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Abstract. The main purpose of this paper is to classify integral surfaces of the unit sphere $S^{5}(1)$ which
are mass-symmetric and of 2-type. If we consider $S^{5}(1)$ as a Sasakian manifold, then we prove that a
mass-symmetric 2-type integral surface of $S^{5}(1)$ lies fully in $S^{5}(1)$ and is the product of aplane circle and a
helix of order 4 or the product of two circles.

1. Introduction.

Let $M^{n}$ be a (connected) n-dimensional submanifold of Euclidean space $E^{m+1}$ . Let
$x,$ $H$ and $\Delta$ respectively be the position vector field, the mean curvature vector field and
the Laplace operator of the induced metric on $M^{n}$ . Then, the position vector $x$ and the
mean curvature vector $H$ of $M^{n}$ in $E^{m+1}$ satisfy (see e.g. [4])

(1.1) $\Delta x=-nH$ .

This formula yields the following well-known result: $M^{n}$ is a minimal submanifold in
$E^{m+1}$ if and only if all coordinate functions of $E^{m+1}$ , restricted to $M$, are harmonic
functions, that is $\Delta x=0$ (i.e. they are eigenfunctions of $\Delta$ with eigenvalue $0$). Moreover,
in this context, T. Takahashi [9] proved that the submanifolds $M^{n}$ for which

(1.2) $\Delta x=\lambda x$

i.e. for which all coordinate functions are eigenfunctions of $\Delta$ with the same eigenvalue
$\lambda\in R$, are precisely either the minimal submanifolds of $E^{m+1}(\lambda=0)$ or the minimal
submanifolds $M^{n}$ of hyperspheres $S^{m}$ in $E^{m+1}$ (the case when $\lambda\neq 0$ , actually $\lambda=n/r^{2}$

where $r$ is the radius of $S^{m}$).
One branch of research in submanifold theory was introduced by B. Y. Chen in

[4], [5], namely, the study of submanifolds of finite type. In terms of B. Y. Chen’s
theory of submanifolds in $E^{m}$ of finite type, condition (1.2) asserts that $M^{n}$ is of l-type
in $E^{m}$ .

In general, a submanifold $M^{n}$ of Euclidean space $E^{m+1}$ is said to be of k-type if
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the position vector $x$ of $M^{n}$ in $E^{m+1}$ can be decomposed as

$x=x_{0}+x_{1}+\cdots+x_{k}$

where $x_{0}\in E^{m+1}$ is a fixed vector and $x_{i}(i=1, \cdots, k)$ are non-constant $E^{m+1}$ -valuec
maps on $M^{n}$ , such that

$\Delta x_{i}=\lambda_{i}x_{i}$ for $i=1,$ $\cdots,$
$k$ and $\lambda_{1}<\cdots<\lambda_{k}$ , $\lambda_{i}\in R$ .

Many important submanifolds in Euclidean space tum out to be of finite type in
this sense (see [4] for details).

A compact submanifold $M^{n}$ of a hypersphere $S^{m}$ of $E^{m+1}$ is said to $b($

mass-symmetric in $S^{m}$ if the center of mass $x_{0}$ of $M^{n}$ in $E^{m+1}$ is exactly the center $0$

$S^{m}$ in $E^{m+1}$ . Mass-symmetric 2-type submanifolds of a hypersphere can be regardec
as the “simplest” submanifolds of $E^{m+1}$ next to minimal submanifolds. Many importan
submanifolds are known to be mass-symmetric and of 2-type. In Chen’s book [4], $som$

basic results for mass-symmetric 2-type surfaces in an m-sphere $S^{m}$ were established
In particular, it was proved that a compact surface in $S^{3}$ is mass-symmetric and $0$

2-type if and only if it is the product of two circles of different radii ([4, Theorem 4.5
p. 279]). M. Barros and O. Garay [2] showed that the same result holds without tht
assumption ofmass-symmetric. Also stationary 2-type mass-symmetric compact surface:
of $S^{m}$ were classified in [1] by M. Barros and B. Y. Chen. In particular, they showee
that such surfaces are flat and lie fully either in a 5-sphere or in a 7-sphere. They showec
also that there exist no mass-symmetric 2-type surfaces which lie fully in $S^{4}(1)$

