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Introduction.

Let $F$ be a totally real algebraic number field, $O_{F}$ the integer ring
of $F$ and $K_{m}(O_{F})$ Quillen’s higher K-group of $O_{F}$ for each non-negative
integer $m$ . According to Quillen [8], $K_{m}(O_{F})$ is a finite abelian group for
even $m=2n(n\geqq 1)$ . Let $p$ be an odd prime number and $F^{\prime}$ a Galois p-
extension of $F$. In this paper, we investigate whether the prime $p$ divides
the order of $K_{2n}(O_{F},)$ . (The order of $K_{2}(O_{F},)$ has been treated by several
authors [2], [4], [9].) We shall state our main theorem in \S 1. In \S 2,
we prove group-theoretical lemmas on $Z_{p}$-modules on which a finite group
acts, whose order is prime to $p$ .

In the final part \S 3, we prove our main theorem in using first a result
of Soul\’e, according to which we translate the language of K-theory into
that of Iwasawa theory, then a result of Iwasawa (Lemma 4), with the
help of which we refine Kida’s formula (Lemma 5), which leads immediately
to our theorem.

\S 1. Main theorem.

Throughout the following, let $p$ be a fixed odd prime number. For
a finite algebraic number field $F$, we denote by $F_{\infty}$ the cyclotomic $Z_{p^{-}}$

extension of $F$.
THEOREM. Let $F$ be a totally real algebraic number field of finite

degree, $F^{\prime}$ a Galois p-extension of $F,$ $\zeta$ a $p\gamma imitive$ p-th $\gamma oot$ of 1 and
$n$ an odd positive $ intege\gamma$ . Let $k$ denote $F(\zeta)$ and $d$ the degree $(k:F)$ .
We assume that the $\mu$-invariant $\mu_{k}$ of $k_{\infty}/k$ is zero. Then we have the
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following:
(1) We assume that $n\not\equiv-1(mod d)$ . If there exists a prime ideal

2 of $F_{\infty}$ which ramifies tamely in $F_{\infty}^{\prime}/F_{\infty}$ , then the prime $p$ divides the
order of the K-group $K_{2n}(O_{F^{\prime}})$ .

(2) We assume that $n\equiv-1(mod d)$ . If there exist two distinct
prime ideals $\mathfrak{L}_{1},$ $\mathfrak{L}_{2}$ of $F_{\infty}$ which ramify tamely in $F_{\infty}^{\prime}/F_{\infty}$ , then the prime
$p$ divides the order of $K_{2n}(O_{F^{\prime}})$ .

(3) We assume that $d\neq 2$ and that $F^{\prime}/F$ is unramified outside $p$ .
The prime $p$ divides the order of $K_{2}(O_{p})$ if and only if $p$ divides the
order of $K_{2}(O_{F^{\prime}})$ .

(4) We assume that $d=2$ and that at most one prime ideal ramifies
tamely in $F_{\infty}^{\prime}/F_{\infty}$ . The prime $p$ divides the order of $K_{2}(O_{p})$ if and only

if $p$ divides the order of $K_{l}(O_{P^{\prime}})$ .
REMARK. Let I be a prime ideal of $F$ and 8 a prime ideal of $F_{\infty}$

lying above I. Then if I ramifies tamely in $F^{\prime}/F,$ $\mathfrak{L}$ ramifies tamely in
$F_{\infty}^{\prime}/F_{\infty}$ .

\S 2. Group-theoretical lemmas.

Let $G$ be a topological group and $H_{1},$ $H_{l}$ closed subgroups of $G$ . We
denote by $(H_{1}, H_{2})$ the topological commutator group of $H_{1}$ and $H_{2}$ . The
following two lemmas play important roles in this paper.

LEMMA 1. Let $\Delta$ be a finite group whose order is prime to $p$ . Let
$G$ be a finitely generated pro-p-group on which $\Delta$ acts. Let $N$ be an open
normal $\Delta$-subgroup of $G$ and $x$ an element of $G$ such that the coset $\delta(x)N$

eoincides with $xN$ for any element $\delta$ of $\Delta$ . Then there exists an element
$y$ in $xN$ such that $\delta(y)=y$ for any element $\delta$ of $\Delta$ .

