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\S 0. Introduction.

Let $X$ be a smooth algebraic variety defined over a (not necessarily
algebraically closed) field $k$ . Let $E$ be a vector bundle on $X$ of rank
$r-1(r\geqq 2)$ . Given a vector bundle $F$ of rank $\gamma$ on $X$ and an injection
$\sigma:E\rightarrow F$, we can consider the closed subscheme $D(\sigma)=\{x\in X|$ rank $\sigma(x)<$

$\gamma-1\}$ of $X$. In \S 1, we discu8s the relation between vector bundles and
these closed subschemes associated with them. Our result is summarized
as follows:

THEOREM (1.7). Fix a vector bundle $E$ as above and a line bundle
$L$ on $X$, and set $ M=\det$ E. Let $L\mathscr{F}$ be the set of pairs $(F, \sigma_{F})$ , where
$F$ is a vector bundle on $X$ of rank $r$ with det $F=L$ , and $\sigma_{F}:E\rightarrow F$ is
an injection with $D(\sigma_{F})$ of pure codimension 2. Let $\mathscr{G}$ be the set of
pairs $(Y, \tau_{Y})$ , where $Y$ is a Cohen-Macaulay closed subscheme of $X$ of
pure codimension 2, and $\tau_{Y}:E^{\vee}\rightarrow\omega_{Y}(-K_{X}+M-L)$ is a surjection. Then
there exists a map $f:_{L}\mathscr{F}\rightarrow \mathcal{G}$ which is surjective in case $h^{2}(E(M-L))=0$ .
(See (1.5), (1.6) and (1.7) for the precise statements.)

This theorem includes a result of Vogelaar [V] as a special case in
which the following conditions are satisfied:

(1) $X$ is a projective variety over an algebraically closed field,
(2) $E=d_{X}^{\oplus r-1}$ ,
(3) $Y$ is a locally complete intersection.

So our result is a generalization of that of Vogelaar’s. We note that
the above theorem also provides a way for constructing vector bundles.
As an application, in \S 2, we will construct an indecomposable vector
bundle of rank 3 on $P^{3}$ which can never be obtained by Vogelaar’s
method.

In \S 3, we describe a method for constructing reflexive sheaves from
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line bundles and closed subschemes of codimension 2. The precise state-
ment of our result is as follows:

THEOREM (3.2). Let $X$ be a locally factorial Goren8tein projective
variety of dimension $n\geqq 3$ defined over a (not necessarily algebraically
closed) field $k$ and $L$ a line bundle on X. Let $Y$ be a closed subscheme
of $X$ of codimension 2 and $\ovalbox{\tt\small REJECT}_{Y}$ the ideal defining Y. Assume that for any
ideal $\mathcal{J}_{Y^{\prime}}\supseteqq\ovalbox{\tt\small REJECT}_{Y},$ $h^{n-1}(\mathcal{J}_{Y}(K_{X}+L))>h^{n-1}(\ovalbox{\tt\small REJECT}_{Y^{\prime}}(K_{X}+L))$ . Then $H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))$

induces the exact sequence

$0\rightarrow H^{n-1}(\ovalbox{\tt\small REJECT}_{Y}(K_{X}+L))\otimes\beta_{X}\rightarrow F\rightarrow \mathcal{J}_{Y}(L)\rightarrow 0$

with $F$ reflexive.
From this theorem we can show the following: Let $X$ be a smooth

projective variety of dimension $n\geqq 3$ over an algebr\’aically closed field.
Given a line bundle $L$ on $X$ with $h^{2}(p_{X}(-L))=0$ , and a codimension two
closed subvariety $Y$ of $X$ with $h^{n-2}(d_{Y}(K_{X}+L))>0$ , we can construct a
reflexive sheaf $F$ on $X$ with $c_{1}(F)=L$ and $c_{2}(F)=Y$ . (See (3.3).)

Basically we use the standard notation from algebraic geometry.
The dualizing sheaf of a Cohen-Macaulay scheme $X$ of pure dimen8ion
is denoted by $\omega_{X}$ . We denote by $K_{X}$ the canonical bundle of a Gorenstein
variety $X$. The words ”vector bundles” and ’iocally free sheaves” are
used interchangeably. The tensor products of line bundles are denoted
additively. Thus, for example, if $E$ is a coherent sheaf and if $L$ and
$M$ are two line bundles, $E(L+M)$ means $E\otimes \mathscr{L}\otimes \mathscr{M}$, where $\mathscr{L}$ and $\mathscr{M}$

are invertible sheaves corresponding to $L$ and $M$, respectively.

