Tokyo J. Math. Vol. 13, No. 1, 1990

Examples on an Extension Problem of Holomorphic Maps and a Holomorphic 1-Dimensional Foliation

Masahide KATO

Sophia University

§0. Introduction.

Let C^2 be the two dimensional complex vector space with a standard system of coordinates $z = (z_1, z_2)$. Put

$$B = \{ z \in C^2 : |z| < 1 \} ,$$

 $\partial B(\varepsilon) = \{ z \in C^2 : 1 - \varepsilon < |z| < 1 \} ,$
 $\Sigma_1 = \{ z \in C^2 : |z| = 1 \} ,$ and
 $\Sigma_2 = \{ z \in C^2 : |z| = 1 - \varepsilon \} ,$

where ε is a constant such that $0 < \varepsilon < 1$, and

 $|z|^2 = |z_1|^2 + |z_2|^2$.

In this note, first we shall construct compact complex 3-folds M which admit a holomorphic map

$$f : \partial B(\varepsilon) \longrightarrow M$$

such that the inner boundary Σ_2 of $\partial B(\varepsilon)$ is a natural boundary of f. That is, for any point $x \in \Sigma_2$, we cannot find any neighborhood W of xin C^2 such that f can be extended to a holomorphic map of $W \cup \partial B(\varepsilon)$ into M. Secondly, we study a 1-dimensional holomorphic foliation on the associated projective bundle P(TM) of the tangent bundle TM. We shall show that in P(TM) there are a subdomain W, $P(TM)-[W] \neq \emptyset$, and a thin subset S of P(TM)-[W] such that every leaf in W is biholomorphic to P^1 and all compact leaves outside [W] are contained in S, where [W] indicates the closure of W in P(TM).

In §1, we shall construct our compact complex 3-fold M. In §2, we shall prove the non-extendibility of a certain holomorphic map into M (see also [2]). In §3, we study the holomorphic foliation on P(TM).

Received June 5, 1989

The idea of the construction of M can be found in Atiyah-Hitchin-Singer [1, p. 439, Example 4].

§1. Construction of the 3-fold.

Let U be an open subdomain in the complex 3-dimensional projective space P^3 defined by

$$U = \{ [z_0 : z_1 : z_2 : z_3] \in P^3 : |z_0|^2 + |z_1|^2 < |z_2|^2 + |z_3|^2 \}$$
,

where $[z_0: z_1: z_2: z_3]$ is a system of homogeneous coordinates on P^s . Consider the Lie group Sp(1, 1), which is defined by

(1.1)
$$\{g \in M_4(C) : {}^t\overline{g} \cdot H \cdot g = H, J \cdot g = \overline{g} \cdot J\}$$

where

$$H = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

The condition ${}^{t}\overline{g} \cdot H \cdot g = H$ implies g(U) = U. Put

$$H = \left\{ M \in M_2(C) : M = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \alpha, \beta \in C \right\}.$$

It is easy to see that

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_4(C)$$
, $A, B, C, D \in M_2(C)$,

is in Sp(1, 1) if and only if

(1.2)
$$\begin{cases} A, B, C, D \in H, \\ A^*A - C^*C = D^*D - B^*B = I, \\ A^*B = C^*D, \end{cases}$$

where $M^* = {}^t \overline{M}$.

LEMMA 1.1. Sp(1, 1) acts transitively on U as a holomorphic automorphism group.

PROOF. By (1.2), it is easy to see that every element of Sp(1, 1) defines a holomorphic automorphism of U as an element of PGL(4, C).

140

It is enough to prove that the action is transitive. Take any point $z = [z_0 : z_1 : z_2 : z_3] \in U$. Put $\lambda = |z_0|^2 + |z_1|^2$ and $\mu = |z_2|^2 + |z_3|^2$. If $\lambda \neq 0$, then we put

$$\begin{split} A &= \lambda^{-1/2} (\mu - \lambda)^{-1/2} \begin{pmatrix} z_0 \overline{z}_2 + \overline{z}_1 z_3 & z_0 \overline{z}_3 - \overline{z}_1 z_2 \\ - \overline{z}_0 z_3 + z_1 \overline{z}_2 & \overline{z}_0 z_2 + z_1 \overline{z}_3 \end{pmatrix}, \\ B &= (\mu - \lambda)^{-1/2} \begin{pmatrix} z_0 & -\overline{z}_1 \\ z_1 & \overline{z}_0 \end{pmatrix}, \\ C &= \lambda^{1/2} (\mu - \lambda)^{-1/2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \end{split}$$

and

$$D = (\mu - \lambda)^{-1/2} \begin{pmatrix} z_2 & -\overline{z}_3 \\ z_3 & \overline{z}_2 \end{pmatrix}$$
.

