2-Type Integral Surfaces in $S^{\mathbf{5}}(\mathbf{1})$

Christos BAIKOUSSIS* and David E. BLAIR
University of Ioannina and Michigan State University
(Communicated by M. Ishida)

Abstract

The main purpose of this paper is to classify integral surfaces of the unit sphere $S^{5}(1)$ which are mass-symmetric and of 2 -type. If we consider $S^{5}(1)$ as a Sasakian manifold, then we prove that a mass-symmetric 2 -type integral surface of $S^{5}(1)$ lies fully in $S^{5}(1)$ and is the product of a plane circle and a helix of order 4 or the product of two circles.

1. Introduction.

Let M^{n} be a (connected) n-dimensional submanifold of Euclidean space E^{m+1}. Let x, H and Δ respectively be the position vector field, the mean curvature vector field and the Laplace operator of the induced metric on M^{n}. Then, the position vector x and the mean curvature vector H of M^{n} in E^{m+1} satisfy (see e.g. [4])

$$
\begin{equation*}
\Delta x=-n H . \tag{1.1}
\end{equation*}
$$

This formula yields the following well-known result: M^{n} is a minimal submanifold in E^{m+1} if and only if all coordinate functions of E^{m+1}, restricted to M, are harmonic functions, that is $\Delta x=0$ (i.e. they are eigenfunctions of Δ with eigenvalue 0). Moreover, in this context, T. Takahashi [9] proved that the submanifolds M^{n} for which

$$
\begin{equation*}
\Delta x=\lambda x \tag{1.2}
\end{equation*}
$$

i.e. for which all coordinate functions are eigenfunctions of Δ with the same eigenvalue $\lambda \in \boldsymbol{R}$, are precisely either the minimal submanifolds of $E^{m+1}(\lambda=0)$ or the minimal submanifolds M^{n} of hyperspheres S^{m} in E^{m+1} (the case when $\lambda \neq 0$, actually $\lambda=n / r^{2}$ where r is the radius of S^{m}).

One branch of research in submanifold theory was introduced by B. Y. Chen in [4], [5], namely, the study of submanifolds of finite type. In terms of B. Y. Chen's theory of submanifolds in E^{m} of finite type, condition (1.2) asserts that M^{n} is of 1-type in E^{m}.

In general, a submanifold M^{n} of Euclidean space E^{m+1} is said to be of k-type if

Received December 3, 1990

* This work was done while the first author was a visiting scholar at Michigan State University.
the position vector x of M^{n} in E^{m+1} can be decomposed as

$$
x=x_{0}+x_{1}+\cdots+x_{k}
$$

where $x_{0} \in E^{m+1}$ is a fixed vector and $x_{i}(i=1, \cdots, k)$ are non-constant E^{m+1}-valued maps on M^{n}, such that

$$
\Delta x_{i}=\lambda_{i} x_{i} \quad \text { for } \quad i=1, \cdots, k \quad \text { and } \quad \lambda_{1}<\cdots<\lambda_{k}, \quad \lambda_{i} \in \boldsymbol{R} .
$$

Many important submanifolds in Euclidean space turn out to be of finite type in this sense (see [4] for details).

A compact submanifold M^{n} of a hypersphere S^{m} of E^{m+1} is said to be mass-symmetric in S^{m} if the center of mass x_{0} of M^{n} in E^{m+1} is exactly the center of S^{m} in E^{m+1}. Mass-symmetric 2-type submanifolds of a hypersphere can be regarded as the "simplest" submanifolds of E^{m+1} next to minimal submanifolds. Many important submanifolds are known to be mass-symmetric and of 2-type. In Chen's book [4], some basic results for mass-symmetric 2-type surfaces in an m-sphere S^{m} were established. In particular, it was proved that a compact surface in S^{3} is mass-symmetric and of 2-type if and only if it is the product of two circles of different radii ([4, Theorem 4.5, p. 279]). M. Barros and O. Garay [2] showed that the same result holds without the assumption of mass-symmetric. Also stationary 2-type mass-symmetric compact surfaces of S^{m} were classified in [1] by M. Barros and B. Y. Chen. In particular, they showed that such surfaces are flat and lie fully either in a 5 -sphere or in a 7 -sphere. They showed also that there exist no mass-symmetric 2-type surfaces which lie fully in $S^{4}(1)$. Afterwards O. Garay [6] showed that a mass-symmetric 2-type Chen surface (i.e. the allied mean curvature vector $\alpha(H)$ vanishes identically on M) is either pseudoumbilical or flat. Furthermore, if the surface is flat, then it lies fully in a totally geodesic 3 -sphere or in a totally geodesic 5 -sphere or in a totally geodesic 7 -sphere.

Finally, Y. Miyata in [7] studied mass-symmetric 2-type surfaces of constant curvature in S^{m} and obtained, among others, the following results:
i) If $f: M \rightarrow S^{\boldsymbol{m}}$ is a mass-symmetric 2-type immersion of a surface M of positive constant curvature into S^{m}, then f is a diagonal sum of two different standard minimal immersions of M into spheres.
ii) There are no mass-symmetric 2-type surfaces of constant negative curvature in a sphere.
iii) Let M be a flat surface and f a full mass-symmetric 2-type Chen immersion of M into S^{m}. If $m \geq 9$, then f is a diagonal sum of two different minimal immersions into spheres. If $m=7$, there exists a full mass-symmetric 2-type Chen immersion which is not a diagonal sum of minimal immersions.

