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\S O. Introduction.

Let $C^{2}$ be the two dimensional complex vector space with a standard
system of coordinate8 $z=(z_{1}, z_{2})$ . Put

$B=\{z\in C^{2} : |z|<1\}$ ,
$\partial B(\epsilon)=\{z\in C^{2} : 1-\epsilon<|z|<1\}$ ,

$\Sigma_{1}=\{z\in C^{2} : |z|=1\}$ , and
$\Sigma_{2}=\{zeC^{2} : |z|=1-\epsilon\}$ ,

where $\epsilon$ is a constant such that $0<\epsilon<1$ , and

$|z|^{2}=|z_{1}|^{2}+|z_{2}|^{2}$ .
In this note, first we shall construct compact complex 3-folds $M$ which
admit a holomorphic map

$f$ : $\partial B(\epsilon)\rightarrow M$

such that the inner boundary $\Sigma_{2}$ of $\partial B(\epsilon)$ is a natural boundary of $f$.
That is, for any point $x\in\Sigma_{2}$ , we cannot find any neighborhood $W$ of $x$

in $C^{2}$ such that $f$ can be extended to a holomorphic map of $W\cup\partial B(\epsilon)$

into $M$. Secondly, we study a l-dimensional holomorphic foliation on
the associated projective bundle $P(TM)$ of the tangent bundle $TM$. We
shall show that in $P(TM)$ there are a subdomain $W,$ $ P(TM)-[W]\neq\emptyset$ ,
and a thin subset $S$ of $P(TM)-[W]$ such that every leaf in $W$ is bi-
holomorphic to $P^{1}$ and all compact leaves outside $[W]$ are contained in
$S$ , where $[W]$ indicates the closure of $W$ in $P(TM)$ .

In \S 1, we shall construct our compact complex 3-fold $M$. In \S 2, we
shall prove the non-extendibility of a certain holomorphic map into $M$

(see also [2]). In \S 3, we study the holomorphic foliation on $P(TM)$ .
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The idea of the construction of $M$ can be found in Atiyah-Hitchin-
Singer [1, p. 439, Example 4].

\S 1. Construction of the $3\cdot fold$ .
Let $U$ be an open subdomain in the complex 3-dimensional projective

space $P^{3}$ defined by

$U=\{[z_{0} : z_{1} : z_{2} : z_{6}]\in P^{3} : |z_{0}|^{2}+|z_{1}|^{2}<|z_{2}|^{2}+|z_{8}|^{2}\}$ ,

where $[z_{0} : z_{1} : z_{2} : z_{3}]$ is a system of homogeneous coordinates on $P^{\epsilon}$ .
Consider the Lie group $Sp(1,1)$ , which is defined by

(1.1) $\{geM_{4}(C) : {}^{t}\overline{g}\cdot H\cdot g=H, J\cdot g=\overline{g}\cdot J\}$

where

$H=\left(\begin{array}{llll}-1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{array}\right)$ . $J=(-1000$ $0001$ $-1000$ )$100$ .

The condition $\overline{g}\cdot H\cdot g=H$ implies $g(U)=U$. Put

$H=\{M\in M_{2}(C)$ : $M=(-\frac{\alpha}{\beta}$ $\frac{\beta}{\alpha}I,$
$\alpha,$ $\beta\in c\}$ .

It is easy to 8ee that

$g=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in M_{4}(C)$ ,

is in $Sp(1,1)$ if and only if

$A,$ $B,$ $C,$ $DeM_{2}(C)$ ,

(1.2) $\left\{\begin{array}{l}A,B,C,D\in H\\A^{*}A-C^{*}C=D^{*}D-B^{*}B=I\\A^{*}B=C^{*}D\end{array}\right.$

where $M^{*}={}^{t}\overline{M}$.
LEMMA 1.1. $Sp(1,1)$ acts transitively on $U$ as a holomorphic auto-

morphis$m$ group.

