Toxyo J. MATH.
Vor. 13, No. 1, 1990

Correspondences for Hecke Rings and (Co-)Homology Groups
on Smooth Compactifications of Siegel Modular Varieties

Kazuyuki HATADA

Gifu University
(Communicated by K. Katase)

Dedicated to Professor Tosihusa Kimura on his 60th birthday

Abstract. We show that the Hecke rings act on the l-adic cohomology groups of suitable
non-singular projective toroidal compactifications of the higher dimensional modular varieties.
We extend the fixed point theory of Lefschetz to the correspondences for the Hecke rings
on those compactifications. We treat here the Siegel modular case.

Introduction and notations.

Let g=1, w=0, 7=1, k=1, and N=83 be rational integers. Let 2
denote a ring. Write
M; (2)=the set of jxk matrices with coefficients in 2; 2= M, (2);

1,=the kxk unit matrix e M, ,(Z); {g>= gﬁ-?zil).; J,,=[(1)g ”‘16] e M,, ,,(2);

9,=the Siegel upper half plane of degree ¢

={Ze M, (C)| Z='Z. ImZ is positive definite.};
Sp(g, Z)=the full symplectic modular groupcM,, ,,(Z); _
I'y(N)=I(N)=the principal congruence subgroup of Sp(g, Z) of level N;
GSp*(g, R)={v e GL(2g, R) | *vJ,vJ,;* is a scalar matrix whose eigenvalue
is positive.};
r(a) =the eigenvalue of ‘aJ,aJ;* for a € GSp*(g, R);
GSp*(g, @) =GSp* (g9, R)N M,, ,,(Q); GSp*(9, Z)=GSp*(9, R) N M,, ,,(Z);
GSp*(g, R) X R*“=the semi-direct product of GSp*(g, R) and R¥* with
R** normal such that

B8 0
(@, m)-(3, m=|a-B, r(B)"m| F-. +n
0 . B
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for all m and ne R“* and all @« and 8€GSp*(g, R). (In the right side
the products are those for matrices.) We let GSp*(g, R) x R** act on the
complex analytic space 9,xXC™"={(Z, &, &, ", &) | Z€ 9,, £;€C? for any

j€[1, w]} to the left as follows. Write m=(m,, n,, m,,n,,---, m,, n,) € R**

with m; € R’ and n,; € R° for any j €[1, w], and write a=(é g) € GSp*(g, R)

partitioned into blocks on dimension gxg. Then

4 B (2 )
((C D>, (ml’ nl’ mz’ n2’ ? mw’ nw ) 1 817 52’ 1 EW

C D

T<(g g))(&“mm nz>(1z\))<cz+p>—1,

{2 e imamfZ o).

It is well known that any congruence subgroup I of Sp(g, Z) is com-
mensurable with al”’a™! for any « € GSp*(g, Q). In this paper we assume
Ir=r,N) with N=38 for simplicity though our results hold good for any
congruence subgroup of Sp(g, Z) acting on 9§, with no fixed points. Write
HR(I", GSp*(g, Z))=the Hecke ring over Z with respect to the group I
and the monoid GSp*(g, Z), which contains I". (For the definition of the
Hecke ring, see e.g. Shimura [18].) Let A, be the universal principally
polarized abelian variety with level N structure over the complex analytic
quotient space I'\9,. Let A? be the w-fold fibred product of A, over
the I'9,, and let E’: A»—TI\9, be the canonical morphism. We may
regard the complex analytic quotient space (I" x Z**\9,x C?”) as this AZ.
By the theory of the toroidal compactification (ef. Ash et al. [2], Chai
[4], Namikawa [14], [15]), the (I"x Z**\$,x C’”) has a non-singular pro-
jective toroidal compactification. It is not necessarily unique. Write A}
for the I'\Y,. We consider simultaneous non-singular projective toroidal
compactifications of A2 and A}. Take a regular and projective Sp(g, Z)-
admissible family X ={X{"};,. rationai components Of polyhedral cone decompo-
sitions for the toroidal compactification of A}. e.g. Take a suitable re-
finement of the second Voronoi decomposition. Then take its mixed cone
decomposition (ef. Namikawa [14] and [15]). By this we have a regular
and projective Sp(g, Z) x Z*“-admissible family X ={Z{"}z . rational components
of polyhedral cone decompositions for the toroidal compactification of A¥.

= ((AZ+B)(CZ+D)'1, 'r<<A B>><$l+(ml, n1)<1Z))(CZ+D)‘1 )
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Then we get desired simultaneous compactifications (A,) and (A})" and
a proper canonical morphism E: (A;) —(A%) . For simplicity write M=
(A;)~ and ,M=(A%)  from now on throughout this paper. Let I be a
prime number. Write
Z\M, Z)=the group of 0-cycles on M with Z-coeflicients;
H, (M, Z)=the singular n-th homology group of M with Z-coeffi-
cients; :
H(M, Q,)=the m-th [-adic cohomology group of M (cf. Artin et al.[1]
and Deligne [5]);
H"(M, (R"E,.Q)®)=the n-th l-adic cohomology group of ,M with coef-
ficients in the j-fold tensor product of the m-th l-adic direct image
sheaf R"E,Q, (cf. Artin et al. [1] and Deligne [5]).

To explain our results in this paper we need

THEOREM A (Hatada [8, Theorem 1]). The Hecke ring HR(I",GSp* (g, Z))
actson H, (M, Z), i.e., there is a ring homomorphism f,: HR(I",GSp*(g, Z))—
End,(H,(M, Z)) for each integer m € [0, g(g+1)+2gw].

Write & ={@0x L |® is a subgroup of GSp*(g, @ which is commen-
surable with Sp(g, Z). @ acts on §, with no fixed points. L is an
additive subgroup of Q** with (d,Z)**cLcC(d;'Z)** for some positive d,
and d, € Z which may depend on L. @xL is a subgroup of GSp'(g, Q)
Q**.}. For simplicity write 2=9,x C?”. For any group G € &, we denote
by (G\®)~ the toroidal compactification with respect to the above X" in
this paper. Standard facts about the toroidal compactification yield the
following two propositions.

ProprosiTION B (Hatada [8, Proposition 1.1]). Assume G,CG, where
G, and G,e .. Let ¢ denote the camonical holomorphic map: G\D—
G,\D. Then there exists a wumnique finite surjective holomorphic map
@~ (G\D)~— (G,\D)~ whose restriction to G\D is p.