PROOF. We put $N_{0}=N$ and $N_{+1}=N^{p}(N, N)$ . Then the system $\{N\}_{=0}^{\infty}$

is a fundamental system of neighborhoods of unity. We put $x_{0}=x$ and
$f(\delta)=\delta(x_{0})^{-1}x_{0}N_{1}$ for each element $\delta\in\Delta$ . Then the mapping $f:\Delta\rightarrow N_{0}/N_{1}$

is a l-cocycle, where $N_{0}/N_{1}$ is a factor group of $N_{0}$ over $N_{1}$ . Since the
order of $\Delta$ is prime to $p$ , the cohomology group $H^{1}(\Delta, N_{0}/N_{1})$ is trivial.
Hence there exists an element $n_{0}$ of $N_{0}$ such that $\delta(x_{0})^{-1}x_{0}N_{1}=\delta(n_{0})^{-1}n_{0}N_{1}$ .
We put $x_{1}=x_{0}n_{0}^{-1}$ . Then we have $\delta(x_{1})N_{1}=x_{1}N_{1}$ . We repeat the above
procedure and obtain $x_{i}$ for $i=0,1,2,$ $\cdots$ . We put $y=\lim x_{i}$ . Then we
have $yN=xN$ and $\delta(y)=y$ for any element $\delta$ of $\Delta$ .

Now let $E$ be a finitely generated free pro-p-group and $G_{0}$ a cyclic
group of order $d$ which acts on $E$. We assume that $d$ divides $p-1$ . Let
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$N$ be an open normal $G_{0}$-subgroup of $E$ with $(E:N)=p^{\iota},$ $e$ being a given
positive integer. We put $\tilde{E}=(E, E),\tilde{N}=(N, N),$ $X=E/\tilde{E}$ and $X^{\prime}=N/\tilde{N}$.
Let $\chi$ be a character (a homomorphism) of $G_{0}$ into $Z_{p^{X}}$ with the order $d$ .
We put

$\epsilon=\frac{1}{d}\sum_{geG_{0}}\chi(g)^{i}g^{-1}\in Z_{p}[G_{0}]$

for each integer $i$ . We can consider $X$ and $X^{\prime}$ as $Z_{p}[G_{0}]$-modules in a
natural way. Then we have the following:

LEMMA 2. If $G_{0}$ acts on $E/N$ trivially, then

$rank_{z_{p}}\epsilon_{0}X^{\prime}-1=p^{e}(rank_{z_{p}}\epsilon_{0}X-1)$ and
$rank_{z_{p}}\epsilon X^{\prime}=p^{e}(rank_{z_{p}}\epsilon_{i}X)$ for $i=1,2,$ $\cdots,$ $d-1$ .

PROOF. First, we prove our assertion for the case $e=1$ . Let $x$ ,
$y_{1},$ $\cdots,$ $y_{n}$ be free generators of $E$. We may assume from Lemma 1 that
$g(x)=x$ for every element $g\in G_{0}$ and that $N$ contains $y_{1},$ $\cdots,$ $y_{n}$ . It is
well known that

$\{x^{p}, y_{1}, \cdots\prime y_{n}, xy_{1}x^{-1}, \cdots, xy_{n}x^{-1}, \cdots, x^{p-1}y_{1}x^{-tp-1)}, \cdots, x^{p-1}y_{n}x^{-tp-1)}\}$

is a free generator system of $N$. We regard $X$ and $X^{\prime}$ as $Z_{p}$-modules.
Then we have

$X^{\prime}=Z_{p}(\tilde{N}x^{p})\oplus(1\leq j\lessgtr\bigoplus_{0\leq\leq p-1}nZ_{p}(\tilde{N}x^{i}y_{j}x^{-i}))$

$=Z_{p}(\tilde{N}x^{p})\oplus(\bigoplus_{j=1}^{n}Z_{p}(\tilde{N}y_{j}))\oplus(\bigoplus_{1\leq i\lessgtr p-1}Z_{p}(\tilde{N}xy_{j}x^{-l}y_{j}^{-1}))$

$=Z_{p}(\tilde{N}x^{p})\oplus(\bigoplus_{j=1}^{n}Z_{p}(\tilde{N}y_{j}))\oplus(B/\tilde{N})$ .
Since $Z_{p}(\tilde{N}x^{p})\oplus\tilde{E}/\tilde{N}$ is a $G_{0}$-module and since $d$ is prime to $p$ , there

exists a $G_{0}$-submodule $Y/\tilde{N}$ of $N/\tilde{N}$ such that $X^{\prime}=Z_{p}(\tilde{N}x^{p})\oplus Y/\tilde{N}\oplus E/\tilde{N}$.
Let $z_{i1}\tilde{N},$