PROOF. By (1.2), it is easy to 8ee that every element of $Sp(1,1)$

defines a holomorphic automorphism of $U$ as an element of $PGL(4, C)$ .
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It is enough to prove that the action is transitive. Take any point $z=$

$[z_{0} : z_{1} : z_{2} : z_{3}]eU$. Put $x=|z_{0}|^{2}+|z_{1}|^{2}$ and $\mu=|z_{2}|^{2}+|z_{3}|^{2}$ . If $x\neq 0$ , then we
put

$A=x^{-1/2}(\mu-\lambda)^{-1/z}(-\frac{z}{z}00^{Z_{3l}}\overline{Z}_{2}I_{z\overline{z}_{2}}^{\overline{z}_{1}z_{3}}$ $\frac{z}{z}00^{Z_{2}+z_{13}^{\frac{z}{z})}}\overline{z}_{s}-\overline{z}_{12}$ ,

$B=(\mu-x)^{-1/2}\left(\begin{array}{ll}z_{0} & -\overline{z}_{1}\\z_{J} & \overline{z}_{0}\end{array}\right)$ ,

$C=x^{1/2}(\mu-x)^{-1/2}\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ ,

and

$D=(\mu-x)^{-1/2}\left(\begin{array}{ll}z_{2} & -\overline{z}_{8}\\z_{3} & \overline{z}_{2}\end{array}\right)$ .

If $x=0$ , then we put $A=I,$ $B=C=0$ , and

$D=\mu^{-1/2}\left(\begin{array}{ll}z_{2} & -\overline{z}_{3}\\z_{3} & \overline{z}_{2}\end{array}\right)$ .

Then, in both cases, $g=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ is an element of $Sp(1,1)$ . Moreover
$g(e)=z$ , where $e=[0:0:1:O]\in U$. Hence $Sp(1,1)$ acts transitively on
U. $\square $

LEMMA 1.2. The isotropy subgroup $K$ of $Sp(1,1)$ with respect to the
action on $U$ is a compact group rsomorphic to $Sp(1)\times SO(2)$ .

PROOF. If $g=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)eSp(1,1)$ fixes $e=[0:0:1:0]$ , then it follows
ea8i1y from (1.2) that

$B=0$ , $C=0$ , $A^{*}A=I$ , and $D^{*}D=I$ .
Since

$D\left(\begin{array}{l}1\\0\end{array}\right)=\delta\left(\begin{array}{l}1\\0\end{array}\right)$ , $\delta\in C^{*}$ ,

$D$ is of the form

$D=\left(\begin{array}{ll}\delta & 0\\0 & \overline{\delta}\end{array}\right)$ , $|\delta|=1$ ,
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which is identified naturally with an element of $SO(2)$ . Hence $g=$

$\left(\begin{array}{ll}A & 0\\0 & D\end{array}\right)\in Sp(1)\times SO(2)$ . Conversely, every element of this form fixes $e$ .
Hence $K$ is isomorphic to $Sp(1)\times SO(2)$ . $\square $

By Lemmas 1.1 and 1.2, we have the following

LEMMA 1.3. $U\cong Sp(1,1)/Sp(1)\times SO(2)$ .
There i8 a well-known exact sequence of Lie groups:

(1.3) $1\rightarrow\{\pm 1\}\rightarrow Sp(1,1)\rightarrow^{\rho}SO^{0}(4,1)\rightarrow 1$ ,

where $SO^{0}(4,1)$ is the connected component of $SO(4,1)$ containing the
unit. By Vinberg [4] (or by a more general result of A. Borel), we know
that there are many finitely generated cocompact discrete subgroups in
$SO^{0}(4,1)$ . Let $\overline{\Gamma}$ be one of them and put $\Gamma’=\rho^{-1}(\overline{\Gamma})$ . Since $\rho$ is a double
covering, $\Gamma$

