Токуо Ј. Матн. Vol. 11, No. 2, 1988

K-Groups and λ -Invariants of Algebraic Number Fields

Keiichi KOMATSU

Tokyo University of Agriculture and Technology (Communicated by H. Wada)

Dedicated to the late Professor Suguru Hamada

Introduction.

Let F be a totally real algebraic number field, O_F the integer ring of F and $K_m(O_F)$ Quillen's higher K-group of O_F for each non-negative integer m. According to Quillen [8], $K_m(O_F)$ is a finite abelian group for even m=2n $(n\geq 1)$. Let p be an odd prime number and F' a Galois pextension of F. In this paper, we investigate whether the prime p divides the order of $K_{2n}(O_{F'})$. (The order of $K_2(O_{F'})$ has been treated by several authors [2], [4], [9].) We shall state our main theorem in §1. In §2, we prove group-theoretical lemmas on \mathbb{Z}_p -modules on which a finite group acts, whose order is prime to p.

In the final part §3, we prove our main theorem in using first a result of Soulé, according to which we translate the language of K-theory into that of Iwasawa theory, then a result of Iwasawa (Lemma 4), with the help of which we refine Kida's formula (Lemma 5), which leads immediately to our theorem.

§1. Main theorem.

Throughout the following, let p be a fixed odd prime number. For a finite algebraic number field F, we denote by F_{∞} the cyclotomic \mathbb{Z}_{p} extension of F.

THEOREM. Let F be a totally real algebraic number field of finite degree, F' a Galois p-extension of F, ζ a primitive p-th root of 1 and n an odd positive integer. Let k denote $F(\zeta)$ and d the degree (k:F). We assume that the μ -invariant μ_k of k_{∞}/k is zero. Then we have the

Received July 20, 1987 Revised January 27, 1988

KEIICHI KOMATSU

following:

(1) We assume that $n \not\equiv -1 \pmod{d}$. If there exists a prime ideal \Im of F_{∞} which ramifies tamely in F'_{∞}/F_{∞} , then the prime p divides the order of the K-group $K_{2n}(O_{F'})$.

(2) We assume that $n \equiv -1 \pmod{d}$. If there exist two distinct prime ideals \mathfrak{L}_1 , \mathfrak{L}_2 of F_{∞} which ramify tamely in F'_{∞}/F_{∞} , then the prime p divides the order of $K_{2n}(O_{F'})$.

(3) We assume that $d \neq 2$ and that F'/F is unramified outside p. The prime p divides the order of $K_2(O_F)$ if and only if p divides the order of $K_2(O_{F'})$.

(4) We assume that d=2 and that at most one prime ideal ramifies tamely in F'_{∞}/F_{∞} . The prime p divides the order of $K_2(O_F)$ if and only if p divides the order of $K_2(O_{F'})$.

REMARK. Let I be a prime ideal of F and \mathfrak{L} a prime ideal of F_{∞} lying above I. Then if I ramifies tamely in F'/F, \mathfrak{L} ramifies tamely in F'_{∞}/F_{∞} .

§2. Group-theoretical lemmas.

Let G be a topological group and H_1 , H_2 closed subgroups of G. We denote by (H_1, H_2) the topological commutator group of H_1 and H_2 . The following two lemmas play important roles in this paper.

LEMMA 1. Let Δ be a finite group whose order is prime to p. Let G be a finitely generated pro-p-group on which Δ acts. Let N be an open normal Δ -subgroup of G and x an element of G such that the coset $\delta(x)N$ coincides with xN for any element δ of Δ . Then there exists an element y in xN such that $\delta(y)=y$ for any element δ of Δ .

PROOF. We put $N_0 = N$ and $N_{i+1} = N_i^p(N_i, N)$. Then the system $\{N_i\}_{i=0}^{\infty}$ is a fundamental system of neighborhoods of unity. We put $x_0 = x$ and $f(\delta) = \delta(x_0)^{-1}x_0N_1$ for each element $\delta \in \Delta$. Then the mapping $f: \Delta \to N_0/N_1$ is a 1-cocycle, where N_0/N_1 is a factor group of N_0 over N_1 . Since the order of Δ is prime to p, the cohomology group $H^1(\Delta, N_0/N_1)$ is trivial. Hence there exists an element n_0 of N_0 such that $\delta(x_0)^{-1}x_0N_1 = \delta(n_0)^{-1}n_0N_1$. We put $x_1 = x_0n_0^{-1}$. Then we have $\delta(x_1)N_1 = x_1N_1$. We repeat the above procedure and obtain x_i for $i=0, 1, 2, \cdots$. We put $y = \lim_i x_i$. Then we have yN = xN and $\delta(y) = y$ for any element δ of Δ .

