Automorphisms of Tensor Products of Irrational Rotation C*-Algebras and the C*-Algebra of Compact Operators

Kazunori KODAKA

Ryukyu University
(Communicated by Y. Ito)

Abstract. Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^* -algebra. Let K be the C^* -algebra of all compact operators on a countably infinite dimensional Hilbert space H. Let α be an automorphism of $A_{\theta} \otimes K$ with $\alpha_* = \mathrm{id}$ on $K_0(A_{\theta} \otimes K)$. If the set of invertible elements in A_{θ} is dense in A_{θ} or α preserves the canonical dense *-subalgebra $F^{\infty}(A_{\theta} \otimes K)$ of $A_{\theta} \otimes K$, then there are an automorphism β of A_{θ} and unitary elements w in the double centralizer $M(A_{\theta} \otimes K)$ of $A_{\theta} \otimes K$ and W in B(H) such that $\alpha = \mathrm{Ad}(w) \circ (\beta \otimes \mathrm{Ad}(W))$.

§ 1. Preliminaries.

Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^* -algebra. Let u and v be unitary elements in A_{θ} with $uv = e^{2\pi i\theta}vu$ which generate A_{θ} . Let τ be the unique tracial state on A_{θ} . Let K (resp. B(H)) be the C^* -algebra of all compact (resp. bounded) operators on a countably infinite dimensional Hilbert space H. Let $\{\varepsilon_j\}_{j\in Z}$ be a completely orthonormal base of H and $\{e_{ij}\}_{i,j\in Z}$ be matrix units of K with respect to $\{\varepsilon_j\}_{j\in Z}$. Let Tr be the canonical trace on K. For any C^* -algebra A we denote by M(A) the double centralizer (the multiplier) of A and by A^+ the unitized C^* -algebra of A. We know M(K) = B(H). Let Aut(A) be the group of all automorphisms of A. Furthermore we denote by tsr(A) the topological stable rank of A.

$\S 2$. Automorphisms of $A_{\theta} \otimes K$ with the trivial action on $K_{0}(A_{\theta} \otimes K)$.

By Riedel [6] or Anderson and Paschke [1], we can see that there is an irrational number θ such that the set of invertible elements in A_{θ} is dense in A_{θ} , i.e. $tsr(A_{\theta})=1$.

LEMMA 1. Let $\alpha \in \text{Aut}(A_{\theta} \otimes K)$ with $\alpha_* = \text{id}$ on $K_0(A_{\theta} \otimes K)$ and let Received February 14, 1990

 $\operatorname{tsr}(A_{\theta}) = 1$. Then for any $k \in \mathbb{Z}$ there is a partial isometry $w_k \in (A_{\theta} \otimes \mathbb{K})^+$ such that

$$w_k^* w_k = 1 \otimes e_{kk}$$
, $w_k w_k^* = \alpha(1 \otimes e_{kk})$.

PROOF. Since $\operatorname{tsr}(A_{\theta})=1$, $\operatorname{tsr}(A_{\theta}\otimes K)=1$ by Rieffel [8, Theorem 3.6]. Thus $(A_{\theta}\otimes K)^+$ has cancellation by Blackadar [2, Proposition 6.5.1]. Since $\alpha_*=\operatorname{id}$ on $K_0(A_{\theta}\otimes K)$, $[\alpha(1\otimes e_{kk})]=[1\otimes e_{kk}]$ in $K_0(A_{\theta}\otimes K)$ for any $k\in \mathbb{Z}$. Therefore for any $k\in \mathbb{Z}$ there is a partial isometry $w_k\in (A_{\theta}\otimes K)^+$ such that

$$w_k^* w_k = 1 \otimes e_{kk}$$
,
 $w_k w_k^* = \alpha(1 \otimes e_{kk})$. Q.E.D.

Let A be a C^* -algebra and B be its C^* -subalgebra. For any $\alpha \in \operatorname{Aut}(A)$ let $\alpha|_B$ be the monomorphism of B into A defined by $\alpha|_B(x) = \alpha(x)$ for any $x \in B$ and let $\tilde{\alpha}$ be the automorphism of M(A) obtained by extending α . Moreover let

 $F(A_{\theta} \otimes K) = \{ \sum x_{ij} \otimes e_{ij} \mid x_{ij} \in A_{\theta}, x_{ij} = 0 \text{ except for finitely many elements} \}.$

LEMMA 2. Let α be as in Lemma 1. We suppose that for any $k \in \mathbb{Z}$ there is a partial isometry $w_k \in (A_{\theta} \otimes K)^+$ such that

$$w_k^* w_k = 1 \otimes e_{kk}$$
, $w_k w_k^* = \alpha (1 \otimes e_{kk})$.

Then there is a unitary element $w \in M(A_{\theta} \otimes K)$ such that $Ad(w^*) \circ \alpha|_{A_{\theta} \otimes e_{kk}}$ is an automorphism of $A_{\theta} \otimes e_{kk}$ and

$$(\mathrm{Ad}(w^*)\circ\alpha)(1\otimes e_{kk})=1\otimes e_{kk}$$

for any $k \in \mathbb{Z}$.

