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\S 0. Introduction.

The problem of constructing a holomorphic vector bundle of rank 2
on $S$ having the given Chern classes, where $S$ is a smooth projective
surface over the complex number field $C$, was first considered by
Schwarzenberger ([17]) and solved by Maruyama ([11]). When $S=P^{2}$ ,
the structure of the moduli spaces are known (cf. [2], [7], [10], [13]).
Many other important results are known (cf. [3], [6], [9], [12]). See [14]
for general theory on $P^{n}$ . In the papers [15] and [16], Sasakura gave
a method to construct vector bundles or reflexive sheaves of arbitrary
ranks on complex spaces by giving explicit transition matrices and
mentioned their general properties. They are called of configuration
type or of Grassmann type. In this paper, we construct bundles of the
above types of rank 2 on an algebraic surface and calculate their Chern
classes by investigating the local structures.

The authors wish to thank Professors N. Sasakura and T. Fukui for
many valuable comments and suggestions.

NOTATION AND TERMINOLOGIES. A surface means a complex manifold
of dimension 2 embedded in a projective space. $p$ denotes the $8tructure$

sheaf of the surface which we concern. A vector bundle, or $8imply$ a
bundle, means a holomorphic vector bundle of rank 2. A sheaf i8 simple
if the endomorphisms of it are the homothetie8. For a section $s$ of a line
bundle, $(s)_{0}$ denote8 its zero divisor. For a meromorphic function $t,$ $(t)_{\infty}$

denotes its pole $divi8or$ . Sometimes, we abbreviate the $symbol\otimes denoting$

the tensor product of sections: for example, $s_{1}\cdots s_{m}$ $:=s_{1}\otimes\cdots\otimes s_{m}$ .
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\S 1. Preliminaries and results.

In this section, we define the vector bundles of configuration type
and Grassmann type and describe some of their properties. We start
with the definition of the vector bundles of Grassmann type.

Let $X$ be a connected complex manifold of dimension $n$ and $\mathscr{L}$

a line bundle on $X$. We also assume that $s_{0},$ $s_{1},$ $\cdots,$ $s_{f}$ are non-zero
global sections of $\mathscr{L}$ (not necessarily linearly independent) such that
$co\dim(s_{0})_{0}\cap(s_{r})_{0}=2$ and that $(s_{0})_{0}$ is both reduced and irreducible. Set

$Z=(s_{0})_{0}\cap(s_{r})_{0}$ . Put $H=[I_{r-1}0\dot{f}_{r}f_{1}]$ , where $I_{m}$ denotes the unit matrix of

$m\times m,$ $f_{i}=s_{i}/s_{0}$ .
Let $N_{0}:=X-(s_{0})_{0}$ and $N_{1}$ $:=X-(s_{f})_{0}$ . Then we can define a vector

bundle $g^{o}$ on $N_{0}\cup N_{1}=X-Z$ with the transition matrix $H$ on $N_{0}\cap N_{1}$ . To
be more precise, let $e^{i}$ be a frame on $N(i=0,1)$ , and $e^{0}=e^{1}H$. From
$g^{o}$, we obtain $\mathscr{G}$

$:=i_{*}(\dot{\mathscr{G}})$ , where $i:X-Z\rightarrow X$ i8 the inclusion. Since
all components of $H$ are meromorphic functions on $X,$ $g$ is coherent.
Moreover, $g$ is locally free outside $Z$ who8e codimension is two. Thus
$g$ is reflexive on $X$.

DEFINITION. We call the above $g$ a reflexive sheaf of Grassmann
type or a reflexive sheaf of type (G) associated with $(\mathscr{L}, s)$ , where $s=$

$(s_{0}, \cdots, s_{f})e\Gamma(X, \mathscr{L})^{\oplus\prime+1}$ . If $g$ is locally free, we replace ”reflexive
sheaf” by “vector bundle“.

T. Hosoh told us about another definition of reflexive sheaves of type
(G). Let $X,$ $\mathscr{L},$ $s$ be as above. But we do not need to assume that $(s_{0})_{0}$ is
reduced and irreducible. Then we obtain the exact sequence of sheaves:

(A) $0\rightarrow \mathscr{L}^{\vee}\rightarrow\otimes s\theta^{\cup}\uparrow r+1-\mathscr{G}^{-}-0$ $(\Leftrightarrow \mathscr{G}^{\vee} : =\mathscr{G}_{\rho\prime\prime}^{p}*(-\mathscr{G}P))$ .
$t\mathscr{F}^{\vee\vee}$ is a reflexive sheaf of type (G) and all reflexive sheaf of type

(G) is obtained in this way, because $i_{*}(g|_{X-Z})=g$ if $g$ is reflexive and
codim $Z\geqq 2$ .

Using the above definition, we obtain some properties of reflexive
sheaves of type (G).

Taking the dual of $(A)\otimes \mathscr{L}$, define an ideal $\mathscr{J}$ as follows:

(B) $0\rightarrow \mathscr{G}^{-\vee}\otimes \mathscr{L}^{\vee}\rightarrow(\mathscr{L}^{v})^{\oplus(r+1)}\rightarrow J_{Y}\rightarrow 0$ ,

(C) $0\rightarrow \mathscr{G}^{-\vee}\otimes \mathscr{L}^{v}\rightarrow(\mathscr{L}^{\vee})^{\oplus(r+1)}\rightarrow p-p_{Y}\rightarrow 0$ ,

where $Y$ is the subvariety determined by $\mathcal{J}_{Y}$ . Our assumption on $s$ is
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that codim $Y\geqq 2$ .
T. Fukui pointed out the following fact, using ring theory.

PROPOSITION 1.1. The reflexive sheaf $\mathscr{G}(=\mathscr{F}^{\vee\vee})$ is locally free if
and only if one of the following holds:

(1) $Y=\emptyset$ ,
(2) codim $Y=2$ and $\rho_{Y,y}$ is a Cohen-Macaulay $p_{y}$-module for any

$ y\in$ Y.

PROOF. In the case (1), $t\mathscr{F}$ is locally free. Thus we only prove the
proposition when $Y\neq\emptyset$ . Recall the theorem of Auslander-Buchsbaum
($i.e.,$ $p.d_{\rho}\theta_{Y}=\dim X$-depth $P_{Y}$), and the definition of Cohen-Macaulay
module (i.e., depth $P_{Y}=\dim\beta_{Y}$). Then by the exact sequence (C) and
our assumption that codim $Y\geqq 2$ , we have the conclusion. (q.e. $d.$ )

REMARK 1.2. In the same notation as above, let $X$ be a surface and
the rank $\gamma$ of $\mathscr{G}$ be two. Assume that $\mathscr{L}$ is ample and deg $Y<\mathscr{L}^{2}/2$ .
Then $\mathscr{F}$ is (so $\mathscr{G}$ is) .S24-stab1e.