’ is also a finitely generated cocompact discrete subgroup of
$Sp(1,1)$ . By a well-known theorem of Selberg, there is a 8ubgroup $\Gamma$

of $\Gamma$
’ such that the index $[\Gamma^{\prime} : \Gamma]$ is finite and such that $\Gamma$ contains no

elements of finite order. If $\gamma(x)=x$ for some $\gamma\in\Gamma$ and $x\in U$, it follows
readily that $\gamma=1$ . Since the isotropy group $K$ of $Sp(1,1)$ with respect
to the action on $U$ is compact by Lemma 1.2, we see that the action of
$\Gamma$ on $U$ is properly discontinuous. Therefore we have the following.

THEOREM 1. There are discrete subgroups $\Gamma\subset Sp(1,1)$ such that the
quotient space $\Gamma\backslash U$ are non-singular compact complex 3-folds.

\S 2. An example of non-extendible holomorphic maps.

Let $\epsilon$ be any real number satisfying $0<\epsilon<1$ . Define a holomorphic
iniective map

$j$ : $\partial B(\epsilon)\rightarrow U$

by

$j(w_{1}, w_{2})=[\alpha_{0} : \alpha_{1} : w_{1} : w_{2}]$ ,

where $\alpha_{0},$ $\alpha_{1}$ are any complex numbers satisfying

$|\alpha_{0}|^{2}+|\alpha_{1}|^{2}=(1-\epsilon)^{2}$ .
Let $M$ be the manifold in Theorem 1. Let

$\pi$ : $U\rightarrow M=\Gamma\backslash U$
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be the canonical projection. Define a holomorphic map

$f$ : $\partial B(\epsilon)\rightarrow M$

by

$f=\pi oj$ .
Then we can show the following.

THEOREM 2. For any point $x\in\Sigma_{2}$ , there is no neighborhood $W$ of $x$

in $C^{2}$ such that $f$ extends to a holomorphic map $\hat{f}$ of $W\cup\partial M(\epsilon)$ into $M$.
PROOF. Suppose that there were such an open neighborhood $W$ of $x$

such that $W\cap\partial B(\epsilon)$ is connected. Put $y=\hat{f}(x)\in M$. Since $\pi:U\rightarrow M$ is
a Galois covering, we can choose a small relatively compact subdomain $\Delta$

around $y$ in $M$ and a relatively compact subdomain $\tilde{\Delta}$ in $U$ such that
$\pi^{-1}(\Delta)=\bigcup_{\gamma e\Gamma}\gamma(\tilde{\Delta})$ . Moreover we can assume that each connected component
of $\pi^{-1}(\Delta)$ is relatively compact in $U$. Since $\hat{f}|W:W\rightarrow M$ is continuous,
we can assume that $\hat{f}(W)\subset\Delta$ . Hence $ f(W\cap\partial B(\epsilon))=\hat{f}(W\cap\partial B(\epsilon))\subset\Delta$ .
Therefore, since $W\cap\partial B(\epsilon)$ is connected, $j(W\cap\partial B(\epsilon))$ is contained in a
connected component of $\pi^{-1}(\Delta)$ . Since each connected component of $\pi^{-1}(\Delta)$

is relatively compact in $U$, we see that the closure [ $j(W\cap\partial B(\epsilon))1$ is
compact in $U$. Hence, for any sequence $\{x_{\lambda}\},$ $x=1,2,$ $\cdots$ of points in
$W\cap\partial B(\epsilon)$ which converges to $x\in W\cap\Sigma_{2}$ , we can choose a subsequence
of $\{j(x_{\lambda})\}$ which converges to an interior point of $U$. But this contradicts
the definition of the map $j$ . $\square $

REMARK 2.1. The above $f$ does not extend even as a continuous
mapping across $\Sigma_{2}$ . This is clear from the above argument.

REMARK 2.2. The manifold $M$ is the twistor space over a conformally

flat real hyperbolic differentiable 4-manifold.