If $\lambda = 0$, then we put A = I, B = C = 0, and

$$D = \mu^{-1/2} \begin{pmatrix} z_2 & -\overline{z}_3 \\ z_3 & \overline{z}_2 \end{pmatrix}$$
.

Then, in both cases, $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is an element of Sp(1, 1). Moreover g(e) = z, where $e = [0:0:1:0] \in U$. Hence Sp(1, 1) acts transitively on U.

LEMMA 1.2. The isotropy subgroup K of Sp(1, 1) with respect to the action on U is a compact group isomorphic to $Sp(1) \times SO(2)$.

PROOF. If $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(1, 1)$ fixes e = [0:0:1:0], then it follows easily from (1.2) that

$$B=0$$
, $C=0$, $A^*A=I$, and $D^*D=I$.

Since

$$Digg(egin{array}{c} 1 \ 0 \end{pmatrix} = \deltaigg(egin{array}{c} 1 \ 0 \end{pmatrix}$$
 , $\delta \in C^*$,

D is of the form

$$D\!=\!\begin{pmatrix}\delta&0\0&ar{\delta}\end{pmatrix}$$
 , $|\delta|\!=\!1$,

which is identified naturally with an element of SO(2). Hence $g = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in Sp(1) \times SO(2)$. Conversely, every element of this form fixes e. Hence K is isomorphic to $Sp(1) \times SO(2)$.

By Lemmas 1.1 and 1.2, we have the following

LEMMA 1.3. $U \cong Sp(1, 1)/Sp(1) \times SO(2)$.

There is a well-known exact sequence of Lie groups:

(1.3)
$$1 \longrightarrow \{\pm 1\} \longrightarrow Sp(1, 1) \xrightarrow{\rho} SO^{\circ}(4, 1) \longrightarrow 1$$
,

where $SO^{\circ}(4, 1)$ is the connected component of SO(4, 1) containing the unit. By Vinberg [4] (or by a more general result of A. Borel), we know that there are many finitely generated cocompact discrete subgroups in $SO^{\circ}(4, 1)$. Let $\overline{\Gamma}$ be one of them and put $\Gamma' = \rho^{-1}(\overline{\Gamma})$. Since ρ is a double covering, Γ' is also a finitely generated cocompact discrete subgroup of Sp(1, 1). By a well-known theorem of Selberg, there is a subgroup Γ of Γ' such that the index $[\Gamma':\Gamma]$ is finite and such that Γ contains no elements of finite order. If $\gamma(x) = x$ for some $\gamma \in \Gamma$ and $x \in U$, it follows readily that $\gamma = 1$. Since the isotropy group K of Sp(1, 1) with respect to the action on U is compact by Lemma 1.2, we see that the action of Γ on U is properly discontinuous. Therefore we have the following.

THEOREM 1. There are discrete subgroups $\Gamma \subset Sp(1, 1)$ such that the quotient space $\Gamma \setminus U$ are non-singular compact complex 3-folds.

$\S2$. An example of non-extendible holomorphic maps.

Let ε be any real number satisfying $0 < \varepsilon < 1$. Define a holomorphic injective map

$$j : \partial B(\varepsilon) \longrightarrow U$$

by

$$j(w_1, w_2) = [\alpha_0 : \alpha_1 : w_1 : w_2]$$
 ,

where α_0 , α_1 are any complex numbers satisfying

$$|\alpha_0|^2 + |\alpha_1|^2 = (1 - \varepsilon)^2$$

Let M be the manifold in Theorem 1. Let

 $\pi : U \longrightarrow M = \Gamma \backslash U$

EXTENSION PROBLEM

be the canonical projection. Define a holomorphic map

$$f : \partial B(\varepsilon) \longrightarrow M$$

by

$$f = \pi \circ j$$
.

Then we can show the following.

THEOREM 2. For any point $x \in \Sigma_2$, there is no neighborhood W of x in C^2 such that f extends to a holomorphic map \hat{f} of $W \cup \partial M(\varepsilon)$ into M.