$\cdots,$
$z_{ir_{i}}\tilde{N}$ be a basis of $\epsilon_{i}(Y/\tilde{N})$ for $0\leqq i\leqq d-1$ . Then $x,$ $z_{01},$ $\cdots$ ,

$z_{0\prime 0},$ $\cdots,$ $z_{i-11},$ $\cdots,$ $z_{d-1r_{d-1}}$ are free generators of $E$. Since we have
$g(x^{\nu}z_{j}x^{-\nu})\tilde{N}=x^{\nu}z^{x_{J^{tg)^{\{}}}}x^{-\nu}\tilde{N}=(x^{\nu}z_{\dot{u}}x^{-\nu}\tilde{N})^{\chi(g)^{i}}$

for any element $geG_{0}$ , we have $rank_{z_{p}}\epsilon_{i}X^{\prime}=p(rank_{z_{p}}\epsilon_{i}X)$ for $1\leqq i\leqq d-1$

and $rank_{z_{p}}\epsilon_{0}X^{\prime}-1=p(rank_{z_{p}}\epsilon_{0}X-1)$ .
Now, let $e$ be any positive integer. There exists a sequence of sub-

groups of $E$
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$E=N_{0}\supset N_{1}\supset\cdots\supset N.=N$

such that each $N_{l}/N_{i+1}$ is a cyclic group of order $p$ . Hence induction
shows our assertion.

\S 3. Proof of Theorem.

Let $S$ be the set of prime ideals of $F$ which ramify tamely in $F^{\prime}/F$

and $S_{0}$ the set of prime ideals of $F$ lying above $p$ . Let $L$ be the maximal
p-extension of $k$ unramified outside $S\cup S_{0}$ . As $k/F$ is a Galois extension,

$L/F$ is a Galois extension. Since the degree $d=(k:F)$ is prime to $p$ ,

there exists an intermediate field $K$ between $L$ and $F$ such that $L=Kk$

and $K\cap k=F$. We notice that the Galois group $G(k/F)$ is isomorphic to
$G(L/K)$ in a natural way and that $G(L/F)$ is a semi-direct product of
$G(L/K)$ and $G(L/k)$ . We put $G_{0}=G(L/K)$ . Let $x:G(L/K)\rightarrow Z_{p}^{x}$ be the
character such that $\zeta^{g}=\zeta^{xtg}$ ‘ for all $g\in G(L/K)$ . We define

$\epsilon_{i}=\frac{1}{d}\sum_{geG_{0}}\chi(g)^{i}g^{-1}\in Z_{p}[G_{0}]$

for each integer $i$ . Let $A_{\infty}$ be the p-part of the ideal class group of $k_{\infty}$

and $G_{\infty}$ the Galois group of $k_{\infty}$ over $F$. Then $G_{\infty}$ acts on $A_{\infty}$ in a natural
way. We put $A_{\infty}^{-}=\oplus_{i=}^{a/z_{1}}\epsilon_{2i-1}A_{\infty}$ . Now, when $F$ is replaced by $F^{\prime}$ , the field
$k$ will be replaced by $k^{\prime}=F^{\prime}(\zeta)$ , the p-part $A_{\infty}$ of the ideal class group

will be replaced by $A_{\infty}^{\prime}$ and the $\mu$-invariant $\mu_{k}$ will be replaced by $\mu_{k^{\prime}}$ :
similar notations will be used in the following. Let $W_{p^{n}}$ be the group
of $p^{n}$-th root of unity and $\ovalbox{\tt\small REJECT}^{-}=\lim_{\leftarrow}W_{p^{n}}$ the Tate module. Thus ,.S7 is a

free $Z_{p}$-module of rank 1, on which $G_{\infty}$ acts in a natural way. If $X$ is
a $G_{\infty}$-module which is also a $Z_{p}$-module, we define, for each integer $v\geqq 0$ ,
$X(\nu)=X\otimes_{Z}\ovalbox{\tt\small REJECT}^{-}\otimes_{z_{p}}\cdots\otimes_{z_{p}}\ovalbox{\tt\small REJECT}^{-}$ ( $\nu$ times), endowed with the diagonal action
of $G_{\infty}$ . Soul\’e $s$