\S 3. An example of holomorphic foliations.

For a complex manifold $X$, we let $TX$ denote the tangent bundle
and $P(TX)$ the associated projective bundle. Let $M$ be the manifold in
Theorem 1 and put $Z=P(TM)$ . In this section, we shall construct a
holomorphic foliation of dimension 1 on $Z$ and study its leaves.

On $P(TP^{3})$ , we can consider two fibre bundle structures. One is the
natural projection

$p_{1}$ : $P(TP^{8})\rightarrow P^{8}$



144 MASAHIDE KATO

and the other is the projection

$q_{1}$ : $P(TP^{\epsilon})\rightarrow Gr(4,2)$

to the Gra8smannian manifold of all lines in $P^{3}$ . The fibre of $q_{1}$ passing
through a point $veP(TP^{3})$ corresponds to the line in $P^{3}$ passing through
$p_{1}(v)$ with direction $v$ . By the natural inclu8ion $UcP^{3}$ , we regard $P(TU)$

as a subdomain in $P(TP^{s})$ . Then $ql$ defines a holomorphic mapping

$q_{2}$ : $P(TU)\rightarrow Gr(4,2)$ .
Obviously, every element of $PGL(4, C)$ induces a holomorphic automorphism
of $P(TP^{3})$ and $Gr(4,2)$ . Note also that every element of $\Gamma$ induces a
holomorphic automorphism of $P(TU)$ . Thu8 we have the commutative
diagram

$P(TU)\rightarrow^{q_{2}}Gr(4,2)$

$\gamma\downarrow$ $\downarrow\gamma$

$P(TU)\rightarrow Gr(4,2)q_{2}$ ,

for $\gamma\in\Gamma$ . The action of $\Gamma$ on $P(TU)$ is properly discontinuous and we
have

$Z=P(TM)=\Gamma\backslash P(TU)$ .
Hence the mapping $q_{2}$ defines a holomorphic foliation $F$ on $Z$ whose
leaves are images of the fibres of $q_{2}$ in $\Gamma\backslash P(TU)$ . Now we shall study
the leaves of $F$. Let

$\pi_{1}$ : $P(TU)\rightarrow Z$

be the projection, which is an unramified Galois covering. Put
$\tilde{W}=$ {$weP(TU)$ : $q_{2}^{-1}(q_{2}(w))$ is compact} ,
$W=\pi_{1}(\tilde{W})$ , and
$B=q_{2}(\tilde{W})$ .

For $w\in\tilde{W},$ $q_{2}^{-1}(q_{2}(w))$ is biholomorphic to $P^{1}$ , and is projected by $p_{1}$ onto
a projective line in $U$. There are many projective lines in $P^{3}$ which are
not contained in $[U]$ . Hence $P(TU)-[\tilde{W}]$ is not empty.

LEMMA 3.1. $\tilde{W}$ is a F-invariant subdomain.

PROOF. Take any $w\in\tilde{W}$ and $\gamma\in\Gamma$ . Put $\tilde{L}=q_{2}^{-1}(q_{2}(w))$ . Since $p_{1}(\tilde{L})$ is
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a projective line contained in $U$, so is $\gamma(p_{1}(\tilde{L}))$ . Hence $\gamma(\tilde{L})=q_{2}^{-1}(q_{2}(\gamma(w)))$

is biholomorphic to $P^{1}$ . Therefore $\gamma(w)\in\tilde{W}$. Thus $\tilde{W}$ is $\Gamma$-invariant.
That $\tilde{W}$ is connected follows from the fact that any projective line in $U$

can be displaced continuously in $U$ to the line $z_{0}=z_{1}=0$ . It is clear that
$\tilde{W}$ is open. $\square $

LEMMA 3.2. $\Gamma$ acts on $\tilde{D}$ and the action is properly discontinuous.