In [1] and [7] one can find many results for 2-type surfaces in S^{m}.
In this paper we shall classify mass-symmetric 2-type integral surfaces of the Sasakian manifold $S^{5}(1) \subset E^{6}$. In particular, we will prove that, if we consider the unit sphere $S^{5}(1)$ as a Sasakian manifold then a mass-symmetric 2-type integral
surface M of $S^{5}(1)$ lies fully in $S^{5}(1)$ and is the product of a plane circle and a helix of order 4 or the product of two circles. Furthermore, M belongs to a 1-parameter family of such surfaces.

2. Preliminaries.

We consider the space C^{m+1} of $m+1$ complex variables and let J denote its usual almost complex structure, namely by identifying $z \in C^{m+1}$ with $\left(x_{1}, \cdots, x_{m+1}\right.$, $\left.y_{1}, \cdots, y_{m+1}\right) \in E^{2 m+2}$ we consider $J z=\left(-y_{1}, \cdots,-y_{m+1}, x_{1}, \cdots, x_{m+1}\right)$.

$$
S^{2 m+1}=\left\{z \in C^{m+1}:|z|=1\right\} .
$$

We give $S^{2 m+1}$ its usual contact structure. Define a tangent vector field ξ, a 1-form η and a $(1,1)$ tensor field φ on $S^{2 m+1}$ as follows:

Let \langle,$\rangle denote the induced metric from C^{m+1}$ on $S^{2 m+1}$ (so $S^{2 m+1}$ has constant sectional curvature 1),

$$
\xi=-J z, \quad \eta(X)=\langle X, \xi\rangle \quad \text { and } \quad \varphi=s \circ J
$$

where s denotes the orthogonal projection from $T_{z} C^{m+1}$ on $T_{z} S^{2 m+1}$. Using these definitions, we obtain for all tangent vector fields X and Y on $S^{2 m+1}$ that

$$
\begin{align*}
& \varphi^{2} X=-X+\eta(X) \xi \\
& \eta(\xi)=1, \quad \eta(X)=\langle X, \xi\rangle, \\
& d \eta(X, Y)=\langle X, \varphi Y\rangle \tag{2.1}\\
& N=-2 d \eta \otimes \xi
\end{align*}
$$

where N is defined by $N(X, Y)=[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]$. It is well-known [3] that these formulas imply that $(\varphi, \xi, \eta,\langle\rangle$,$) determines a Sasakian$ structure on $S^{2 m+1}$. Therefore, we also have

$$
\begin{equation*}
\nabla_{X}^{\prime} \xi=-\varphi X, \quad\left(\nabla_{X}^{\prime} \varphi\right) Y=\langle X, Y\rangle \xi-n(Y) X \tag{2.2}
\end{equation*}
$$

where ∇^{\prime} denotes the Levi-Civita connection of \langle,$\rangle . For more details see [3].$
A Riemannian manifold M^{n}, isometrically immersed in $S^{2 m+1}$, is called an integral submanifold if and only if η restricted to M^{n} vanishes.

In this paper we consider the unit hypersphere $S^{5}(1) \subset C^{3} \cong E^{6}$ centered at the origin and with the Sasakian structure ($\varphi, \xi, \eta,\langle$,$\rangle). Assume that$

$$
\begin{equation*}
x: M \rightarrow S^{5}(1) \tag{2.3}
\end{equation*}
$$

is a mass-symmetric 2 -type immersion of an integral surface M into $S^{5}(1)$. Denote by $\bar{\nabla}$ the usual Levi-Civita connection of E^{6} and by ∇, ∇^{\prime} the induced connections on M and $S^{5}(1)$, respectively. Let H, h, A and D denote the mean curvature vector, the second fundamental form, the Weingarten maps and the normal connection of M in E^{6},
respectively. Finally denote by $H^{\prime}, \boldsymbol{h}^{\prime}, A^{\prime}$ and D^{\prime} the corresponding quantities for M in $S^{5}(1)$. Then we have $H=H^{\prime}-x$ and, for any vector n normal to M in $S^{5}(1), A_{n}=A_{n}^{\prime}$.

Let Δ be the Laplacian of M associated with the induced metric. This Laplacian can be extended in a natural way to E^{6}-valued smooth maps u of M as follows:

$$
\begin{equation*}
\Delta u=\sum_{i=1}^{2}\left(\bar{\nabla}_{\nabla_{x_{i}} X_{i}} u-\bar{\nabla}_{X_{i}} \bar{\nabla}_{X_{i}} u\right) \tag{2.4}
\end{equation*}
$$

where $\left\{X_{1}, X_{2}\right\}$ is a local orthonormal frame field on M.
Since M is 2-type and mass-symmetric, the position vector x of M with respect to the origin of E^{6} can be written as follows:

$$
\begin{equation*}
x=x_{p}+x_{q}, \quad \Delta x_{p}=\lambda_{p} x_{p}, \quad \Delta x_{q}=\lambda_{q} x_{q} \tag{2.5}
\end{equation*}
$$

