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§0. Introduction.

Let X be a smooth algebraic variety defined over a (not necessarily
algebraically closed) field k. Let E be a vector bundle on X of rank
r—1 (r=2). Given a vector bundle F of rank » on X and an injection
o: E—F, we can consider the closed subscheme D(o)={x € X | rank o(x) <
r—1} of X. In §1, we discuss the relation between vector bundles and
these closed subschemes associated with them. Our result is summarized
as follows:

THEOREM (1.7). Fix a vector bundle E as above and a line bundle
L on X, and set M=det E. Let 5 be the set of pairs (F, o5), where
F is a vector bundle on X of rank r with det F=L, and o, E—F 18
an injection with D(o,) of pure codimension 2. Let & be the set of
pairs (Y, zy), where Y is a Cohen-Macaulay closed subscheme of X of
pure codimension 2, and 7y EV > wy(— Ky+M—L) 18 a surjection. Then
there exists a map f: F — % which is surjective in case h*(E(M—L))=0.
(See (1.5), (1.6) and (1.7) for the precise statements.)

This theorem includes a result of Vogelaar [V] as a special case in
which the following conditions are satisfied:

(1) X is a projective variety over an algebraically closed field,

(2) E=o%, '

(8) Y is a locally complete intersection.
So our result is a generalization of that of Vogelaar’s. We note that
the above theorem also provides a way for constructing vector bundles.
As an application, in §2, we will construct an indecomposable vector
bundle of rank 3 on P°® which can never be obtained by Vogelaar’s
method.

In §8, we describe a method for constructing reflexive sheaves from
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line bundles and closed subschemes of codimension 2. The precise state-
ment of our result is as follows:

THEOREM (8.2). Let X be a locally factorial Gorenstein projective
variety of dimension n=3 defined over a (not mecessarily algebraically
closed) field k and L a line bundle on X. Let Y be a closed subscheme
of X of codimension 2 and 7 the tdeal defining Y. Assume that for any
rdeal % 2 %%, v (FZ(Ky+L)>h" (% (Kx+L)). Then H (% (Kx+ L))
wnduces the exact sequence

0— H " (A Kx+L)QTy — F — A (L)—0
with F reflexive.

From this theorem we can show the following: Let X be a smooth
projective variety of dimension m=8 over an algebraically closed field.
Given a line bundle L on X with h(x(—L))=0, and a codimension two
closed subvariety Y of X with h* %y (Ky+L))>0, we can construct a
reflexive sheaf F on X with ¢, (F)=L and c,(F)=Y. (See (3.3).)

Basically we use the standard notation from algebraic geometry.
The dualizing sheaf of a Cohen-Macaulay scheme X of pure dimension
is denoted by w,. We denote by K, the canonical bundle of a Gorenstein
variety X. The words “vector bundles” and “locally free sheaves” are
used interchangeably. The tensor products of line bundles are denoted
additively. Thus, for example, if E is a coherent sheaf and if L and
M are two line bundles, E(L+ M) means EQR ¥ X_~, where ¥ and _#
are invertible sheaves corresponding to L and M, respectively.

§1. The connection between vector bundles and closed subschemes
of pure codimension 2.

(1.1) Throughout this section, X will stand for a smooth algebraic
variety defined over a (not necessarily algebraically closed) field k. A
vector bundle on X will mean a locally free sheaf on X of finite rank.
Our aim is to explain the connection between vector bundles on X and
closed subschemes of X of pure codimension 2. This generalizes the
well-known connection by Vogelaar. This also provides a method for
constructing vector bundles.

(1.2) Let E and F be two vector bundles on X of rank r—1 and r
(r=2), respectively. Given an injection ¢: E— F, set Z:= {xre€ X | rank
oc(x)<r—1}. If Z has pure codimension 2, then the cokernel G of o is
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a torsion free sheaf of rank 1. Therefore there exists a line bundle N
on X of which G is a subsheaf, such that codim,(Supp N/G)=2. This
implies that .7 := G(—N) is a sheaf of ideals in #~?;. The closed sub-
scheme of X defined by _# is called the dependency locus of o, and is
denoted by D(¢). Then D(¢6)=2Z as sets. Note N=det F'—det E. Before
showing the relation between vector bundles and closed subschemes of
pure codimension 2, we quote two algebraic results as needed.

(1.83) LEMMA. Let A be a regular local ring of dimension s and ‘B
a quotient of A of dimension s—t. Then B is Cohen-Macaulay if and
only i+f Exty(B, A)=0 for all g>t.