\S 1. The connection between vector bundles and closed subschemes
of pure codimension 2.

(1.1) Throughout this section, $X$ will stand for a smooth algebraic
variety defined over a (not necessarily algebraically closed) field $k$ . A
vector bundle on $X$ will mean a locally free sheaf on $X$ of finite rank.
Our aim is to explain the connection between vector bundles on $X$ and
closed subschemes of $X$ of pure codimension 2. This generalizes the
well-known connection by Vogelaar. This also provides a method for
constructing vector bundles.

(1.2) Let $E$ and $F$ be two vector bundles on $X$ of rank $r-1$ and $r$

$(r\geqq 2)$ , respectively. Given an injection $\sigma:E\rightarrow F$, set $Z:=\{x\in X|$ rank
$\sigma(x)<r-1\}$ . If $Z$ has pure codimension 2, then the cokernel $G$ of $\sigma$ is
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a torsion free sheaf of rank 1. Therefore there exists a line bundle $N$

on $X$ of which $G$ is a subsheaf, such that $co\dim_{X}(SuppN/G)\geqq 2$ . This
implies that $\ovalbox{\tt\small REJECT}$ $:=G(-N)$ is a sheaf of ideals in $p_{X}$ . The closed 8ub-
scheme of $X$ defined by .7” is called the dependency locus of $\sigma$ , and is
denoted by $D(\sigma)$ . Then $D(\sigma)=Z$ as sets. Note $N=\det F$-det $E$. Before
showing the relation between vector bundles and closed subschemes of
pure codimension 2, we quote two algebraic results as needed.

(1.3) LEMMA. Let $A$ be a regular local ring of dimension $s$ and $B$

a quotient of $A$ of d,imension $s-t$ . Then $B$ is Cohen-Macaulay if and
only if $Ext_{A}^{q}(B, A)=0$ for all $q>t$ .

For a proof, we refer to [AK], Corollary 3.5.22.

(1.4) LEMMA. Let $A$ be a Cohen-Macaulay local ring of dimension
$s$ and $B$ a quotient of $A$ of dimension $s-t$ . Then $Ext_{A}^{q}(B, A)=0$ for all
$q<t$ .

For a proof, we refer to [AK], Lemma 4.5.1.

(1.5) Let $L$ be a line bundle on $X$ and $E$ a vector bundle on $X$ of
rank $\gamma-1(r\geqq 2)$ with det $E=M$. In the rest of this section we are
always in the following situation:

$\mathscr{F}$ : the set of pairs $(F, \sigma_{F})$ , where $F$ is a vector bundle on $X$ of
rank $r$ with det $F=L$ , and $\sigma_{F}:E\rightarrow F$ is an injection whose dependency
locus $D(\sigma_{F})$ has pure codimension 2,

$\mathcal{G}$ : the set of pairs $(Y, \tau_{Y})$ , where $Y$ is a Cohen-Macaulay closed
subscheme of $X$ of pure codimension 2, and $\tau_{Y}:E^{\vee}\rightarrow\omega_{Y}(-K_{X}+M-L)$ i8
a surjection.

(1.6) Given $(F, \sigma_{F})\in \mathscr{G}^{-}$ put $Y:=D(\sigma_{F})$ . Then we obtain from (1.2)

an exact sequence

$0\rightarrow E\rightarrow^{\sigma_{F}}F\rightarrow J_{Y}(L-M)\rightarrow 0$ . (1.6.1)

On the other hand, taking the long exact sequence of $g_{\ell’\swarrow}$ induced by
the short exact sequence