ProprosITION C (Hatada [8, Proposition 1.2]). Let Ge. &+ and let
a € GSp*(g, Q) x Q*". Let @ denote the biholomorphic map: G\D—aGa \D
given by GP—aGa*(aP) (Pe®). Then there exists a unique biholomor-
phic map a~: (G\D)~— (aGa\D)~ whose restriction to G\D is a. (Note
that aGa e & if Ge &)

Let € GSp*(g, Z) and write c=7(a). We have I'al'= Ui, I'a, (dis-
joint) where u=": I'Na™'I"'a). Note that (a;, 0) € GSp*(g, Q) x @**. Look
at the following commutative diagram.
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0.1)
~(L'y(¢’N) X (cZ)**\D)~
o| (@ 0Ty (eN) x (0Z)*) (@ D)~ -2 (I (cN) x (cZ)+\D)~
Jeo Ji
\o(I" X Z*"\D)~=M I'xZ*\®)~=M

Here I'=I,(N), r=n""om,, and the vertical lines denote the canonical
maps given by Proposition B. For each closed point Pe€ M, there exists
a closed point P’ e (I',(c*N) x (cZ)**\D)~ such that 7(P)=P. We see that
the points (0-cycle) 3. [x]e(a;, 0)~ox,(P’) are determined only by P and
do not depend on the choice of P’ with n(P’)=P (cf. Hatada [8, §2]).
Write S(I'al’),= U, [7]°(a;, 0)~ o (P’). We define 2°,(I'al’) to be the
subset Up.x{P}*S(I'al), in the product variety Mx M. We see that
Zy(lal’) is a locally analytic subvariety of the projective variety Mx M
and that it is a (¢g> +gw dimensional subscheme of Mx M over C.

For an element . [=>, m;l'a;["+0 of HR(I", GSp*(g, Z)) where each
m;#0€Z and I'a,l#TIa;I" if j#j', define 27, () to be U; Zy(la,l).
Let f.())&;id. be the element of Endy(H,.(M, Q)) under the isomorphism
H,M,Z)®.Q=H,(M,Q). Write d={g)+gw=dim:;M. Let D,: H* "(M,Q)—
H, (M, @) denote the Q-linear isomorphism by the Poincaré duality for each
n€[0, 2d]. Let <, ), denote the Kronecker index: H*(M, Q) x H,(M, Q)—
Q, which is non-degenerate, for each n €0, 2d]. Let *(f.(%)X,id.)
denote the transposed map € End,(H"(M, Q)) with respect to this (, ),.
Define Coincidence Number L,(], ;) on M for elements .o and
7, € HR(I", GSp*(g, Z)) by

L(5, 30 =35 (— D" TH{D,o (frae D@3 1)o Di e (ful )@ i) .

Our main results in §1-§3 are the following theorems 1, 2 and 3.

THEOREM 1. There exists a certain natural Z-bilinear map F,:
HR(I", GSp* (g, Z)) x HR(I", GSp* (9, Z))— Hom,(H,(M, Z), H,(Mx M, Z))
Jor each integer m=0. (For details see §1, Theorem 1.5 and Lemma
1.6.)

Write AM)={(x, y ) eMxM|xz=y}. Let c:(MxM @)—>(MxM,
MXxM—4(M)) be the inclusion map for pairs of topological spaces.
Let ¢, denote the induced Z-linear map: H,(Mx M, Z)— H,(Mx M,
MxM—4M), Z) for each n=0. Since M is a complex projective mani-
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fold, it is orientable. Let s be an orientation of M. Let z denote the
fundamental class of M attached to s, and let U denote the Thom class
of M attached tos. (Hence ze H,;(M, Z);Uec H*(MxM, MxX M—4(M), Z).)
One has the isomorphism: H,,(MXM, Mx M—A(M), Z)=Z given by {—
(U, &,, under the Kronecker index. Define Coincidence Index I,(.&7, %)
on M for elements . and %€ HR({, GSp*(g, Z)) to be the integer
corresponding to the class

La0° (Foa((S7, 92))(2) € Hyo(M X M, M X M—4(M), Z)

under the above isomorphism. In §1 we also define Coincidence Class
E,( 7, 7)) € H*(M, Q) for elements .o/ and .o € HR(I", GSp*(g, Z)).

THEOREM 2. L,(7, 7) = 1,5, &%) for all &7 and 7€ HR(,
GSp*(g, Z)). (We call this Coincidence Theorem.)

THEOREM 8. Let & and 7€ HR(I", GSp*(g, Z)). If L,(v, )+#0,
then 2 ()N y(%)#=@. (We call this Fixed Point Theorem.)

Let I be a prime number. In §4 and §5 we show the following
two theorems.

THEOREM 4. The Hecke ring HR(I", GSp*(g, Z))X, Q, over Q, acts on
H~M, Q) as an anti-ring homomorphism, i.e., there exists a natural
anti-ring homomorphism f™: HR(I", GSp*(g, Z))X,Q: — Ende, H" (M, Q))
for each integer n=0.

THEOREM 5. The Hecke ring HR(I", GSp*(g, Z))X, Q, over Q, acts
on H*(M, (R"E.Q)®) as an anti-ring homomorphism, t.e., there exists
a mnatural anti-ring homomorphism ™. HR({I", GSp*(g, Z))X; Q,—
Ende, H*(,M, (R"E.Q)®’) for each integers n=0, m=0 and j=1.

This action is compatible with the action in Theorem A through the
comparison theorem of l-adic cohomology: H"(M, C)=H"(M, @,)X)e, C and
the Kronecker index.

The main results of the present paper were announced in Hatada [9].

The previous title of the present paper was ‘“Correspondences for
Hecke rings and (co-)homology groups on Siegel modular varieties”.

§1. Some homomorphisms and coincidence index.

Recall I'=I",(N) with N=3, M= x Z**\®)~ and D=9,xC. Let
4: M—MxM denote the diagonal map defined by 4(x)=(x, x) for any
x€ M. Then 4(M)=Image 4.
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Now let « and B be elements of GSp*(g, Z). Write r(a)=c and
r(B)=b. Let I'al'= Ui, I'a, (disjoint) and let I'gl'= UL, I'B, (disjoint).
We define holomorphic maps K(a,) A<i<p) and K(B,) A=<z=<y') by the
compositions of the maps in the following commutative diagrams. Use
the relations of (a,, 0)7'(L"y(beN) X (beZ)**) (e, 0) DI ,(bc*N) X (beZ)** and
(Bzy 0)7(I3(beN) X (beZ)**)(B,, 0) DI ,(b*c¢N) X (bcZ)** (cf. Hatada [8, Lemma
2.1)).

1.1.1)
— (5(b¢*N) X (be Z)**\D)™~

|

(I"y(be*N) X (beZ)***\D)~

m 1

(s, 0T, (BeN) X (3 Z)*)(ctsy OND)~ 22w (I, (beN) K (be Z )™\ D)~

\ M M
(1.1.2)
— (L, (bc*N) X (be Z)*\D)~

l

(I'y(b*eN) % (be Z)*™*\D)~

m |
(B 0T (beN) X (562)**)(By O\D)~ 222w (I, (86 N) x (BeZ)e"\D)~

- M M

In (1.1.1) and (1.1.2) the vertical lines denote the canonical holomorphic
maps given in Proposition B.

LeEmMMA 1.1. (i) For each (closed) point P€ M there exists a (closed)
point P’ e (I, (b*¢*N) X (beZ)**\D)~ such that II(P')=P.

(i) The O-cycle >3, K(a,)(P') (resp. 3L, K(B,)(P)) on M 1is deter-
mined by Pe M and the double coset I'al’ (resp. I'BI"), and does meither
depend on the choice of P'e (I',(b¢*N) x (bcZ)*\D)~ with II(P')=P nor on
representatives {a.}io, (resp. {B.}il,) for I'\I'al' (resp. I'\I'BI).