We next define the bundles of configuration type. Let $X$ be a com-
plex manifold and take the following data $(D1)\sim(D3)$ :

(D1) A reduced and reducible divisor $Y$ on $X$ of the form $Y=U_{i=1}^{m}Y_{l}$ ,
$m\geqq 2$ , where Y. are the irreducible components of $Y$ and satisfy the
following conditions: each $Y_{i}$ is smooth, $Y_{i}$ and $Y_{j}$ intersect transversally
if $i\neq j$ , and $Y_{i}\cap Y_{j}\cap Y_{k}$ is of codimension at least 3 for three different
indices.

Define the following subvarieties from the above data: $Z_{ij}$ $:=Y_{i}\cap Y_{j}$ ,
$Z:=\bigcup_{i\neq j}Z_{ij},$

$X^{o}:=X\backslash Z,\mathring{Y}_{i}$ $:=Y_{i}\backslash Z,\mathring{Y}:=\bigcup_{i}\dot{Y}_{i}=Y\backslash Z$ and $N_{0}$ $:=\dot{X}\backslash Y^{Q}$.
(D2) An open neighborhood $N_{1}$ of $Yo$ in $X^{o}$ of the form $N_{1}=\bigcup_{i}N_{1}^{i}$ ,

where $N_{1}^{i}$ is an open neighborhood of $Y_{i}$ in $x^{o}$ and does not meet the
others.

(D3) A matrix $HeM_{r}(\Gamma(N_{1}, p))$ of the form: $H=[I_{r-1}0\dot{f}_{r}f_{1}]$ , where

$I_{m}$ denotes the unit matrix of $m\times m$ and $f_{i}$ are holomorphic function8 on
$N_{1}$ satisfying the following: $(f_{r})_{0}=Y^{Q}$ and there exists a unique meromor-
phic function $f_{ij}$ on $Y_{i}$ such that $f_{ij}|Y_{i}^{o}=f_{j}|Y_{l}^{o}$ for $j\neq r$ .

Now we have data to construct a vector bundle $\dot{g}^{7}$ on $X^{o}$ and the
reflexive sheaf $g;=i_{*}(g^{o})$ , where $i:X^{o}\rightarrow X$ in the same manner as type
(G).

DEFINITION. We call the above $\mathscr{G}$ a rejlexive sheaf of configuration
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type or a reflexive sheaf of type (C). If $g$ i8 locally free, we replace
“reflexive sheaf” by ”vector bundle”.

REMARK 1.3. Two important bundles are of type (C). One is the
Horrocks-Sumford bundle on $P^{4}$ and the other is the null correlation
bundle on $P^{3}$ (for the definitions see [5] and [1]). We 8ee only the latter
here. Let $(z_{0}, z_{1}, z_{2}, z_{3})$ be homogeneous coordinates in $P^{s},$ $Y_{i}$ $:=(z)_{0}$ for
$i=1$ and 3, $Y:=Y_{1}\cup Y_{8}$ . Take $N_{1}=N_{1}^{1}\cup N_{1}^{2}$ as in (D2) and a matrix $H$

as follows: $H|Ni:=[_{0}^{1}z_{+1}/z_{i+2],i=1}z/z_{i+2}$ and 3. Then the corresponding sheaf
27 is locally free and moreover it is the null correlation bundle twisted
by $P(1)$ . Thi8 fact is verified by H. Kaji ([16] Theorem 1.1.1).

From now on, we consider the 8heaves of rank 2 of type (G) and
(C) only on a surface $S$ . Since every reflexive sheaf on a surface is locally
free, all the reflexive sheaves of type (G) and (C) are vector bundle8.

REMARK 1.4. When 27 is a vector bundle of rank 2 of type (C) or (G)
on a 8urface $S$, we have the following sufficient condition for the simple-
ness of $g;c_{1}(g)^{2}-2c_{2}(g)<0$ ([15], lemma 4.5.1, lemma 4.6.1, lemma 4.6.3).

Our main results are the following:

THEOREM 1.5. Let 9 be a line bundle and $d$ the degree of $S$ (with
respect to the hyperplane bundle $P_{s}(1))$ . Assume that $m\gg O$ and $c_{g}$ is an
integer with $f(m)\leqq c_{l}\leqq \mathscr{L}(m)^{2}$ , where $f(m)$ is a polynomial of $\sqrt{m}$ of
the form $f(m)=\sqrt{2}dm^{\epsilon/2}+O(m)$ . Then there exists a vector bundle $g$

of type (G) such that $c_{1}(g)=\mathscr{L}(m)$ and $c_{2}(g)=c_{2}$ .
This theorem (cf. Theorem 2.11) implies the theorem of Schwar-

zenberger ([15]):
For each line bundle $\mathscr{L}$ and $c_{2}eZ$, there $exi\epsilon ts$ a vector bundle 87

such that $c_{1}(g)=Z$ and $c_{2}(g)=c_{2}$ .
THEOREM 1.6. For each integer $m\geqq 2$ and for each integer $c_{2}$ such

that $m(m-1)/2\leqq c_{2}\leqq m(m-1)$ , there exists a vector bundle of type (C) on
$P^{2}$ such that $c_{1}(g)=m$ and $c_{2}(g)=c_{2}$ .

As a corollary of this theorem, we obtain that each 8table 2-bundle on
$P^{2}$ is a deformation of a vector bundle of type (C) twisted by ct $(n)$ .

\S 2. Vector bundles of Grassmann type.

Let $S$ be a projective surface, .S4 be a line bundle on $S$ and $s_{i}$ be
a global section of $\mathscr{L}(i=0,1,2)$ .
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Throughout thi8 section, we fix a very ample line bundle $\beta_{S}(1)$ and
denote by $d$ the degree of $S$ (with respect to $\theta_{s}(1)$). We also assume
that $s_{0},$ $s_{1},$ $s_{2}$ are linearly independent over $C$.

From now on, we treat the following problem:

Determine Chern classes which vector bundle8 of type (G) have.

For the problem, we will give a partial but meaningful answer in
(2.9).

For simplicity, we use the following notation:
$[n, l]$ $:=\{keZ|n\leqq k\leqq l\},$ $h^{0}(\mathscr{L})$ $:=\dim\Gamma(S, \mathscr{L}),$ $Y_{*}:$ $=\bigcap_{i=0}^{2}(s_{i})_{0}$ .
PROPOSITION 2.1. Let $\mathscr{G}$ be a vector bundle of type (G) (of rank 2

on $S$) associated with $(\mathscr{L}s)$ . Then $c_{1}(g)=\mathscr{L}$ and $c_{2}(g)=\mathscr{L}^{2}$ -deg Y..
PROOF. $c_{1}(g)=\wedge g=Z2$

$c_{2}(\mathscr{G})$ is the zero of a global section of S7,

hence we immediately obtain the result. (q.e. $d.$ )

Thanks to (2.1), the problem is reduced to the problem below:

Determine the two subsets $D(\mathscr{L})$ and $C_{2}(\mathscr{L})$ of $Z$, where

$D( \mathscr{G}):=\{teZ|$ deg Y. $=t$ for some se $\Gamma(S, -\mathscr{G})^{\oplus\delta}$ such that
codim $(s_{2})_{0}\cap(\epsilon_{0})_{0}=2$ and $(s_{0})_{0}$ is reduced and irreducible}

and

$C_{2}(\mathscr{L})$ $:=\{c_{2}eZ|c_{1}(\mathscr{G})=\mathscr{L}$ and $c_{2}(\mathscr{G})=c_{2}$

for some vector bundle $g$ of type $(G)$}.