PROOF. There is a partial isometry w_k in $(A_\theta \otimes K)^+$ for any $k \in Z$ such that

$$w_k^*w_k = 1 \otimes e_{kk}$$
 , $w_k w_k^* = \alpha(1 \otimes e_{kk})$

by the assumptions. Let (π_{τ}, H_{τ}) be the cyclic representation of A_{θ} associated with τ . Since A_{θ} is simple, π_{τ} is faithful. Thus we can identify $A_{\theta} \otimes K$ with $\pi_{\tau}(A_{\theta}) \otimes K$. For any $\sum_{j \in \mathbf{Z}} \xi_{j} \otimes \varepsilon_{j} \in H_{\tau} \otimes H$ and $n \geq m \geq 1$,

$$\begin{split} \left\| \left(\sum_{|k|=m}^{n} w_{k} \right) \left(\sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \right\|^{2} &= \left(\left(\sum_{|k|,|l|=m}^{n} w_{k}^{*} w_{k} \right) \left(\sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \left| \sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \right| \\ &= \left(\left(\sum_{|k|=m}^{n} w_{k}^{*} \alpha (1 \otimes e_{kk}) w_{k} \right) \left(\sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \left| \sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \right| \\ &= \left(\left(\sum_{|k|=m}^{n} 1 \otimes e_{kk} \right) \left(\sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \left| \sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \right| \\ &= \left(\sum_{|k|=m}^{n} \xi_{k} \otimes \varepsilon_{k} \left| \sum_{j \in \mathbb{Z}} \xi_{j} \otimes \varepsilon_{j} \right) \right| \\ &= \sum_{|k|=m}^{n} \sum_{j \in \mathbb{Z}} (\xi_{k} | \xi_{j}) (\varepsilon_{k} | \varepsilon_{j}) \\ &= \sum_{|k|=m}^{n} ||\xi_{k}||^{2} . \end{split}$$

Hence since $\sum_{|k|=m}^{n} \|\xi_k\|^2 \to 0$ as $m, n \to \infty$, $\{\sum_{|k| \le n} w_k\}$ is a Cauchy sequence with respect to the strong topology. Thus we can define $w = \sum_{k \in \mathbb{Z}} w_k$. Then $w \in B(H_r \otimes H)$. For any $x = \sum_{i \le k} x_{ij} \otimes e_{ij} \in F(A_\theta \otimes K)$

$$\begin{split} \left\| \sum_{|k|=m}^{n} w_{k} x \right\|^{2} &= \left\| \left(\sum_{|j|=m}^{n} x^{*} w_{j}^{*} \right) \left(\sum_{|k|=m}^{n} w_{k} x \right) \right\| \\ &= \left\| x^{*} \left(\sum_{|k|=m}^{n} 1 \otimes e_{kk} \right) x \right\| \\ &\leq \left\| x \right\| \left\| \left(\sum_{|k|=m}^{n} 1 \otimes e_{kk} \right) x \right\| \\ &= \left\| x \right\| \left\| \left(\sum_{|k|=m}^{n} 1 \otimes e_{kk} \right) \left(\sum_{i,j} x_{ij} \otimes e_{ij} \right) \right\| \\ &= \left\| x \right\| \left\| \sum_{j} \sum_{|k|=m}^{n} x_{kj} \otimes e_{kj} \right\| \to 0 \end{split}$$

as $m, n \to \infty$. Hence $\{\sum_{|k| \le m} w_k x\}$ is a Cauchy sequence with respect to the norm topology. Thus $wx \in A_{\theta} \otimes K$ for any $x \in F(A_{\theta} \otimes K)$. Since $F(A_{\theta} \otimes K)$ is dense in $A_{\theta} \otimes K$ with respect to the norm topology, for any $x \in A_{\theta} \otimes K$ there is a sequence $\{x_n\}$ in $F(A_{\theta} \otimes K)$ such that $||x_n - x|| \to 0$ as $n \to \infty$. Then $||wx - wx_n|| \le ||w|| \, ||x - x_n|| \to 0$ as $n \to \infty$. Therefore $wx \in A_{\theta} \otimes K$ for any $x \in A_{\theta} \otimes K$. Similarly we obtain that $xw \in A_{\theta} \otimes K$ for any $x \in A_{\theta} \otimes K$. Hence $w \in M(A_{\theta} \otimes K)$. Furthermore we see that

$$\begin{split} w^*w &= \sum_{j,k \in \mathbb{Z}} w_j^* w_k = \sum_{k \in \mathbb{Z}} 1 \otimes e_{kk} = 1 \otimes 1 , \\ ww^* &= \sum_{j,k \in \mathbb{Z}} w_j w_k^* = \sum_{k \in \mathbb{Z}} \alpha (1 \otimes e_{kk}) = \tilde{\alpha} (1 \otimes 1) = 1 \otimes 1 \end{split}$$

since $\tilde{\alpha}$ is strictly continuous by Busby [3, Proposition 3.8]. Thus w is a unitary element. And for any $k \in \mathbb{Z}$

$$\begin{split} w(1 \otimes e_{kk}) w^* &= \sum_{j \in \mathbb{Z}} w_j (1 \otimes e_{kk}) w^* \\ &= \sum_{j \in \mathbb{Z}} w_j w_j^* w_j (1 \otimes e_{kk}) w^* \\ &= w_k (1 \otimes e_{kk}) \sum_{j \in \mathbb{Z}} w_j^* w_j w_j^* \\ &= w_k (1 \otimes e_{kk}) w_k^* \\ &= \alpha (1 \otimes e_{kk}) \ . \end{split}$$

