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Introduction.

Let $p$ be an odd prime number and let $m$ be a positive integer
prime to $p$ . We define Fermat’s quotient $q_{p}(m)$ by $q_{p}(m)=\frac{m^{p-1}-1}{p}$ .
Lucas ([2], [5]) proved that $q_{p}(2)$ is a square only for $p=3$ and 7. To
generalize Lucas’ theorem, we consider whether the equation

$(*)$ $q_{p}(m)=x^{l}$

has solutions or not, where $l$ is a prime and $x$ is a positive integer.
In the previous paper [9], we considered the three cases of $(*)$ :

(I) $q_{p}(m)=x^{2}$ $(p>3)$

(II) $q_{p}(r)=x^{r}$ ($r$ is an odd prime)

(III) $q_{p}(2)=x^{l}$ ( $l$ is an odd prime)

and we obtained the following three theorems:

THEOREM A. If $m\dot{r}s$ odd, then the equation (I) has the only solution
$(p, m, x)=(5,3,4)$ .

THEOREM B. If the equation (II) has solutions, then $p$ and $r$ satisfy
the congruences

$2^{r-1}\equiv 1(mod r^{2})$ and $p^{r-1}\equiv 1(mod r^{2})$ .
THEOREM C. The equation (III) has the only solution $p=3$ .
In this paper, we treat more general cases of $(*)$ . In \S 1, we discuss

the equation $(*)$ when $m$ is even and $p>3$ . Then it is proved that if
Catalan’s conjecture holds, namely, if the only solution in integers $m>1$ ,
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$n>1,$ $x>1$ and $y>1$ of the equation

$x^{\prime}-y^{n}=1$

is $(m, n, x, y)=(2,3,3,2)$ , then the equation $(*)$ has the only solution
$(p, m, x, l)=(7,2,3,2)$ (Theorem 1).

In \S 2 and \S 3, we consider the equation $(*)$ when $m$ is odd $\geqq 3$ .
The following is our main $re8ult$ :
If $l$ is a prime $>3$ and $m\pm 1\not\equiv 0(mod 2^{l-2})$ , then the equation $(*)$ has no
solutions $(p, m, x, l)$ (Theorem 2).

In particular, if $m$ is even, the equation (I) ha8 the only solution
$(p, m, x)=(7,2,3)$ by Theorem 1 and Remark. The equation (II) has no
solutions by Theorem 4. Combining these with the previou8 results in
[9], the equations (I), (II) and (III) have been solved completely.

\S 1. The equation $q_{p}(m)=x^{l}$ ($m$ is even).

In this 8ection we treat the equation $q_{p}(m)=x^{l}$ when $m$ is even.
Then we prove the following:

THEOREM 1. Suppose Catalan’s conjecture hold8. If $p$ is a prime
$>3$ and $m$ is even, then the equation

(1.1) $q_{p}(m)=x^{l}$

has the only solution $(p, m, x, l)=(7,2,3,2)$ .
PROOF. By the equation (1.1), we have

$(m^{(p-1)/2}+1)(m^{(p-1\}/2}-1)=px^{\iota}$ .
Since $m$ is even, we have the following two cases;

$(m^{(p-1)/2}+1, m^{(p-1)/2}-1)=\left\{\begin{array}{ll}(y^{l}, pz^{l}) & (a)\\(py^{l}, z^{l}) & (b)\end{array}\right.$

where $y$ and $z$ are positive integer8 with $x=yz$ .
We first con8ider the case (a). Then we have

(1.2) $y^{l}-m^{(p-1)/2}=1$ .
If Catalan’s conjecture holds, then the equation (1.2) ha8 the only solution
$(p, m, y, l)=(7,2,3,2)$ . Thu8 from $m^{(p-1)/2}-1=pz^{l},$ $z=1$ and so $x=3$ .

We next consider the case (b). Then we have

(1.3) $m^{(p-1)/2}-z^{l}=1$ .
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If Catalan’s conjecture holds, then the equation (1.3) has the only solution
$(p, m, z, l)=(5,3,2,3)$ . But this solution can not 8atisfy $m^{(p-1)/2}+1=py^{l}$ .
This completes the proof of Theorem 1. $\square $

REMARK. It was proved that if $\min.(m, n)\leqq 3$ , the only solution
integer8 $m>1,$ $n>1,$ $x>1$ and $y>1$ of the equation

$x^{m}-y^{n}=1$

is $(m, n, x, y)=(2,3,3,2)$ (cf. Lebesgue [3], Chao Ko [1] and Nagell [6]).
Therefore we see that Theorem 1 unconditionally holds for $l=2$ and 3.