$0\rightarrow\ovalbox{\tt\small REJECT}_{Y}(L-M)\leftrightarrow\theta_{X}(L-M)-g_{Y}(L-M)\rightarrow 0$ (1.6.2)

and using (1.4), we have

$\ovalbox{\tt\small REJECT}_{m}(\mathcal{J}_{Y}(L-M), 0_{X})\cong d_{X}(M-L)$ ,
$g_{\ovalbox{\tt\small REJECT}^{1}}(\ovalbox{\tt\small REJECT}_{Y}(L-M), \beta_{X})\cong g_{xJ^{2}(d_{Y}(L-M),d_{X})=\omega_{Y}(-K_{X}+M-L)}$ ,
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where $\omega_{Y}=\prime g_{x^{\prime^{2}}},(0_{Y}, K_{X})$ . Thus the exact sequence of $gae$, applied to
(1.6.1) gives

$0\rightarrow P_{X}(M-L)\rightarrow F^{\vee}\rightarrow E^{\vee}\rightarrow\omega_{Y}(-K_{X}+M-L)\rightarrow 0$ .
We denote by $\tau_{Y}$ the last surjection and set $f(F, \sigma_{F})=(Y, \tau_{Y})$ .

(1.7) THEOREM. (A) The correspondence $f:(F, \sigma_{F})\mapsto(Y, \tau_{Y})$ is a
map from $\mathscr{F}^{-}$ into $\mathscr{G}$ .

(B) Assume $h^{2}(E(M-L))=0$ . Then $f$ is surjective. Furthermore,

if $h^{1}(E(M-L))=0$ , then $f$ is bijective.

PROOF. (A) It is sufficient to prove that $Y$ is Cohen-Macaulay.
The long exact sequences of $gaet$ derived from (1.6.1) and (1.6.2) yield
$g_{d}\swarrow^{q}(d_{Y}(L-M), P_{X})=0$ for all $q>2$ . Our de8ired result thus follows
from (1.3).

(B) We take $(Y, \tau_{Y})\in \mathcal{G}$ and inve8tigate $Ext^{1}(\mathcal{J}_{Y}(L-M), E)$ . Com-
bining the spectral sequence

$E_{2}^{pq}=H^{p}(g\ovalbox{\tt\small REJECT}^{q}(\mathscr{J}(L-M), E))-E^{p+q}=Ext^{p+q}(\mathcal{J}_{Y}(L-M), E)$

relating local and global Ext with the discussion in (1.6), we have the
exact sequence

$0\rightarrow E_{2}^{10}=H^{1}(\mathscr{G},(\ovalbox{\tt\small REJECT}_{Y}(L-M), E))\cong H^{1}(E(M-L))$

$\rightarrow E^{1}=Ext^{1}(\mathscr{J}(L-M), E)$

$\rightarrow E_{2}^{01}=H^{0}(g_{xt^{1}}^{2}(\mathscr{J}(L-M), E))\cong H^{0}(\omega_{Y}(-K_{X}+M-L)\otimes E)$

$\rightarrow E_{2}^{20}=H^{2}(\mathscr{F}_{\prime\sim l},(\ovalbox{\tt\small REJECT}_{Y}(L-M), E))\cong H^{2}(E(M-L))$ .
The morphism $\tau_{Y}$ can be interpreted as giving an element $\tau\in H^{0}(\omega_{Y}$

$(-K_{X}+M-L)\otimes E)$ . Assume $h^{2}(E(M-L))=0$ . Then we can lift $\tau$ to an
element $\xi\in Ext^{1}(\ovalbox{\tt\small REJECT}_{Y}(L-M), E)$ , so it determines an extension

$0\rightarrow E\rightarrow F\rightarrow \mathcal{J}_{Y}(L-M)\rightarrow 0$ . (1.7.1)

We denote by $\sigma_{F}$ the first injection. Applying (1.3) to the long exact
sequence of $g\ovalbox{\tt\small REJECT}$ derived from $0\rightarrow_{t}\ovalbox{\tt\small REJECT}_{Y}(L-M)\rightarrow d_{X}(L-M)\rightarrow p_{Y}(L-M)\rightarrow 0$

gives $g\ovalbox{\tt\small REJECT}^{q}(\mathcal{J}_{Y}(L-M), d_{X})=0$ for all $q\geqq 2$ . We combine this with (1.7.1)
to find $g_{Z}t^{q}(F, \rho_{X})=0$ for all $q\geqq 2$ . Applying the functor $\ovalbox{\tt\small REJECT}_{\prime},(\cdot, d_{X})$ to
the sequence (1.7.1) yields an exact sequence