Hence

$$(\mathrm{Ad}(w^*)\circ\alpha)(1\otimes e_{kk})=1\otimes e_{kk}$$

for any $k \in \mathbb{Z}$. Furthermore for any $x \in A_{\theta}$ and $k \in \mathbb{Z}$

$$(\mathrm{Ad}(w^*) \circ \alpha)(x \otimes e_{kk}) = (\mathrm{Ad}(w^*) \circ \alpha)(1 \otimes e_{kk})(\mathrm{Ad}(w^*) \circ \tilde{\alpha})(x \otimes 1) \times (\mathrm{Ad}(w^*) \circ \alpha)(1 \otimes e_{kk}) = (1 \otimes e_{kk})(\mathrm{Ad}(w^*) \circ \tilde{\alpha})(x \otimes 1)(1 \otimes e_{kk}).$$

Since

$$(1 \otimes e_{kk})(A_{\theta} \otimes \boldsymbol{B}(H))(1 \otimes e_{kk}) = A_{\theta} \otimes e_{kk}$$

for any $k \in \mathbb{Z}$, we obtain that

$$(\mathrm{Ad}(w^*) \circ \alpha)(x \bigotimes e_{kk}) \in A_\theta \bigotimes e_{kk}$$

for any $x \in A_{\theta}$ and $k \in \mathbb{Z}$. Hence $\mathrm{Ad}(w^*) \circ \alpha$ is a monomorphism of $A_{\theta} \otimes e_{kk}$ into $A_{\theta} \otimes e_{kk}$. However if we repeat the above discussion, we can see that $\alpha^{-1} \circ \mathrm{Ad}(w)$ is a monomorphism of $A_{\theta} \otimes e_{kk}$ into $A_{\theta} \otimes e_{kk}$ and clearly

$$(\mathrm{Ad}(w^*)\circ\alpha)(\alpha^{-1}\circ\mathrm{Ad}(w))=(\alpha^{-1}\circ\mathrm{Ad}(w))(\mathrm{Ad}(w^*)\circ\alpha)=\mathrm{id}.$$

Thus $(\mathrm{Ad}(w^*) \circ \alpha)|_{A_{\theta} \otimes e_{kk}}$ is an automorphism of $A_{\theta} \otimes e_{kk}$ for any $k \in \mathbb{Z}$. Q.E.D.

Now let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes K)$. We suppose that α satisfies the following conditions:

- 1) $\alpha(1 \otimes e_{kk}) = 1 \otimes e_{kk}$,
- 2) $\alpha|_{A_{\theta}\otimes e_{kk}}\in \operatorname{Aut}(A_{\theta}\otimes e_{kk})$ for any $k\in \mathbb{Z}$. Then for any $k\in \mathbb{Z}$ there is an automorphism β of A_{θ} such that for any $x\in A_{\theta}$

$$\alpha(x \otimes e_{kk}) = \beta_k(x) \otimes e_{kk}$$
.

Let V be the unitary element in B(H) defined by

$$V_{\varepsilon_k} = \varepsilon_{k+1}$$

for any $k \in \mathbb{Z}$. Then $Ve_{kk}V^* = e_{k+1} + 1$ for any $k \in \mathbb{Z}$.

LEMMA 3. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ satisfy the above conditions and β_k , $k \in \mathbf{Z}$ be as above. Then there are a unitary element $w \in M(A_{\theta} \otimes \mathbf{K})$ and an automorphism β of A_{θ} such that for any $x \in A_{\theta}$ and $k \in \mathbf{Z}$

$$(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes e_{kk})=\beta(x)\otimes e_{kk}$$
.

PROOF. Let $\tilde{\alpha}$ be the automorphism of $M(A_{\theta} \otimes K)$ obtained by extending α . Let V be as above. Since $\alpha(1 \otimes e_{kk}) = 1 \otimes e_{kk}$ for any $k \in \mathbb{Z}$,

$$\widetilde{\alpha}(1 \otimes V)(1 \otimes e_{kk}) = (1 \otimes e_{k+1})\widetilde{\alpha}(1 \otimes V)$$

for any $k \in \mathbb{Z}$. And for any $x \in A_{\theta}$

$$\tilde{\alpha}(x \otimes 1)\tilde{\alpha}(1 \otimes V) = \tilde{\alpha}(1 \otimes V)\tilde{\alpha}(x \otimes 1)$$
.