where x_{p}, x_{q} are non-constant E^{6}-valued maps on M.
Furthermore, since M is an integral submanifold of the Sasakian manifold $S^{5}(1)$, we can choose a local field of orthonormal frames $X_{1}, X_{2}, \xi_{1}=\varphi X_{1}, \xi_{2}=\varphi X_{2}, \xi$ in $S^{5}(1)$ such that X_{1}, X_{2} are tangent to M and ξ_{1} is parallel to the mean curvature vector H^{\prime} of M in $S^{5}(1)$. From the definition of an integral submanifold and (2.1) we have that the unit vector ξ is normal to M and to ξ_{1}, ξ_{2}. So the vectors ξ_{1}, ξ_{2}, ξ, x form a basis of the normal space of M in E^{6}. If, for convenience, we put $\left(e_{1}, \cdots, e_{6}\right)=$ ($X_{1}, X_{2}, \xi_{1}, \xi_{2}, \xi, x$), then we denote by $\left\{\omega_{i}\right\}, i=1, \cdots, 6$, the dual frame of the frame $\left\{e_{i}\right\}$ and by $\left\{\omega_{i}^{j}\right\}, i, j=1, \cdots, 6$, the corresponding connection forms. Thus we have

$$
\begin{equation*}
\bar{\nabla} e_{i}=\sum_{j=1}^{6} \omega_{i}^{j} e_{j} . \tag{2.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
H=H^{\prime}-x=\frac{\operatorname{tr} A_{1}}{2} \xi_{1}-x \tag{2.7}
\end{equation*}
$$

where A_{1} is the Weingarten map $A_{\xi_{1}}$ of M associated with ξ_{1}. We note also that $A_{x}=-I$, where I is the identity map.

Applying (2.4) to H we have, by direct computation, the well known formula (see [4, p. 273])

$$
\begin{equation*}
\Delta H=\Delta^{D^{\prime}} H^{\prime}+\alpha^{\prime}\left(H^{\prime}\right)+\operatorname{tr} \bar{\nabla} A_{H}+\left(\operatorname{tr} A_{1}^{2}+2\right) H^{\prime}-2|H|^{2} x \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{\prime}\left(H^{\prime}\right)=\sum_{j=4}^{5} \operatorname{tr}\left(A_{H^{\prime}} A_{e_{j}}\right) e_{j} \tag{2.9}
\end{equation*}
$$

is the allied mean curvature vector of M in $S^{5}(1)$ and

$$
\begin{equation*}
\operatorname{tr} \bar{\nabla} A_{H}=\sum_{i=1}^{2}\left(\left(\nabla_{X_{i}} A_{H}\right) X_{i}+A_{D_{X_{i}} H} X_{i}\right) . \tag{2.10}
\end{equation*}
$$

Moreover, since $D x=0$, we have that $D H^{\prime}$ is perpendicular to x. So $\left\langle\Delta^{D^{\prime}} H^{\prime}, x\right\rangle=0$.
On the other hand, since $\Delta x=-2 H$, by using (2.5) we find

$$
\begin{equation*}
\Delta H=\frac{\operatorname{tr} A_{1}}{2}\left(\lambda_{p}+\lambda_{q}\right) \xi_{1}-\left(\lambda_{p}+\lambda_{q}-\frac{\lambda_{p} \lambda_{q}}{2}\right) x . \tag{2.11}
\end{equation*}
$$

Combining (2.8) with (2.11) we obtain $\operatorname{tr} A_{1}=$ const. When $\operatorname{tr} A_{1}=0 M$ is a minimal surface of $S^{5}(1)$ and so is of 1-type by Takahashi's theorem. Thus we may assume that $\operatorname{tr} A_{1}=$ const. $\neq 0$.

Since M is an integral surface we have $\omega_{6}^{t}=0, t=3,4,5,6$ and from (2.2) we have $\omega_{5}^{j}=0$ if $j=1,2,5,6$ and $\omega_{5}^{3}\left(X_{i}\right)=-\left\langle\xi_{i}, \xi_{1}\right\rangle, \omega_{5}^{4}\left(X_{i}\right)=-\left\langle\xi_{i}, \xi_{2}\right\rangle, i=1,2$.

By direct computation, we get

$$
\begin{align*}
\Delta^{D^{\prime}} H^{\prime} & =\sum_{i=1}^{2}\left(D_{\nabla_{X_{i} X_{i}}}^{\prime} H^{\prime}-D_{X_{i}}^{\prime} D_{X_{i}}^{\prime} H^{\prime}\right)=\frac{\operatorname{tr} A_{1}}{2} \Delta^{D} \xi_{1} \tag{2.12}\\
& =\frac{\operatorname{tr} A_{1}}{2}\left[-\left(\operatorname{tr} \nabla \omega_{3}^{4}\right) \xi_{2}+\left|D \xi_{1}\right|^{2} \xi_{1}-\left(\omega_{3}^{4}\left(X_{2}\right)+\omega_{1}^{2}\left(X_{2}\right)\right) \xi\right]
\end{align*}
$$

where we have put

$$
\begin{gather*}
\left|D \xi_{1}\right|^{2}=\sum_{i=1}^{2}\left|D_{X_{i}} \xi_{1}\right|^{2}=\sum_{i=1}^{2}\left(\omega_{3}^{4}\left(X_{i}\right)\right)^{2}+1, \tag{2.13}\\
\operatorname{tr} \nabla \omega_{3}^{4}=\sum_{i=1}^{2}\left(\nabla_{X_{i}} \omega_{3}^{4}\right)\left(X_{i}\right)=\sum_{i=1}^{2}\left(X_{i} \omega_{3}^{4}\left(X_{i}\right)-\omega_{3}^{4}\left(\nabla_{X_{i}} X_{i}\right)\right) . \tag{2.14}
\end{gather*}
$$