$0\rightarrow\rho_{X}(M-L)\rightarrow F^{\vee}\rightarrow E^{\vee}\rightarrow\omega_{Y}(-K_{X}+M-L)$

$\rightarrow g_{p}\swarrow^{1}(F, p_{X})\rightarrow 0$ ,

in which the connecting morphism $E^{\vee}\rightarrow\omega_{Y}(-K_{X}+M-L)$ is $\tau_{Y}$ . Since
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$\tau_{Y}$ is surjective, $g_{\ell}t^{1}(F, \theta_{X})=0$ . Thus $(F, \sigma_{F})\in \mathscr{G}^{-}$ and $f(F, \sigma_{F})=(Y, \tau_{Y})$ ,
$WhiC\mathfrak{p}$ implies that $f$ is surjective. Furthermore, if $h^{1}(E(M-L))=0$ , then
$f$ is clearly bijective. Q.E.D.

\S 2. Example.

(2.1) In this section, we will construct an indecomposable vector
bundle of rank 3 on $P^{3}$ . We note here that this bundle cannot be ob-
tained by Vogelaar’s method. In fact, we use a curve in $P^{3}$ which is
not a locally complete intersection.

(2.2) Throughout this section, the glound field $k$ is assumed to be
algebraically closed. Let $C$ be a complete algebraic curve with $h^{1}(d_{C})=g$

and $\mathscr{G}^{-}$ a torsion free sheaf of rank 1 on $C$ . Put

deg $\mathscr{G}^{-}:$ $=x(\mathscr{G}^{-})-\chi(\rho_{c})$ ,
$\Delta(\mathscr{G}^{-}):=1+\deg \mathscr{F}-h^{0}(\mathscr{F})=g-h^{1}(\mathscr{F})$ .

Then we have the following result due to Fujita.

PROPOSITION (Fujita). If deg $\mathscr{F}\geqq 2\Delta(\mathscr{G}^{-})\geqq 0$ , then $\mathscr{F}$ is generated

by its global sections.

For a proof we refer to [F], Proposition 1.6.

(2.3) The dualizing sheaf $\omega_{c}$ on $C$ is torsion free of rank 1 and
deg $\omega_{c}=2\Delta(\omega_{c})=2g-2$ . Thus $\omega_{c}$ is generated by its global sections for
$g\geqq 1$ by (2.2).

(2.4) Let $X$ be a smooth quasi-projective algebraic variety and $Y$ a
closed subvariety of $X$ of codimension $i$ . Let $A^{i}(X)$ be the group of
cycles of codimension $i$ on $X$ modulo rational equivalence. We also denote
by $Y$ the class of $Y$ in $A^{i}(X)$ by abuse of notation. Grothendieck ([G].

p. 151, (16)) proved the

FORMULA. $c_{j}(9_{Y})=0(0<j<i)$ ,
$c_{i}(\beta_{Y})=(-1)^{i-1}(i-1)]$ Y.

For $i=2,$ $c_{2}(p_{Y})=-Y$ .
(2.5) THEOREM. Let $X$ be a 3-dimensional smooth projective variety

with $h^{1}(\mathcal{O}_{X})=0$ and $C$ a curve in $X$ with $g\geqq 1$ . Let $t$ be the number of
global sections generating $\omega_{c}$ . Then there exists a vector bundle $F$ on
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$X$ of rank $t+1$ with $c_{1}(F)=c_{1}(X)$ and $c_{2}(F)=C$.
PROOF. Take $L=-K_{X}$ and $E=a_{X}^{\oplus t}$ , and apply (1.7) and (2.4). Q.E.D.

(2.6) We shall apply (2.5) to the simplest case $X=P^{3}$ $:=P$. Let $F$

and $C$ be as in (2.5). Since the Chow ring is isomorphic to $Z[h]/h^{4}$ , we
may consider the Chern classes $c_{1}(F),$ $c_{2}(F)\backslash ’ c_{3}(F)$ as integers. So $c_{1}(F)=4$

and $c_{2}(F)=\deg C:=d$ .
(2.7) In order to calculate $c_{3}(F)$ , we need the

RIEMANN-ROCH THEOREM. Let $\mathscr{G}^{-}$ be a coherent sheaf of rank $r$ on
$P^{3}$ , with Chern classes $c_{1},$ $c_{2},$ $c_{3}$ . Then

$\chi(\mathscr{G}^{-})=r+\left(\begin{array}{l}o_{1}+3\\3\end{array}\right)-2c_{2}+\frac{1}{2}(c_{3}-C{}_{1}C_{2})-1$ .