Furthermore

$$x \otimes 1 = \sum_{k \in \mathbb{Z}} x \otimes e_{kk}$$

where the summation is taken with respect to the strict topology. Hence we have

$$\tilde{\alpha}(x \otimes 1) = \sum_{k \in \mathbb{Z}} \beta_k(x) \otimes e_{kk}$$

since $\tilde{\alpha}$ is strictly continuous. Thus

$$\begin{split} (\sum_{k \in \mathbb{Z}} \beta_k(x) \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) &= \widetilde{\alpha}(1 \otimes V) (\sum_{k \in \mathbb{Z}} \beta_k(x) \otimes e_{kk}) \\ &= \sum_{k \in \mathbb{Z}} \widetilde{\alpha}(1 \otimes V) (\beta_k(x) \otimes e_{kk}) \\ &= \sum_{k \in \mathbb{Z}} \widetilde{\alpha}(1 \otimes V) (1 \otimes e_{kk}) (\beta_k(x) \otimes e_{kk}) \\ &= \sum_{k \in \mathbb{Z}} (1 \otimes e_{k+1}) \widetilde{\alpha}(1 \otimes V) (\beta_k(x) \otimes e_{kk}) \end{split}$$

since

$$\widetilde{\alpha}(1 \otimes V)(1 \otimes e_{kk}) = (1 \otimes e_{k+1 \cdot k+1})\widetilde{\alpha}(1 \otimes V)$$

for any $k \in \mathbb{Z}$. Since $\widetilde{\alpha}(1 \otimes V)$ is a unitary element, we obtain that

$$\sum_{k \in \mathbb{Z}} \beta_k(x) \otimes e_{kk} = \sum_{k \in \mathbb{Z}} (1 \otimes e_{k+1}) \widetilde{\alpha}(1 \otimes V) (\beta_k(x) \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V)^*.$$

Hence for any $k \in \mathbb{Z}$

$$\begin{split} \beta_{k}(x) \otimes e_{kk} &= (1 \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) (\beta_{k-1}(x) \otimes e_{k-1 \, k-1}) \widetilde{\alpha}(1 \otimes V)^{*} (1 \otimes e_{kk}) \\ &= (1 \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) (1 \otimes V)^{*} (\beta_{k-1}(x) \otimes e_{kk}) (1 \otimes V) \widetilde{\alpha}(1 \otimes V)^{*} (1 \otimes e_{kk}) \\ &= (1 \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) (1 \otimes V)^{*} (1 \otimes e_{kk}) (\beta_{k-1}(x) \otimes e_{kk}) \\ &\times (1 \otimes e_{kk}) (1 \otimes V) \widetilde{\alpha}(1 \otimes V)^{*} (1 \otimes e_{kk})^{*} . \end{split}$$

Since $(1 \otimes e_{kk}) \tilde{\alpha} (1 \otimes V) (1 \otimes V)^* (1 \otimes e_{kk})$ is in $B(H_r) \otimes e_{kk} \cap M(A_\theta \otimes K)$, we see that

$$(1 \bigotimes e_{kk}) \widetilde{\alpha} (1 \bigotimes V) (1 \bigotimes V)^* (1 \bigotimes e_{kk}) \in A_{\theta} \bigotimes e_{kk}$$
 ,

which is a unitary element in $A_{\theta} \otimes e_{kk}$. Hence for any $k \in \mathbb{Z}$ there is a unitary element $y_k \in A_{\theta}$ such that

$$\beta_{k}(x) = y_{k}\beta_{k-1}(x)y_{k}^{*}$$

for any $x \in A_{\theta}$. Let $\beta = \beta_0$ and

$$w_k = egin{cases} y_k y_{k-1} \cdots y_1 & \text{if } k > 0 \ 1 & \text{if } k = 0 \ y_{k+1}^* y_{k+2}^* \cdots y_0^* & \text{if } k < 0 \end{cases}.$$

Then $w_k \in A_\theta$ and $\beta_k = \operatorname{Ad}(w_k) \circ \beta$ for any $k \in \mathbb{Z}$. Let $w = \sum_{k \in \mathbb{Z}} w_k \otimes e_{kk}$ where the summation is taken with respect to the strong topology. For any $x = \sum x_{ij} \otimes e_{ij} \in F(A_\theta \otimes \mathbb{K})$ and $n \ge m \ge 1$,

$$\begin{split} \left\| \left(\sum_{|k|=m}^{n} w_{k} \otimes e_{kk} \right) x \right\|^{2} &= \left\| x^{*} \left(\sum_{|j|=m}^{n} w_{j}^{*} \otimes e_{jj} \right) \left(\sum_{|k|=m}^{n} w_{k} \otimes e_{kk} \right) x \right\| \\ &\leq \|x\| \, \left\| \left(\sum_{|k|=m}^{n} 1 \otimes e_{kk} \right) \left(\sum_{i,j} x_{ij} \otimes e_{ij} \right) \right\| \\ &= \|x\| \, \left\| \sum_{j} \sum_{|k|=m}^{n} x_{kj} \otimes e_{kj} \right\| \\ &\to 0 \quad \text{as} \quad m, \ n \to \infty \end{split}.$$