p

theorem asserts that, for each odd positive integer $\nu$ , there

exists a canonical surjective homomorphism

$K_{2\nu}(O_{F})(p)\rightarrow(A_{\infty}^{-}(\nu))^{G_{\infty}}$ (cf. [3] and [9]),

where $K_{2\nu}(O_{F})(p)$ denotes the p-primary subgroup of $K_{2\nu}(O_{F})$ . (For a $G_{\infty}-$

module $X$, we denote as usual by $X^{a_{\infty}}$ the $G_{\infty}$-invariant submodule.) This
mapping is an isomorphism for $v=1$ . Now, we have

$A_{\infty}^{-}(\nu)^{G}\infty=(A_{\infty}^{-}(\nu)^{G_{0}})^{Gtk_{\infty}/k)}=((\epsilon_{d-\nu}A_{\infty})(\nu))^{Gtk_{\infty}/k)}$

for odd positive integer $\nu$ . Hence we see that $A_{\infty}^{-}(\nu)^{G}\infty=0$ if and only if
$\epsilon_{d-}A_{\infty}=0$ . Therefore we have the following:
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LEMMA 3. Let $\nu$ be an odd positive $ intege\gamma$ . If $\epsilon_{d-\nu}A_{\infty}\neq 0$ , then $p$

divides the $0\gamma der$ of $K_{2\nu}(O_{F})$ . $Fu\gamma the\gamma mo\gamma e,$ $\epsilon_{d-1}A_{\infty}\neq 0$ if and only if $p$

divides the $0\gamma de\gamma$ of $K_{2}(O_{F})$ .
Now, we assume, from now on, $\mu_{k}=0$ . Then $\mu_{k^{\prime}}=0$ follows from

Iwasawa [5]. Furthermore, there exists a non-negative integer $\lambda_{i}$ such
that $\epsilon_{i}A_{\infty}\cong(Q_{p}/Z_{p})^{\lambda_{i}}$ . Let $k_{\infty}^{+}$ denote the maximal real subfield of $k_{\infty},$ $M$

the maximal p-extension of $k_{\infty}^{+}$ unramified outside $S_{0}\cup S$ and $E$ the Galois
group of $M$ over $k_{\infty}^{+}$ . Let $s$ be the number of prime ideals of $F_{\infty}$ which
lie above $S$ . Then we have the following:

LEMMA 4 (cf. [6, Theorem 1 and the proof of Theorem 3]). Let $i$ be
an odd integer such that $1\leqq i\leqq d-1$ . Let $j$ be an $ intege\gamma$ such that
$j\equiv 1-i(mod d)$ . We put $X=E/(E, E)$ . Then $\epsilon_{j}X\cong Z_{p^{i}}^{\lambda+\epsilon}$ .

REMARK. Let I be a prime ideal in $S$ and $\mathfrak{L}$ be a prime ideal of $F_{\infty}$

lying above I. Since $\mathfrak{L}$ is tamely ramified in $F_{\infty}^{\prime}/F_{\infty},$
$\mathfrak{L}$ splits in $k_{\infty}/F_{\infty}$ .

Since $M$ contains $F^{\prime}$ , Lemma 2 and Lemma 4 yield the following
lemma which is a refinement of Kida’s formula (cf. [7]).

LEMMA 5. We put $\epsilon_{i}A_{\infty}=(Q_{p}/Z_{p})^{\lambda_{i}}$ and $\epsilon_{i}A_{\infty}^{\prime}=(Q_{p}/Z_{p})^{\lambda_{l}^{\prime}}$ . Then we have
$x_{1}^{\prime}+s^{\prime}-1=p^{e}(\lambda_{1}+s-1)$ and $x_{i}^{\prime}+s^{\prime}=p^{e}(x_{t}+s)$ for the odd integer $i$ from 3
to $d-1$ . Here, $p^{e}=(k_{\infty}^{\prime+} : k_{\infty}^{+})=(E:E^{\prime})$ .

Lemma 3 and Lemma 5 yield our theorem.

The author would like to express his hearty thanks to Professor
S. Iyanaga and Professor T. Kanno.
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