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§0. Introduction.

Let C? be the two dimensional complex vector space with a standard
system of coordinates z=(z, z,). Put

B={zeC*: |z|<1},
0B(e)={zeC?*:1—c<|2z|<1},

3, ={zeC?:|z|=1}, and

J,={ze€C*: |z|=1—¢},

where ¢ is a constant such that 0<e<1, and
2" =12, +|2.|* .

In this note, first we shall construct compact complex 3-folds M which
admit a holomorphic map

f 1 0Ble)— M

such that the inner boundary X, of dB(e) 18 a mnatural boundary of f.
That is, for any point x €, we cannot find any neighborhood W of «
in C? such that f can be extended to a holomorphic map of WU dB(e)
into M. Secondly, we study a l-dimensional holomorphic foliation on
the associated projective bundle P(TM) of the tangent bundle TM. We
shall show that in P(TM) there are a subdomain W, P(TM)—[W]+ @,
and a thin subset S of P(TM)—[W] such that every leaf in W is bi-
holomorphic to P' and all compact leaves outside [W] are contained in
S, where [ W] indicates the closure of W in P(TM).

In §1, we shall construct our compact complex 3-fold M. In §2, we
shall prove the non-extendibility of a certain holomorphic map into M
(see also [2]). In §8, we study the holomorphic foliation on P(TM).
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The idea of the construction of M can be found in Atiyah-Hitchin-
Singer [1, p. 439, Example 4].

§1. Construction of the 3-fold.

Let U be an open subdomain in the complex 3-dimensional projective
space P® defined by

U={[zo 2,.2,0 zs] eP® . lzo|2+|z1|2<|z2|2+lzalz} ’

where [2,:2,:2,:2] is a system of homogeneous coordinates on P°.
Consider the Lie group S»(1, 1), which is defined by

(1.1) {9eM/(C) : 'g-H-g=H, J-g=g-J}
where
—1 0.0 O 01 0 O
0O —1 0 O -1 0 0 0
H= , J:
0 01 0 0 0 01
0 0 0 1 0 0 -1 0

The condition ‘G- H-g=H implies g(U)=U. Put

« )

H={MeMz(C’) :M=< =) a,,BeC}.

It is easy to see that
A B '
g=(C D) M), A BCDeM©,

is in Sp(1, 1) if and only if

A B C, DeH,

1.2) A*A—-C*C=D*D—B*B=1,
A*B=C*D ,

where M*=*'M.

LEMMA 1.1. Sp(@, 1) acts transitively on U as a holomorphic auto-
morphism group.

ProoOF. By (1.2), it is easy to see that every element of Sp(l, 1)
defines a holomorphic automorphism of U as an element of PGL(4, C).
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It is enough to prove that the action is transitive. Take any point z=
[20:2,:2,: 2] € U. Put A=|2,/2+ 12, and pt=|2,/*+|z,[>. If A+#0, then we
put

Aoy _ETEE 5

- Eozs + 2122 Eozz + les

B= (#—x)“”(z“ _f‘) ,
2, Zo

10
— 2120 pg— )\ )—1/2
C=\N"*(p—N) (0 1),

and

D= (/«z—x)“ﬂ(zz ”§3> :

23 Z,

If A=0, then we put A=1, B=C=0, and

D=#'1’2<z2 —_E_3>.
2, Z,
. _ (A B\ .
Then, in both cases, g-—(C D) is an element of Sp(1,1). Moreover

ge)=2, where e¢=[0:0:1:0]€ U. Hence Sp(l, 1) acts transitively on
U. d

LEMMA 1.2. The isotropy subgroup K of Sp(1, 1) with respect to the
action on U s a compact group isomorphic to Sp(l)x SO(2).

ProoOF. If g=(6,1 IB; e Sp(1, 1) fixes ¢e=[0:0:1:0], then it follows
easily from (1.2) that

B=0, C=0, A*A=I, and D*D=I.