Hence $\{\sum_{|k| \le n} w_k x\}$ is a Cauchy sequence with respect to the norm topology. Thus $wx \in A_\theta \otimes K$ for any $x \in F(A_\theta \otimes K)$. For any $x \in A_\theta \otimes K$ there is a sequence $\{x_n\}$ in $F(A_\theta \otimes K)$ such that $||x_n - x|| \to 0$ as $n \to \infty$. Then $||wx - wx_n|| \le ||x - x_n|| \to 0$ as $n \to \infty$. Hence $wx \in A_\theta \otimes K$ for any $x \in A_\theta \otimes K$. Similarly $xw \in A_\theta \otimes K$ for any $x \in A_\theta \otimes K$. Therefore $w \in M(A_\theta \otimes K)$. Furthermore for any $x \in A_\theta$ and $k \in Z$

$$(\mathrm{Ad}(w^*) \circ \alpha)(x \otimes e_{kk}) = w^* \alpha(x \otimes e_{kk}) w$$

$$= w^* (\beta_k(x) \otimes e_{kk}) w$$

$$= w^* (w_k \beta(x) w_k^* \otimes e_{kk}) w$$

$$= w^*(w_k \beta(x) w_k^* \otimes e_{kk}) (\sum_{j \in \mathbb{Z}} w_j \otimes e_{jj})$$

$$= w^*(w_k \beta(x) \otimes e_{kk})$$

$$= (\sum_{j \in \mathbb{Z}} w_j^* \otimes e_{jj}) (w_k \beta(x) \otimes e_{kk})$$

$$= \beta(x) \otimes e_{kk} . Q.E.D.$$

LEMMA 4. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes K)$. We suppose that there is an automorphism β of A_{θ} such that

$$\alpha(x \otimes e_{kk}) = \beta(x) \otimes e_{kk}$$

for any $x \in A_{\theta}$ and $k \in \mathbb{Z}$. Then there is a unitary element $W \in \mathbf{B}(H)$ such that

$$\alpha = \beta \otimes Ad(W)$$
.

PROOF. Let $\tilde{\alpha}$ and V be as in Lemma 3. For any $k \in \mathbb{Z}$

$$\widetilde{\alpha}(1 \otimes V)\widetilde{\alpha}(1 \otimes e_{kk}) = (1 \otimes e_{k+1})\widetilde{\alpha}(1 \otimes V)$$

and for any $x \in A_{\theta}$

$$\tilde{\alpha}(1 \otimes V) \tilde{\alpha}(x \otimes 1) = \tilde{\alpha}(x \otimes 1) \tilde{\alpha}(1 \otimes V)$$
.

Thus

$$\widetilde{\alpha}(1 \otimes V) \widetilde{\alpha}(\sum_{k \in \mathbb{Z}} x \otimes e_{kk}) = \widetilde{\alpha}(\sum_{k \in \mathbb{Z}} x \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V)$$
 .

Since $\sum_{k \in \mathbb{Z}} x \otimes e_{kk}$ is taken with respect to the strict topology and $\tilde{\alpha}$ is strictly continuous, we have that

$$\sum_{k \in \mathbb{Z}} \widetilde{\alpha}(1 \otimes V) \widetilde{\alpha}(x \otimes e_{kk}) = \sum_{k \in \mathbb{Z}} \widetilde{\alpha}(x \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) .$$

Hence

$$\sum_{k \in \mathbb{Z}} \widetilde{\alpha}(1 \otimes V)(\beta(x) \otimes e_{kk}) = \sum_{k \in \mathbb{Z}} (\beta(x) \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) .$$

Thus

$$\widetilde{\alpha}(1 \otimes V)(\beta(x) \otimes e_{k-1}) = (\beta(x) \otimes e_{kk})\widetilde{\alpha}(1 \otimes V)$$

for any $k \in \mathbb{Z}$ since

$$\widetilde{\alpha}(1 \otimes V)(1 \otimes e_{kk}) = (1 \otimes e_{k+1,k+1})\widetilde{\alpha}(1 \otimes V)$$
.

Therefore for any $k \in \mathbb{Z}$

$$\widetilde{\alpha}(1 \otimes V)(1 \otimes V)^*(\beta(x) \otimes e_{kk})(1 \otimes V) = (\beta(x) \otimes e_{kk})\widetilde{\alpha}(1 \otimes V)$$
.

Hence

$$(1 \otimes e_{kk}) \tilde{\alpha} (1 \otimes V) (1 \otimes V)^* (1 \otimes e_{kk}) (\beta(x) \otimes e_{kk})$$

$$= (\beta(x) \otimes e_{kk}) (1 \otimes e_{kk}) \tilde{\alpha} (1 \otimes V) (1 \otimes V)^* (1 \otimes e_{kk}).$$

Clearly

$$(1 \otimes e_{kk}) \widetilde{\alpha} (1 \otimes V) (1 \otimes V)^* (1 \otimes e_{kk}) \in M(A_{\theta} \otimes K) \cap (B(H_{\tau}) \otimes e_{kk})$$

$$= A_{\theta} \otimes e_{kk}.$$

And since x is an arbitrary element in A_{θ} , we see that

$$(1 \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V)(1 \otimes V)^*(1 \otimes e_{kk}) \in (A_{\theta} \otimes e_{kk})'$$

for any $k \in \mathbb{Z}$. Hence for any $k \in \mathbb{Z}$ there is a $\lambda_k \in \mathbb{C}$ such that

$$(1 \otimes e_{kk}) \widetilde{\alpha} (1 \otimes V) (1 \otimes V)^* (1 \otimes e_{kk}) = \lambda_k (1 \otimes e_{kk})$$
.