For a proof, we refer to [H2], Theorem 2.3.

(2.8) Now we go back to the situation (2.6). The exact sequence
$0\rightarrow pP\oplus t\rightarrow F\rightarrow \mathcal{J}_{c}(4)\rightarrow 0$ gives rise to $c_{i}(F)=c_{i}(\mathcal{J}_{c}(4))$ , hence by (2.7)

$\chi(\mathcal{J}_{c}(4))=\frac{1}{2}c_{3}(F)-4d+\left(\begin{array}{l}7\\3\end{array}\right)$ .

On the other hand, by the exact sequence $0\rightarrow \mathcal{J}_{c}(4)\rightarrow p_{P}(4)\rightarrow p_{c}(4)\rightarrow 0$ ,
we see that

$\chi(\mathcal{J}_{c}(4))=x(p_{P}(4))-\chi(d_{C}(4))=g-1-4d+(_{3}^{7})$ .

So $c_{3}(F)=2g-2=\deg\omega_{c}$ .
(2.9) In the rest of this section we assume char $k\neq 2,3$ . Let $s,$

$t$

be the homogeneous coordinates on $P^{1}$ and $w,$ $x,$ $y,$ $z$ on $P^{3}$ . Consider the
rational curve $C$ of degree 6 in $P^{3}$ which is the image of the map $ f:P^{1}\rightarrow$

$P^{\theta}$ defined by $f(s:t)=(w:x:y:z):=(st^{2}(s+t)^{3} : s^{2}t^{3}(s+t):s^{8}t(s+t)^{2} : (s-t)^{6})$ .
We $8et$

$M(s, t):=\left\{\begin{array}{ll}\partial w/\partial s & \partial w/\partial t\\\partial x/\partial s & \partial x/\partial t\\\partial y/\partial s & \partial y/\partial t\\\partial z/\partial s & \partial z/\partial t\end{array}\right\}=\left\{\begin{array}{ll}t^{2}(s+t)^{2}(4s+t) & st(s+t)^{2}(2s+5t)\\st^{a}(3s+2t) & s^{2}t^{2}(3s+4t)\\s^{2}t(s+t)(5s+3t) & s^{\$}(s+t)(s+3t)\\6(s-t)^{5} & -6(s-t)^{f}\end{array}\right\}$ .

An easy calculation shows that the rank of $M(s, t)$ is 2 for any $(s:t)\in P^{1}$ .
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Let $p$ be the point $(0:0:0:1)$ . Then $f^{-1}(p)$ consists of three distinct
points $(0:1),$ $(1:0),$ $(1:-1)$ . Put $V:=P^{1}-\{(0:1), (1:0), (1:-1)\}$ and
assume $(s:t)\in V$ . Since $t\neq 0$ , we can set $t=1$ , and use $s$ as an affine
parameter. Then we have

$f(s ; 1)=(s(s+1)^{3} : s^{2}(s+1) : s^{8}(s+1)^{2} : (s-1)^{\mathfrak{g}})$

$=(\frac{(s+1)^{2}}{s}$ : 1 : $s(s+1)$ : $\overline{s}^{2}(s\frac{-1)^{6}}{(s+1)})$ .

From this it is easy to see that $f$ is injective on $V$. Thus, in sum, $C$

has exactly one singular point $p$ .
Let $U$ be the open set $\{z\neq 0\}$ . Then $p$ is the origin in $U$. We use

$M(s, t)$ to see that the tangent directions in $U$ at $(0:1),$ $(1:0)$ and $(1: -1)$

are $(1, 0,0),$ $(0,0,1)$ and $(0, -1,0)$ , respectively. Therefore $C$ is not a
locally complete intersection and blowing up $C$ at $p$ desingularizes $C$ in
one step. Of course the multiplicity of $p$ on $C$ is 3. Let $\delta_{p}=1ength(\tilde{\rho}_{p}/ff_{p})$ ,

where $\tilde{P}_{p}$ is the integral closure of $p_{p}$ . Then the arithmetic genus $g$

of $C$ is equal to $\delta_{p}$ .
(2.10) In order to calculate $\delta_{p}$ , we quote the following