Afterwards O. Garay [6] showed that a mass-symmetric 2-type Chen surface (i.e. $th\langle$

allied mean curvature vector $\alpha(H)$ vanishes identically on $M$) is either pseudoumbilica
or flat. Furthermore, if the surface is flat, then it lies fully in a totally geodesic 3-spher $($

or in a totally geodesic 5-sphere or in a totally geodesic 7-sphere.
Finally, Y. Miyata in [7] studied mass-symmetric 2-type surfaces of $\infty ns\tan$

curvature in $S^{m}$ and obtained, among others, the following results:
i) If $f$ : $M\rightarrow S^{m}$ is a mass-symmetric 2-type immersion of a surface $M$ of posi

tive constant curvature into $S^{m}$ , then $f$ is a diagonal sum of two different $standar\epsilon$

minimal immersions of $M$ into spheres.
ii) There are no mass-symmetric 2-type surfaces of constant negative curvatur $($

in a sphere.
iii) Let $M$ be a flat surface and $f$ a full mass-symmetric 2-type Chen immersion

of $M$ into $S^{m}$ . If $m\geq\cdot 9$ , then $f$ is a diagonal sum of two different minimal immersion:
into spheres. If $m=7$ , there exists a full mass-symmetric 2-type Chen immersion which
is not a diagonal sum of minimal immersions.

In [1] and [7] one can find many results for 2-type surfaces in $S^{m}$ .
In this paper we shall classify mass-symmetric 2-type integral surfaces of th $($

Sasakian manifold $S^{5}(1)\subset E^{6}$ . In particular, we will prove that, if we consider the uni
sphere $S^{5}(1)$ as a Sasakian manifold then a mass-symmetric 2-type integra
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surface $M$ of $S^{5}(1)$ lies fully in $S^{5}(1)$ and is the product of a plane circle and a helix
of order 4 or the product of two circles. Furthermore, $M$ belongs to a l-parameter
family of.such surfaces.

2. Preliminaries.

We consider the space $C^{m+1}$ of $m+1$ complex variables and let $J$ denote its usual
almost complex structure, namely by identifying $z\in C^{m+1}$ with $(x_{1},$ $\cdots,$ $x_{m+1}$ ,

$y_{1},$ $\cdots,$ $y_{m+1}$ ) $\in E^{2m+2}$ we consider $Jz=(-y_{1}, \cdots, -y_{m+1}, x_{1}, \cdots, x_{m+1})$ .
$S^{2m+1}=\{z\in C^{m+1} : |z|=1\}$ .

We give $S^{2m+1}$ its usual contact structure. Define a tangent vector field $\xi$ , a l-form $\eta$

and a $(1, 1)$ tensor field $\varphi$ on $S^{2m+1}$ as follows:
Let $\langle, \rangle$ denote the induced metric from $C^{m+1}$ on $S^{2m+1}$ (so $S^{2m+1}$ has constant

sectional curvature 1),

$\xi=-Jz$ , $\eta(X)=\langle X, \xi\rangle$ and $\varphi=s\circ J$

where $s$ denotes the orthogonal projection from $T_{z}C^{m+1}$ on $T_{z}S^{2m+1}$ . Using these
definitions, we obtain for all tangent vector fields $X$ and $Y$ on $S^{2m+1}$ that

$\varphi^{2}X=-X+\eta(X)\xi$ ,

$\eta(\xi)=1$ , $\eta(X)=\langle X, \xi\rangle$ ,
(2.1)

$ d\eta(X, Y)=\langle X, \varphi Y\rangle$ ,

$ N=-2d\eta\otimes\xi$ ,

where $N$ is defined by $N(X, Y)=[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]$ . It is
well-known [3] that these formulas imply that $(\varphi, \xi, \eta, \langle, \rangle)$ determines a Sasakian
structure on $S^{2m+1}$ . Therefore, we also have

(2.2) $\nabla_{\acute{X}}\xi=-\varphi X$ , $(\nabla_{\acute{X}}\varphi)Y=\langle X, Y\rangle\xi-n(Y)X$

where $\nabla^{\prime}$ denotes the Levi-Civita connection of $\langle, \rangle$ . For more details see [3].
A Riemannian manifold $M^{n}$ , isometrically immersed in $S^{2m+1}$ , is called an integral

submanifold if and only if $\eta$ restricted to $M^{n}$ vanishes.
In this paper we consider the unit hypersphere $S^{5}(1)\subset C^{3}\cong E^{6}$ centered at the

origin and with the Sasakian structure $(\varphi, \xi, \eta, \langle, \rangle)$ . Assume that