Thus we have that

$$\widetilde{\alpha}(1 \otimes V)(1 \otimes e_{k-1 k-1}) = \lambda_k(1 \otimes V)(1 \otimes e_{k-1 k-1})$$

for any $k \in \mathbb{Z}$ since

$$(1 \otimes e_{kk}) \widetilde{\alpha}(1 \otimes V) = \widetilde{\alpha}(1 \otimes V) (1 \otimes e_{k-1 k-1})$$
.

Then

$$\alpha(1 \otimes e_{10}) = \alpha(1 \otimes V e_{00})$$

$$= \tilde{\alpha}(1 \otimes V)(1 \otimes e_{00})$$

$$= \lambda_{11}(1 \otimes V)(1 \otimes e_{00}) \in 1 \otimes K.$$

Similarly for any $m, n \in \mathbb{Z}$

$$\alpha(1 \otimes e_{mn}) = \alpha(1 \otimes V^m e_{00} V^{-n}) \in 1 \otimes K$$
.

Since $\{1 \otimes e_{mn} \mid m, n \in \mathbb{Z}\}$ generate $1 \otimes K$, $\alpha|_{1 \otimes K}$ is an automorphism of $1 \otimes K$. Therefore there is a unitary element $W \in B(H)$ such that

$$\alpha|_{MK} = \mathrm{Ad}(1 \otimes W)$$
.

For any $x \in A_{\theta}$ and $X \in K$

$$\alpha(x {\textstyle \bigotimes} X) = \alpha(\sum_{\mathbf{k} \in \mathbb{Z}} (x {\textstyle \bigotimes} e_{\mathbf{k}\mathbf{k}}) (1 {\textstyle \bigotimes} X))$$

where the summation is taken with respect to the strict topology in

 $M(A_{\theta} \otimes \mathbf{K})$. The automorphism $\tilde{\alpha}$ of $M(A_{\theta} \otimes \mathbf{K})$ is strictly continuous. Hence

$$\begin{split} \alpha(x \otimes X) &= \sum_{k \in \mathbb{Z}} \widetilde{\alpha}(x \otimes e_{kk}) \widetilde{\alpha}(1 \otimes X) \\ &= \sum_{k \in \mathbb{Z}} \alpha(x \otimes e_{kk}) \alpha(1 \otimes X) \\ &= (\sum_{k \in \mathbb{Z}} \beta(x) \otimes e_{kk}) (1 \otimes W) (1 \otimes X) (1 \otimes W)^* \\ &= (\beta \otimes \operatorname{Ad}(W)) (x \otimes X) \ . \end{split}$$

Thus $\alpha(x) = (\beta \otimes Ad(W))(x)$ for any $x \in A_{\theta} \otimes K$.

Q.E.D.

THEOREM 5. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ with $\alpha_* = \operatorname{id}$ on $K_0(A_{\theta} \otimes \mathbf{K})$ and let $\operatorname{tsr}(A_{\theta}) = 1$. Then there are an automorphism β of A_{θ} and unitary elements $w \in M(A_{\theta} \otimes \mathbf{K})$, $W \in \mathbf{B}(H)$ such that

$$\alpha = \mathrm{Ad}(w) \circ (\beta \otimes \mathrm{Ad}(W))$$
.

PROOF. This is immediate by Lemmas 1, 2, 3 and 4.

Q.E.D.

§ 3. Automorphisms of $A_{\theta} \otimes K$ with the trivial action on $K_0(A_{\theta} \otimes K)$ and preserving $F^{\infty}(A_{\theta} \otimes K)$.

Let A_{θ}^{∞} be the dense *-subalgebra of smooth elements of A_{θ} with respect to the canonical action of the two dimensional torus. Let

$$F^{\infty}(A_{\theta} \otimes K) = \{\sum_{i \in Z} x_{ij} \otimes e_{ij} \in F(A_{\theta} \otimes K) \mid x_{ij} \in A_{\theta}^{\infty} \}$$
.

LEMMA 6. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ with $\alpha_* = \operatorname{id}$ on $K_0(A_{\theta} \otimes \mathbf{K})$. We suppose that $\alpha(F^{\infty}(A_{\theta} \otimes \mathbf{K})) = F^{\infty}(A_{\theta} \otimes \mathbf{K})$. Then there is a unitary element $w \in M(A_{\theta} \otimes \mathbf{K})$ such that

- 1) $(\operatorname{Ad}(w^*) \circ \alpha)(1 \otimes e_{kk}) = 1 \otimes e_{kk},$
- 2) $\operatorname{Ad}(w^*) \circ lpha|_{A_{ heta} \otimes e_{kk}}$ is an automorphism of $A_{ heta} \otimes e_{kk}$ for any $k \in \mathbb{Z}$,
- 2) $(\operatorname{Ad}(w^*) \circ \alpha)(F^{\infty}(A_{\theta} \otimes K)) = F^{\infty}(A_{\theta} \otimes K).$