Since

D is of the form
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which is identified naturally with an element of SO(2). Hence g=

(64 B) € Sp(1) x SO(2). Conversely, every element of this form fixes e.
Hence K is isomorphic to Sp(1) x SO(2). ]

By Lemmas 1.1 and 1.2, we have the following
LEmMA 1.3. U=Sp(, 1)/Sp(1) x SO(2).

There is a well-known exact sequence of Lie groups:

(1.3) 1—{+1}— Sp@, 1) 2> S04, 1) — 1 ,

where SO°(4, 1) is the connected component of SO(4, 1) containing the
unit. By Vinberg [4] (or by a more general result of A. Borel), we know
that there are many finitely generated cocompact discrete subgroups in
SO’(4, 1). Let I’ be one of them and put I"=p*("). Since p is a double
covering, I is also a finitely generated cocompact discrete subgroup of
Sp(1, 1). By a well-known theorem of Selberg, there is a subgroup I”
of I’ such that the index [/ :I'] is finite and such that I" contains no
elements of finite order. If v(x)=« for some ve€I and z€ U, it follows
readily that y=1. Since the isotropy group K of Sp(1, 1) with respect
to the action on U is compact by Lemma 1.2, we see that the action of
I’ on U is properly discontinuous. Therefore we have the following.

THEOREM 1. There are discrete subgroups I'CSp(l, 1) such that the
quotient space I'\U are non-singular compact complex 3-folds.
§2. An example of non-extendible holomorphic maps.

Let ¢ be any real number satisfying 0<e<1l. Define a holomorphic
injective map

j : 0B(e)—U
by
J(w, w)=la,: a,: w, : w,],
where a,, a, are any complex numbers satisfying
latol* + e *=(1—¢)* .
Let M be the manifold in Theorem 1. Let
T :U— M=I\U
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be the canonical projection. Define a holomorphic map
f 1 0Be)—M
by
f=mog .
Then we can show the following.

THEOREM 2. For any point x € X,, there is no meighborhood W of x
in C* such that f extends to a holomorphic map f of WUAIM(e) into M.

PRrROOF. Suppose that there were such an open neighborhood W of x
such that WNoB(e) is connected. Put y= Ffx)e M. Since w:U—M is
a Galois covering, we can choose a small relatively compact subdomain 4
around ¥ in M and a relatively compact subdomain 4 in U such that
774 (4)= UreY(d). Moreover we can assume that each connected component
of 77'(4) is relatively compact in U. Since F|IW :W —M is continuous,
we can assume that F(W)cd. Hence f(W NoB(e)) = F(W NaB(e))c4.
Therefore, since W No0B(e) is connected, j(W NoB(e)) is contained in a
connected component of 7'(d4). Since each connected component of 77'(4)
is relatively compact in U, we see that the closure [j(W NdB(e))] is
compact in U. Hence, for any sequence {x;}, »=1,2,--- of points in
W NoB(e) which converges to x€ WNZX, we can choose a subsequence
of {j(x,)} which converges to an interior point of U. But this contradicts
the definition of the map 7. ]

REMARK 2.1. The above f does not extend even as a continuous
mapping across 3,. This is clear from the above argument.

REMARK 2.2. The manifold M is the twistor space over a conformally
flat real hyperbolic differentiable 4-manifold. ‘

§3. An example of holomorphic foliations.

For a complex manifold X, we let TX denote the tangent bundle
and P(TX) the associated projective bundle. Let M be the manifold in
Theorem 1 and put Z=P(TM). In this section, we shall construct a
holomorphic foliation of dimension 1 on Z and study its leaves.

On P(TP?®, we can consider two fibre bundle structures. One is the

natural projection

p, : P(TP? — P?
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and the other is the projection
q, : P(TP®) — Gr(4, 2)

to the Grassmannian manifold of all lines in P°. The fibre of ¢, passing
through a point » € P(TP®) corresponds to the line in P? passing through
»,(v) with direction v. By the natural inclusion Uc P?, we regard P(TU)
as a subdomain in P(TP?). Then q, defines a holomorphic mapping

q, : P(TU)—>Gr(4, 2) .