The proof of Lemma 1.1 goes in the same way as in Hatada [8, §2,
(DEF. 1)]. We may leave it to the reader.
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By Lemma 1.1 we may write
(rar)®P)= 0 K@)P);  (TAP)=UKE)P)

for Pe M with II(P)=P. Note that 2,(I'al’)= UpculP}*x "al )(P) in
Mx M and that 27,(I'8) = Upex{P} x (I'B)(P) in M X M. (Here 2 y(I'al’)
and 2 ,(I"'8") denote the subschemes defined in the introduction.)

Now let v, and v,erl’, let i€[l, ], and let z€[l, ¢']l. We denote
by (K(7,e), K(7,83.)) the holomorphic map defined by the following com-
mutative diagram.

(1.2.1)
M

Iproa'n
([, (B N) x (boZ)*\ D)~ (Ka). KOBD __, pr M

N lPrOJs
M

We obtain K(7v,a,)=K(a,) and K(v,8,)=K(B,) since (I',(bcN) X (bcZ)*") <
(I'x Z*#*) and (7,, 0)~: M=(I" X Z**\®)"— M is the identity map for v=1
and 2.

Recall the following theorem and proposition.

K("ay)

THEOREM 1.2 (Lojasiewiez [12]). Let X be a compact complex manifold
and let A be an analytic subset of X. Then there exists a finite analytic
(hence C'-) triangulation of |X| in which A appears as the support of
a subcomplex. (For details see [12, pp. 463-464].)

PropoOsITION D (Hatada [8, Proposition 1.3]). Let & denote the set
defined in the introduction. Let G, and G,€ &#. Assume

G,<G,=Sp(g, Z)x Z*" .

Then one obtains:

(i) The canonical morphism »~: (G\D)~—(G,\D)~, given by Propo-
sition B, is a Galois covering with the Galois group G./G,.

(i) Let P, and P, be (closed) points in (G\D)~. Then the following
are equivalent.

o~ (P)=¢ (P,) == h~(P)=0P, for some heG, .
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Here h™ demotes the biholomorphic map: (G\D)~— (G\D)~ given by Prop-
osition C.

Setting X=M and A=the branch locus for the 17 in (1.1.1) and (1.1.2)
we apply Theorem 1.2. Note ACM. Then we have a C!-triangulation
t: |R - M enjoying the condition in Theorem 1.2, where & denotes a
finite ordered simplicial complex. Let 3 (resp. ¢) be an ordered n-cycle
(resp. m-chain) with Z-coefficients of & We may write uniquely

3 (resp. o)= > PP, P, -, P

a finite sum with
respect to v

where 1€ Z and P;” is a vertex of & Let {e,e,---,e,,,} be the
standard basis of the (n-+1)-dimensional Euclidean space R"*'. Write
4" for the m-simplex with the vertices e, e, ---, e, and e,,,. Now let
s denote the map: |4 —|<P®, P®, ..., P> given by e,— P (j=1, 2,
-+, n+1) and extending this linearly to |4*| for each v. For the image
of 3 (resp. o) under these maps, we have a singular n-cycle (resp. n-chain)
s(3) (resp. s(o)) dg.z,, [™tos™ with Z-coefficients on M. (It is well known
that this correspondence induces an isomorphism: H,(8, Z)— H,(M, Z).)
By our choice of a C!-triangulation ¢: (R — M, if necessary, by taking
a suitable subdivision of &, for the j there is a singular =n-chain V
with Z-coefficients on (I7,(b%*N) X (bcZ)**\D)~ such that G 1Iv)=
8(3) =2, 1"tos™ and (ii) 0V =the image of V under the boundary
homomorphism, is written as 3%, A,—3*_ B, for some positive ke Z
where (7,, m,)~(A,)=B, with some v,e€I’ and some m,c Z** for each
w€[1,k]. Here (7., m,)~: (I'y(d*c*N) X (bc Z)**"\D)~— (I" ,(b°c*N) x (beZ ) N\D)~,
As a singular n-chain with Z-coefficients on Mx M, we may define
(I'al’, I'BI')(s(3)) by

(DEF. (1.2.2)) (l'arl, FBF)(S(a))=§ i:.l (K(at), K(BN(V) .

This does neither depend on the choice of representatives {a;}=, (resp.
{B.}:=) for I'\I'al' (resp. I'\I'BI") nor on the choice of V enjoying (i).
(Take a suitable subdivision of R if necessary.) This proof is similar
to the proof of (DEF. 1) in Hatada [8, §2]. We obtain the following
three Lemmas 1.3, 1.4 and 1.6 whose proofs are also similar to those for
Lemmas 2.3, 2.4 and 2.5 in Hatada [8] respectively. We may leave their
proofs to the reader.

LemMMA 1.8. This (I'al’, I'Br)(s(3) is a singular mn-cycle with 2Z-
coefficients on M X M.
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(For this proof use the facts that (a,, 0)-(7v,, m,) € (' X Z**)(a,, 0)
with 1=<i'<py, that (8, 0)- (7., m,) € (I' X Z**)(B,, 0) with 1=a'<¢’, and
that the map: (¢, )— (4, ') is a permutation of [1, ¢]x[1, £I1NZX Z for
each (v,, m,).)

By the construction, this (I'al’, I'8')(s(3)) is a singular n-cycle on
MxM—4aM) if 2,TalNNZ,T'BMN=0.

LEMMA 1.4. Let ¢ be an ordered (n+1)-chain with Z-coefficients of
&, and let oo be its boundary. The singular n-cycle ('al’, I'BI")(s(d0))
18 a singular n-boundary with Z-coefficients.

From Lemmas 1.3 and 1.4 we obtain

THEOREM 1.5. (i) The map s(3)— (I"al’, I'BI')(s(3)) induces a unique
Z-linear map € Hom,(H,(M, Z), H. (Mx M, Z)).

(i) If 2,TalNZ B = O, the induced map in this (i) is an
element of Hom,(H,(M, Z), H. (M X M—4(M), Z)).

We write {lal’, I'8I'}), for the induced mape Hom,(H,.(M, Z),
H,(Mx M, Z)) in Theorem 1.5. Here n € [0, 2d].

LEMMA 1.6. This map {I'al’, 'BI'}, does mot depend on a way in
choosing a C*-triangulation enjoying the conditions in Theorem 1.2 with
respect to A=the branch locus for the II and X=M.

Let ne[0, 2d]. Let us consider the map: a pair (I'al’, I'GI") of
double cosets— {I'al’, 'Bl'},. We can extend it Z-bilinearly to F,:
HR(I", GSp*(g, Z)) x HR(I", GSp*(g, Z)) — Hom(H,.(M, Z), H.(M X M, Z))
uniquely. Namely F,C; m;lo;l, 3, LB =3 2 mldl ol I'Eyl '},
Theorem 1 in the introduction is proved.

We obtain

THEOREM 1.7. If 2.(Lal)NZ 'R = for a and g€ GSp*(g, Z),
then the coincidence index I,(I'al’, I'BI")=0.

ProoF. If 2,(Fal’)NZx(CR)= @, the map ¢,,,o{lal’, I'BI'},; splits
as follows by Theorem 1.5:
H,\(M, Z)— H;y(Mx M— A(M), Z)
— H, (MXM—AM), Mx M—A(M), Z)={0} .