REMARK 2.2. Both $D(\mathscr{L})$ and $C_{2}(\mathscr{L})$ are included in $[0, \mathscr{L}^{2}]$ . The
set $C_{2}(\mathscr{L})$ (resp. $D(\mathscr{L})$) contains $\mathscr{L}^{2}$ (resp. $0$) and does not contain 1
(resp. $\mathscr{L}^{2}-1$ ) when $S$ is a complete intersection in a projective space
and $\mathscr{L}=a(n)$ for a large $n$ . The former is obtained by taking general
$se\Gamma(S, \mathscr{L})^{\oplus\theta}$ . The latter is followed from the theorem of Cayley-
Bacharach ([4], chap. 5, \S 2). These facts suggest the difficulty of de-
terminating the sets $C_{2}(\mathscr{L})$ and $D(\mathscr{L})$ .

The following lemma, which holds also in characteristic $>0$ , is useful
for the problem.

LEMMA 2.3 (General Position Lemma). Let $X$ be a curve in $P^{n}$ which
is not contained in any $P^{n-1}$ , and let $r$ be an integer with $2\leqq r\leqq n-1$ .
Assume that for almost all choices of $r$ points $p_{1},$ $\cdots,$ $p_{r}$ on $X$, the linear
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space spanned by the $p_{i}$ contains at least one further point of X. Then
$X$ is a strange curve.

For the proof, see Laksov ([8], lemma 4).

Since there are no strange curves but $P^{1}$ in char. $=0$ , we easily ob-
tain the following corollary.

COROLLARY 2.4. Let $X$ be a surface in $P^{n}(n\geqq 3)$ which is not
contained in any $P^{n-1}$ . Then for almost all $cho\dot{j}ces$ of $n-2$ points
$p_{1},$ $\cdots,$ $p_{n-2}$ on $X$, the linear space $L^{n-3}$ spanned by the $p_{i}$ does not
contain any further point of $X$.

COROLLARY 2.5. Let $S$ be a non-singular projective surface and $\mathscr{L}$

a very ample line bundle on S. Then $D(Z)\supset[0, h^{0}(\mathscr{L})-3]$ .
PROOF. Embedding $S$ by the complete linear system $|Z|$ in $P^{N}$ where

$N=h^{0}( \mathscr{G})-1$ , we apply (2.4). (q.e. $d.$ )
Thus, we have the following:

COROLLARY 2.6. Under the same assumption as in (2.5),

$C_{2}(\Leftarrow \mathscr{G})\supset[- \mathscr{G}^{2}-h^{0}(\mathscr{L})+3, Z^{2}]$ .
We will sharpen the estimate of $C_{2}(\Leftarrow \mathscr{G})$ in (2.6). Let .Ef7 be a very

ample line bundle on $S$ and $n$ a non-negative integer. We use certain
special reducible elements in $\Gamma(S, =\mathscr{G}(n))$ to get information about $D(\mathscr{L}(n))$ .
Set

$N(n, l;\mathscr{L}):=n(\mathscr{L}\cdot\rho_{\iota}(1))+dl(n+l)$ for integers $n\geqq l\geqq 0$ .
PROPOSITION 2.7. Let $n,$

$l$ be integers with $n\geqq l\geqq 0$ . Then

$D(\mathscr{L}(n))\supset[N(n, l;.E2?), N(n, l;\mathscr{L})+h^{0}(\mathscr{L})-3]$ .
PROOF. Let $ke[N(n, l;_{\epsilon}\mathscr{G}), N(n, l;\mathscr{L})+h^{0}(\mathscr{L})-3]$ and $j=k-N(n$ ,

$l;\mathscr{L})$ . Thanks to (2.5), we have $s=(s_{0}^{\prime}, s_{1}^{\prime}, s_{2}^{\prime})\in\Gamma(S, Z)^{\oplus 3}$ such that
deg $Y_{S^{\prime}}=j$ . Choose $h_{i}\in\Gamma(S, \rho_{s}(1))(i=1,2, \cdots, 2n)$ which sati8fy the
following condition8:

(2.8) $((2)(3)$ $(h_{p})_{0}(h_{p})_{0}(h_{p})_{0}\cap\cap\cap(h_{q})_{0}\cap(s_{f}^{\prime})_{0}=\emptyset(h_{q})_{0}\cap(h_{f})_{0}=\emptyset(s_{q})_{0}\cap(s_{r})_{0}=\emptyset$

,

$ififif$ $q<rp<qp<q<r$

Set $t=(t_{0}, t_{1}, t_{2})\in\Gamma(S, \rho_{s}(n))^{\oplus 3}$ as below:
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$(t_{1}=h_{n}t_{2}=h_{1}\otimes\cdots\otimes^{\otimes h}h_{l}\otimes h_{n+l+1}\otimes\cdots\otimes h_{2n}+1\otimes\cdots\otimes n_{h_{2n}}$

We define $s_{i}$
$:=s_{i}^{\prime}\otimes t_{i}(i=0,1,2)$ .

By the conditions (2.8),

$Y_{\epsilon}=Y_{\iota^{\prime}}+\sum_{i=1}^{l}(s_{1}^{\prime})_{0}\cdot(h_{i})_{0}+\sum_{i=l+1}^{n}(s_{0}^{\prime})\cdot(h_{n+i})_{0}+\sum_{i,j=0}^{n}(h_{i})_{0}\cdot(h_{n+\dot{J}})_{0}-\sum_{i=l+1}^{n}\sum_{j=1}^{l}(h_{i})_{0}\cdot(h_{n+j})_{0}$ .

Since $\deg(h_{i})_{0}\cdot(h_{j})_{0}=d$ and $\deg(s_{i}^{\prime})_{0}\cdot(h_{j})_{0}=\subset \mathscr{G}\cdot\rho_{s}(1)$ , we obtain $\deg Y_{\epsilon}=k$ .
It is easy to see that $s_{0},$ $s_{1},$ $s_{2}$ are linearly independent. A general

linear combination of $s_{0},$ $s_{1},$ $s_{2}$ is both reduced and irreducible by the
theorem of Bertini, thus we obtain the result. ( $q$.e.d.)

Rewriting (2.7), we obtain the following theorem for existence of
vector bundles of type (G).

THEOREM 2.9. Let $\mathscr{L}$ be a very ample line bundle. Then

$C_{2}(\Leftrightarrow \mathscr{G})\subset\bigcup_{neA}\bigcup_{l=0}^{n}[Z^{2}-N(n, l;\mathscr{L})-h^{0}(\mathscr{L}(-n))+3, \Leftarrow \mathscr{G}^{2}-N(n, l;\mathscr{L})]$ ,

where $A:=$ {$n\in Z|n\geqq 0$ and $\mathscr{L}(-n)$ is very ample}.