From [3, Lemma 1, p. 102] we have $A_{\xi}=0$. Thus from (2.9) and (2.10) we get

$$
\begin{gather*}
\alpha^{\prime}\left(H^{\prime}\right)=\frac{\operatorname{tr} A_{1}}{2} \operatorname{tr}\left(A_{1} A_{2}\right) \xi_{2} \tag{2.15}\\
\operatorname{tr} \bar{\nabla} A_{H}=\frac{\operatorname{tr} A_{1}}{2} \sum_{i=1}^{2}\left(\left(\nabla_{X_{i}} A_{1}\right) X_{i}+\omega_{3}^{4}\left(X_{i}\right) A_{2} X_{i}\right) . \tag{2.16}
\end{gather*}
$$

Now, from (2.8), (2.11), (2.12), (2.15) and (2.16) we obtain the following useful equations

$$
\begin{array}{cc}
\text { (i) } & \sum_{i=1}^{2}\left(\left(\nabla_{X_{i}} A_{1}\right) X_{i}+\omega_{3}^{4}\left(X_{i}\right) A_{2} X_{i}\right)=0, \\
\text { (ii) } & \left|D \xi_{1}\right|^{2}+\operatorname{tr} A_{1}^{2}=\lambda_{p}+\lambda_{q}-2, \tag{2.17}\\
\text { (iii) } & \operatorname{tr} \nabla \omega_{3}^{4}-\operatorname{tr} A_{1} A_{2}=0, \\
\text { (iv) } & \omega_{3}^{4}\left(X_{2}\right)+\omega_{1}^{2}\left(X_{2}\right)=0 .
\end{array}
$$

We continue with some further calculations. Using the Codazzi equation

$$
\left(\nabla_{X} A_{1}\right) Y-A_{D_{X} \xi_{1}} Y-\left(\nabla_{Y} A_{1}\right) X+A_{D_{Y} \xi_{1}} X=0
$$

and $\operatorname{tr} A_{2}=0$, we compute

$$
0=\operatorname{grad} \operatorname{tr} A_{1}=\sum_{i=1}^{2}\left(\operatorname{tr} \nabla_{X_{i}} A_{1}\right) X_{i}=\sum_{i=1}^{2}\left(\left(\nabla_{X_{i}} A_{1}\right) X_{i}-\omega_{3}^{4}\left(X_{i}\right) A_{2} X_{i}\right) .
$$

Combining this with (2.17 (i)) we obtain

$$
\begin{equation*}
\sum_{i=1}^{2}\left(\nabla_{X_{i}} A_{1}\right) X_{i}=0 \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2} \omega_{3}^{4}\left(X_{i}\right) A_{2} X_{i}=0 \tag{2.19}
\end{equation*}
$$

From [3, Lemma 2, p. 103] we have

$$
\begin{equation*}
A_{1} X_{2}=A_{2} X_{1} \tag{2.20}
\end{equation*}
$$

So,

$$
\text { if } A_{1}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right], \quad \text { then } \quad A_{2}=\left[\begin{array}{cc}
b & c \\
c & -b
\end{array}\right] .
$$

We have $\operatorname{det} A_{2} \neq 0$, because if we assume $\operatorname{det} A_{2}=0$, from (2.18) we conclude $\omega_{1}^{2}=0$ and from (2.17 (iv)) $\omega_{3}^{4}\left(X_{2}\right)=0$. Thus from (2.17 (ii)) and (2.13) we obtain $\omega_{3}^{4}\left(X_{1}\right)\left(X_{2} \omega_{3}^{4}\left(X_{1}\right)\right)=0$. On the other hand, since $\left\langle R^{\perp}\left(X_{1}, X_{2}\right) \xi_{1}, \xi_{2}\right\rangle=1-X_{2} \omega_{3}^{4}\left(X_{1}\right)$, the equation of Ricci implies $X_{2} \omega_{3}^{4}\left(X_{1}\right)=1$. This is a contradiction. Therefore, $\operatorname{det} A_{2} \neq 0$ and (2.19) gives $\omega_{3}^{4}=0$. Then applying (2.13) and (2.14) to (2.17 (ii)) and (2.17 (iii)) respectively, we find $\operatorname{tr} A_{1}^{2}=$ const. and $\operatorname{tr} A_{1} A_{2}=0$. Thus, we get $b=0, a=$ const. and $c=$ const.

We are now ready to state and prove the main results.

3. Main results.

The following lemma shows that M is flat.
Lemma 3.1. Let M be a mass-symmetric 2-type integral surface in $S^{5}(1)$ in E^{6}. Then M is flat.