Theorem 1.7 is proved.
We get readily
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COROLLARY 1.8. Let ~=>,,m;l'a;," and 4=>,1,I'e, I e HR(I,
GSp*(g, Z)). If I,(57%, )0, then 2 ()N W( )+~ D.

Consider ¢,,,o(F,.(;, ) Hyy(M, Z)— H, (M XM, Mx M— A(M), Z)
for o and o4 of HR(I', GSp*(g, Z)). Tensoring this with Q over Z
we have the Q-linear map ¢,,,°(F,.(.%, )R, id. : H,,(M, Q) — H,,(M x M,
MxM—4M), Q under H,(M, Z)R,Q = H,,(M, Q) and H,(MxM,
MXM—4M), Z)R;Q@=H,,(MxM, MXx M—4(M), Q. With respect to
the complete duality of the Kronecker index, the transposed map
W(lagg © (Foa( V], 7)) R,id.) is a @Q-linear map from H*(M x M, Mx
M—4(M), Q) to H*(M, Q). In the same way we have the @Q-linear map
tay@z1d. : Hyy(MX M, Q) — H,y(MX M, Mx M— A4(M), Q) and its transposed
map ‘(¢,,&Qzid.) : H*(M X M, Mx M—4(M), Q) — H*(M x M, Q) with respect
to the Kronecker index. Let U be the Thom class of M, let U denote
the canonical image of U in H*(MXxM, MXxM—4(M), Q), and let U~=
(lxy Rz id.)(U). Let Z denote the canonical image of the fundamental
class z of M in H,,(M, Q). '

DEFINITION 1.9. Let % and .4 HR(, GSp*(g, Z)). We define
Coincidence Class &,(5, ;) on M of &7 and &7 to be

(aggo (Froa( 7, )Rz id.)(0)
which is an element of H**(M, Q).
In §3 we prove
THEOREM 1.10. Notations being as above, we obtain that

<:M(¥/Q/11 ‘%)1 §>2d=Lu(*%) -/Q/z)
Jor all 7 and &7, in HR(", GSp*(g, Z)) .

Here {, ),, denotes the Kronecker index.

REMARK 1.11. Let a€GSp*(g, Z). Recall D=9, xC”. Set X=the
complex analytic quotient space ((I"x Z***)N((a, 0)7'(I" X Z**)(a, 0)))\D.
Let v, : X>(I'xZ"\D) and v,: X — (a, 0)7'(I" X Z**)(a, 0)\D) be the
canonical maps. Let [(a, 0)] be the map : (o, 0)"'(I" X Z**)(a, 0)\D) —
(I'x Z**\®) induced from the map (a, 0) : D—>D. Write v,=[(a, 0)]ov,.
Consider the graph of wv,o'v,, for which we write GR(v,0o'w,), in the
product (I"x Z**\®)x (I' X Z**\D). Then the 2", (I"al’) coincides with
the closure of GR(v;°'v,) in M XM with respect to the usual complex
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topology and also with respect to the Zariski topology.

§2. Some lemmas.

We need the following three lemmas. We use the Kiinneth formula
for H,(Mx M, Q).

LEmMMA 2.1. (Viek [21, p. 151, (5.21)]). Let ke[0,2d]NZ and let
(, >, denote the Kronecker index. Then

(@, O =(—1)""<U~, Dy 1(#)Be &2

for all xe H*M, Q) and all (€ H,(M, Q). (For the definition of D,; ,
see the introduction.)

Recall that 4 is the diagonal map: M —>Mx M. Let 4,,: H,(M, Z)—
H.(MxM, Z) be the linear map induced from the map 4 for each
ke[0, 2d]NZ. Select a homogeneous basis {x,}, for @i, H(M, Q). De-
note by {a,}, the basis of @:., H,(M, Q) dual to {x,}, under the Kronecker
index. Define another basis {x)}, for @, H(M, Q) by Dgima,(*,)=0a,
for every ; and let {a.}, be the basis for @i, H (M, Q) dual to {x.},
under the Kronecker index.

LEmMMA 2.2 (Vick [21, p. 186, Lemma 6.11]). Omne has
(410, @7 1)@ =3} (— D @Imer @m0 (6, @0 a])

where =dime @i-, H,(M, Q) and (4,,Qz1d.) : Hyo(M, Q) — H,o(M x M, Q).

Let k[0, 2d]NZ. By the Kiinneth theorem we have the following
split exact sequence.

0}— & H,(M, 2)Q; H(M, Z)— H,(MX M, Z)
— @ Tor(H,(M, Z), H(M, Z))— {0} .

p+g=k—1
Let 7 and %€ HR(I", GSp'(g, Z)). Let f, be the homomorphism in
Theorem A for ne[0,2d]. Then we see that >, . (f,()XR2 f,(57))
(resp. the pair of f,(%) and f,(.})) induces a unique (canonical) endo-
morphism of @, .-, H,(M, Z)R, H, (M, Z) (resp. Tor(H, (M, Z), H,(M, Z))).
From these we obtain the endomorphism [.%7, %], of H . (Mx M, Z) given
by:
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2.3.1)
H(MxM, 2)=( & H,M, 2)Q.HM, Z)P( D _Tor(H,(M, ), H(M, Z)))
[ O |, & @t |y B o0 £

H,(Mx M, Z)Z‘(,@,,Hv(M’ Z)RH,(M, Z))@( +GBHTor(H,,,(M, Z), H(M, Z)))

Let F, be the map defined in §1. From our construction of F,(,) and
[, ] we obtain

(2.3.2) F (7, ) =[5, )04y, for each k€[0, 2d] .

To an endomorphism w € End, H,(M, Z), write X, id. € End, H,(M, Q)
for the induced map from w by H,(M, Z2)X,Q=H,M, Q). Let ‘(®w®,id.)
(e Endy H*(M, Q)) denote its transposed endomorphism with respect to
the Kronecker index for M. Let {f.,}’., be the homomorphisms in
Theorem A.

LEMMA 2.3. Let a and € GSp*(g, Z). Write p=dim, P2L, H,(M, Q),
[Fal'l,=f,l'al’) and ['B),.=f.(I'BI") for simplicity. Then we obtain
0
;;1 (—1)(dlmz"’)((([rarl(zd—(dlmz;))@Z id-)°D(2d—(d1mz;))
o[BI | aim 23Xz 14.)) ()R @)
(=1)@=([Farl’, ', id.)(@,.Q, a.) .