LEMMA. Let $C$ be $a$ eomplete algebraic curve with only one singular
point $p$ . Assume that blowing up $C$ at $p$ desingularizes $C$ in one step.
Let $\rho$ be the multiplicity of $p$ on C. Then $\rho-1\leqq\delta_{p}\leqq\rho(\rho-1)/2$ . Further-
more $\delta_{p}=\rho(\rho-1)/2$ if and only if length $\mathfrak{m}/\mathfrak{m}^{2}=2$ , where $\mathfrak{m}$ is the maximal
ideal of $p_{p}$ .

For a proof, see for example [K].

(2.11) We now return to our case (2.9). Applying (2.10) yields
$g=\delta_{p}=2$ , so by (2.3), $\omega_{c}$ is generated by two global sections. Combining

this with (2.5), (2.6) and (2.8), we obtain a 3-bundle $F$ on $P^{3}$ with
$c_{0}(F)=1,$ $c_{1}(F)=4,$ $c_{2}(F)=6$ and $c_{3}(F)=2$ . Since the polynomial $X^{3}+4X^{2}+$

$6X+2$ is irreducible by Eisenstein’s criterion, $F$ is indecomposable.

\S 3. Construction of reflexive sheaves.

(3.1) The aim of this section is to describe a way to construct
reflexive sheaves from line bundles and closed subschemes of codimension
2.

(3.2) THEOREM. Let $X$ be a locally factorial Gorenstein projective
variety of dimension $n\geqq 3$ defined over a (not necessarily algebraically
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closed) field $k$ and $L$ a line bundle on X. Let $Y$ be a closed subscheme
of $X$ of codimension 2 and $\mathcal{J}_{Y}$ the ideal defining Y. Assume that for any
ideal $\mathcal{J}_{Y^{\prime}}\supsetneq \mathcal{J}_{Y},$ $h^{n-1}(\mathcal{J}_{Y}(K_{X}+L))>h^{n-1}(\mathcal{J}_{Y^{\prime}}(K_{X}+L))$ . Then $H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))$

induces the exact sequence

$0\rightarrow H^{n-1}(\mathscr{J}(K_{X}+L))\otimes\rho_{X}\rightarrow F\rightarrow \mathscr{J}(L)\rightarrow 0$

with $F$ reflexive.
PROOF. By Serre duality we have an isomorphism

$\varphi$ : $Ext^{1}(J_{Y}(L), H^{n-1}(J_{Y}(K_{X}+L))\otimes p_{X})$

$\rightarrow-Hom(H^{n-1}(\mathscr{J}(K_{X}+L)), H^{n-1}(J_{Y}(K_{X}+L)))$ .
Let $\varphi(\xi)=id$ . Then $\xi$ defines a global extension

$0\rightarrow H^{n-1}(\mathscr{J}(K_{X}+L))\otimes p_{X}\rightarrow F\rightarrow \mathscr{J}(L)\rightarrow 0$ $(\xi)$

over $X$. We show that $F$ is reflexive. Since $F$ is torsion free, the
natural map $\mu:F\rightarrow F^{\vee\vee}$ is injective. We consider the commutative
diagram

$0\rightarrow H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\otimes\rho_{X}\rightarrow F\rightarrow \mathscr{J}(L)\rightarrow 0$ $(\xi)$

$\Vert$ $\downarrow\mu$ $\downarrow\nu$

$0\rightarrow H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\otimes p_{X}\leftrightarrow F^{\vee\vee}\rightarrow S\rightarrow 0$ $(\xi)$

where $\xi$ is an element of $Ext^{1}(S, H^{n-1}(\mathscr{J}(K_{X}+L))\otimes p_{X})$ given by the
second extension. We note that $\nu^{*}:$ $Ext^{1}(S, H^{n-1}(\mathscr{J}(K_{X}+L))\otimes p_{X})\rightarrow$

$Ext^{1}(\mathcal{J}_{Y}(L), H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\otimes p_{X})$ satisfies $\nu^{*}(\xi)=\xi$ . We claim that $S$

is torsion free of rank 1. Suppose to the contrary that $S_{T}..\neq 0$ . Let
$\xi=i^{*}(\xi)$ , where $i:S_{Tor}\rightarrow S$ is the inclusion map. Then we have the
commutative diagram