Proof. Note that the ambient space $S^{5}(1)$ is a Sasakian manifold. So from (2.2) and the fact that M is an integral surface we have

$$
\begin{aligned}
\bar{\nabla}_{X_{j}} \xi_{i} & =\nabla_{X_{j}}^{\prime} \xi_{i}=\left(\nabla_{X_{j}}^{\prime} \varphi\right) X_{i}+\varphi\left(\nabla_{X_{j}}^{\prime} X_{i}\right) \\
& =\delta_{i j} \xi+\varphi\left(\nabla_{X_{j}} X_{i}+h^{\prime}\left(X_{i}, X_{j}\right)\right), \quad i, j=1,2
\end{aligned}
$$

On the other hand

$$
\begin{equation*}
\bar{\nabla}_{X_{j}} \xi_{i}=-A_{i} X_{j}+D_{x_{j}} \xi_{i} \tag{3.1}
\end{equation*}
$$

and moreover using (2.20) again

$$
\begin{aligned}
\varphi\left(h^{\prime}\left(X_{i}, X_{j}\right)\right) & =\varphi\left(\left\langle A_{1} X_{i}, X_{j}\right\rangle \xi_{1}+\left\langle A_{2} X_{i}, X_{j}\right\rangle \xi_{2}\right) \\
& =-\left(\left\langle A_{i} X_{1}, X_{j}\right\rangle X_{1}+\left\langle A_{i} X_{2}, X_{j}\right\rangle X_{2}\right)=-A_{i} X_{j}, \quad i, j=1,2
\end{aligned}
$$

Thus, we conclude that $\varphi\left(\nabla_{X_{j}} X_{i}\right)=0$ and from (2.1) that $\nabla_{X_{j}} X_{i}$ is parallel to ξ. But $\nabla_{X_{j}} X_{i}$ is tangent to M. So $\nabla_{X_{j}} X_{i}=0$ and the lemma follows.

From the equation of Gauss we get $1+a c-c^{2}=0$. So $c \neq 0$ and $a=\left(c^{2}-1\right) / c$.
We need the following definition (see [8, p. 20]).
Definition 3.2. If $\gamma(s)$ is a curve in a Riemannian manifold N, parametrized by arc length s, we say that γ is a Frenet curve of osculating order r when there exist orthonormal vector fields $E_{1}, E_{2}, \cdots, E_{r}$, along γ, such that:

$$
\begin{aligned}
& \dot{\gamma}=E_{1}, \quad \nabla_{\dot{\gamma}} E_{1}=\kappa_{1} E_{2}, \quad \nabla_{\dot{\gamma}} E_{2}=-\kappa_{1} E_{1}+\kappa_{2} E_{3}, \quad \cdots, \\
& \nabla_{\dot{\gamma}} E_{r-1}=-\kappa_{r-2} E_{r-2}+\kappa_{r-1} E_{r}, \quad \nabla_{\dot{\gamma}} E_{r}=-\kappa_{r-1} E_{r-1}
\end{aligned}
$$

where $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{r-1}$ are positive C^{∞} functions of $s . \kappa_{j}$ is called the j-th curvature of γ.
So, for example, a geodesic is a Frenet curve of osculating order 1; a circle is a Frenet curve of osculating order 2 with κ_{1} a constant; a helix of order r is a Frenet curve of osculating order r, such that $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{r-1}$ are constants.

Theorem 3.3. Let M be a mass-symmetric 2-type integral surface in $S^{5}(1)$ in E^{6}. Then M is locally the Riemannian product of a circle and a helix of order 4 or the product of two circles.

Proof. We shall prove that the X_{1}-curve is a helix of order 4 or a circle and the X_{2}-curve is a circle. Next we obtain that, under the hypothesis of Theorem 3.3, M lies fully in $S^{5}(1)$.

First of all we observe that for the second fundamental form h of M in E^{6} we have

$$
\begin{equation*}
h\left(X_{1}, X_{1}\right)=a \xi_{1}-x, \quad h\left(X_{1}, X_{2}\right)=c \xi_{2}, \quad h\left(X_{2}, X_{2}\right)=c \xi_{1}-x \tag{3.2}
\end{equation*}
$$

From this and (3.1) we get

$$
\begin{align*}
& \bar{\nabla}_{X_{1}} X_{1}=a \xi_{1}-x, \quad \bar{\nabla}_{X_{1}} \xi_{1}=-a X_{1}+\xi, \quad \bar{\nabla}_{X_{1}} \xi_{2}=-c X_{2}, \\
& \bar{\nabla}_{X_{1}} x=X_{1}, \quad \bar{\nabla}_{X_{1}} \xi==-\xi_{1} . \tag{3.3}
\end{align*}
$$

Also we get

$$
\begin{align*}
& \bar{\nabla}_{X_{2}} X_{2}=c \xi_{1}-x, \quad \bar{\nabla}_{X_{2}} \xi_{1}=-c X_{2}, \quad \bar{\nabla}_{X_{2}} \xi_{2}=-c X_{1}+\xi, \\
& \bar{\nabla}_{X_{2}} x=X_{2}, \quad \bar{\nabla}_{X_{2}} \xi=-\xi_{2}, \quad \bar{\nabla}_{X_{2}} X_{1}=c \xi_{2} . \tag{3.4}
\end{align*}
$$