Now let E be a finitely generated free pro-p-group and G_0 a cyclic group of order d which acts on E. We assume that d divides p-1. Let

242

N be an open normal G_0 -subgroup of E with $(E:N) = p^{\bullet}$, e being a given positive integer. We put $\tilde{E} = (E, E)$, $\tilde{N} = (N, N)$, $X = E/\tilde{E}$ and $X' = N/\tilde{N}$. Let χ be a character (a homomorphism) of G_0 into Z_p^{\times} with the order d. We put

$$\varepsilon_i = \frac{1}{d} \sum_{g \in \mathcal{G}_0} \chi(g)^i g^{-1} \in \mathbb{Z}_p[G_0]$$

for each integer *i*. We can consider X and X' as $Z_{p}[G_{0}]$ -modules in a natural way. Then we have the following:

LEMMA 2. If G_0 acts on E/N trivially, then

$$\operatorname{rank}_{z_p} \varepsilon_0 X' - 1 = p^{\circ}(\operatorname{rank}_{z_p} \varepsilon_0 X - 1)$$
 and
 $\operatorname{rank}_{z_p} \varepsilon_i X' = p^{\circ}(\operatorname{rank}_{z_n} \varepsilon_i X)$ for $i = 1, 2, \dots, d-1$.

PROOF. First, we prove our assertion for the case e=1. Let x, y_1, \dots, y_n be free generators of E. We may assume from Lemma 1 that g(x)=x for every element $g \in G_0$ and that N contains y_1, \dots, y_n . It is well known that

$$\{x^{p}, y_{1}, \cdots, y_{n}, xy_{1}x^{-1}, \cdots, xy_{n}x^{-1}, \cdots, x^{p-1}y_{1}x^{-(p-1)}, \cdots, x^{p-1}y_{n}x^{-(p-1)}\}$$

is a free generator system of N. We regard X and X' as Z_p -modules. Then we have

$$\begin{split} X' &= \mathbf{Z}_{p}(\tilde{N}x^{p}) \bigoplus \left(\bigoplus_{\substack{0 \leq i \leq p-1 \\ 1 \leq j \leq n}}^{n} \mathbf{Z}_{p}(\tilde{N}x^{i}y_{j}x^{-i}) \right) \\ &= \mathbf{Z}_{p}(\tilde{N}x^{p}) \bigoplus \left(\bigoplus_{j=1}^{n} \mathbf{Z}_{p}(\tilde{N}y_{j}) \right) \bigoplus \left(\bigoplus_{\substack{1 \leq i \leq p-1 \\ 1 \leq j \leq n}}^{n} \mathbf{Z}_{p}(\tilde{N}x^{i}y_{j}x^{-i}y_{j}^{-1}) \right) \\ &= \mathbf{Z}_{p}(\tilde{N}x^{p}) \bigoplus \left(\bigoplus_{j=1}^{n} \mathbf{Z}_{p}(\tilde{N}y_{j}) \right) \bigoplus (\tilde{E}/\tilde{N}) \; . \end{split}$$