M

PrOOF. We can write
o
‘(Fallam.,®:id.)@,) =2, a,.z. and
o
‘IrBr'lum z’,)®z id.)(x}) =u2=41 Baulu

with some rational coefficients {a,.}is.<0.154s0 20 {Boulig0s0.15us0e We can
also write

ﬂ
(7B Naimeyy @7 1d.)(@) =3 M0l and
([Fal—‘](dlma,)®z id.)(a‘)=u§—1 N:ta.a'u
with some rational coefficients {A..}icuszpisese 8DAd (Mt }icusoi<e<o- Notice

that a,,=28,.=0 if dimz,#dim x, viz. dim 2, +#dim «}; and that xn,,=\.,=0
if dima, #dima, viz. dima,#dima,. Let7and j€[l, p]NZ with dimx,=
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dim #; viz. dim,=dim#;. Then note that dim a}=dim z}=dim z, and
dima;=dimz;=dimx,. Let (,) denote the Kronecker index for M.
We have

8=} Bt )

—'<t([rﬁr](dlmxt)®z id.)(@), a3 =<, [Fﬁ[‘](dimx,)®z id.)(a?))
=<w¢, Y M,-au>=>w,- ;

o ;= i 14 2T%( a’j>
=l al iRz 1d.) (@), @) = <xu ([FaF](dima,)®z id.)(ay>
<xiy Z 7\'11_; >——)\‘1«3 .

Hence we have:

(7B Nty ®z id.)(@) =33 Bus0is and
o
([Far](dimai)®z id‘)(a’i);—uZ:lauia’u .
We expand the element

def = ([I'al] - (@im g} ))®z id. )OD(zd-—(dlmw.))o ([FBF](dlmz,)®z id.)(x;)
in terms of the basis {@,}?_,. Then

(its coefficient at a;)=(w,, X)
=<t([rar](2d-(dlmz;))®z id-)(x,'), D(zd—(dlmw’,))ot([FBF](dim a’,)®z id.)(2.))

o e e e
=<£ZI 1%, D(zd_mimz',))(z‘;l wa;>>=<lz‘{ ;% 142'11,3”0«‘>
= = = =
p o
= Z ajuBau . <
u

the left side of the equation in Lemma 2.3
=3, (— D3 (2 @80 )2:) Deas

=1

T3S (e 6,080 4l

2=1 §=1 u=1
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since dim«,=dima,, and
the right side of the equation in Lemma 2.3

=3 (— D) D (Tal Tuime, @z 1d.)(@,)Rq (I8 Nim oy O 1d.)(@2)

+=1
/. o 0
=3 (—1)uim a,)((z“ al.“l)@q (Z Bk»a;))
2=1 =1 k=1 y
o 0 n ) , ,
=Zl 2 l; (_1)(dxma;)+(\Lmak)+(dima,‘)al'Bk’al@)o a’;c
a=11=1k= .
p 0 0 A ,
=2 Z (— 1)(dxm ak)albﬁk@a’l®o a;c

~
Il

-
L

=1

2=1

since B,,=0 if dima,+#dima;,. Lemma 2.3 is proved. (We have given
this proof by extending the method of Viek [21, p. 185, Lemma 6.10] to
the case of our operators for the Hecke rings.)

§3. Coincidence Theorem, Fixed Point Theorem and proofs.

Let »[=>),m;,[a;I" and VA%=Z,, l.I'B.I" € HR(I", GSp*(g, Z)). Recall
M= x Z*"\D)~. We define L,(], %) by

= 2’ . .

L, (57, 7)) =§0 (—D)"Tr{D; o (fu( DRz id.) o D, 0 (fra_n( )Rz id.)} .
Recall the definition of L,(5, .%;) given in the introduction. By the
elementary matrix theory we have

Lu( 57, ) =(—12Ly(o4, 58)=L(7, ) .

PrROOF OF THEOREM 1.10. Write (, > for the Kronecker index {, >,
on M. By the bilinearity of L,(,) and < x(, ), ) it is sufficient to show
that (,(Tal’, I'BIN), Z)y =Ly(l'al’, ’'RI") for any a and g€ GSp*(g, Z).
Write [Cal'l,=f.("al’) and [I'B'].=f.(I'BI") for short. We have:

Eu(rar: FBF)’—"Z',I(—-1)“:“’"”(0(?_“ mz;))°([rarl(zd—(axm z’,))®z id.)

OD(Zd—-(dimzf,))O‘([Fﬁrl(dlm z',>®z id.)(x}), a,)
[ , .
='=1("1)(dim (U™, ([TalNza-@im z;,))®z id.)o Dy qaim z3))
o[BI aim 24, Xz 1d.)(x,) Ko @, by Lemma 2.1,
P
=2, (—1) = U~, ([Fal’, 'Rz 1d.)(@,Qe a,))

=1

by Lemma 2.3,
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(Here use (—1)@imed) =(—])@imep@imel) ginece (dim a,)+ (dim a))=2d.)
=<U~, ([I'al", I’ BI',i&7 id.)(44,,&)7 id.)(?)) by Lemma 2.2,
=U~, ({Ial’, I'BI},Q71d.)(?)) by (2.3.2) ,

where {l'al’, I'RI'},Q7id. : Hyy(M, Z2)Q, Q= H,,(M, Q) — H,,(MxM, Z)Q,
Q=H,(Mx M, Q. Hence :

L(Ial’, I = (t4,,®7 1d.)T), ({Tal’, ['EI®, id.)(@))
= (((txpq®z 1d.)o({T"al", T'AT},.R,1d.))(D), 2
= ((agge Foalal’, FRN)HR), id.)(T), 7
={y(lal’, I'RIN), Z)

by Definition 1.9. Theorem 1.10 is proved.
Now we give proofs of Theorems 2 and 3 in the introduction.

PrOOF OF THEOREM 2. By the bilinearity of the Coincidence Index
and the Coincidence Number it is sufficient to prove it in the ecase
of w[=Ial' and ;,=Ig for any a and B<€GSp'(g, Z). Recall
LyI'al’, I'BI") = KU, ¢y, ,ol’al’, I'BI'},4(2)),,. Tensoring these elements
with @ over Z we have:

I,(I’'al’, I'RI")
= (U, (tepy®z1d.)o({Tal’, TRz id.)(E))a
={U, (txpy°(Frollal", TBIM)R 1d.)(Z))1a

= ((argo (FoaTal’, FRDNR, 1d.)(T), 2.4
:<‘:M(Fa['y PBF), E>2d

by Definition 1.9. Now Theorem 2 is derived from Theorem 1.10.

Proor or THEOREM 3. It is a consequence of Corollary 1.8 and
Theorem 2.

§4. On l-adic cohomology groups, I.

Let X and Y be schemes which are separated and of finite type
over an algebraically closed field .2 (e.g. @, C), let | be a prime number
with [#Characteristic of 27, let u: X—Y be a finite morphism, and
let HYX, Q) and HXY,Q, be the l-adic cohomology groups of X
and Y with compact support respectively where n (=0)e Z (cf. Artin
et al. [1], Carter [3], Deligne [5], Hartshorne [6] and Srinivasan [20]).
Then it is well known that # induces functorially a canonical map
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u* € Homo (HX(Y, @) — HX(X, Q) for each n(=0)e Z. In this section we
prove Theorem 4 in the introduction. Recall M=(I"X Z**\D)~ where
I'=r,N). Since M is a non-singular complex projective variety, one
has H*(M, C)=H"(M, Q,)Qe¢,C by the comparison theorem of the l-adic
cohomology theory. One has the non-degenerate bilinear forms of the
Kronecker index H*(M, C)x H,(M, C)—C (n €0, 2d]). The anti-ring homo-
morphisms {f*},-, in Theorem 4 are compatible with the homomorphisms
{fu}azo in Theorem A and these bilinear forms of the Kronecker index.
We need:

LEMMA 4.1 (Artin et al. [1]; also cf. Carter [3; p. 203] and Srinivasan
[20, p. 53]). Suppose that & is a finite group of automorphisms of X
such that a strict quotient £\X exists. Then

H}\X, Q)=HXX, Q)°  for each n(=0)eZ.