\S 2. The equation $q_{p}(m)=x^{l}$ ($m$ is odd and $l$ is a prime $>3$).

In this section we treat the equation $q_{p}(m)=x^{l}$ when $m$ is odd and
$l$ is a prime $>3$ . We use the following lemma to prove Theorem 2.

LEMMA 1 (Stormer [10]). The Diophantine equation

$x^{2}+1=2y^{n}$

has no solutions in integers $x>1,$ $y\geqq 1$ and $n$ odd $\geqq 3$ .
THEOREM 2. Let $m$ be $odd\geqq 3$ and $l$ be an odd prime $>3$ . If

$m\pm 1\not\equiv 0(mod 2^{l-2})$ , then the equation

(2.1) $q_{p}(m)=x^{\iota}$

has no solutions $(p, m, x, l)$ .
PROOF OF THEOREM 2. By the equation (2.1), we have

$(m^{tp-1)/2}+1)(m^{(p-1)/2}-1)=px^{l}$ .
Since $m$ is odd, we have the following four $ca8e8$ ;

$(m^{(p-1)/2}+1, m^{(p-1)/2}-1)=\left\{\begin{array}{ll}(2y^{l}, 2^{l-1}pz^{l}) & (a)\\(2^{1-1}y^{\iota}, 2pz^{l}) & (b)\\(2^{l-1}py^{l}, 2z^{l}) & (c)\\(2py^{\iota}, 2^{\iota-1}z^{\iota}) & (d)\end{array}\right.$

where $y$ and $z$ are positive integers with $x=2yz$ . Then we put $n=\frac{p-1}{2}$ .
We first consider the case (a). Then we have

(2.2) $m^{n}+1=2y^{l}$
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If $n$ is even, it follows from Lemma 1 that the equation (2.2) has no
solutions. Suppose $n$ is odd. We also have the equation

$m^{n}-1=2^{l-1}pz^{l}$ .
Hence we obtain the congruence $m-1\equiv 0(mod 2^{\iota-1})$ , since $m$ and $n$ are
odd. This contradicts our assumption.

We next consider the case (b). Then we have
$m^{n}+1=2^{l-1}y^{l}$ .

If $n$ is even, we have $(m^{n/2})^{2}\equiv-1(mod 4)$ , which is impossible. If $n$ is
odd, we obtain the congruence $m+1\equiv 0(mod 2^{l-1})$ , which contradicts our
$as8umption$ .

The case (c) also yields a contradiction as in the case (b). Finally,
we consider the ca8e (d). Then we have

(2.3) $m^{n}-1=2^{l-1}z^{\iota}$ .
If $n$ is odd, we obtain $m-1\equiv 0(mod 2^{l-1})$ , which is a contradiction by
our assumption. Suppose $n$ is even. Then we show that $n\not\equiv O(mod 4)$ .
Suppose the contrary, say $n=4k$ for some positive integer $k$ . Then by
the equation (2.3), we have the following two $ca8es$ ;

$(m^{2k}+1, m^{2k}-1)=\left\{\begin{array}{ll}(2z_{1}^{\iota}, 2^{\iota-2}z_{2}^{\iota}) & (d1)\\(2^{l-2}z_{1}^{l}, 2z_{2}^{l}) & (d2)\end{array}\right.$

where $z_{1}$ and $z_{2}$ are positive integers with $z=z_{1}z_{2}$ . In the case (d1), we
have
(2.4) $m^{2k}+1=2z_{1}^{\iota}$ .
It follows from Lemma 1 that the equation (2.4) has no $8olutions$ . In
the case (d2), we have

$m^{2k}+1=2^{l-2}z_{1}^{l}$ .
Since $l>3$ , we obtain $(m^{k})^{2}\equiv-1(mod 4)$ , which is impossible. Therefore
$n\not\equiv O(mod 4)$ . Thus we can put $n=2k$ for some odd $k$ , 8ince $n$ is even.
Then by the equation (2.3), we have the following two cases;

$(m^{k}+1, m^{k}-1)=\left\{\begin{array}{ll}(2z_{3}^{l}, 2^{l-2}z_{4}^{l}) & (d3)\\(2z_{s}, 2z_{l}^{l}) & (d4)\end{array}\right.$

where $z_{3}$ and $z_{4}$ are positive integers with $z=z_{3}z_{4}$ . In the ca8e (d3), we
have



LUCAS THEOREM 281

$m^{k}-1=2^{l-2}z_{4}$’.