(2.3) $x:M\rightarrow S^{5}(1)$

is a mass-symmetric 2-type immersion of an integral surface $M$ into $S^{5}(1)$ . Denote by
V the usual Levi-Civita connection of $E^{6}$ and by $\nabla,$

$\nabla^{\prime}$ the induced connections on $M$

and $S^{5}(1)$ , respectively. Let $H,$ $h,$ $A$ and $D$ denote the mean curvature vector, the second
fundamental form, the Weingarten maps and the normal connection of $M$ in $E^{6}$ ,
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respectively. Finally denote by $H^{\prime},$ $h^{\prime},$ $A^{\prime}$ and $D^{\prime}$ the corresponding quantities for $Mil$

$S^{5}(1)$ . Then we have $H=H^{\prime}-x$ and, for any vector $n$ normal to $M$ in $S^{5}(1),$ $A_{n}=A_{n}^{\prime}$ .
Let $\Delta$ be the Laplacian of $M$ associated with the induced metric. This Laplacian

can be extended in a natural way to $E^{6}$-valued smooth maps $u$ of $M$ as follows:

(2.4) $\Delta u=\sum_{i=1}^{2}(\overline{\nabla}_{\nabla_{x_{i}}X_{i}}u-\overline{\nabla}_{X_{i}}\overline{\nabla}_{X_{t}}u)$

where $\{X_{1}, X_{2}\}$ is a local orthonormal frame field on $M$.
Since $M$ is 2-type and mass-symmetric, the position vector $x$ of $M$ with respect $t($

the origin of $E^{6}$ can be written as follows:

(2.5) $x=x_{p}+x_{q}$ , $\Delta x_{p}=\lambda_{p}x_{p}$ , $\Delta x_{q}=\lambda_{q}x_{q}$

where $x_{p},$ $x_{q}$ are non-constant $E^{6}$-valued maps on $M$.
Furthermore, since $M$ is an integral submanifold of the Sasakian manifold $S^{5}(1)$

we can choose a local field of orthonormal frames $X_{1},$ $X_{2},$ $\xi_{1}=\varphi X_{1},$ $\xi_{2}=\varphi X_{2},$ $\xi$ in $S^{5}(1$

such that $X_{1},$ $X_{2}$ are tangent to $M$ and $\xi_{1}$ is parallel to the mean curvature vector $B$

of $M$ in $S^{5}(1)$ . From the definition of an integral submanifold and (2.1) we hav
that the unit vector $\xi$ is normal to $M$ and to $\xi_{1},$ $\xi_{2}$ . So the vectors $\xi_{1},$ $\xi_{2},$ $\xi,$ $x$ form}

basis of the normal space of $M$ in $E^{6}$ . If, for convenience, we put $(e_{1}, \cdots, e_{6})=$

$(X_{1}, X_{2}, \xi_{1}, \xi_{2}, \xi, x)$ , then we denote by $\{\omega_{i}\},$ $i=1,$ $\cdots,$
$6$ , the dual frame of the fram

$\{e_{i}\}$ and by $\{\omega_{i}^{j}\},$ $i,j=1,$ $\cdots,$
$6$ , the corresponding connection forms. Thus we have

(2.6) $\overline{\nabla}e_{i}=\sum_{j=1}^{6}\omega_{i}^{j}e_{j}$ .

We have

(2.7) $H=H^{\prime}-x=\frac{trA_{1}}{2}\xi_{1}-x$

where $A_{1}$ is the Weingarten map $A_{\xi_{1}}$ of $M$ associated with $\xi_{1}$ . We note also that $ A_{X}=-\rfloor$

where $I$ is the identity map.
Applying (2.4) to $H$ we have, by direct computation, the well known formula (se

[4, p. 273])