PROOF. Since $\alpha(F^{\infty}(A_{\theta} \otimes K)) = F^{\infty}(A_{\theta} \otimes K)$, for any $k \in \mathbb{Z}$ there is an $n \in \mathbb{N}$ such that $1 \otimes e_{kk}$ and $\alpha(1 \otimes e_{kk})$ are in $M_n(A_{\theta}^{\infty})$ where $M_n(A_{\theta}^{\infty})$ is the $n \times n$ -matrix algebra over A_{θ}^{∞} . By Rieffel [8] A_{θ}^{∞} has cancellation. Hence for any $k \in \mathbb{Z}$ there is a partial isometry $w_k \in M_n(A_{\theta}^{\infty}) \subset F^{\infty}(A_{\theta} \otimes K)$ such that

$$w_k^*w_k = 1 \otimes e_{kk}$$
 , $w_k w_k^* = \alpha(1 \otimes e_{kk})$.

And in the same way as in Lemma 2 let $w = \sum_{k \in \mathbb{Z}} w_k$. Then we can easily obtain 1) and 2). And for any $x = \sum_{i,j} x_{ij} \otimes e_{ij} \in F^{\infty}(A_{\theta} \otimes K)$

$$\begin{aligned} wxw^* &= (\sum_{k \in \mathbb{Z}} w_k) (\sum_{i,j} x_{ij} \otimes e_{ij}) w^* \\ &= (\sum_{i,j} w_i x_{ij} \otimes e_{ij}) (\sum_{k \in \mathbb{Z}} w_k^*) \\ &= \sum_{i,j} w_i x_{ij} w_j^* \otimes e_{ij} \in F^{\infty}(A_{\theta} \otimes K) . \end{aligned}$$

Hence we obtain 3).

Q.E.D.

Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes K)$. We suppose that α satisfies the following conditions:

- 1) $\alpha(1 \otimes e_{kk}) = 1 \otimes e_{kk}$,
- 2) $\alpha|_{A_{\theta}\otimes e_{kk}}$ is an automorphism of $A_{\theta}\otimes e_{kk}$ for any $k\in \mathbb{Z}$,
- 3) $\alpha(F^{\infty}(A_{\theta} \otimes K)) = F^{\infty}(A_{\theta} \otimes K).$

Let $A_{\theta}^{\infty} \otimes e_{kk} = \{x \otimes e_{kk} \mid x \in A_{\theta}^{\infty}\}$. Then $\alpha(A_{\theta}^{\infty} \otimes e_{kk}) = A_{\theta}^{\infty} \otimes e_{kk}$ for any $k \in \mathbb{Z}$ by 2), 3). Hence since $A_{\theta} \otimes e_{kk}$ is isomorphic to A_{θ} , for any $k \in \mathbb{Z}$ there is an automorphism β_k of A_{θ} such that for any $x \in A_{\theta}$

$$eta_{m k}(A_{m heta}^{\infty}) \!=\! A_{m heta}^{\infty} \; , \ lpha(x igotimes e_{m k m k}) \!=\! eta_{m k}(x) igotimes e_{m k m k} \; .$$

LEMMA 7. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes K)$ satisfy the above conditions. Let β_k , $k \in \mathbb{Z}$ be as above. Then there are a unitary element $w \in M(A_{\theta} \otimes K)$ and an automorphism β of A_{θ} with $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ such that

$$(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes e_{kk})=\beta(x)\otimes e_{kk}$$

for any $x \in A_{\theta}$ and $k \in \mathbb{Z}$ and that

$$(\mathrm{Ad}(w^*)\circ\alpha)(F^{\scriptscriptstyle\infty}(A_{\scriptscriptstyle{\theta}}\otimes K)) = F^{\scriptscriptstyle\infty}(A_{\scriptscriptstyle{\theta}}\otimes K)$$
.

PROOF. Let V be as in Lemma 3. In the same way as in Lemma 3 we obtain that for any $k \in \mathbb{Z}$ there is a unitary element $y_k \in A_\theta$ such that

$$\beta_k(x) = y_k \beta_{k-1}(x) y_k^*$$

for any $x \in A_{\theta}$. Since $\beta_k(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ for any $k \in \mathbb{Z}$, $y_k A_{\theta}^{\infty} y_k^* = A_{\theta}^{\infty}$ for any $k \in \mathbb{Z}$. Let β , w_k $(k \in \mathbb{Z})$ and w be as in Lemma 3. By the definition of w_k , $w_k A_{\theta}^{\infty} w_k^* = A_{\theta}^{\infty}$ for any $k \in \mathbb{Z}$. Therefore

$$Ad(w)(F^{\infty}(A_{\theta} \otimes K)) = F^{\infty}(A_{\theta} \otimes K)$$
.

Hence we obtain the conclusion in the same way as in Lemma 3.

Q.E.D.

Let

 $F(K) = \{\sum c_{ij}e_{ij} \mid c_{ij} \in C, c_{ij} = 0 \text{ except for finitely many elements}\}$

and let R_{τ} be the linear map of $F(A_{\theta} \otimes K)$ to F(K) defined by

$$R_{\tau}(\sum x_{ij} \otimes e_{ij}) = \sum \tau(x_{ij})e_{ij}$$

for any $\sum x_{ij} \otimes e_{ij} \in F(A_{\theta} \otimes K)$. By Tomiyama [11] R_{τ} can be extended to a bounded linear map of $A_{\theta} \otimes K$ onto K. We also denote it by R_{τ} .