Since $k$ is odd, we obtain $m-1\equiv 0(mod 2^{l-2})$ , which gives a contradiction
by our assumption. In the case (d4), we have

$m^{k}+1=2^{l-2}z_{3}^{l}$ .
Hence we obtain $m+1\equiv 0(mod 2^{l-2})$ , which gives a contradiction. This
completes the proof of Theorem 2. $\square $

U8ing Theorem 2, we show the following corollaries:

COROLLARY 1. Let $m$ be $odd\geqq 3$ and $l$ be an odd prime $>3$ . If
$m\equiv 3,5(mod 8)$ , then the equation

$q_{p}(m)=x^{\iota}$

has no solutions $(p, m, x, l)$ .
PROOF. If $m\equiv 3,5$ (mod8), $m\pm 1\equiv 2,46$ (mod8) and so $m\pm 1\not\equiv 0$

(mod8). Thus we obtain $m\pm 1\not\equiv O(mod 2^{\iota-2})$ , since $l$ is an odd prime $>3$ .
Hence by Theorem 2, the equation

$q_{p}(m)=x^{l}$

has no solutions $(p, m, x, l)$ . This completes the proof of the corollary. $\square $

COROLLARY 2. Let $m$ be $odd\geqq 3$ and $l$ be an odd $prime>3$ . If $m$

is a biquadratic number, then the equation

$q_{p}(m)=x^{l}$

has no solutions $(p, m, x, l)$ .
PROOF. By the proof of Theorem 2, it follows that in the case (a),

(b) and (c), the equation $q_{p}(m)=x^{\iota}$ has no solutions when $n$ is even, and
in the case (d) the equation $q_{p}(m)=x^{l}$ has no solutions when $n\equiv 0$

$(mod 4)$ . If $m$ is a biquadratic number, it implies that $n\equiv 0(mod 4)$ ,
in the proof of Theorem 2. Therefore the equation $q_{p}(m)=x^{l}$ has no
solutions $(p, m, x, l)$ if $m$ is a biquadratic number. Hence the proof of
the corollary is complete. $\square $

\S 3. The equation $q_{p}(m)=x^{3}$ ($m$ is odd).

In this section we consider the equation $q_{p}(m)=x^{3}$ , where $m$ i8 odd
$\geqq 3$ . Then in view of the proof of Theorem 2, we have the following
four cases;
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(a) $m^{n}+1=2y^{3}$ and $m^{n}-1=4pz^{8}$ ,

(b) $m^{n}+1=4y^{3}$ and $m^{n}-1=2pz^{3}$ ,

(c) $m^{n}+1=4py^{3}$ and $m^{n}-1=2z^{3}$ ,

(d) $m^{n}+1=2py^{3}$ and $m^{n}-1=4z^{3}$ ,

where $n=\frac{p-1}{2}$ .
Now we prepare the three lemmas which we use in this section.

The following lemma is well known (cf., e.g., Nagell [8]):

LEMMA 2. The Diophantine equation

$x^{a}+y^{3}=2^{n}z^{3}$ $(n=0,1,2)$

has no solutions in integers $x,$ $y$ and $z$ with $xyz\neq 0$ other than $x^{\epsilon}=y^{3}=z^{3}$

when $n=1$ .
LEMMA 3 (Nagell [7]). The Diophantine equation

$Ax^{8}+By^{\epsilon}=C$

($C=1$ or 3; $3\uparrow AB$ if $C=3;A,$ $B,$ $C$ positive integers) has at most one
solution in nonzero integers $(x, y)$ . There is the unique exception for
the equation $2x^{\theta}+y^{3}=3$ , which has exacuy the two integral solutions
$(x, y)=(1,1)$ and $(4, -5)$ .

LEMMA 4 (Ljunggren [4]). The Diophantine equation

$\frac{x^{n}-1}{x-1}=y^{3}$ ,

where $n\geqq 3$ with $n\not\equiv-1(mod 6)$ and $|x|>1$ , has the only integral $\epsilon olution$

$(x, y, n)=$ ($18$ or $-19,7,3$).