(2.8) $\Delta H=\Delta^{D}’ H^{\prime}+\alpha^{\prime}(H^{\prime})+tr\overline{\nabla}A_{H}+(trA_{1}^{2}+2)H^{\prime}-2|H|^{2}x$

where

(2.9) $\alpha^{\prime}(H^{\prime})=\sum_{j=4}^{5}tr(A_{H^{\prime}}A_{e_{j}})e_{j}$

is the allied mean curvature vector of $M$ in $S^{5}(1)$ and

(2.10) tr $\overline{\nabla}A_{H}=\sum_{i=1}^{2}((\nabla_{X_{i}}A_{H})X_{i}+A_{D_{X}{}_{t}H}X_{i})$ .
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Moreover, since $Dx=0$ , we have that $DH^{\prime}$ is perpendicular to $x$ . So $\langle\Delta^{D}’ H^{\prime}, x\rangle=0$ .
On the other hand, since $\Delta x=-2H$, by using (2.5) we find

(2.11) $\Delta H=\frac{trA_{1}}{2}(\lambda_{p}+\lambda_{q})\xi_{1}-(\lambda_{p}+\lambda_{q}-\frac{\lambda_{p}\lambda_{q}}{2})x$ .

Combining (2.8) with (2.11) we obtain tr $A_{1}=const$ . When tr $A_{1}=0M$ is a minimal
surface of $S^{5}(1)$ and so is of l-type by Takahashi’s theorem. Thus we may assume that
tr $A_{1}=const.\neq 0$ .

Since $M$ is an integral surface we have $\omega_{6}^{t}=0,$ $t=3,4,5,6$ and from (2.2) we have
$\omega_{5}^{j}=0$ ifj $=1,2,5,6$ and $\omega_{5}^{3}(X_{i})=-\langle\xi_{i}, \xi_{1}\rangle,$ $\omega_{5}^{4}(X_{i})=-\langle\xi_{i}, \xi_{2}\rangle,$ $i=1,2$ .

By direct computation, we get

(2.12) $\Delta^{D}’ H^{\prime}=\sum_{i=1}^{2}(D_{\nabla_{X_{i}}X_{i}}^{\prime}H^{\prime}-D_{X_{i}}^{\prime}D_{\acute{X}_{i}}H^{\prime})=\frac{trA_{1}}{2}\Delta^{D}\xi_{1}$

$=\frac{trA_{1}}{2}[-(tr\nabla\omega_{3}^{4})\xi_{2}+|D\xi_{1}|^{2}\xi_{1}-(\omega_{3}^{4}(X_{2})+\omega_{1}^{2}(X_{2}))\xi]$

where we have put

(2.13) $|D\xi_{1}|^{2}=\sum_{i=1}^{2}|D_{X_{i}}\xi_{1}|^{2}=\sum_{i=1}^{2}(\omega_{3}^{4}(X_{i}))^{2}+1$ ,

(2.14) tr $\nabla\omega_{3}^{4}=\sum_{i=1}^{2}(\nabla_{X_{i}}\omega_{3}^{4})(X_{i})=\sum_{i=1}^{2}(X_{i}\omega_{3}^{4}(X_{i})-\omega_{3}^{4}(\nabla_{X_{i}}X_{i}))$ .

From [3, Lemma 1, p. 102] we have $A_{\xi}=0$ . Thus from (2.9) and (2.10) we get

(2.15) $\alpha^{\prime}(H^{\prime})=\frac{trA_{1}}{2}tr(A_{1}A_{2})\xi_{2}$ ,

(2.16) $tr\overline{\nabla}A_{H}=\frac{trA_{1}}{2}\sum_{i=1}^{2}((\nabla_{X_{i}}A_{1})X_{i}+\omega_{3}^{4}(X_{i})A_{2}X_{i})$ .

Now, from (2.8), (2.11), (2.12), (2.15) and (2.16) we obtain the following useful equations

(i) $\sum_{i=1}^{2}((\nabla_{X_{i}}A_{1})X_{i}+\omega_{3}^{4}(X_{i})A_{2}X_{i})=0$ ,
(ii) $|D\xi_{1}|^{2}+trA_{1}^{2}=\lambda_{p}+\lambda_{q}-2$ ,

(2.17)
(iii) tr $\nabla\omega_{3}^{4}-trA_{1}A_{2}=0$ ,
(iv) $\omega_{3}^{4}(X_{2})+\omega_{1}^{2}(X_{2})=0$ .