LEMMA 8. With the above notations

$$F^{\infty}(A_{\theta} \otimes K) \cap 1 \otimes K = 1 \otimes F(K)$$
.

PROOF. It is clear that

$$F^{\infty}(A_{\theta} \otimes K) \cap 1 \otimes K \supset 1 \otimes F(K)$$
.

We suppose that $x \in F^{\infty}(A_{\theta} \otimes K) \cap 1 \otimes K$. Then we can write

$$x = \sum_{i,j} x_{ij} \otimes e_{ij} = 1 \otimes X$$

where $\sum x_{ij} \otimes e_{ij} \in F^{\infty}(A_{\theta} \otimes K)$ and $X \in K$. Hence

$$X = R_{\tau}(1 \bigotimes X) = \sum_{i,j} \tau(x_{ij})e_{ij}$$
.

Thus $X \in F(\mathbf{K})$. Therefore $x \in 1 \otimes F(\mathbf{K})$.

Q.E.D.

THEOREM 9. Let $\alpha \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ with $\alpha_* = \operatorname{id}$ on $K_0(A_{\theta} \otimes \mathbf{K})$. We suppose that $\alpha(F^{\infty}(A_{\theta} \otimes \mathbf{K})) = F^{\infty}(A_{\theta} \otimes \mathbf{K})$. Then there are an automorphism β of A_{θ} with $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ and unitary elements $w \in M(A_{\theta} \otimes \mathbf{K})$, $W \in \mathbf{B}(H)$ with $WF(\mathbf{K})W^* = F(\mathbf{K})$ such that

$$\alpha = \mathrm{Ad}(w) \circ (\beta \otimes \mathrm{Ad}(W))$$
.

PROOF. By Lemmas 6 and 7 we can see that there are an automorphism β of A_{θ} with $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ and a unitary element $w \in M(A_{\theta} \otimes K)$ such that

$$(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes e_{kk})=\beta(x)\otimes e_{kk}$$

for any $x \in A_{\theta}$ and $k \in \mathbb{Z}$ and that

$$(\mathrm{Ad}(w^*)\circ\alpha)(F^{\scriptscriptstyle\infty}(A_{\scriptscriptstyle\theta}\otimes \pmb{K}))\!=\!F^{\scriptscriptstyle\infty}(A_{\scriptscriptstyle\theta}\otimes \pmb{K})\;.$$

Hence $Ad(w^*) \circ \alpha$ satisfies the assumptions of Lemma 4. Thus there is a unitary element $W \in B(H)$ such that

$$Ad(w^*)\circ\alpha=\beta\otimes Ad(W)$$
.

Therefore

$$\alpha = \mathrm{Ad}(w) \circ (\beta \otimes \mathrm{Ad}(W))$$
.

Furthermore for any $X \in F(K)$, we have that $1 \otimes X \in F^{\infty}(A_{\theta} \otimes K)$. Since $(Ad(w^*) \circ \alpha)(F^{\infty}(A_{\theta} \otimes K)) = F^{\infty}(A_{\theta} \otimes K)$,

$$(\mathrm{id} \otimes \mathrm{Ad}(W))(1 \otimes X) = (\beta \otimes \mathrm{Ad}(W))(1 \otimes X)$$
$$= (\mathrm{Ad}(w^*) \circ \alpha)(1 \otimes X) \in F^{\infty}(A_{\theta} \otimes K).$$

Hence $1 \otimes WXW^* \in F^{\infty}(A_{\theta} \otimes K) \cap 1 \otimes K$. Thus $1 \otimes WXW^* \in 1 \otimes F(K)$ by Lemma 8. Therefore $WXW^* \in F(K)$.

References

- [1] J. Anderson and W. Paschke, The rotation algebra, Preprint Series, M.S.R.I. Berkeley, February (1985).
- [2] B. BLACKADAR, K-theory for Operator Algebras, M.S.R.I. Publications, Springer-Verlag, 1986.
- [3] R.C. Busby, Double centralizers and extensions of C^* -algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
- [4] G. A. Elliott, The diffeomorphism group of the irrational rotation C*-algebra, C. R. Math. Rep. Acad. Sci. Canada, 8 (1986), 329-334.
- [5] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, 1979.
- [6] N. RIEDEL, On the topological stable rank of irrational rotation algebras, J. Operator Theory, 13 (1985), 143-150.
- [7] M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [8] ———, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc., 46 (1983), 301-333.
- [9] ——, The cancellation theorem for projective modules over irrational rotation C^* -algebras, Proc. London Math. Soc., **47** (1983), 285-302.
- [10] M. TAKESAKI, Theory of Operator Algebras I, Springer-Verlag, 1979.
- [11] J. Tomiyama, Applications of Fubini type theorem to the tensor products of C*-algebras, Tohoku Math. J., 19 (1967), 213-226.

Present Address:

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, RYUKYU UNIVERSITY NISHIHARA-CHO, OKINAWA 903-01, JAPAN