For the definition of “strict quotient” see e.g. Carter [3, p. 13].
Under the condition of Proposition D in §1 we see that (G,\®)™ is
a strict quotient £\(G,\\®)~ where ¥ =@G,/G,.

PrOOF OF THEOREM 4. Recall '=Iy(N) and D=9,xC. Let ac
GSp*(g, Z). Write c=7r(a) and I'al'= UL, I'a, (disjoint). See the com-
mutative diagram (0.1) in the introduction. We use the same notations
given in (0.1). Notice that those =, 7', m, (a,, 0)~ and [rz] are all finite
morphisms. Let us fix neZ with 0=n=<2d=2{g) +2gw arbitrarily.
Consider the element:

r= ;:‘ nto(ay, 0)~*o[]* € Home,(H"(M, Q,), H*(I' ,(¢’N) X (cZ)*"\D)~, Q) .

Choose v,€I" for each 7 €[1, ¢] arbitrarily. Then we obtain:
(Yt 0)~*o[z]* =([7]o (7, 0)~o(a;, 0))* =([7]o(ax,, 0))* = (ar;, 0)~*o[7]*

since we have id.o[r]=[x]°(7, 0)~ (cf. the diagram in front of (2.8) in
Hatada [8]). Hence the above 1" does not depend on the choice of rep-
resentatives {a.}*, for NIal.

Now we show:

(4.2) (v, m)y~*Y =Y for all (v, m)e ' x Z%*

29w : I'a, I'a oo I'a )
Let (v, m) e.I’le . We have a permutation ( I’ai’Y Fa:'Y L FaZ7 of
I’'\I'aI’, which gives the permutation <(7) of the numbers {1, 2,---, g}
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with F'aY=Tagw A=1<t). Write a,-Y=7i auw with some v; eI’ for
each 7€[1, ¢#]. Then we obtain:

(a, 0): (v, m)=(7}, x.) (@, 0) = With some x, € Z*
in GSp*(g, Q) X Q*" for each t€[1, ¢]. Hence we hgve
(@ 0)~o (7, m)~=(7;, X))~ (s, 00
Now let ¢€[l, ] be fixed arbitrarily and write k= <{7)7'(3). Then
(a, 0)+ (¥, M)=(7}, %)+ (cty 0) .

Look at the following commutative diagrams.

(T, (@ NYX (2 \D)~ 2 (Fy(c* N) X (02)9\D) =22 (@, ) (To(c*N) X (02)*%) (@, 0)-\D)"

ltk 4
(e h »0~

(@n, 02T, N) X (¢2)2*) (an, O\D)" —22% (I (oN) xl (cZ) e\ D)~
=]
M=K Z"\D)~
(4 NYX 0Z)™\D)~-2%% (o, 0)(T'4(6 NY X (62)19%) (e, 0)-\D)"— 228 (1n\ayy~

z¢ q 1’
(@6 0T 5 e N)X (62)17) (@, O\D)~ =22 (I'y(eN) |><l<cZ>=W\sa)~ {Throp) (P.(cmmzrmlmr
(=] [x]
M=K Z¥\D)~ s M= ("X Z¥°\D)~

Here we have written I''=(7}, x4) (o, 0) (I, (¢ N) X (¢ Z)***) (s, 0) 7+ (Y3, X3)7'=
(atn, 0)((EN) X (¢ Z)**) (s, 0)7*. All the horizontal lines denote the iso-
morphisms given by Proposition C. All the vertical lines denote the
canonical morphisms given by Proposition B. Use the relation of
(as, 0)~o (7, m)~=(7}, x;)"°(a,, 0)~ in the above diagrams. We obtain:

(7, m)y~*omio(an, 0)~*o[]*
=([z]o (@, 0) omso(¥, m)™)*=(z]epe(an, 0)~o(7, m)7)*
=([z]epo (7, x1) o (e, 0))* =([r]o(ay, 0)~om)*

= o(ay, 0)™*o[x]* .

Since h=<{¥)>7*(#) and <{7) is a permutation, (4.2) is proved. Then by
Lemma 4.1,

;]
Y= 3 nfola;, 0) *o[xn]*
*i=1




54 KAZUYUKI HATADA

is regarded as an element of End, (H"(M, Q,)). Namely there exists a
unique element, for which we write f"(I"al’), of Ende,(H"(M, Q,)) such
that ¥'=n*of "™ (I'al’) where w=7n‘"or,.

(4.3) DEFINITION OF f'”. We have got f™(I"'al’) for each double coset
I'al’ with a€GSp*(g, Z) in the above. Extend this f™ to the whole
of HR(I", GSp*(g, Z))Q, R, uniquely as a Q,-linear map. '

Next we show:

“4.4) SRR -ral)y=f"(al)e f™(I"'BI)
for all « and B GSp*(y, Z) .

Here - denotes the multiplication in the Hecke ring, and o denotes the
composition of two endomorphisms. Write I'al'= U{, I'a,; (disjoint) and
rpr=us, rg, (disjoint). Write c=r(a) and b=7(B8). Look at the follow-
ing commutative diagrams.

(4.5)
(T B N) X (b0 Z) "\ D)

ri¢
(s, 01T, (B N) X (be Z)2*) (@, )\D)" o (Fy(b*eN) X (boZ)*"\D)~
reig . 1a
ro ((Ba e 0 MLy (be N)X (b6 Z)29%) (B sy OND)™ = (B, 0)~H(T'y(beN) X (b 2)17%) (B, OND)~
L TP %2
(@, 04 N) X (¢ Z)27*) (aty, 0)\D)~ e (T (eN) X (cZ)\D)"
LTS L4
~ M= ("X Z*%\D)~ M=(I"X Z2\D)~
Here we set r,=r,ory,or,or,.
(4.6)
(I, (bcN) X (be Z)\D)~
81z
(B2, 0) -
((Bay 0)"UI5(beN) X (beZ)***)(Bas 0)\59)”—‘8——’(1“ o(beN) X (beZ)**\D)
84z U1
(B2, 0)" -
(8o 0) T, (BN) X (5Z)*)(Bay OND) 2222 (I, (bN) (b Z)**\D)
83z U
M=(I"x Z"\D)~ M=(I" x Z'"*\D)~

In the commutative diagrams (4.5) and (4.6), all the vertical lines denote



HECKE RINGS AND (CO-)HOMOLOGY GROUPS 55

the canonical morphisms given by Proposition B; all the horizontal lines
denote the isomorphisms given by Proposition C. They are all finite
morphisms. Notice that s;cs,,=s;,°8,,.

Recall the definition of the multiplication I'gl'-I'al’ in HR(I", GSp™*
(9, Z)) given in Shimura [18, p. 52, (3.1.1)]. Namely I'gI'-I'al’ =
S m(I'gI-I'al'; W)W where the sum is extended over all W=I"¢I' cI'gl'al’,
and m(I'GI-I'al; W)-—the number of (x, 7) such that I'gG,a;=I169 (for a
fixed 4). This m(FﬁF .T'al’; W) depends only on I'gI', 'al’ and W, and
not on the choice of representatives {a.}i-,, {8.}=, and 4.