For a proof, we refer to [AK], Corollary 3.5.22.

(1.4) LEMMA. Let A be a Cohen-Macaulay local ring of dimension
s and B a quotient of A of dimension s—t. Then Exty{(B, A)=0 for all
g<t.

For a proof, we refer to [AK], Lemma 4.5.1.

(1.5) Let L be a line bundle on X and E a vector bundle on X of
rank r—1 (r=2) with det E=M. In the rest of this section we are
always in the following situation:

. the set of pairs (F, o), where F is a vector bundle on X of
rank » with det F=L, and ¢,: E—F is an injection whose dependency
locus D(or) has pure codimension 2,

%: the set of pairs (¥, zy), where Y is a Cohen-Macaulay closed
subscheme of X of pure codimension 2, and z;: EV > wy(—Ky+M—L) is
a surjection.

(1.6) Given (F, g,) €., put Y := D(6;). Then we obtain from (1.2)
an exact sequence

OF

0 > B »F— A (L—M)—0. (1.6.1)

On the other hand, taking the long exact sequence of &-»s induced by
the short exact sequence

0— A(L—-—M)— Ox(L—M) —— 7y(L—M)—0 (1.6.2)
and using (1.4), we have

G AL —M), Oox)=x(M—L) ,
g"/I(Lflf'(-L"_]‘4'), ﬂX)E (’gf‘ﬂ(ﬁy(ll_M), ﬁx)zwy("‘Kx"*'M_L) y
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where wy= &2+ (%, Kx). Thus the exact sequence of &.- applied to
(1.6.1) gives

00— oy(M—L) 3 » BV »wy(—Ky+M—L)—0.

We denote by 7z, the last surjection and set f(F, o,) =, zv).

(1.7) THEOREM. (A) The correspondence f:(F,op)+—(Y,7y) 18 a
map from F into €.

(B) Assume hW(E(M—L))=0. Then f 18 surjective. Furthermore,
tf h'(E(M—L))=0, then f 1is bijective.

Proor. (A) It is sufficient to prove that Y is Cohen-Macaulay.
The long exact sequences of &.s derived from (1.6.1) and (1.6.2) yield
ot (y(L—M), &x)=0 for all ¢>2. Our desired result thus follows
from (1.8).

(B) We take (Y, zy) € ¥ and investigate Ext'( %4 (L— M), E). Com-
bining the spectral sequence

Ep'=H?( &t (FA(L—M), E)) — E*"*=Ext**(_%(L—M), E)

relating local and global Ext with the discussion in (1.6), we have the
exact sequence
00— EX=H'(GEm(A%AL—M), E))=H(EM—L))
—s B'=Ext'(AL—-—M), E)
— BV = H( &t (A(L—M), E))=H(wy(—Ky+M—LYQE)
—s E¥=H (AL —-M), E))=H(EM-—L)) .
The morphism 7, can be interpreted as giving an element 7€ H%(w,

(—Ky+M—L)XFE). Assume R*(E(M—L))=0. Then we can lift  to an
element ¢ € Ext' (4L —M), E), so it determines an extension

0 F > F > H(L—M)——0 . 1.7.1)

We denote by o, the first injection. Applying (1.8) to the long exact
sequence of &.s derived from 0> _Z4(L—M)—> O L—M)—(L—M)—0
gives & (A (L—M), ©7x)=0 for all ¢=2. We combine this with (1.7.1)
to find &.,Y(F, «7x)=0 for all ¢=2. Applying the functor SZ..(-, &) to
the sequence (1.7.1) yields an exact sequence

0— 2x(M—L)—> F¥— E' —> w,(—Kx+M—L)
— &t(F, Oy —0,

in which the connecting morphism EY—w,(—Ky+M—L) is 7,. Since
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7y is surjective, & (F, #x)=0. Thus (F, o) € % and f(F, o)=Y, ),
which implies that f is surjective. Furthermore, if hW"(E(M— L))=0, then
f is clearly bijective. Q.E.D.

§2. Example.

(2.1) In this section, we will construct an indecomposable vector
bundle of rank 8 on P:. We note here that this bundle cannot be ob-
tained by Vogelaar’s method. In fact, we use a curve in P° which is
not a locally complete intersection.

(2.2) Throughout this section, the ground field k is assumed to be
algebraically closed. Let C be a complete algebraic curve with AY(7c)=g
and & a torsion free sheaf of rank 1 on C. Put

deg & := XN(F ) - ,»
A F):=1+deg & —h(F )=g—h(F).

Then we have the following result due to Fujita.