We start with the following proposition:

PROPOSITION 1. (1) The Diophantine equation

$x^{2}-1=4y^{3}$

has no solutions in integers $x$ and $y$ with $y\neq 0$ .
(2) The Diophantine equation

$x^{s}+6y^{3}=1$
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has no solutions in integers $x$ and $y$ with $y\neq 0$ .
PROOF. (1) Since we have $(x+1)(x-1)=4y^{3}$ and $(x+1, x-1)=2$ ,

there exist integers $u$ and $v$ with $y=uv\neq 0$ such that

$x+1=2u^{3}$ and $x-1=2v^{3}$ .
Therefore we obtain $1^{3}=u^{3}+(-v)^{3}$ .
solutions.

(2) We write the equation as

By Lemma 2, the equation has no

$(x-1)(x^{2}+x+1)=6(-y)^{3}$ .
The greatest common divisor of the two factors on the left is 1 or 3.
It is easily seen that $x^{2}+x+1$ is odd and is not divisible by 9. Hencewe obtain the following two cases;

$x-1=2u^{3}$ and $x^{2}+x+1=3v^{3}$ ,

or

$x-1=2*3^{3}*u^{3}$ and $x^{2}+x+1=3v^{3}$ ,

for some nonzero integers $u$ and $v$ . Thus it suffices to show that the
equation

$X^{2}+X+1=3Y^{3}$

has no solutions in integers $X$ and $Y$ with $X\neq 1,$ $-2$ . Since the above
equation can be written as

(3.1) $(\frac{X+2}{3})^{3}+(\frac{1-X}{3})^{3}=Y^{3}$ ,

we see that the equation (3.1) has no solutions in integers $X$ and $Y$ with
$X\neq 1,$ $-2$ , by Lemma 2. $\square $

Now we may assume that $n$ is odd in the cases (a), (b), (c) and (d),
by the proof of Theorem 2 and Proposition 1 (1).

We first treat the case $p=3$ . Then we have the following:

PROPOSITION 2. Let $m$ be odd $\geqq 3$ . Then the equation

$q_{3}(m)=x^{\theta}$

has the only solution $(m, x)=(5,2)$ .



284 NOBUHIRO TERAI

PROOF. As easily seen, the four cases (a), (b), (c) and (d) when
$p=3$ , are reduced to the following two cases;

(3.2) $X^{\theta}+6Y^{3}=1$ ,

(3.3) 2$X^{\epsilon}+3Y^{8}=1$ ,

with nonzero integers $X$ and Y.
By Proposition 1 (2), the equation (3.2) has no solutions (X, Y). By

Lemma 3, the equation (3.3) has the only solution (X, $Y$) $=(-1,1)$ . Hence
the equation $q_{8}(m)=x^{s}$ has the only solution $(m, x)=(5,2)$ . $\square $

Further, we may assume that $n=\frac{p-1}{2}$ is odd $\geqq 3$ , since we con-

sidered the case $p=3$ . Therefore from the cases (a), (b), (c) and (d), we
have only to treat the equations

(3.4) $X^{n}-1=2Y^{3}$ ,

(3.5) $X^{n}-1=4Y^{3}$ ,

where $n$ is odd $\geqq 3$ and $X,$ $Y$ are integers with $|X|>1$ . Then we show
the following:

PROPOSITION 3. (1) Suppose $X$ is an integer satisfying the follow-
ing two conditions;

(i) $\frac{X-1}{2}$ is not a cube, $or$

$X-1$if $\overline{2}$
is a cube, then $X\not\equiv 1,5$ and 6 (mod7).

(ii) $\frac{X-1}{2}$ is not of the form $q^{2}a^{3}$ , where $a$ is an integer and $q$ is

an odd prime $>3$ .
Then the equation (3.4) has no solutions in integers $X,$ $Y$ and $n$ with
$|X|>1$ and $n$ $odd\geqq 3$ .

(2) Suppose $X$ is an integer satisfying the following two con-
dittons;

(i) $\frac{X-1}{4}$ is not a cube, $0\gamma$

$X-1$if $\overline{4}$
is a cube, then $X\not\equiv 1,2$ and 3 (mod7).

(ii) $\frac{X-1}{4}$ is not of the form $q^{2}a^{3}$ , where $a$ is an integer and $q$ is

an odd prime $>3$ .
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Then the equation (3.5) has no solutions in integers $X,$ $Y$ and $n$ with
$|X|>1$ and $n$ odd $\geqq 3$ .