PROOF. Suppose that there were such an open neighborhood W of xsuch that $W \cap \partial B(\varepsilon)$ is connected. Put $y = \hat{f}(x) \in M$. Since $\pi: U \to M$ is a Galois covering, we can choose a small relatively compact subdomain Δ around y in M and a relatively compact subdomain $\tilde{\Delta}$ in U such that $\pi^{-1}(\Delta) = \bigcup_{r \in \Gamma} \gamma(\tilde{\Delta})$. Moreover we can assume that each connected component of $\pi^{-1}(\Delta)$ is relatively compact in U. Since $\hat{f}|W:W \to M$ is continuous, we can assume that $\hat{f}(W) \subset \Delta$. Hence $f(W \cap \partial B(\varepsilon)) = \hat{f}(W \cap \partial B(\varepsilon)) \subset \Delta$. Therefore, since $W \cap \partial B(\varepsilon)$ is connected, $j(W \cap \partial B(\varepsilon))$ is contained in a connected component of $\pi^{-1}(\Delta)$. Since each connected component of $\pi^{-1}(\Delta)$ is relatively compact in U, we see that the closure $[j(W \cap \partial B(\varepsilon))]$ is compact in U. Hence, for any sequence $\{x_{\lambda}\}, \lambda=1, 2, \cdots$ of points in $W \cap \partial B(\varepsilon)$ which converges to $x \in W \cap \Sigma_2$, we can choose a subsequence of $\{j(x_{\lambda})\}$ which converges to an interior point of U. But this contradicts the definition of the map j.

REMARK 2.1. The above f does not extend even as a continuous mapping across Σ_2 . This is clear from the above argument.

REMARK 2.2. The manifold M is the twistor space over a conformally flat real hyperbolic differentiable 4-manifold.

§3. An example of holomorphic foliations.

For a complex manifold X, we let TX denote the tangent bundle and P(TX) the associated projective bundle. Let M be the manifold in Theorem 1 and put Z=P(TM). In this section, we shall construct a holomorphic foliation of dimension 1 on Z and study its leaves.

On $P(TP^3)$, we can consider two fibre bundle structures. One is the natural projection

 $p_1 : P(TP^3) \longrightarrow P^3$

and the other is the projection

 $q_1 : P(TP^3) \longrightarrow Gr(4, 2)$

to the Grassmannian manifold of all lines in P^{3} . The fibre of q_{1} passing through a point $v \in P(TP^{3})$ corresponds to the line in P^{3} passing through $p_{1}(v)$ with direction v. By the natural inclusion $U \subset P^{3}$, we regard P(TU)as a subdomain in $P(TP^{3})$. Then q_{1} defines a holomorphic mapping

 $q_2 : P(TU) \longrightarrow Gr(4, 2)$.

Obviously, every element of PGL(4, C) induces a holomorphic automorphism of $P(TP^s)$ and Gr(4, 2). Note also that every element of Γ induces a holomorphic automorphism of P(TU). Thus we have the commutative diagram

$$P(TU) \xrightarrow{q_2} Gr(4, 2)$$

$$\downarrow r$$

$$P(TU) \xrightarrow{q_2} Gr(4, 2) ,$$

for $\gamma \in \Gamma$. The action of Γ on P(TU) is properly discontinuous and we have

$$Z=P(TM)=\Gamma \setminus P(TU)$$
.

Hence the mapping q_2 defines a holomorphic foliation F on Z whose leaves are images of the fibres of q_2 in $\Gamma \setminus P(TU)$. Now we shall study the leaves of F. Let

 $\pi_1 : P(TU) \longrightarrow Z$

be the projection, which is an unramified Galois covering. Put

$$W = \{w \in P(TU) : q_2^{-1}(q_2(w)) \text{ is compact}\},\ W = \pi_1(\widetilde{W}), \text{ and }\ \widetilde{D} = q_2(\widetilde{W}).$$

For $w \in \tilde{W}$, $q_2^{-1}(q_2(w))$ is biholomorphic to P^1 , and is projected by p_1 onto a projective line in U. There are many projective lines in P^3 which are not contained in [U]. Hence $P(TU) - [\tilde{W}]$ is not empty.

LEMMA 3.1. \tilde{W} is a Γ -invariant subdomain.

PROOF. Take any $w \in \widetilde{W}$ and $\gamma \in \Gamma$. Put $\widetilde{L} = q_2^{-1}(q_2(w))$. Since $p_1(\widetilde{L})$ is

a projective line contained in U, so is $\gamma(p_1(\tilde{L}))$. Hence $\gamma(\tilde{L}) = q_2^{-1}(q_2(\gamma(w)))$ is biholomorphic to P^1 . Therefore $\gamma(w) \in \tilde{W}$. Thus \tilde{W} is Γ -invariant. That \tilde{W} is connected follows from the fact that any projective line in Ucan be displaced continuously in U to the line $z_0 = z_1 = 0$. It is clear that \tilde{W} is open.