The set of the right side in (2.9) is rather complicated and in general
it is not equal to $[a, \mathscr{L}^{2}]$ for any integer $a$ . We estimate

$a_{m}(\mathscr{L})$ $:=\max\{MeZ|[0, M]\subset D(\mathscr{L}(m))\}$ and
$b_{m}(\mathscr{L})$ $:=\min\{M\in Z|[M, \mathscr{L}(m)^{2}]\subset C_{2}(\mathscr{L}(m))\}$

as applications of the previous theorem.

PROPOSITION 2.10. Let $\mathscr{L}$ be a very ample line bundle on $S$ and
$m\gg O$ . Then $a_{m}(\mathscr{L})>dm^{2}-2dm^{3/2}+g(\sqrt{m})$ , where $g(x)$ is a polynomial
with degree at most 2. In fact, $a_{m}(\mathscr{L})>dm^{2}-\sqrt{2}dm^{3/2}+O(m)$ .

PROOF. Let $m_{0}$ be a positive integer such that for each integer
$p\geqq m_{0},$ $\mathscr{L}(p)$ is very ample and $H^{i}(S, \mathscr{L}(p))=0(i>0)$ . We take an in-
teger $m$ which satisfies $2V^{y}\overline{m}\geqq m_{0}$ .

Let $n$ be an integer such that $0\leqq n\leqq m-2\sqrt{m}$ . We simply denote
$N(n, 0;\mathscr{L}(m))$ and $a_{m}(\Leftarrow \mathscr{G})$ by $N_{n}$ and $a_{m}$ respectively. Then for each
integer $k\in[N_{n}, N_{n}+h^{0}(\mathscr{L}(m-n))-3]$ there exists $s\in\Gamma(S, \mathscr{L}(m-n))^{\oplus 3}$

such that deg $Y_{\epsilon}=k$ , because of (2.7). Since $N_{n}$ is monotonically increas-
ing, we get the following:
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If $N_{i}+h^{0}(\mathscr{L}(m-i))-3\geqq N_{i+1}$ for $0\leqq i\leqq n$ ,
then $a_{*}\geqq N_{n+1}+h^{0}(\mathscr{L}(m-n-1))-3$ .

By the choice of $m$ ,

$h^{0}(\mathscr{L}(m))=\chi(\mathscr{L}(m))=-m^{2}+\frac{d}{2}f(m)$ ,

where $\chi(Z(m))$ is the Hilbert polynomial of $\mathscr{L}$ and $f(m)$ is a polynomial
of $m$ with degree at most one. Hence,

$h^{0}(\mathscr{L}(m-n))-3>\frac{d}{3}(m-n)^{2}$ for $m\gg O$ .

Since

$N_{n+1}-N_{n}=d(m-2n-1)+Z\cdot P_{S}(1)<\frac{4}{3}dm$ for $m\gg O$

and $m-n\geqq 2\sqrt{m}$ ,

$h^{0}(\mathscr{L}(m-n))-3+N_{n}-N_{n+1}>\frac{d}{3}(m-n)^{2}-\frac{4}{3}dm\geqq 0$ for $m\gg O$ .

Hence,

$a_{n}>N_{n}$

$>dm(m-2\sqrt{m})+(m-2\sqrt{m})\mathscr{L}\cdot P_{s}(1)$

$=dm^{2}-2dm^{\epsilon/2}+g(\sqrt{m})$ .
For the second part, we have

$h^{0}(\mathscr{L}(m-n))-3+N_{n}-N_{n-1}=\frac{1}{2}d(m-n)^{2}-dm+o(m)$ .
Thu8, if $m-n>\sqrt{2m}$ then $a_{\hslash}=dm^{2}-\sqrt{2}dm^{\epsilon/2}+O(m)$ . (q.e.d.)

By the dePnition of $b_{m}(Z)(=Z(m)^{2}-a_{n}(- \mathscr{G}))$ , we thus have the
following theorem:

THEOREM 2.11. For $m\gg O,$ $b_{n}(\mathscr{L})=\sqrt{2}dm^{\epsilon/2}+O(m)$ . What is almost
the same thing, for any $c_{2}$ such that.$\mathscr{L}(m)^{2}\geqq c_{2}>2dm^{3/2}+f(\sqrt{m})$ , where
$f(x)$ is a polynomial of degree at most 2, there $ex$ists a vector bundle
$g$ of type (G) such that $c_{1}(g)=\mathscr{L}(m)$ and $c_{2}(g)=c_{2}$ .



VECTOR BUNDLES 9

COROLLARY 2.12.

$\lim_{*\rightarrow\infty}\frac{b_{n}(\mathscr{L})}{\mathscr{L}(m)^{2}}=0$ .

REMARK 2.13. If $l:=- \mathscr{G}^{2}\geqq- \mathscr{G}\cdot P_{s}(1)>0$ and $H^{i}(S, \mathscr{L})=0$ for $i>0$ ,
then $h^{0}(\mathscr{L}(m))>dm^{2}/2$ and $N_{n+1}-N_{n}<dm$ , hence we can explicitly e8ti-
mate $b_{m}(\mathscr{L})$ . For example if $m>l/d+1$ then $b_{m}(\mathscr{L})<\mathscr{L}(m)^{2}/2$ . If
$m>3l/(2d)+1$ , then $b_{m}(\mathscr{L})<\mathscr{L}(m)^{2}/4$ . For a general $\mathscr{L}$, we can obtain
explicit but very complicated estimate of $b_{\alpha*}(-\mathscr{G})$ .

We derive the theorem of Schwarzenberger from the previous prop-
osition.

THEOREM 2.14 (Schwarzenberger ([17])). Let $S$ be a non-singular
projective surface. For each line bundle $\mathscr{L}$ on $S$ and each integer $c_{2}$ ,
there exists an integer $l$ and a vector bundle $g$ of type (G) such that
$c_{1}(\mathscr{G}(l))=g,$ $c_{2}(g(l))=c_{2}$ .

PROOF. At first we think about $c_{1}$ . Let $m$ be an even integer such
that $Z(m)$ is very ample. If $\mathscr{G}$ is a vector bundle of type (G) as-
sociated with $(\mathscr{L}(m), s)$ for general $se\Gamma(S, \mathscr{L}(m))^{\oplus 9}$ , then $c_{1}(g)=\mathscr{L}(m)$

becau8e of (2.1). Hence $c_{1}(g(-m/2))=\mathscr{L}$

Next we consider about $c_{2}$ . As in the proof of (2.10), $a_{r}$ denotes
$a_{m}(\mathscr{L})$ . Let $ke[0, a.]$ and $g$ be a vector bundle of type (G) a8sociated
with $(_{-}\mathscr{G}(m), s)$ , where deg Y. $=k$ . Then $c_{1}(g)^{2}-4c_{2}(g)=\mathscr{L}(m)^{2}-$

$4(\mathscr{L}(m)^{2}-k)$ from (2.1). On the other hand, $-3Z(m)^{2}\rightarrow-\infty$ as $ m\rightarrow\infty$

and $-\mathscr{G}(m)^{2}-4(\mathscr{L}(m)^{2}-a_{*})\rightarrow\infty$ as $ m\rightarrow\infty$ by (2.10). Since $c_{1}^{2}-4c_{2}$ is
invariant under twisting and $c_{1}(g)^{2}\equiv c_{1}(g(l))^{2}$ modulo 4, there exist an even
integer $m$ and a vector bundle 87 of type (G) associated with $(\mathscr{L}(m), \epsilon)$

such that $c_{1}(g)^{2}-4c_{2}(\mathscr{G})=\mathscr{L}^{2}-4c_{2}$ . Setting $l:=-m/2,$ $c_{1}(g(l))=\mathscr{L}$ and
$c_{2}(g(l))=c_{2}$ . Thus S7 and $l$ are required. (q.e. $d.$ )

\S 3. Vector bundles of configuration type.