ProrosITION (Fujita). If deg & =24(5 )=0, then & 18 generated
by its global sections.

For a proof we refer to [F'], Proposition 1.6.

(2.3) The dualizing sheaf ®w, on C is torsion free of rank 1 and
deg w;=24(w;)=29—2. Thus . is generated by its global sections for
g=1 by (2.2).

(2.4) Let X be a smooth quasi-projective algebraic variety and Y a
closed subvariety of X of codimension ¢. Let A‘(X) be the group of
cycles of codimension ¢ on X modulo rational equivalence. We also denote
by Y the class of Y in A‘“X) by abuse of notation. Grothendieck ([G].
p. 151, (16)) proved the

FORMULA. ¢;(7)=0 (0<j5<1),
c(Py)=(—1)"'¢—D!Y.

For 1=2, c(y)=—Y.

(2.5) THEOREM. Let X be a 3-dimensional smooth projective variety
with hY(%x)=0 and C a curve in X with g=1. Let t be the number of
global sections gemerating w,. Then there exists a vector bundle F on
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X of rank t+1 with c¢,(F)=c,(X) and c,(F)=C.
Proor. Take L= —K, and E=¢*, and apply (1.7) and (é.4). Q.E.D.

(2.6) We shall apply (2.5) to the simplest case X=P*:= P. Let F
and C be as in (2.5). Since the Chow ring is isomorphic to Z[h]/h*, we
may consider the Chern classes ¢,(F'), c,(F), ¢y(F') as integers. So ¢,(F)=4
and c,(F')=deg C := d.

(2.7) In order to calculate c,(F'), we need the

RIEMANN-ROCH THEOREM. Let & be a coherent sheaf of rank r on
P?, with Chern classes c,, ¢,, ¢;&. Then

X =r+ (% %) ~2et (e —1.

For a proof; we refer to [H2], Theorem 2.3.

(2.8) Now we go back to the situation (2.6). The exact sequence
0> — F—_#(4) >0 gives rise to ¢,(F')=c,(_#(4)), hence by (2.7)

X)) =) —4d+(3) .

On the other hand, by the exact sequence 0—_%(4) - 7-(4) — 7:(4) —0,
we see that

U I = U ~ X4 =g —1—4d+(]) -

So ¢, (F')=2g—2=deg w,.

(2.9) In the rest of this section we assume chark+#2, 3. Let s,
be the homogeneous coordinates on P' and w, z, ¥, 2z on P®. Consider the
rational curve C of degree 6 in P® which is the image of the map f: P'—
P? defined by f(s:t)=(w:z:y:2):= (st*(s+1)°:8t*(s+1):8t(8+1): (s—1)°).
We set

[ ow/os ow/ot t’(s+t)*(4s+t)  st(s+t)*(2s+5t)]

M, t) = ox/os ox/ot _ st’(8s +2t) s*t*(3s+ 4t)
5= oylos oy/ot | st(s+t)(53+8t) s*(s+t)(s+3t)
0z[os 0z/ot 6(s—1t)° —6(s—1t)°

An easy calculation shows that the rank of M(s, t) is 2 for any (s:?) € P'.
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Let p be the point (0:0:0:1). Then f '(p) consists of three distinet
points (0:1), (1:0), (1: —1). Put V:=P'—{(0:1), 1:0), (1: —1)} and
assume (s:t)eV. Since t#0, we can set ¢=1, and use s as an affine
parameter. Then we have

f(s:1)=(s(s+1)*:8%(s+1):8(s+1)*: (s——i)")

_((s+1) 4. . _(8=1)°
=( : .1.s(s+1).82(s+1)).

From this it is easy to see that f is injective on V. Thus, in sum, C
has exactly one singular point p.

Let U be the open set {z#0}. Then p is the origin in U. We use
M(s, t) to see that the tangent directions in U at (0:1), (1:0) and (1: —1)
are (1,0, 0), (0,0,1) and (0, —1, 0), respectively. Therefore C is not a
locally complete intersection and blowing up C at p desingularizes C in
one step. Of course the multiplicity of p on C is 3. Let 5,=length(ﬁv’p/&’p),
where 7, is the integral closure of ##,. Then the arithmetic genus g
of C is equal to J,.

(2.10) In order to calculate §,, we quote the following

LEMMA. Let C be a complete algebraic curve with only one singular
point p. Assume that blowing up C at p desingularizes C in one step.
Let p be the multiplicity of p on C. Then 0—1=6,=p(0—1)/2. Further-
more 8,=p(0—1)/2 if and only if length m/m*=2, where m 18 the maximal
ideal of 7.