Let $X_{1}=E_{1}$. From (3.3) we obtain

$$
\begin{gathered}
\bar{\nabla}_{E_{1}} E_{1}=a \xi_{1}-x=\kappa_{1} E_{2}, \quad \text { where } E_{2}=\frac{a \xi_{1}-x}{\sqrt{a^{2}+1}}, \kappa_{1}=\sqrt{a^{2}+1} \\
\bar{\nabla}_{E_{1}} E_{2}=-\sqrt{a^{2}+1} E_{1}+\frac{a}{\sqrt{a^{2}+1}} \xi=-\kappa_{1} E_{1}+\kappa_{2} E_{3}
\end{gathered}
$$

where

$$
\begin{aligned}
E_{3}=\xi, \kappa_{2}= & \frac{a}{\sqrt{a^{2}+1}} \text { if } a>0, \text { or } E_{3}=-\xi, \kappa_{2}=\frac{-a}{\sqrt{a^{2}+1}} \text { if } a<0 \\
& \bar{\nabla}_{E_{1}} E_{3}=-\xi_{1}=-\kappa_{2} E_{2}+\kappa_{3} E_{4}
\end{aligned}
$$

where

$$
\begin{gathered}
E_{4}=-\frac{\xi_{1}+a x}{\sqrt{a^{2}+1}} \text { if } a>0, \text { or } E_{4}=\frac{\xi_{1}+a x}{\sqrt{a^{2}+1}} \\
\text { if } a<0, \kappa_{3}=\frac{1}{\sqrt{a^{2}+1}} \\
\bar{\nabla}_{E_{1}} E_{4}=-\frac{1}{\sqrt{a^{2}+1}} \xi=-\kappa_{3} E_{3} \\
\text { if } a>0, \text { or } \\
\bar{\nabla}_{E_{1}} E_{4}=\frac{1}{\sqrt{a^{2}+1}} \xi=-\kappa_{3} E_{3} \\
\text { if } a<0
\end{gathered}
$$

Thus $\kappa_{4}=0$ and the X_{1}-curve is a helix of order 4. The case $a=0$ corresponds to $\kappa_{2}=0$ and hence the X_{1}-curve is a circle.

Now we put $X_{2}=v_{1}$. From (3.4) we obtain

$$
\begin{gathered}
\bar{\nabla}_{v_{1}} v_{1}=c \xi_{1}-x=\kappa_{1} v_{2}, \quad \text { where } v_{2}=\frac{c \xi_{1}-x}{\sqrt{c^{2}+1}}, \kappa_{1}=\sqrt{c^{2}+1} \\
\bar{\nabla}_{v_{1}} v_{2}=-\sqrt{c^{2}+1} v_{1}
\end{gathered}
$$

So $\kappa_{2}=0$ and the X_{2}-curve is a circle. This completes the proof of the theorem.
Now, on M we may choose local coordinates such that the immersion (2.3) is $x=x(u, v)$ with $x_{u}=X_{1}$ and $x_{v}=X_{2}$. Thus, from equations (3.3) and (3.4), by direct computation we find
(i) $\quad x_{u u u u}+\frac{c^{4}+1}{c^{2}} x_{u u}+x=0$,
(ii) $\quad x_{v v v}+\left(c^{2}+1\right) x_{v}=0$,
(iii) $c^{2} x_{u u}-\left(c^{2}-1\right) x_{v v}+x=0$.

We want to find the general solution of the system (3.5). We need the following lemma.
Lemma 3.4. Suppose $c^{2} \neq 1$. Then the general solution of the ordinary differential equation

$$
\begin{equation*}
f^{(i v)}+\frac{c^{4}+1}{c^{2}} f^{\prime \prime}+f=0 \tag{3.6}
\end{equation*}
$$

is

$$
\begin{align*}
f(t) & =c_{1} \cos c t+c_{2} \sin c t+c^{3} \cos \frac{t}{c}+c_{4} \sin \frac{t}{c} \tag{3.7}\\
c_{i} & =\text { const. }, \quad i=1,2,3,4
\end{align*}
$$

The functions $\cos c t, \sin c t, \cos t / c, \sin t / c$ are linearly independent and the function $f(t)$ is periodic with period $T=2 \pi \sqrt{l m}$ if and only if c^{2} is the rational number $c^{2}=l / m, l$, m integers.

Proof. The differential equation (3.6) is of 4-th order, linear and homogeneous. So the general solution of this is given by (3.7). Let $A \cos c t+B \sin c t+C \cos t / c+$ $D \sin t / c=0$. If we take $t=0, \pi c, 2 \pi c, \pi / c, 2 \pi / c$, we see that $A=B=C=D=0$ unless $c^{2}=1$. So the functions $\cos c t, \sin c t, \cos t / c, \sin t / c$ are linearly independent.

If the function $f(t)$ is periodic with period T then
$\left(c_{1}(\cos c T-1)+c_{2} \sin c T\right) \cos c t+\left(-c_{1} \sin c T+c_{2}(\cos c T-1)\right) \sin c t$

$$
+\left(c_{3}\left(\cos \frac{T}{c}-1\right)+c_{4} \sin \frac{T}{c}\right) \cos \frac{t}{c}+\left(-c_{3} \sin \frac{T}{c}+c_{4}\left(\cos \frac{T}{c}-1\right)\right) \sin \frac{t}{c}=0 .
$$

Since the functions $\cos c t, \sin c t, \cos t / c$ and $\sin t / c$ are linearly independent we conclude that $c T=2 \pi l$ and $T / c=2 \pi m$ where l, m are integers. Thus the function $f(t)$ is periodic if and only if $c^{2}=l / m$.