A. General arguments. Let $C$ be a reduced and reducible curve
on $S$ satisfying the properties of $Y$ in the definition of type (C) in
\S 1. The symbols $C_{i},$

$C_{i}^{l},$ $\cdots$ denote $Y_{i},$
$Y_{i}^{o},$

$\cdots$ in the definition of type
(C) and take data $(D1)\sim(D3)$ to define a vector bundle $g$ of type (C)
of rank 2 on $S$. Note that S7 has frames $e^{0},$ $e^{1}$ on $N_{0},$ $N_{1}$ respectively,
with $e^{0}=e^{1}H$ on $N_{0}\cap N_{1}$ . The following properties are clear from the
construction.
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PROPOSITION 3.1.
$e^{0}=(e_{1}, e_{2})e\Gamma(S^{l}, g_{s}\circ)^{\oplus 2}$ and det(24.;): $=\wedge^{2}g_{s}\circ=p_{s}\circ(\dot{C})$ .

We here discuss the structure of bundles of type (C). Set $Z:=$
$p(C)$ and take a global section $s$ of $\mathscr{L}$ such that $(s)_{0}=C$. The following
lemma is fundamental for our argument.

LEMMA 3.2. There exists an embedding of $g$ into $\mathscr{L}^{\oplus 2}$ .
PROOF. Define an Og-morphism $\dot{\theta}:g_{s}l\rightarrow Z^{\oplus 2}|S^{o}$ using the frames $e^{0},$ $e^{1}$

as follows:

in $N_{0}$ , $\theta^{o}$ : $e^{0}=(e_{1}, e_{2})->(\left\{\begin{array}{l}s\\0\end{array}\right\}\left\{\begin{array}{l}0\\s\end{array}\right\})$ ,

in $N_{1}$ , $\theta^{o}$ : $e^{1}=(e_{\iota}^{\prime}, e_{2}^{\prime})\mapsto(\left\{\begin{array}{l}s\\0\end{array}\right\}\left\{\begin{array}{l}g_{1}\\g_{2}\end{array}\right\})$ ,

where $g_{1}$ $:=-sf_{1}/f_{2}$ and $g_{2}$ $:=s/f_{2}$ . In fact, this is a well-defined embedding,
for $\dot{\theta}(e^{0})=\theta(e^{1})H$ in $N_{0}\cap N_{t}$ . So $\theta^{9}(g_{\dot{s}})$ is a submodule of $\mathscr{L}^{\oplus:}|\dot{S}$ i8omorphic
to $g_{s}Q$ Taking the direct image sheaf, we obtain $g\simeq i_{*}\theta^{o}(g_{s}\circ)\subset \mathscr{L}^{\oplus 2}$ .

(q.e. $d.$ )

Let $g^{\prime}$ be the submodule $i_{*}\dot{\theta}(g_{\dot{s}}^{2})$ of $ \mathscr{G}^{\oplus 2}$ . We study local structure
of $g$ by studying that of $\mathscr{G}^{\prime}$ as a submodule of $\mathscr{L}^{\oplus 2}$ . Concerning a local
frame for $g$ ’ we have the following fact.

LEMMA 3.3. Let $\varphi=(\varphi_{1}, \varphi_{2})\in g_{p}\oplus 2(peS)$ . Then $\theta(\varphi)=(\theta(\varphi_{1}), \theta(\varphi_{2}))$ is
an $p_{p}$-free basis for $g_{p}^{l}$ if and only if $(\theta(\varphi_{1})\wedge\theta(\varphi_{2}))_{0}=C_{p}$ .

PROOF. $\varphi$ is an $p_{p}$-free basis for $g_{p}$ if and only if $(\varphi_{1}\wedge\varphi_{2}|S_{p}^{o})_{0}=\emptyset$ .
On the other hand, for any $\varphi=(\varphi_{1}, \varphi_{2})e\mathscr{G}_{p}^{\xi l2}$ , we know easily $(\theta(\varphi_{1}|S_{p}^{o})\wedge$

$\theta(\varphi_{2}|S_{p}^{o}))_{0}=C_{p}^{o}+(\varphi_{1}|\dot{S}_{p}\wedge\varphi_{2}|S_{p}^{l})_{0}$ . (q.e.d.)

For each $i=1,$ $\cdots,$ $m$ , let $D_{i}$ be the divisor $(f_{i1})_{\infty}$ on $C_{i}$ (cf. (D3)).
Take $h_{i2}e\Gamma(\rho_{c_{i}}(D_{i}))$ whose zero divisor is $D_{i}$ and put $h_{i1}$ $:=(f_{i1}|C)h_{i2}$ .
Then $h_{ij}e\Gamma(p_{c_{i}}(D_{i}))$ . Set $\Phi$ $:={}^{t}(-h_{i1}, h_{i2})e\Gamma(p_{c_{i}}(D_{i}))^{\oplus 2}$ and $\mathscr{M}:=$

$p_{o_{i}}(D_{i})^{\vee}\otimes \mathscr{L}|_{c_{i}}$ an invertible sheaf on $C_{i}$ . Define an $P_{c_{i}}$-homomorphism
$\Phi_{i}:\mathscr{M}_{i}\rightarrow Z|_{c_{i}}^{\oplus 2}$ by $\tau_{i}\mapsto\Phi_{i}(\tau_{i})=\tau_{i}\otimes\Phi_{i}$ .