Since $\mathbb{Z}_p(\tilde{N}x^p) \bigoplus \tilde{E}/\tilde{N}$ is a G_0 -module and since d is prime to p, there exists a G_0 -submodule Y/\tilde{N} of N/\tilde{N} such that $X' = \mathbb{Z}_p(\tilde{N}x^p) \bigoplus Y/\tilde{N} \bigoplus \tilde{E}/\tilde{N}$. Let $z_{i_1}\tilde{N}, \dots, z_{i_{r_i}}\tilde{N}$ be a basis of $\varepsilon_i(Y/\tilde{N})$ for $0 \le i \le d-1$. Then $x, z_{0_1}, \dots, z_{0_{r_0}}, \dots, z_{d-1_{r_{d-1}}}$ are free generators of E. Since we have

$$g(x^{\nu}z_{ij}x^{-\nu})\widetilde{N} = x^{\nu}z_{ij}^{\chi(g)i}x^{-\nu}\widetilde{N} = (x^{\nu}z_{ij}x^{-\nu}\widetilde{N})^{\chi(g)i}$$

for any element $g \in G_0$, we have $\operatorname{rank}_{z_p} \varepsilon_i X' = p(\operatorname{rank}_{z_p} \varepsilon_i X)$ for $1 \leq i \leq d-1$ and $\operatorname{rank}_{z_p} \varepsilon_0 X' - 1 = p(\operatorname{rank}_{z_p} \varepsilon_0 X - 1)$.

Now, let e be any positive integer. There exists a sequence of subgroups of E

KEIICHI KOMATSU

$$E = N_0 \supset N_1 \supset \cdots \supset N_e = N$$

such that each N_i/N_{i+1} is a cyclic group of order p. Hence induction shows our assertion.

§3. Proof of Theorem.

Let S be the set of prime ideals of F which ramify tamely in F'/Fand S_0 the set of prime ideals of F lying above p. Let L be the maximal p-extension of k unramified outside $S \cup S_0$. As k/F is a Galois extension, L/F is a Galois extension. Since the degree d = (k:F) is prime to p, there exists an intermediate field K between L and F such that L = Kkand $K \cap k = F$. We notice that the Galois group G(k/F) is isomorphic to G(L/K) in a natural way and that G(L/F) is a semi-direct product of G(L/K) and G(L/k). We put $G_0 = G(L/K)$. Let $\chi: G(L/K) \to \mathbb{Z}_p^{\times}$ be the character such that $\zeta^g = \zeta^{\chi(g)}$ for all $g \in G(L/K)$. We define

$$\varepsilon_i = \frac{1}{d} \sum_{g \in G_0} \chi(g)^i g^{-1} \in \mathbf{Z}_p[G_0]$$

for each integer *i*. Let A_{∞} be the *p*-part of the ideal class group of k_{∞} and G_{∞} the Galois group of k_{∞} over *F*. Then G_{∞} acts on A_{∞} in a natural way. We put $A_{\infty}^{-} = \bigoplus_{i=1}^{d_{i}^{n}} \varepsilon_{2i-1} A_{\infty}$. Now, when *F* is replaced by *F'*, the field *k* will be replaced by $k' = F'(\zeta)$, the *p*-part A_{∞} of the ideal class group will be replaced by A'_{∞} and the μ -invariant μ_{k} will be replaced by $\mu_{k'}$: similar notations will be used in the following. Let $W_{p^{n}}$ be the group of p^{n} -th root of unity and $\mathcal{T} = \lim_{i \to m} W_{p^{n}}$ the Tate module. Thus \mathcal{T} is a free \mathbb{Z}_{p} -module of rank 1, on which G_{∞} acts in a natural way. If *X* is a G_{∞} -module which is also a \mathbb{Z}_{p} -module, we define, for each integer $\nu \geq 0$, $X(\nu) = X \otimes_{\mathbb{Z}_{p}} \mathcal{T} \otimes_{\mathbb{Z}_{p}} \cdots \otimes_{\mathbb{Z}_{p}} \mathcal{T}$ (ν times), endowed with the diagonal action of G_{∞} . Soulé's theorem asserts that, for each odd positive integer ν , there exists a canonical surjective homomorphism

$$K_{_{2\nu}}(O_F)(p) \longrightarrow (A^-_{\infty}(\nu))^{G_{\infty}}$$
 (cf. [3] and [9]),

where $K_{2\nu}(O_F)(p)$ denotes the *p*-primary subgroup of $K_{2\nu}(O_F)$. (For a G_{∞} -module X, we denote as usual by $X^{G_{\infty}}$ the G_{∞} -invariant submodule.) This mapping is an isomorphism for $\nu = 1$. Now, we have

$$A_{\infty}^{-}(\nu)^{G_{\infty}} = (A_{\infty}^{-}(\nu)^{G_{0}})^{G(k_{\infty}/k)} = ((\varepsilon_{d-\nu}A_{\infty})(\nu))^{G(k_{\infty}/k)}$$

for odd positive integer ν . Hence we see that $A_{\infty}^{-}(\nu)^{\sigma_{\infty}}=0$ if and only if $\varepsilon_{d-\nu}A_{\infty}=0$. Therefore we have the following:

 $\mathbf{244}$

LEMMA 3. Let ν be an odd positive integer. If $\varepsilon_{d-\nu}A_{\infty}\neq 0$, then p divides the order of $K_{2\nu}(O_F)$. Furthermore, $\varepsilon_{d-1}A_{\infty}\neq 0$ if and only if p divides the order of $K_2(O_F)$.

Now, we assume, from now on, $\mu_k=0$. Then $\mu_{k'}=0$ follows from Iwasawa [5]. Furthermore, there exists a non-negative integer λ_i such that $\varepsilon_i A_{\infty} \cong (\mathbf{Q}_p/\mathbf{Z}_p)^{\lambda_i}$. Let k_{∞}^+ denote the maximal real subfield of k_{∞} , Mthe maximal *p*-extension of k_{∞}^+ unramified outside $S_0 \cup S$ and E the Galois group of M over k_{∞}^+ . Let s be the number of prime ideals of F_{∞} which lie above S. Then we have the following:

LEMMA 4 (cf. [6, Theorem 1 and the proof of Theorem 3]). Let *i* be an odd integer such that $1 \leq i \leq d-1$. Let *j* be an integer such that $j \equiv 1-i \pmod{d}$. We put X = E/(E, E). Then $\varepsilon_j X \cong \mathbb{Z}_p^{\lambda_i+s}$.

REMARK. Let l be a prime ideal in S and \mathfrak{L} be a prime ideal of F_{∞} lying above l. Since \mathfrak{L} is tamely ramified in F'_{∞}/F_{∞} , \mathfrak{L} splits in k_{∞}/F_{∞} .

Since M contains F', Lemma 2 and Lemma 4 yield the following lemma which is a refinement of Kida's formula (cf. [7]).

LEMMA 5. We put $\varepsilon_i A_{\infty} = (\mathbf{Q}_p/\mathbf{Z}_p)^{\lambda_i}$ and $\varepsilon_i A'_{\infty} = (\mathbf{Q}_p/\mathbf{Z}_p)^{\lambda'_i}$. Then we have $\lambda'_1 + s' - 1 = p^e(\lambda_1 + s - 1)$ and $\lambda'_i + s' = p^e(\lambda_i + s)$ for the odd integer *i* from 3 to d-1. Here, $p^e = (k'_{\infty} + k'_{\infty}) = (E:E')$.

Lemma 3 and Lemma 5 yield our theorem.

The author would like to express his hearty thanks to Professor S. Iyanaga and Professor T. Kanno.

References

- [1] J. BROWKIN and A. SCHINZEL, On Sylow 2-subgroups of K_2O_F for quadratic fields F, J. Reine Angew. Math., **331** (1982), 104-113.
- [2] J. COATES, On K_2 and some classical conjectures in algebraic number theory, Ann. of Math., **95** (1972), 99-116.
- [3] J. COATES, The work of Mazur and Wiles on cyclotomic fields, Lecture Notes in Math., 901 (1981), 220-242, Springer.
- [4] G. GRAS, Remarks on K_2 of number fields, J. Number Theory, 23 (1986), 322-355.
- [5] K. IWASAWA, On the μ -invariants of Z_{l} -extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, pp. 1–11, Kinokuniya, Tokyo, 1973.
- [6] K. IWASAWA, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J., 33 (1981), 263-288.
- Y. KIDA, *l*-extensions of CM-fields and cyclotomic invariants, J. Number Theory, 12 (1980), 519-528.

KEIICHI KOMATSU

- [8] D. QUILLEN, Finite generation of the groups K_i of rings of algebraic integers, Lecture Notes in Math., **341** (1973), 179-198, Springer.
- [9] C. SOULÉ, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math., 55 (1979), 251-295.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY FUCHU, TOKYO 183, JAPAN

246