$0\rightarrow H^{n-1}(\mathscr{J}(K_{X}+L))\otimes p_{X}\rightarrow E\rightarrow S_{Tor}\rightarrow 0$ $(\xi^{j})$

$0-H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\otimes p_{X}\Vert\rightarrow F^{\vee\vee}\downarrow\rightarrow S\rightarrow 0\downarrow i$

$(\xi)$ .
On the other hand, since $Supp(S_{Tor})\subset Y,$ $Ext^{1}(S_{\iota_{(1}}{}_{r}H^{n-1}(\mathscr{J}(K_{X}+L))\otimes\rho_{X})\cong$

$H^{n-1}(S_{Tor}\otimes K_{X})^{\vee}\otimes H^{n-1}(\mathscr{J}(K_{X}+L))=0$ . Hence $F_{Tor}^{\vee\vee}\neq 0$ , which is a con-
tradiction. Since $X$ is locally factorial and det $F=\det(F^{\vee\vee})$ , we can write
$S=\mathcal{J}_{Y^{\prime}}(L)$ for some closed subscheme $Y$ ’ of $codimension\geqq 2$ . The Serre
duality theorem says that
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$\psi$ : $Ext^{1}(\mathscr{J}’(L), H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\otimes\rho_{X})$

$\rightarrow-Hom(H^{n-1}(\mathscr{J},(K_{X}+L)),$ $H^{n-1}(\mathcal{J}_{Y}(K_{X}+L)))$ .
Let $\eta=\psi(\xi)$ . Then, by the functoriality of Serre duality, we obtain the
commutative diagram

$H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\rightarrow^{id}H^{n-1}(\mathcal{J}_{Y}(K_{X}+L))$

$\backslash _{f_{\searrow}^{\backslash }}$ $/\eta\nearrow$

$H^{n-1}(\mathscr{J}(K_{X}+L))$

where $f$ is the natural map induced by $\nu\otimes K_{X}$ . So $ h^{n-1}(\mathcal{J}_{Y}(K_{X}+L))\leqq$

$h^{n-1}(\mathscr{J},(K_{X}+L))$ . Combining this with the hypothesis gives $\mathscr{J}=\mathscr{J},$ .
Therefore $\mu$ is an isomorphism and $F$ is reflexive. Q.E.D.

(3.3) COROLLARY. Let $X$ be a smooth projective variety of dimension
$n\geqq 3$ defined over an algebraically closed field $k$ and $L$ a line bundle on
$X$ such that $h^{2}(p_{X}(-L))=0$ . Let $Y$ be a closed subvariety of $X$ of codi-
mension 2. Assume $h^{n-2}(p_{Y}(K_{X}+L))>0$ . Then there exists a reflexive
sheaf $F$ of rank $\gamma$ on $X$ with $c_{1}(F)=L$ and $c_{2}(F)=Y$ , where $r=$
$h^{n-1}(\mathscr{J}(K_{X}+L))+1$ .

PROOF. Given any ideal $\ovalbox{\tt\small REJECT}_{Y^{\prime}}\supseteqq \mathscr{J}$ , we have the commutative diagram

$0\rightarrow \mathcal{J}_{Y}(K_{X}+L)-\rho_{X}(K_{X}+L)\rightarrow\rho_{Y}(K_{X}+L)\rightarrow 0$

$\downarrow$ $\Vert$ $\downarrow$

$0\rightarrow \mathcal{J}_{Y^{\prime}}(K_{X}+L)\rightarrow p_{X}(K_{X}+L)\rightarrow\beta_{Y^{\prime}}(K_{X}+L)\rightarrow 0$ .
Since $h^{n-1}(\theta_{Y}(K_{X}+L))=h^{n-1}(p_{Y^{\prime}}(K_{X}+L))=h^{n-2}(p_{Y^{\prime}}(K_{X}+L))=0$ ,

$h^{n-1}(\mathcal{J}_{Y}(K_{X}+L))>h^{n-1}(\theta_{X}(K_{X}+L))=h^{n-1}(.F_{Y^{\prime}}(K_{X}+L))$ ;

the as8ertion now follows from (3.2). Q.E.D.
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