Using the notations used in the above commutative diagrams (4.5)
and (4.6) we obtain:

riof " (Il I'al’)

=3 5 riiortiac(@, 0) "o(8., 0) *ourou by (4.3)
:;:1 :‘; i%o(a, 0) %08 0(8,, 0) Touous
=§:‘, Ko, 0) *oshost o8l o f™(I'BI) by Lemma 4.1 and (4.2)
=i2:, Ho(ay, 0) *oghoshosto f™(I'BIN) since 8;08,,=8;,°8,,
=Zp'4 rio g0 X.o(ay, 0) *ogtof " (I'RIN)

\, -
il
-

Fof ™(Lal)o f™(I'BI) by Lemma 4.1 and (4.2) .

Thus we obtain (4.4) using Lemma 4.1. Theorem 4 is proved.
Now we show

PROPOSITION 4.7 (Lemma 1 in Hatada [9]). There is a ring homo-
morphism h,: HR(I", GSp*(g, Z)) —End, Z,(M, Z). Under the notations in
(0.1) in the introduction, it is given by

((Tal Q) =3 [7]o (@, 0)7om (@)

where Q is a closed point of M; Q 1is a closed point of (domain of
%or,) such that Q=7"m,(Q"); acGSp' (g, Z) and Ial = Ui, I'a, (dis-
joint).

Proor. Our pfoof is similar to the above one of (4.4). We give it
for the convenience of the reader. Let Q be a closed point of M. Let
a and B8e€GSp*(g, Z) with r(a)=c and r(8)=b. Use the commutative
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diagrams (4.5) and (4.6). Let Q” be a closed point of (I ,(b°c*N) x
(bcZ)**\D)~. Then '

(h(I'BT-T'al))(Q)
=3 $ o0 (8., 0) o(ay 0)~orsor(Q")

i 1

1
-
&
It

’

Il
M=
M'n

u2°u1°(ﬁm 0)~°sw°(ao 0)~°ru(Q")

-
1l
-
8
I
-

li
M=
M'u

2© (IBM 0) 034, osls ° (an ) ° rli(Q")

-
|
-
8
Il

w0 M’* i M=

ho(I"BI")°8;,°8,,°8,,°(at;, 0)~° r.(Q")

o(rﬁr)°83°82,°81,°(a¢, 0)~°r,(Q")

-—Z h(I"BI")o8;30(ax,, 0)~ T34z 25071, (Q"")

=(h(I"BI")ohT'al")(Q) Q.E.D.

§5. On l-adic cohomology groups, II.

Let X and Y be schemes as are defined in §4. Let u: X—Y be a
morphism. Let &~ (resp. .&*’) be an abelian sheaf on Y (resp. X) with
respect to the étale topology. We denote by u*<” (resp. R™u,”’) the
inverse image sheaf of & on X (resp. the m-th direct image sheaf of
&’ on Y). Then one has an induced canonical homomorphism of abelian
groups %*: H*(Y, &¥)— H"(X, u*<’) for each n=0 (cf. Artin et al. [1],
Deligne [5], Srinivasan [20]).

Let m and n denote non-negative integers. In this section all our
compactifications of the analytic quotient spaces are the toroidal com-
pactifications with respect to the X and I© given in the introduection.
Then we have a proper canonical morphism E: M= (I" X Z*“\9,x C**)~—
M=(I"\9,)~. More generally let ® XL € & where & is the set given
in the introduction. Then we have a proper ecanonical morphism
&1 (@XL\Y, X C™)~—(P\Y,)~. Let I be a prime number. Write 5=
Z/(l*) which is a constant sheaf on (@ L\9,x C*)~ with respect to the
étale topology. One has

(proj-lim H(9\$,)3, B &, )®z, @=H(@\9,)", B*,Q) .
Recall E: M— M. We show
THEOREM 5.1. The Hecke ring HR(I", GSp*(g, Z))RQ, Q, over Q, acts
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naturally on H* (M, R™"E.Q),), i.e. there exists an anti-ring homomorphism
fm: HR(I", GSp*(g, Z))Q, Q,— Ende,(H"(,M, R"E,Q,)) for each pair, m
and n, of mon-negative integers.

Proor. Let acGSp'(g, Z). Write c=7r(a) and I'al'= UL, I'a, (dis-
Joint). See the diagram (0.1) in the introduction. We denote by [z],
(a, 0)~, @, #'9 and = the morphisms given in (0.1) for an arbitrarily
fixed integer w=0. They are finite morphisms. In the case of w=0
write [z], a7, 7, o9 and & for the morphisms [z], (a;, 0)~, 7, 79 and
n respectively. For short write +(a,) for [z]oa;-,x; now. Consider the
commutative diagram:

(T (N x (cZyeo\D)~ Ll Oom yy
(5.1.1) l E, l E

(T (EN\D,)™ ¥(ay) - M

Here E, denotes the canonical proper morphism. First we show

(6.1.2) Let m be fixed arbitrarily. We have a natural Q,-linear map
@i,n""/"(at): : H*(,M, RmE*Qz)—‘_"Hn((['g(czN)\@a)% RmEl*Ql)

for each n=0. ,

ProoOF OF (5.1.2). From (5.1.1) we have a natural homomorphism of
abelian sheaves : y(a,)*R™"E, &5, — R™"E, ([7]°(a,, 0)~°7,)*.<5. Then we have
a Qrlinear map @,,: H'((I'y(¢*N)\9,)~, ¥(a)*R"E, Q) — H"(I';(¢’'N)\9,)™,
R™E,.Q), taking projective limits as k—+  and tensoring them with
Q, over Z,. On the other hand we have the canonical @,-linenr map
y(a)¥ : H'(M, R"E Q) — H"((I' (¢:N)\9,)~, v(a,)*R"E,Q)). (5.1.2) is proved.

(6.1.83) Consider >, @, ,ov(a,)x¥ which is an element of Home (H"(,M,
R™E.Q), H'(I' ,(¢:N)\9,)~, R"E,.Q,)). This does not depend on the choice
of representatives {a,}., for I''aI'. Hence we write {lal): =
D, @i,n”ﬁ'(ai):‘

Proor OF (5.1.3). Let v,e€I'. Replace a; by 7., in (0.1). Then
Jdmle (Vi) oo, =[]V e oo, =1d. o[ Tloai oy, = o[T]odi opmr,. (See the follow-
ing commutative diagram.) (5.1.3) is proved.

ra-

(Iy(eN Do)~

lo[?r]

M

(Ty(eN\D,)~  (vel)

10[1:1

oM
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Let <5,=Z/(l*) be the étale sheaf on M. Let E,: (I',(c:N) X Z**\®)~—
(L (*N)\9,)~ denote the canonical proper morphism. Apply the Base
Change Theorem (cf. Artin et al. [1, Expose XII]) to the following com-
mutative diagram.