Obviously, every element of PGL(4, C) induces a holomorphic automorphism
of P(TP®?) and Gr(4, 2). Note also that every element of I induces a
holomorphic automorphism of P(TU). Thus we have the commutative
diagram

P(TU) -2 Gr4, 2)
Tl 17’
P(TU) — Gr(4, 2) ,

for yeI'. The action of I" on P(TU) is properly discontinuous and we
have

Z=P(TM)=I'\P(TU) .

Hence the mapping ¢, defines a holomorphic foliation F' on Z whose
leaves are images of the fibres of ¢, in I"\P(TU). Now we shall study
the leaves of F. Let

n, : PTU)—Z
be the projection, which is an unramified Galois covering. Put

W={we P(TU) : ¢;*(q,(w)) is compact} ,
W=nr,(W), and
ﬁ =q,( W) . :
For we W, ¢;'(g,(w)) is biholomorphic to P!, and is projected by p, onto

a projective line in U. There are many~projective lines in P?® which are
not contained in [U]. Hence P(TU)—[W] is not empty.

LEMMA 3.1. W is a I-invariant subdomain.

PROOF. Take any we Wand veI'. Put D=q;*(q,(w)). Since p (L) is



EXTENSION PROBLEM 145

a projective line contained in U, so is 7(p,(I)). Hence v(L)=g;(g,(v(w)))
is biholomorphic to P. Therefore Y(w)e W. Thus W is I-invariant.
That W is connected follows from the fact that any projective line in U
can be displaced continuously in U to the line z,=2,=0. It is clear that
W is open. il

LEMMA 3.2. I acts on D and the action is properly discontinuous.

PROOF. Since W is I'-invariant by Lemma 3.1, I" acts on D. Note
that W is a fibre bundle over D with compact fibres P'. Therefore, since
the action of I" on P(T'U) is properly discontinuous, so is the action on
W. Consequently, the action on D is properly discontinuous. O

By Lemma 3.2, the quotient space I"\D becomes naturally a normal
complex space. Moreover the projection g,: W— D defines a fibre bundle
structure g: W—I"\D on W, whose reduced fibres are biholomorphic to
P'. Since W is I-invariant, W is a domain in Z such that Z—[W]=
I\(P(TU)—[W]) is non-empty.

Let L be a compact leaf of F. Let L, be a connected component
of 77(L). Then L, is a fibre of ¢, and #7'(L)= U, Y(L,). If L, is
compact, then ,c W, and consequently Lc W. Suppose that L, is not
compact. Note that there is a compact curve L=P', which is a fibre
of g, in P(TP®, such that L contains I, as a connected subdomain. Put
l=p,(L). Note that p,|L: L —1 is biholomorphic. It is easy to show that
Unl is biholomorphic to C or a unit disk. Hence so is I°. Since L
is compact, there is a non-trivial subgroup I', of I" such that I, leaves
L, invariant and such that I"\[,=L. Thus we have, in particular, the
following correspondence.

C={LcP(TU) : L. is a non-empty non-compact component
of a fibre of ¢, such that z,(L) is compact}

l(b
S={l € Gr(4, 2) : The isotropy subgroup I, of I"
at ! is an infinite group},

where @(LL) corresponds to the projective line in P* which contains p,(I)
as a subdomain. Then the mapping @ is injective. Put

S,={leGr@4, 2) : v(O)=1}.
Then S; is a proper analytic subset in Gr(4, 2). Therefore we have

THEOREM 3. For the holomorphic foliation F on Z, there is a mon-
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empty subdomain W in Z, Z—(W]+ @, and a thin set S in Z—[W]
with the following properties.

(1) Every leaf L of F with LN W+ 18 contained in W, and s
biholomorphic to P'.

(2) All compact leaves in Z—[W] are contained in S.

Our last example, Theorem 8, shows that a theorem of Nishino [3]
on parametrizing compact divisors does not hold in higher codimensional

cases.
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