PROOF. Since $\tilde{W}$ is $\Gamma$-invariant by Lemma 3.1, $\Gamma$ acts on $\tilde{D}$. Note
that $\tilde{W}$ is a fibre bundle over $\tilde{D}$ with compact fibres $P^{1}$ . Therefore, since
the action of $\Gamma$ on $P(TU)$ is properly discontinuous, so is the action on
$\tilde{W}$. Consequently, the action on $\tilde{D}$ is properly discontinuous. $\square $

By Lemma 3.2, the quotient space $\Gamma\backslash \tilde{D}$ becomes naturally a normal
complex space. Moreover the projection $q_{2}$ : $\tilde{W}\rightarrow\tilde{D}$ defines a fibre bundle
structure $\overline{q}:W\rightarrow\Gamma\backslash \tilde{D}$ on $W$, whose reduced fibres are biholomorphic to
$P^{1}$ . Since $\tilde{W}$ is $\Gamma$-invariant, $W$ is a domain in $Z$ such that $ Z-[W]\cong$

$\Gamma\backslash (P(TU)-[\tilde{W}])$ is non-empty.
Let $L$ be a compact leaf of $F$. Let $\tilde{L}_{0}$ be a connected component

of $\pi_{1}^{-1}(L)$ . Then $\tilde{L}_{0}$ is a fibre of $q_{2}$ and $\pi_{1}^{-1}(L)=\bigcup_{\gamma e\Gamma}\gamma(\tilde{L}_{0})$ . If $\tilde{L}_{0}$ is
compact, then $\tilde{L}_{0}\subset\tilde{W}$, and consequently $L\subset W$. Suppose that $\tilde{L}_{0}$ is not
compact. Note that there is a compact curve $\tilde{L}\cong P^{1}$ , which is a fibre
of $q_{1}$ in $P(TP^{3})$ , such that $\tilde{L}$ contains $\tilde{L}_{0}$ a8 a connected subdomain. Put
$l=p_{1}(\tilde{L})$ . Note that $p_{1}|\tilde{L}:\tilde{L}\rightarrow l$ is biholomorphic. It is easy to show that
$U\cap l$ is biholomorphic to $C$ or a unit disk. Hence so is $\tilde{L}^{0}$ . Since $L$

is compact, there is a non-trivial subgroup $\Gamma_{0}$ of $\Gamma$ such that $\Gamma_{0}$ leaves
$\tilde{L}_{0}$ invariant and such that $\Gamma_{0}\backslash \tilde{L}_{0}\cong L$ . Thus we have, in particular, the
following correspondence.

$C=\{\tilde{L}\subset P(TU)$ : $\tilde{L}$ is a non-empty non-compact component
of a fibre of $q_{2}$ such that $\pi_{1}(\tilde{L})$ is compact}

$\downarrow\Phi$

$S=\{l\in Gr(4,2)$ : The isotropy subgroup $\Gamma_{l}$ of $\Gamma$

at $l$ is an infinite group},

where $\Phi(\tilde{L})$ corresponds to the projective line in $P^{8}$ which contains $p_{1}(\tilde{L})$

as a subdomain. Then the mapping $\Phi$ is injective. Put

$S_{\gamma}=\{l\in G\gamma(4,2) : \gamma(l)=l\}$ .
Then $S_{\gamma}$ is a proper analytic subset in $G\gamma(4,2)$ . Therefore we have

THEOREM 3. For the holomorphic foliation $F$ on $Z$, there is a non-
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empty subdomain $W$ in $Z,$ $ Z-[W]\neq\emptyset$ , and a thin set $S$ in $Z-[W]$

with the following properties.
(1) Every leaf $L$ of $F$ with $ L\cap W\neq\emptyset$ is contained in $W$, and is

biholomorphic to $P^{1}$ .
(2) All compact leaves in $Z-[W]$ are contained in $S$ .
Our last example, Theorem 3, shows that a theorem of Nishino [3]

on parametrizing compact divisors does not hold in higher codimensional
cases.
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