LEMMA 3.2. Γ acts on \tilde{D} and the action is properly discontinuous.

PROOF. Since \widetilde{W} is Γ -invariant by Lemma 3.1, Γ acts on \widetilde{D} . Note that \widetilde{W} is a fibre bundle over \widetilde{D} with compact fibres P^1 . Therefore, since the action of Γ on P(TU) is properly discontinuous, so is the action on \widetilde{W} . Consequently, the action on \widetilde{D} is properly discontinuous.

By Lemma 3.2, the quotient space $\Gamma \setminus \widetilde{D}$ becomes naturally a normal complex space. Moreover the projection $q_2: \widetilde{W} \to \widetilde{D}$ defines a fibre bundle structure $\overline{q}: W \to \Gamma \setminus \widetilde{D}$ on W, whose reduced fibres are biholomorphic to P^1 . Since \widetilde{W} is Γ -invariant, W is a domain in Z such that $Z-[W] \cong \Gamma \setminus (P(TU)-[\widetilde{W}])$ is non-empty.

Let L be a compact leaf of F. Let \tilde{L}_0 be a connected component of $\pi_1^{-1}(L)$. Then \tilde{L}_0 is a fibre of q_2 and $\pi_1^{-1}(L) = \bigcup_{\tau \in \Gamma} \gamma(\tilde{L}_0)$. If \tilde{L}_0 is compact, then $\tilde{L}_0 \subset \tilde{W}$, and consequently $L \subset W$. Suppose that \tilde{L}_0 is not compact. Note that there is a compact curve $\tilde{L} \cong P^1$, which is a fibre of q_1 in $P(TP^3)$, such that \tilde{L} contains \tilde{L}_0 as a connected subdomain. Put $l = p_1(\tilde{L})$. Note that $p_1 | \tilde{L} : \tilde{L} \to l$ is biholomorphic. It is easy to show that $U \cap l$ is biholomorphic to C or a unit disk. Hence so is \tilde{L}^0 . Since Lis compact, there is a non-trivial subgroup Γ_0 of Γ such that Γ_0 leaves \tilde{L}_0 invariant and such that $\Gamma_0 \setminus \tilde{L}_0 \cong L$. Thus we have, in particular, the following correspondence.

 $C = \{\tilde{L} \subset P(TU) : \tilde{L} \text{ is a non-empty non-compact component}$ of a fibre of q_2 such that $\pi_1(\tilde{L})$ is compact} $\downarrow \emptyset$ $S = \{l \in Gr(4, 2) : \text{The isotropy subgroup } \Gamma_l \text{ of } \Gamma$

at l is an infinite group},

where $\Phi(\tilde{L})$ corresponds to the projective line in P^3 which contains $p_1(\tilde{L})$ as a subdomain. Then the mapping Φ is injective. Put

$$S_{\gamma} = \{l \in Gr(4, 2) : \gamma(l) = l\}$$
.

Then S_{γ} is a proper analytic subset in Gr(4, 2). Therefore we have

THEOREM 3. For the holomorphic foliation F on Z, there is a non-

empty subdomain W in Z, $Z-[W]\neq \emptyset$, and a thin set S in Z-[W] with the following properties.

(1) Every leaf L of F with $L \cap W \neq \emptyset$ is contained in W, and is biholomorphic to P^1 .

(2) All compact leaves in Z-[W] are contained in S.

Our last example, Theorem 3, shows that a theorem of Nishino [3] on parametrizing compact divisors does not hold in higher codimensional cases.

References

- M. ATIYAH, N. HITCHIN and I. M. SINGER, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362 (1978), 425-461.
- [2] MA. KATO, An example of compact complex 3-folds and an extension problem of holomorphic maps, preprint, 1983.
- [3] T. NISHINO, L'existence d'une fonction analytique sur une variété analytique complexe a deux dimensions, Publ. RIMS Kyoto Univ., 18 (1982), 387-419.
- [4] E. B. VINBERG, Discrete groups generated by reflections in Lobacevski spaces, Math. Sbornik, 72 (111) (1967), 471-488, Math. USSR-Sbornik, 1 (1967), 429-444.

Present Address: DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY KIOICHO, CHIYODA-KU, TOKYO 102, JAPAN