For a proof, see for example [K].

(2.11) We now return to our case (2.9). Applying (2.10) yields
g=40,=2, so by (2.3), w, is generated by two global sections. Combining
this with (2.5), (2.6) and (2.8), we obtain a 3-bundle F' on FP° with
eo(F)=1, ¢,(F)=4, ¢,(F)=6 and ¢,(F)=2. Since the polynomial X*+4X*+
6X+2 is irreducible by Eisenstein’s criterion, F' is indecomposable.

§3. Construction of reflexive sheaves.

(8.1) The aim of this section is to describe a way to construct
reflexive sheaves from line bundles and closed subschemes of codimension
2.

(8.2) THEOREM. Let X be a locally factorial Gorenstein projective
variety of dimension n=38 defined over a (not mecessarily algebraically
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closed) field k and L a line bundle on X. Let Y be a closed subscheme
of X of codimension 2 and _% the ideal defining Y. Assume that for any
tdeal #.2 %, i (% (Kx+L)>h" ' (% (Ky+L)). Then H"'(_%(Kx+ L))
tnduces the exact sequence

0— H*(A(Kx+ L)QCy — F —— A (L)— 0
with F reflexive.

ProOF. By Serre duality we have an isomorphism

P Ext(A(L), H (A (Kx+ L)Q)
=, Hom(H""(#4(Kx+ L)), H"(A(Kx+L))) .

Let ¢(¢)=1id. Then ¢ defines a global extension
0— H"(A(Ky + L)QOy — F— A(L) —0 )

over X. We show that F' is reflexive. Since F' is torsion free, the
natural map u: F— FV¥ is injective. @We consider the commutative
diagram

0— H"(A(Kx+L)Qyx —> F — _#(L)— 0 €3]
| S
0— H" (A (K +L)RQOy — FVY — 8§ — 0 &"

where ¢’ is an element of Ext(S, H* '(%(Kx+L))Q®%) given by the
second extension. We note that »*: Ext'(S, H" (% (Ky + L)QR %) —
Ext'( % (L), H (% (Kx+ L)) Q@) satisfies v*(¢')=¢. We claim that S
is torsion free of rank 1. Suppose to the contrary that S;..#0. Let
g”"=1*¢’), where %: Sy.,—S is the inclusion map. Then we have the
commutative diagram '

0 — H" (A (Kx+L)QQCx — E—— S10. — 0 "
0— H" (A (Kx+L)QOx —> FVW —> S—0 &) .

On the other hand, since Supp(St.:) CY, Ext'(Srer, H* (% (Kx+ L))R7x) =
H* ' (S1o: QK )" RQH (% (Kx+L))=0. Hence FyY+0, which is a con-
tradiction. Since X is locally factorial and det F'=det(F'VV), we can write
S=_%.(L) for some closed subscheme Y’ of codimension=2. The Serre
duality theorem says that
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¥ Ext( A (L), H( A (Kx+ L)Q®x)
=, Hom(H" (A (Kx+L)), H"(A(Kx+L))) .

Let p=+(&). Then, by the functoriality of Serre duality, we obtain the

commutative diagram

H" (A4 (Kx+ L)) L\ B ( A(B+ L))

N /
N e
H™(A/(Kx+L))

where f is the natural map induced by v®K;. So A" ( A(Ki+L)=
h*~(%A(Kx+L)). Combining this with the hypothesis gives . % =_%..
Therefore (¢ is an isomorphism and F' is reflexive. _ Q.E.D.

(3.3) COROLLARY. Let X be a smooth projective variety of dimension
n=3 defined over an algebraically closed field k and L a line bundle on
X such that h*(?x(—L))=0. Let Y be a closed subvariety of X of codi-
mension 2. Assume h* (P (Kx+L))>0. Then there exists a reflexive
sheaf F of rank r on X with ¢, (F)=L and c,(F)=Y, where r—=
h" N A (Kx+L)+1.

PROOF. Given any ideal . %4.2 %, we have the commutative diagram
00— AKx+L)— Ox(Kx+L) — P»(Kx+L) — 0
1 | |
0— A.(Kx+L)—> Ox(Kx+L)—> Py (Ky+L)—>0 .
Since A" Ny (Kx+L))=h"" (P (Kx+ L)) =h" 7 (Kx+ L)) =0,
(A K+ L) >k (Ox(Kx+ L) =h"" (A (Kx+ L)) ;
the assertion now follows from (8.2). Q.E.D.
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