PROOF. (1) We may assume that $n$ is an odd prime, say $q$ . Sup-
pose $q=3$ . Then the equation (3.4) becomes
(8.6) $X^{3}-1=2Y^{3}$

The equation (3.6) has no solutions in integers $X$ and $Y$ with $|X|>1$ , by
Lemma 2. Thuv we may suppose that $q>3$ .

$X^{q}-1$It is easily seen that
$\overline{X-1}$

is odd, and the greatest common divisor
$d$ of $X-1$ and $\frac{X^{q}-1}{X-1}$ is 1 or $q$ , and $\frac{X^{q}-1}{X-1}\equiv q(mod q^{2})$ , if $d=q$ . If $d=1$ ,
then we obtain by the equation (3.4)

(3.7) $\frac{X-1}{2}=a^{3}$ and $\frac{X^{q}-1}{X-1}=b^{3}$

for some integers $a$ and $b$ . When $q\not\equiv-1(mod 6)$ , it follows from Lemma
4 that the second equation in (3.7) has no solutions in integers $X,$ $b$ and
$q$ with $|X|>1$ , since $q>3$ . When $q\equiv-1$ (mod6), we put $q=6k-1$ for
some integer $k$ . Then by the equation (3.4), we have

$X^{6k-1}-1=2Y^{3}$ ,
so

$X^{6k}-X=2XY^{3}$

Taking the equation modulo 7, we obtain
$1-X\equiv 2XY^{3}$ $(mod 7)$ .

Since $X\not\equiv 1,5$ and 6 $(mod 7)$ , we have
$Y^{3}\equiv 2,4$ and 5 $(mod 7)$ ,

which is impossible.
If $d=q$ , then we obtain by the equation (3.4)

(3.8) $\frac{X-1}{2}=q^{2}c^{3}$ and $\frac{X^{q}-1}{X-1}=qd^{3}$

for some integers $c$ and $d$ . But the first equation in (3.8) contradicts
the condition (ii).

(2) Similarly we can prove the case (2). $\square $
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PROPOSITION 4. Let $m$ be $odd\geqq 3$ . If $m$ is a cube, then the equa-

tion
$q_{p}(m)=x^{3}$

has no solutions $(p, m, x)$ .
PROOF. Since $m$ is a cube, it suffices to consider the equations

$X^{3}-1=2Y^{3}$

and
$X^{3}-1=4Y^{3}$ ,

respectively, where $X$ and $Y$ are integers with $|X|>1$ . It follows from
Lemma 2 that the equations have no solutions. $\square $

Using Proposition 2 and Proposition 3, we immediately obtain the
following:

PROPOSITION 5. Let $m$ be odd $\geqq 3$ . If $m<50$ , then the equation

$q_{p}(m)=x^{3}$

has the only solution $(p, m, x)=(3,5,2)$ .
PROOF. If $p=3$ , we have the only solution $(p, m, x)=(3,5,2)$ by

Proposition 2. If $p>3$ , then $X=\pm m$ satisfy the conditions of Proposition
3 when $m<50$ except for $X=-15$ . When $X=-15$ , the congruence

$X^{6k}-X\equiv 2XY^{3}$ $(mod 13)$

does not hold. Therefore the equation $q_{p}(m)=x^{s}$ has no solutions $(p, m, x)$ ,

if $p>3$ . $\square $

Now, by Corollary 1 in \S 2 and Propo8ition 5, we obtain the follow-
ing:

THEOREM 3. Let $m$ be $odd\geqq 3$ and $l$ be odd prime. If $m\equiv 3,5$

$(mod 8)$ and $m<50$ , then the equation

$q_{p}(m)=x^{l}$

has the only solution $(p, m, x, l)=(3,5,2,3)$ .
Finally, we prove the following theorem on the equation
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$q_{p}(r)=x^{r}$ ($r$ is odd $\geqq 3$ )

which we considered in [9].

THEOREM 4. If $r$ is odd $\geqq 3$ , then the equation

$q_{p}(r)=x^{r}$

has no solutions $(p, r, x)$ .
PROOF. We may clearly assume that $l$ is odd $\geqq 3$ in Theorem 2 in

\S 2. If $r>3$ , the congruence $r\pm 1\not\equiv 0(mod 2^{r-2})$ holds. Hence it follows
from Theorem 2 that the equation $q_{p}(r)=x^{r}$ has no solutions $(p, r, x)$ , if
$\gamma>3$ .

If $\gamma=3$ , the equation $q_{p}(r)=x^{r}$ has no solutions $(p, \gamma x)$ , by Propo-
sition 5. $\square $
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