $g \in G_{0}$, we have $\operatorname{rank}_{z_{p}} \varepsilon_{i} X^{\prime}=p\left(\operatorname{rank}_{z_{p}} \varepsilon_{i} X\right)$ for $1 \leqq i \leqq d-1$ and $\operatorname{rank}_{\boldsymbol{z}_{p}} \varepsilon_{0} X^{\prime}-1=p\left(\operatorname{rank}_{z_{p}} \varepsilon_{0} X-1\right)$.

Now, let e be any positive integer. There exists a sequence of subgroups of E

$$
E=N_{0} \supset N_{1} \supset \cdots \supset N_{\theta}=N
$$

such that each N_{i} / N_{i+1} is a cyclic group of order p. Hence induction shows our assertion.

§ 3. Proof of Theorem.

Let S be the set of prime ideals of F which ramify tamely in F^{\prime} / F and S_{0} the set of prime ideals of F lying above p. Let L be the maximal p-extension of k unramified outside $S \cup S_{0}$. As k / F is a Galois extension, L / F is a Galois extension. Since the degree $d=(k: F)$ is prime to p, there exists an intermediate field K between L and F such that $L=K k$ and $K \cap k=F$. We notice that the Galois group $G(k / F)$ is isomorphic to $G(L / K)$ in a natural way and that $G(L / F)$ is a semi-direct product of $G(L / K)$ and $G(L / k)$. We put $G_{0}=G(L / K)$. Let $\chi: G(L / K) \rightarrow Z_{p}^{\times}$be the character such that $\zeta^{g}=\zeta^{x(g)}$ for all $g \in G(L / K)$. We define

$$
\varepsilon_{i}=\frac{1}{d} \sum_{g \in G_{0}} \chi(g)^{i} g^{-1} \in Z_{p}\left[G_{0}\right]
$$

for each integer i. Let A_{∞} be the p-part of the ideal class group of k_{∞} and G_{∞} the Galois group of k_{∞} over F. Then G_{∞} acts on A_{∞} in a natural way. We put $A_{\infty}^{-}=\bigoplus_{i=1}^{d / 2} \varepsilon_{2 i-1} A_{\infty}$. Now, when F is replaced by F^{\prime}, the field k will be replaced by $k^{\prime}=F^{\prime}(\zeta)$, the p-part A_{∞} of the ideal class group will be replaced by A_{∞}^{\prime} and the μ-invariant μ_{k} will be replaced by $\mu_{k^{\prime}}$: similar notations will be used in the following. Let $W_{p^{n}}$ be the group of p^{n}-th root of unity and $\mathscr{T}=\lim W_{p^{n}}$ the Tate module. Thus \mathscr{T} is a free Z_{p}-module of rank 1 , on which G_{∞} acts in a natural way. If X is a G_{∞}-module which is also a Z_{p}-module, we define, for each integer $\nu \geqq 0$, $X(\nu)=X \otimes_{z_{p}} \mathscr{T} \otimes_{z_{p}} \cdots \otimes_{z_{p}} \mathscr{T}$ (ν times), endowed with the diagonal action of G_{∞}. Soule's theorem asserts that, for each odd positive integer ν, there exists a canonical surjective homomorphism

$$
K_{2 \nu}\left(O_{F}\right)(p) \longrightarrow\left(A_{\infty}^{-}(\nu)\right)^{G_{\infty}} \quad \text { (cf. [3] and [9]), }
$$

where $K_{2 \nu}\left(O_{F}\right)(p)$ denotes the p-primary subgroup of $K_{2 \nu}\left(O_{F}\right)$. (For a $G_{\infty^{-}}$ module X, we denote as usual by $X^{\sigma_{\infty}}$ the G_{∞}-invariant submodule.) This mapping is an isomorphism for $\nu=1$. Now, we have

$$
A_{\infty}^{-}(\nu)^{G_{\infty}}=\left(A_{\infty}^{-}(\nu)^{G_{0}}\right)^{G\left(k_{\infty} / k\right)}=\left(\left(\varepsilon_{d-\nu} A_{\infty}\right)(\nu)\right)^{G\left(k_{\infty} / k\right)}
$$

for odd positive integer ν. Hence we see that $A_{\infty}^{-}(\nu)^{a_{\infty}}=0$ if and only if $\varepsilon_{d-\nu} A_{\infty}=0$. Therefore we have the following:

Lemma 3. Let ν be an odd positive integer. If $\varepsilon_{d-\nu} A_{\infty} \neq 0$, then p divides the order of $K_{2 \nu}\left(O_{F}\right)$. Furthermore, $\varepsilon_{d-1} A_{\infty} \neq 0$ if and only if p divides the order of $K_{2}\left(O_{F}\right)$.

Now, we assume, from now on, $\mu_{k}=0$. Then $\mu_{k^{\prime}}=0$ follows from Iwasawa [5]. Furthermore, there exists a non-negative integer λ_{i} such that $\varepsilon_{i} A_{\infty} \cong\left(\boldsymbol{Q}_{p} / Z_{p}\right)^{)_{i}}$. Let k_{∞}^{+}denote the maximal real subfield of k_{∞}, M the maximal p-extension of k_{∞}^{+}unramified outside $S_{0} \cup S$ and E the Galois group of M over k_{∞}^{+}. Let s be the number of prime ideals of F_{∞} which lie above S. Then we have the following:

Lemma 4 (cf. [6, Theorem 1 and the proof of Theorem 3]). Let i be an odd integer such that $1 \leqq i \leqq d-1$. Let j be an integer such that $j \equiv 1-i(\bmod d)$. We put $X=E /(E, E)$. Then $\varepsilon_{j} X \cong Z_{p}^{\lambda_{i}+s}$.

Remark. Let \mathfrak{l} be a prime ideal in S and \mathbb{Z} be a prime ideal of F_{∞} lying above \mathfrak{l}. Since \mathfrak{R} is tamely ramified in $F_{\infty}^{\prime} / F_{\infty}, \mathcal{B}$ splits in k_{∞} / F_{∞}.

Since M contains F^{\prime}, Lemma 2 and Lemma 4 yield the following lemma which is a refinement of Kida's formula (cf. [7]).

Lemma 5. We put $\varepsilon_{i} A_{\infty}=\left(\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\lambda_{i}}$ and $\varepsilon_{i} A_{\infty}^{\prime}=\left(\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\lambda_{i}^{\prime}}$. Then we have $\lambda_{1}^{\prime}+s^{\prime}-1=p^{e}\left(\lambda_{1}+s-1\right)$ and $\lambda_{i}^{\prime}+s^{\prime}=p^{e}\left(\lambda_{i}+s\right)$ for the odd integer i from 3 to $d-1$. Here, $p^{e}=\left(k_{\infty}^{\prime+}: k_{\infty}^{+}\right)=\left(E: E^{\prime}\right)$.

Lemma 3 and Lemma 5 yield our theorem.
The author would like to express his hearty thanks to Professor S. Iyanaga and Professor T. Kanno.

References

[1] J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2} O_{F}$ for quadratic fields F, J. Reine Angew. Math., 331 (1982), 104-113.
[2] J. Coates, On K_{2} and some classical conjectures in algebraic number theory, Ann. of Math., 95 (1972), 99-116.
[3] J. Coates, The work of Mazur and Wiles on cyclotomic fields, Lecture Notes in Math., 901 (1981), 220-242, Springer.
[4] G. Gras, Remarks on K_{2} of number fields, J. Number Theory, 23 (1986), 322-355.
[5] K. Iwasawa, On the μ-invariants of Z_{l}-extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, pp. 1-11, Kinokuniya, Tokyo, 1973.
[6] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J., 33 (1981), 263-288.
[7] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory, 12 (1980), 519-528.
[8] D. Quillen, Finite generation of the groups K_{i} of rings of algebraic integers, Lecture Notes in Math., 341 (1973), 179-198, Springer.
[9] C. Soule, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math., 55 (1979), 251-295.

Present Address:

Department of Mathematics, Tokyo University of Agriculture and Technology Fuchu, Tokyo 183, Japan