Theorem 3.5. Let $x: M \rightarrow S^{5}(1) \subset E^{6}$ be a mass-symmetric 2-type immersion of an integral surface M into $S^{5}(1)$. Then M lies fully in E^{6} and the position vector $x=x(u, v)$ of M in E^{6} is given by

$$
\begin{align*}
x= & \frac{1}{\sqrt{c^{2}+1}}\left[\left(c \cos \frac{u}{c}\right) e_{1}+\left(\sin c u \sin \sqrt{c^{2}+1} v\right) e_{2}\right. \tag{3.8}\\
& -\left(\sin c u \cos \sqrt{c^{2}+1} v\right) e_{3}+\left(c \sin \frac{u}{c}\right) e_{4} \\
& \left.+\left(\cos c u \sin \sqrt{c^{2}+1} v\right) e_{5}-\left(\cos c u \cos \sqrt{c^{2}+1} v\right) e_{6}\right]
\end{align*}
$$

where $c=$ const.$\neq 0$ and $\left\{e_{i}\right\}, i=1, \cdots, 6$, is an orthonormal basis of E^{6}.

Proof. If $c^{2} \neq 1$, according to Lemma 3.4, the general solution of the differential equation (3.5 (i)) is

$$
x=A^{1}(v) \cos \frac{u}{c}+A^{2}(v) \sin c u+A^{3}(v) \sin \frac{u}{c}+A^{4}(v) \cos c u
$$

where $A^{i}(v), i=1, \cdots, 4$, are E^{6}-valued smooth functions of the variable v. Since the functions $\cos u / c, \sin c u, \sin u / c, \cos c u$ are linearly independent, every function $A^{i}(v)$ must be a solution of the equation (3.5 (ii)). So

$$
A^{i}(v)=\frac{1}{\sqrt{c^{2}+1}}\left[\left(\sin \sqrt{c^{2}+1} v\right) A_{1}^{i}-\left(\cos \sqrt{c^{2}+1} v\right) A_{2}^{i}+c A_{3}^{i}\right], \quad i=1,2,3,4
$$

where $A_{j}^{i}, i=1, \cdots, 4, j=1,2,3$, are constant vectors in E^{6}. Thus the solution of the equations (3.5) (i) and (ii) is given by

$$
\begin{aligned}
x= & \frac{1}{\sqrt{c^{2}+1}}\left[\left(\sin \sqrt{c^{2}+1} v A_{1}^{1}-\cos \sqrt{c^{2}+1} v A_{2}^{1}+c A_{3}^{1}\right) \cos \frac{u}{c}\right. \\
& +\left(\sin \sqrt{c^{2}+1} v A_{1}^{2}-\cos \sqrt{c^{2}+1} v A_{2}^{2}+c A_{3}^{2}\right) \sin c u \\
& +\left(\sin \sqrt{c^{2}+1} v A_{1}^{3}-\cos \sqrt{c^{2}+1} v A_{2}^{3}+c A_{3}^{3}\right) \sin \frac{u}{c} \\
& \left.+\left(\sin \sqrt{c^{2}+1} v A_{1}^{4}-\cos \sqrt{c^{2}+1} v A_{2}^{4}+c A_{3}^{4}\right) \cos c u\right] .
\end{aligned}
$$

On the other hand, from this and (3.5 (iii)) we find ($\left.A_{1}^{1}, A_{2}^{1}, A_{3}^{2}, A_{1}^{3}, A_{2}^{3}, A_{3}^{4}\right)=$ $(0,0,0,0,0,0)$. Thus the position vector x of M is given by (3.8) where e_{1}, \cdots, e_{6} are the constant vectors $A_{3}^{1}, A_{1}^{2}, A_{2}^{2}, A_{3}^{3}, A_{1}^{4}, A_{2}^{4}$, respectively.

As $x=x(u, v)$ in (3.8) is the solution of the differential system (3.5), we have at the point $x(0,0)$

$$
\begin{align*}
& x=\frac{1}{\sqrt{c^{2}+1}}\left(c e_{1}-e_{6}\right), \quad x_{u}=\frac{1}{\sqrt{c^{2}+1}}\left(-c e_{3}+e_{4}\right), \quad x_{v}=e_{5}, \tag{3.9}\\
& x_{u v}=c e_{2}, \quad x_{v v}=\sqrt{c^{2}+1} e_{6}, \quad x_{u v v}=c \sqrt{c^{2}+1} e_{3} .
\end{align*}
$$