The following proposition characterizes $g’$ .
PROPOSITION 3.4. Let $\varphi\in-\mathscr{G}_{p}^{\oplus 2}(peS)$ . Then $\varphi eg_{p}^{l}$ if and only if

$\varphi|C_{i}=\Phi_{i}(\tau_{i})$ for some $\tau_{l}e_{\vee}\ovalbox{\tt\small REJECT}_{i,p},$ $i=1,$ $\cdots,$ $m$ .
PROOF. Take an open neighborhood $U$ of $p$ . Then one easily sees
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that $\varphi={}^{t}(\varphi l’\varphi_{2})\in\Gamma(U, \mathscr{L}^{\oplus 2})$ is in $\Gamma(U, g’)$ if and only if the condition

(a) $\varphi|C_{i}^{o}=\psi(g_{1}, g_{2})|C_{i}^{o}$ for some $\psi_{i}\in\Gamma(U\cap C_{i}^{Q}, \rho_{c_{i}^{\circ}})$

holds for all $i=1,$ $\cdots,$ $m$ . Since $(g_{1}/g_{2})|\mathring{C}_{i}=-f_{1}|C_{i}^{o}$ has a unique meromor-
phic extension $f_{i1}$ on $C_{i}$ , one can write (a) as the condition

(b) $\varphi|C_{i}=(\varphi_{2}|C_{i})^{t}(-h_{i1}/h_{l2},1)$ .
This implies $\varphi_{2}|C_{i}\equiv 0(mod(h_{i2})_{0})$ and one sees
(c) $\varphi|C_{i}=\tau_{i}{}^{t}(-h_{i1}, h_{i2})$ with some element $\tau_{i}e\Gamma(U\cap C_{i}, \rightarrow\ovalbox{\tt\small REJECT}_{i})$ . (q.e.d.)

B. Vector bundles of null-correlation type and their Chern classes.
In this paragraph, we apply the results of the former paragraph to some
special bundle of type (C), which we will call “of type (NC).” We first
define it.

Let $S$ be a surface and fix a line bundle $\mathscr{L}$ on $S$ . A8sume that $\mathscr{L}$

has sections $s_{1},$ $\cdots,$
$s_{m}(m\geqq 2)$ which satisfy the following condition:

Setting $C_{l}$ $:=(s_{i})_{0}$ and $C:=\bigcup_{i}C_{i},$ $C$ satisfies the condition of (D1).

Set $\sigma_{i}$ $:=s_{1}\cdots s_{t-1}s_{i+1}\cdots s_{n}(i=1, \cdots, m)$ . Take $N_{0},$ $N_{1}=\bigcup_{i}N_{1}^{i},$
$S^{o},$

$\cdots$ , etc.
as in (D2). Take $t_{i}e\Gamma(S, \mathscr{L}^{\otimes m-1})$ for $i=1,$ $\cdots,$ $m$ and set

$H|N_{1}^{i}$ $:=\left\{\begin{array}{ll}1 & t_{t}/\sigma_{i}|N_{1}^{i}\\0 & s_{i}/s_{+1}|Ni\end{array}\right\}$ , with $s_{m+1}$ $:=s_{1}$ .

Then $H$ is a matrix of type (C). Consequently, we obtain the vector
bundle $g$ of type (C) determined by $H$ on $S$ with the frames $e^{0}$ and $e^{1}$

on $N_{0}$ and $N_{1}$ satisfying $e^{0}=e^{1}H$.
DEFINITION. A vector bundle of null correlation type, or briefly of

type (NC), is a vector bundle of type (C) defined by data as above. We
use the term ”matrix of type (NC)” also.

REMARK 3.5. We saw before that the null correlation bundle twisted
by $p(1)$ is of type (C) (cf. \S 1). A matrix of type (NC) is a generalization
of the one to construct that bundle (cf. (1.3)).

REMARK 3.6. We also have another definition of type (NC) which is
similar to the definition of type (G) by Hosoh. As the same notation as
above, we define a reflexive sheaf $g$ of type (NC) to be the double dual
of $\mathscr{G}^{-}$ which is defined from the following exact sequence:

$0\rightarrow(\mathscr{L}^{\otimes-(m-1)})^{\oplus m}\rightarrow^{H}(\mathscr{L}^{\otimes-(m-2)})^{\oplus m}\oplus d^{\oplus 2}\rightarrow \mathscr{G}^{-}\rightarrow 0$ ,

where
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$H=[\sigma_{2}0\sigma_{1}f_{1}\cdots\sigma_{*-1}\sigma_{n}f_{*-1}f_{*}\sigma_{m}0\sigma_{1}]$

and $(\mathscr{L}^{\otimes-(n-2)})^{\oplus n}$ i8 regarded as a sub8heaf of $\rho\oplus*$ through the injection
$j:(\mathscr{L}^{\otimes-\{n-2)})^{\oplus*}\rightarrow p\oplus n$ by tensoring $(\sigma_{12}, \sigma_{23}, \cdots, \sigma_{n\cdot 1})(\sigma_{ij}$ $:=\sigma_{i}/s_{j}=(\prod_{k=1}^{r*}s_{k})/$

$(ss_{\dot{f}}))$ .
In thi8 definition, we do not need to assume the conditions in (D1).

But if we do not assume them, the calculation of the second Chern
class of the associated bundle is very complex and delicate.

This definition is easily generalized when $X$ is higher dimensional and
$\mathscr{G}$ has a higher rank.

Concerning existence of bundles of type (NC), we obtain the following
results on $S=P^{2}$ .

THEOREM 3.7. For each integer $m\geqq 2$ and for each integer $c_{2}$ such
that $m(m-1)/2\leqq c_{2}\leqq m(m-1)$ , there exists a vector bundle $g$ of type (NC)
on $P^{2}$ such that $c_{1}(\mathscr{G})=m$ and $c_{2}(g)=c_{2}$ .

In the rest of this paper, we prove Theorem 3.7. For this we first
calculate the Chern classes of a bundle of type (NC) by using the method
of (3.2) and (3.3). Let $\mathscr{L},$ $s_{1},$ $\cdots,$ $s_{m}$ be as above. Remark that $\mathscr{L}^{\otimes m}$

and $s_{1}\otimes\cdots\otimes s_{m}$ play the roles of .S24 and $s$ in (3.2) respectively.
$\theta;\mathscr{G}\rightarrow \mathscr{G}’\subset(\mathscr{L}^{\otimes m})^{\oplus 2}\sim$ is the “multiplication by $s$

’ and $D_{i}=(t_{i}/\sigma|C_{i})_{\infty}$ for
$i=1,$ $\cdots,$ $m$ (cf. (3.3)). As to the first Chern class, $c_{1}(g)=\det(g)=\mathscr{L}^{\otimes n*}$ .
The second Chern class $c_{2}$ is the zero locus of its global section. Thus
it suffices to investigate the zero locus of $e_{1}$ , which vanishes only on
$Z=\bigcup_{i\neq j}Z_{ij}=\bigcup_{i\neq\dot{g}}((s)_{0}\cap(s_{j})_{0})$ .

LEMMA 3.8. Under the $s$ituation in the defin’ition of type (NC), let
$peZ_{ij}$ .