T

(T (&N) X (cZ)*"\D)~ —=2= (I',(¢*N) x Z\D)~ —~— M

b, e

ot

(T (NN~ —2 (I (S N\D,)™ M

We obtain q*R"E, 4, =R™"E,.n"*<%,. By our choice of the toroidal
compactifications, R"E,, < =R™E,,%,. Taking projective limits and
tensoring them with @, over Z, we have H"((I",(c’N)\9,)~, #*R"E Q)=
H((I'y(c’NN\D,) ™, R™E,, @)= H"((I')(¢’N)\9,)~, R"E,,Q,) from H*((I" ,(¢*N)\9,)™,
J*R™"E, A)=H"(I' ,(¢*N)\D,)~, R"E,, 7~ *<4). We use the results on the
trace in Artin et al. [1, Expose XVII, §6] and Srinivasan [20, p. 53].
Recall that M is a strict quotient of (I, (c*N)\9,)~ by the group
& =I,(N)/I,(c*N). Write 5,=s*R"E,%,, which is an étale sheaf on
(r',(c*N)\9,)~. Then ,x.=, is an étale sheaf on ,M. By the action of ¥
on (I',(*N)\9,)~, & operates on the sheaves =, and ,7,5,. From the
method of the proof of Srinivasan [20, p. 53, (5.10)] one obtains:

(5.1.9) H"(M, R"E,Q)=H"(I'(¢*N)\8,)", o1* B E,Q)*
=H"(I(¢*N)\9,)™, R"E.,Q)*

for each pair, m and n, of non-negative integers.
(5.1.4) is a generalization of Lemma 4.1. Now we show:

(5.1.5) y(lal):(X) € H((I' (" N)\D,)™, R"E,Q))”

for all X H*(,M, R™E.Q)).

Proor of (5.1.5). Let vyeI'. Let v * denote the endomorphism of
HY (' (¢*N)\9,)~, R"E,,Q,)). We use the notations in our proof of (4.2)
in §4. Recall I'al'= U4, I'a; and that () denotes the permutation of
{1, 2,---, }. Write h={7>"'(¢) for an integer-valued variable i e[l, y].
Namely I'a,v=Ia;. We have

0[7[]oa;‘ooﬂho7~=o[fc]opoa;’o’)’~
= [z]eri Oy (k) ©oTTiry (h) where 7, eI’
= [7]ea; ., since ([z]ovi =.[7] .
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We have also 7~"*o@, .o([m]oai °es)* =Py, o (lT]oa™ oomaoy™)*.  Hence
)7
7~*°¢(Faf)7’f(X)=’§,l Persiny,meolToa 067,07 ™) *(X)

A
=y Lal)¥X) .

(6.1.5) is proved.
From (5.1.4) and (5.1.5) we can define {™™(I"al’) uniquely by

fm(Fal) =6 € Endg, H"(,M, R"E,Q,) with a*-8=y(lal)} .

As a Q,-linear map we can extend the domain of ™™ to the whole of
HR(I", GSp*(g, Z))RX, Q, uniquely. We can prove the following (5.1.6) by
the same way as in the proof of (4.4).

(5.1.6) jom(P QI Fal’)=f"*m(Fal)of*™ ('8l

for all @« and B € GSp*(g, Z).
Theorem 5.1 is proved.

In the same way we obtain Theorem 5 in the introduction. We
may leave the proof to the reader.

REMARK 5.2. Theorems 4 and 5 in the introduction also hold true
for the natural Siegel modular schemes over @ and F, with p}/ N instead
of those schemes over C. Here I'=I",(N)CSp(g, Z) and l+#p.

REMARK 5.3. Let a and ReGSp*(g, Z). Under the conditions in
this section we obtain the following equivalence.

ZulaNZ WyTRMN#Q0 — Zuylal)NZy('BN+*O .

REMARK 5.4. Assume g=1 and N=5. Then I'=I'(5), and the genus
of the curve M=(\9,)~ is 0. Let a be any element of GSp*(l, Z).
Write a'=7r(a)a™* now. Then

Ly(I'al’, ', =Tr(f(I'alQ; id.) + Tr(f{l a )R, id.)
by Hatada [8, Theorem 4],
=$(N\al)+#(I'\'a'l)=2>0 .

From Theorem 3 we get 2 ,(I"al)NZ 4(I'L)+@. For M=T x Z*\
9, X C*)~ with any integer w=0, we have 2°,(lal")N % ,(I'LI")#* ©@.
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In the following Remarks 5.5 and 5.6 assume g=1 and N=6, and
write I'=I'(6), M=("\9,)” and M=(I"x Z™\9,xC*)~ for any integer
w=0. Then note that the genus of the curve .M is 1. Hence the space
S,(I") of cusp forms of weight 2 with respect to I" is one dimensional
over C. It is spanned by

C@)= (q £11 a1-— q")“)u6 where q=exp@2r) —12)

over C (see e.g. Shimura [18, p. 50].)

REMARK 5.5. Set 5:(2 §’>eGSp+’(1, Z). Then I'@'=I8. We see

that g transforms any cusp P of ,M to another cusp P of ,M and that 73
is not an elliptic element for any vyeI'. (Tr(vg8)=4(mod 6)%0, +1(mod6).)
Hence 2 ,(I'MNNZI'L,N=@ and 2,(I'BMNNZ (1, =@. From
Theorem 3 we get

L,(I'pgl’, I'1,)=0.
Since $(I'\I'BN=#("\I'BI")=1 where g'=r(8)B*=L"", we have
L,(Igrl', I'l,l"N=1-Tr(f,(I'BNY,id.)+1=0

using Hatada [8, Theorem 4]. By the Hodge decomposition, H'(,M, C)=
S,(INPS,(I"). Note that C(2)* is a cusp form on Sp(l, Z) and that
{xeC | Rex=1, \|=1}={1}. Hence we get the functional equation

C((52+3)/(8z+5))(82+5)2=C(z)

which we can prove by the other method using the transformation
formula of the Dedekind 7 function.

REMARK 5.6. Recall I'=I(6). Let p=5 be a prime number. Write

T'®){(¢ 7)€ OSp* (W 2)|ad—be=p.a—1=b=c=0(mod6).} and a=(} 2).

Then we have T'(p)=Ial’= U}l I'G; (disjoint) = Uz} B8:I" (disjoint) with
some {B;}71 and {Gj}2! in T'(p). Let ), be the eigenvalue of the Hecke
operator ([7'(p)],, corresponding to 7'(p), acting on S,I"). Namely
CIIT'(M)(=)=n1,C(2). It is well known that [A,|<21”"p. Let ¢ be the
involution of GSp*(1, Z) given by zr—r(x)x™'. Note I''=I". We have
T'(p)y = Uiti gy (disjoint). Compute L ,(I'al’, I'l,I") using Hatada [8,
Theorem 4] and the isomorphism H'(M, C)=S,(I"YPS,(I").
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L,(I'al’, I't,l)=®+1)-Tr(f{(lal)&Q;id.)+(p+1)
=2(p+1—Ren,)#0

since [p+1—Ren,|=p+1—,|=p+1—2V"Dp=0"p —1)*>0. Then from
Theorem 3 we get

2 (lal’, TLD)#Q .

Hence we have 2 ,(I'al’, I'L,")+ .
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