On the other hand, from (3.3) and (3.4) we find

$$
\begin{align*}
& \langle x, x\rangle=1,\left\langle x, x_{u}\right\rangle=0,\left\langle x, x_{v}\right\rangle=0,\left\langle x, x_{u v}\right\rangle=0, \\
& \left\langle x, x_{v v}\right\rangle=-1,\left\langle x, x_{u v v}\right\rangle=0,\left\langle x_{u}, x_{u}\right\rangle=1,\left\langle x_{u}, x_{v}\right\rangle=0, \\
& \left\langle x_{u}, x_{u v}\right\rangle=0,\left\langle x_{u}, x_{v v}\right\rangle=0,\left\langle x_{u}, x_{u v v}\right\rangle=-c^{2},\left\langle x_{v}, x_{v}\right\rangle=1, \\
& \left\langle x_{v}, x_{u v}\right\rangle=0,\left\langle x_{v}, x_{v v}\right\rangle=0,\left\langle x_{v}, x_{u v v}\right\rangle=0,\left\langle x_{u v}, x_{u v}\right\rangle=c^{2}, \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
& \left\langle x_{u v}, x_{v v}\right\rangle=0, \quad\left\langle x_{u v}, x_{u v v}\right\rangle=0, \quad\left\langle x_{v v}, x_{v v}\right\rangle=c^{2}+1, \quad\left\langle x_{v v}, x_{u v v}\right\rangle=0, \\
& \left\langle x_{u v v}, x_{u v v}\right\rangle=c^{2}\left(c^{2}+1\right) .
\end{aligned}
$$

Combining (3.9) with (3.10) we obtain $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$.
If we have $c^{2}=1$, using a similar argument to that of the case $c^{2} \neq 1$ we obtain

$$
\begin{aligned}
x= & \frac{1}{\sqrt{2}}\left[(\cos u) e_{1}+(\sin u \sin \sqrt{2} v) e_{2}-(\sin u \cos \sqrt{2} v) e_{3}\right. \\
& \left.+(\sin u) e_{4}+(\cos u \sin \sqrt{2} v) e_{5}-(\cos u \cos \sqrt{2} v) e_{6}\right]
\end{aligned}
$$

Moreover, in this case the corresponding equations (3.9) and (3.10) are valid if we put $c=1$. If $c=-1$, changing the sign of e_{1}, e_{2}, e_{3} gives the same result. Thus we again conclude $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$.

REMARK. Let $x: M \rightarrow S^{n}(1)$ be an isometric immersion of a compact surface M into the sphere $S^{n}(1)$. The total mean curvature is defined by

$$
\tau(x)=\int_{M}\left(\alpha^{\prime 2}+1\right) d V
$$

where α^{\prime} is the mean curvature of the surface M. The surface M is said to be stationary if

$$
\delta\left(\int_{M}\left(\alpha^{\prime 2}+1\right) d V\right)=0
$$

for any δ, where δ is a normal variation. Weiner [10] shows that M is stationary if and only if

$$
\begin{equation*}
\Delta^{D^{\prime}} H^{\prime}=-2 \alpha^{\prime 2} H^{\prime}+\frac{1}{\alpha^{\prime 2}}\left(\operatorname{tr} A_{H^{2}}^{2}\right) H^{\prime}+\alpha^{\prime}\left(H^{\prime}\right) \tag{3.11}
\end{equation*}
$$

(see also [1]). We obtain the following.
Proposition 3.6. If M is a mass-symmetric 2-type integral surface of $S^{5}(1)$, then M is not stationary.

Proof. Assume that M is stationary. From (2.15) we have that M is a Chen surface of $S^{5}(1)$, i.e. $\alpha^{\prime}\left(H^{\prime}\right)=0$. Therefore, we obtain from (3.11)

$$
\Delta^{D^{\prime}} H^{\prime}=\frac{\operatorname{tr} A_{1}}{2}\left(-\frac{\left(\operatorname{tr} A_{1}\right)^{2}}{2}+\operatorname{tr} A_{1}^{2}\right) \xi_{1}
$$

and since $\operatorname{tr} A_{1}=a+c=\left(2 c^{2}-1\right) / c \neq 0$,

$$
\Delta^{D^{\prime}} H^{\prime}=\frac{2 c^{2}-1}{4 c^{3}} \xi_{1}
$$

On the other hand, from (2.12) we get

$$
\Delta^{D^{\prime}} H^{\prime}=\frac{\operatorname{tr} A_{1}}{2} \xi_{1}=\frac{2 c^{2}-1}{2 c} \xi_{1}
$$

Therefore we have $2 c^{2}=1$, a contradiction.

References

[1] M. Barros and B.-Y. Chen, Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Japan, 39 (1987), 627-648.
[2] M. Barros and O. J. Garay, 2-type surfaces in S^{3}, Geom. Dedicata, 24 (1987), 329-336.
[3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509 (1976), Springer-Verlag.
[4] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1984.
[5] B.-Y. Chen, Finite type submanifolds and generalizations, Univ. of Rome, 1985.
[6] O. J. Garay, Spherical Chen surfaces which are mass-symmetric and of 2-type, J. Geom., 33 (1988), 39-52.
[7] Y. Miyata, 2-type surfaces of constant curvature in $S^{\boldsymbol{n}}$, Tokyo J. Math., 11 (1988), 157-204.
[8] K. Ogiue, Notes in Differential Geometry, Universidad de Granada, (Lecture Notes by O. J. Garay) (1985).
[9] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
[10] J. L. Weiner, On a problem of Chen, Willmore, et al., Indiana Univ. Math. J., 27 (1978), 19-35.

Present Address:
Christos Baikoussis
Department of Mathematics, University of Ioannina Ioannina 45110, Greece

David E. Blair
Department of Mathematics, Michigan State University
East Lansing, Michigan 48824, USA