(I) If neither $t_{i}$ nor $t_{j}$ vanishes at $p$ , then the section $e_{1}$ has zero
at $p$ of order 2, and

(II) if both $t_{i}$ and $t_{j}$ have zero of order 1 at $p$ , then the section $e_{1}$

has zero at $p$ of order 1 for general $t$ and $t_{j}$ .
PROOF. For our discussion is local, we may assume that $Z_{ij}=\{p\}$

and $C_{\alpha}$ is defined by the equation $x_{\beta}=0,$ $\alpha,$ $\beta=i,$ $j,$ $\alpha\neq\beta$ , where $(x, x_{j})$
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is a local coordinate at $p$ . Let $\varphi\in \mathscr{G}_{p}^{\prime}$ . Then (3.5) implies that there
exist $\tau_{l}\in_{\vee}\ovalbox{\tt\small REJECT}_{i,p}$ and $\tau_{j}\in \mathscr{M}_{j,p}$ such that $\varphi|C_{\alpha}=\tau_{\alpha}\Phi_{\alpha}$ for $\alpha=i,$ $j$ . Clearly,

(E) $\Phi(\tau_{i})|p=\Phi_{j}(\tau_{j})|p$ in $(\mathscr{L}|p)^{\oplus 2}$ .
Conversely, let $\tau_{\alpha}\in_{-}\ovalbox{\tt\small REJECT}_{\alpha,p}(\alpha=i, j)$ satisfy this equation, then $\Phi_{\alpha}(\tau_{\alpha})e$

$(_{-}\mathscr{G}|C_{\alpha})_{p}^{\oplus 2}$ , so there exists $\varphi e\mathscr{G}_{p}^{\prime}$ with $\varphi|C_{\alpha}=\Phi_{\alpha}(\tau_{\alpha})\in(Z|C_{\alpha})_{p}^{\oplus 2}$ . Define an
$p_{\{p\}}$-homomorphism $(\delta\Phi)_{ij}$ from $(_{-}\ovalbox{\tt\small REJECT}_{i}\oplus \mathscr{M}_{f})|p$ to $\mathscr{L}|p^{\oplus 2}$ by $(\delta\Phi)_{ij}(\tau_{i}, \tau_{j})|p:=$

$-\Phi(\tau|p)+\Phi_{j}(\tau_{\dot{f}}|p)$ . Put the matrix $A_{ij}$ $:=[-\Phi_{i}, \Phi_{j}]$ and the $P_{p}$-module
$\swarrow r_{ij}$ $:=ker(\delta\Phi)_{ij}$ . Then (E) is equivalent to that

(E’) $(\tau_{i}, \tau_{j})|p\in.A_{i\dot{g}}^{\nearrow}$ .
Let $\mu_{\alpha}$ be a local frame of $\mathscr{M}_{\alpha}$ at $p(\alpha=i, j)$ . If rank $A_{ij}=2$ , then

$r_{ij}=0$ . Hence $\tau_{\alpha}$ can be written as $\tau_{\alpha}=x_{\alpha}\tau_{\alpha}^{\prime}\mu_{a}$ with $\tau_{\alpha}^{\prime}\in p_{c_{a},p}$ for $x_{\alpha}$ is
a local coordinate of $C_{\alpha}$ at $p$ . Thus $\varphi\in \mathscr{L}_{p}^{\oplus 2}$ is in $g_{p}^{r}$ if and only if
$\varphi|C_{\alpha}=x_{\alpha}\tau_{\alpha}^{\prime}\mu_{\alpha}\Phi_{\alpha}$ . If rank $A_{ij}=1$ , then $\vee\ell_{i\dot{g}}^{\prime}\cong C$.

If $1\in C$ corresponds to $(a_{i}\mu_{i}|p, a_{j}\mu_{j}|p),$ $a_{\alpha}\in C^{*}$ , then $\tau_{\alpha}$ can be written
as $\tau_{\alpha}=(\tau_{ij}a_{\alpha}+x_{\alpha}\tau_{\alpha}^{\prime})\mu_{\alpha}$ with $\tau_{ij}eC,$ $\tau_{\alpha}^{\prime}\in P_{c_{\alpha},p}$ . Thus $\varphi\in Z_{p}^{\oplus 2}$ is in $g_{p}^{\prime}$ if
and only if $\varphi|C_{\alpha}=(\tau_{lj}a_{\alpha}+x_{\alpha}\tau_{\alpha}^{\prime})\mu_{\alpha},$ $\alpha=i,$ $j$ .

(I). In this case, $D_{\alpha}=(\sigma_{\alpha}|C_{\alpha})_{0}$ , $\Phi_{\alpha}={}^{t}(-t_{\alpha}, \sigma_{\alpha})|C_{\alpha}\in\Gamma(p_{c_{\alpha}}((\sigma_{\alpha}|C_{\alpha})_{0}))^{\oplus l}$

and $\mathscr{M}_{\alpha}=p_{c_{\alpha}}(-D_{\alpha})\otimes \mathscr{L}|C_{\alpha}^{\otimes m}=\mathscr{L}|C_{\alpha}(\alpha=i, j)$ (around $p$). Furthermore,
$\Phi_{\alpha}|p={}^{t}(-t_{\alpha}, O)|p(\alpha=i, j)$ , hence $(\delta\Phi)_{ij}:(\mathscr{L}|C_{i}\oplus \mathscr{L}|C_{j})|p\rightarrow(\mathscr{L}^{\otimes m})^{\oplus 2}|p$ brings
${}^{t}(\tau_{l}, \tau_{;})|p$ to ${}^{t}(-t_{i}\tau_{i}+t_{j}\tau_{;}, O)|p$ . Then, the rank of the map is 1 and
$cA_{ij}^{\nearrow}\cong C$. Let $\lambda$ be a local frame of $\mathscr{L}$ at $p$ such that $\mu_{\alpha}=x|C_{\alpha}$ . Then
$t_{\alpha}=t_{\alpha}\lambda^{\otimes m-1}\sim,$ $s_{\alpha}=s_{\alpha}\lambda\sim$ and $\tau_{\alpha}=\tilde{\tau}_{\alpha}(\lambda|C_{\alpha})^{\otimes m}(\alpha=i, j)$ for $\sim t_{\alpha}\in p_{p},$ $s_{\alpha}\sim\in p_{p}$ and
$\tilde{\tau}_{\alpha}ep_{C_{\alpha},p}$ . $\tau\otimes\Phi_{i}|p=\tau_{j}\otimes\Phi_{j}|p$ if and only if $\sim\sim t_{i}\otimes\tilde{\tau}_{i}(p)=t_{j}\otimes\tau_{j}\sim(p)$ . For
$(t-t_{j})(p)\neq(0,0)\sim,\sim$ , we can put $\tau_{ij}:\sim=\tau_{i}\sim/\sim t_{j}(p)=\tilde{\tau}_{j}/\sim t_{l}(p)eC$. Let $\alpha$ be the one
of $i$ and $j$ and $\beta$ the other. Now $\tilde{\tau}_{\alpha}(p)=t_{\beta}(p)\tau_{ij}\sim\sim$ . So $\tilde{\tau}_{\alpha}(p)$ can be written
a8 $\tau_{\alpha}\sim=t_{\beta}(p)\tilde{\tau}_{ij}+x_{\alpha}\xi_{\alpha}\sim$ with some $\xi_{\alpha}\in p_{c_{\alpha},p}$ . We write $\sim\sim t_{\alpha}=t_{a}(p)+x_{\alpha}t_{\alpha}^{\prime}$ with
some $t_{\alpha}^{\prime}ep_{\sigma_{\alpha}}$ . Write $\sigma_{\alpha}=\tilde{\sigma}_{\alpha}\lambda^{\otimes m-}$ , $s^{\sim\otimes n*}=sx$ and $\tilde{\sigma}_{\alpha}=x_{\alpha}\theta_{\alpha}^{\prime}$ , where $s\sim ep_{p}$ ,
$\tilde{\sigma}_{\alpha}^{\prime}ep_{C_{\alpha},p}$ . Using these elements, $\varphi e\mathscr{G}_{p}^{\prime}\subset \mathscr{L}_{p}^{\oplus 2}$ is written as

$\varphi=\{\tilde{T}_{ij\left(\begin{array}{l}(t_{t}(p)t_{j}(p)\sim\sim\\ 0\end{array}\right)+\sum_{\rho\neq a}x_{\alpha\left(\begin{array}{l}t_{\beta}^{\prime}(t_{\alpha}(p)+x_{\alpha}\xi_{\beta})+t_{\beta}(p)\xi_{\beta}\sim\sim\\-\tilde{\sigma}_{\beta}^{\prime}t_{\alpha}(p)_{T_{ij}}^{\sim}+x_{\rho}\xi_{\beta}\sim\end{array}\right)(*)\}\lambda^{\otimes\prime n}}}+XX_{j}$ ,

where $(*)$ is not important for our arguments, so we neglect it.
Setting $\tilde{\tau}_{ij}=1$ and $\xi_{i}=\xi_{j}=0$ ,

$\eta=\left(\begin{array}{l}\eta_{1}\\\eta_{2}\end{array}\right)x^{\emptyset m}$ $:=\{\left(\begin{array}{l}\sim t_{i}(p)t_{\dot{f}}(p)\sim\\ 0\end{array}\right)+\sum_{\beta\neq a}x_{\alpha}\left(\begin{array}{l}\sim\sim t_{\beta}^{\prime}t_{\alpha}(p)\\-\tilde{\sigma}_{\beta}^{\prime}t_{\alpha}(p)\sim\end{array}\right)+x_{i}x_{j}(*)\}\lambda^{\otimes n}$ .

Recall that the morphism $\theta;g\rightarrow(\mathscr{L}^{\otimes m})^{\oplus 2}$ brings $e^{0}=(e_{1}, e_{2})$ to



14 YOSUKE HINO AND MASATAKA KAGESAWA

$(\left\{\begin{array}{l}s\\0\end{array}\right\}\left\{\begin{array}{l}0\\s\end{array}\right\})$ . Now, $(\eta, \theta(e_{2}))$ forms a local frame at $p$ . Indeed, since
$\eta\wedge\theta(e_{2})=x_{i}x_{j}\times unit$ , the condition of (3.3) is satisfied. Repre8ent $\theta(e_{1})$

by the local frame:

$\theta(e_{1})=\frac{s\sim}{\eta_{1}}\eta-\frac{\eta_{2}}{\eta_{1}}\theta(e_{2})$ ,

where

$\frac{s\sim}{\eta_{1}}=constant\cdot x_{i}x_{j}+$ ($higher$ order terms)

and

$\frac{\eta_{2}}{\eta_{1}}=constant\cdot(x_{i}+x_{j})+$ ($higher$ order terms).

The multiplicities of $s\sim/\eta_{1}$ and $\eta_{2}/\eta_{1}$ are 2 and 1 respectively. Therefore
$e_{1}$ has zero at $p$ of order 2.

(II). In this case, $ D_{\alpha}=\emptyset$ and $\Phi_{a}={}^{t}(-t_{\alpha}/\sigma_{\alpha}, 1)|C_{a}$ around $p,$ $\alpha=i,$ $j$ .
Then

$(\delta\Phi)_{ij}$ : $(\tau_{i}, \tau_{\dot{f}})|p\mapsto(\frac{t_{i}}{\sigma_{i}}\tau_{i}-\frac{t_{\dot{f}}}{\sigma_{j}}\tau_{j},$
$-\tau_{i}+\tau_{j})|p$

and no coefficients of $\tau_{i}$ and $\tau_{j}$ vani8h at $p$ . Then the rank of the
homomorphism is 2 for general $t_{\alpha}$ . In thi8 case $cA_{i\dot{g}}^{\nearrow}\simeq 0$ and $(x_{\dot{f}}\Phi_{i}, x_{i}\Phi_{j})$

forms a local frame of $g^{\prime}$ . Indeed $x_{\dot{f}}\Phi\wedge x_{i}\Phi_{\dot{f}}=x_{i}x_{\dot{f}}\Phi_{l}\wedge\Phi_{\dot{f}}$ satisfies the
condition of (3.3). Represent $\theta(e_{1})$ by the local frame:

$\theta(e_{1})=\frac{s}{\dot{f}\Delta}x_{\dot{f}}\Phi_{i}+\frac{s}{x_{i}\Delta}x_{i}\Phi_{j}\overline{x}$

where $\Delta$ is the determinant of the matrix $[\Phi_{i}, \Phi_{j}]$ . Both multiplicities
of $s/(x_{j}\Delta)$ and $s/(x\Delta)$ are 1. Therefore the order of zero of $e_{1}$ at $p$ is 1.

(q.e. $d.$ )

Note that the number of points of $Z$ is $(m(m-1)/2)\mathscr{L}^{2}=:l$ . Then
Lemma 3.8 directly implie8 the following.

PROPOSITION 3.9. If the case (I) occurs at $d$ points of $Z$ and the
case (II) occurs at the other $l-d$ points, the then second Chern class
$c_{2}(g)$ of $g\dot{r}sc_{2}(g)=d+l$ (as an integer).

PROOF OF THEOREM 3.7. When $S=P^{2}$ and $\mathscr{L}=p(1)$ , for each $m\geqq 2$
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there are sections $s_{1},$ $\cdots,$ $s_{m}$ of $\mathscr{L}$ such that $C_{i}=(s_{i})_{0}\cong P^{1}$ satisfy the
condition in the definition of type (NC). In this case, each $C_{i}$ meets
the other $C_{j}(j\neq i)$ at $m-1$ points and $Z$ consists of $M:=m(m-1)/2$
points. For any choice of $d(0\leqq d\leqq M)$ points of them, we can find
homogeneous polynomials $t_{i}$ of degree $m-1$ so that they make the sit-
uation as follows: the case (I) takes place at that $d$ points and the case
(II) takes place at the other $M-d$ points. Therefore, we obtain the
theorem. (q.e. $d.$ )

Note finally that for such $m$ and $c_{2}$ as above, $c_{2}-4m^{2}$ takes any
negative integers and recall that bundles are simple provided $c_{1}^{2}-2c_{2}<0$

(cf. (1.4)) and that simpleness and stability are equivalent in the case
of rank 2 on $P^{n}$ . So the irreducibility of the moduli of stable vector
bundles ([2], [7], [13]) implies

COROLLARY 3.10. Each stable 2-bundle on $P^{2}$ is a deformation of a
vector bundle of type (NC) twisted by $\rho(n)$ .
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