We continue with some further calculations. Using the Codazzi equation

$(\nabla_{X}A_{1})Y-A_{D_{K}\xi_{1}}Y-(\nabla_{Y}A_{1})X+A_{D_{Y}\xi_{1}}X=0$

and tr $A_{2}=0$ , we compute
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$0=grad$ tr $A_{1}=\sum_{i=1}^{2}$ (tr $\nabla_{X_{i}}A_{1}$ )$X_{i}=\sum_{i=1}^{2}((\nabla_{X_{i}}A_{1})X_{i}-\omega_{3}^{4}(X_{i})A_{2}X_{i})$ .

Combining this with $($2.17 $(i))$ we obtain

(2.18) $\sum_{i=1}^{2}(\nabla_{X_{i}}A_{1})X_{i}=0$

and

(2.19) $\sum_{i=1}^{2}\omega_{3}^{4}(X_{i})A_{2}X_{i}=0$ .

From [3, Lemma 2, p. 103] we have

(2.20) $A_{1}X_{2}=A_{2}X_{1}$ .

So,

$A_{1}=\left\{\begin{array}{ll}a & b\\b & c\end{array}\right\}$ , then $A_{2}=\left\{\begin{array}{ll}b & c\\c & -b\end{array}\right\}$ .

We have det $A_{2}\neq 0$ , because if we assume det $A_{2}=0$ , from (2.18) we conclu
$\omega_{1}^{2}=0$ and from (2.17 (iv)) $\omega_{3}^{4}(X_{2})=0$ . Thus from (2.17 (ii)) and (2.13) we obta
$\omega_{3}^{4}(X_{1}XX_{2}\omega_{3}^{4}(X_{1}))=0$ . On the other hand, sinoe $\langle R^{\perp}(X_{1}, X_{2})\xi_{1}, \xi_{2}\rangle=1-X_{2}\omega_{3}^{4}(X$

the equation of Ricci implies $X_{2}\omega_{3}^{4}(X_{1})=1$ . This is a contradiction. Therefo
det $A_{2}\neq 0$ and (2.19) gives $\omega_{3}^{4}=0$ . Then applying (2.13) and (2.14) to (2.17 (ii)) a
(2.17 (iii)) respectively, we find tr $A_{1}^{2}=const$ . and tr $A_{1}A_{2}=0$ . Thus, we get $b=0,$ $a$

const. and $c=const$ .
We are now ready to state and prove the main results.

3. Main results.

The following lemma shows that $M$ is flat.

LEMMA 3.1. Let $M$ be a mass-symmetric 2-type integral surface in $S^{5}(1)$ in 1
Then $M$ is flat.

$PR\infty F$ . Note that the ambient space $S^{5}(1)$ is a Sasakian manifold. So from (2

and the fact that $M$ is an integral surface we have

$\overline{\nabla}_{X_{j}}\xi_{i}=\nabla_{\acute{X}_{j}}\xi_{i}=(\nabla_{\acute{X}_{j}}\varphi)X_{i}+\varphi(\nabla_{\acute{X}_{j}}X_{i})$

$=\delta_{ij}\xi+\varphi(\nabla_{X_{j}}X_{i}+h^{\prime}(X_{i}, X_{j}))$ , $i,j=1,2$ .

On the other hand

(3.1) $\overline{\nabla}_{X_{j}}\xi_{i}=-A_{i}X_{j}+D_{X_{j}}\xi_{i}$
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and moreover using (2.20) again

$\varphi(h^{\prime}(X_{i}, X_{j}))=\varphi(\langle A_{1}X_{i}, X_{j}\rangle\xi_{1}+\langle A_{2}X_{i}, X_{j}\rangle\xi_{2})$

$=-(\langle A_{i}X_{1}, X_{j}\rangle X_{1}+\langle A_{i}X_{2}, X_{j}\rangle X_{2})=-A_{i}X_{j}$ , $i,j=1,2$ .

Thus, we conclude that $\varphi(\nabla_{X_{j}}X_{i})=0$ and from (2.1) that $\nabla_{X_{J}}X_{i}$ is parallel to $\xi$ . But $\nabla_{X_{j}}X_{i}$

is tangent to $M$. So $\nabla_{X_{j}}X_{i}=0$ and the lemma follows.

From the equation of Gauss we get $1+ac-c^{2}=0$ . So $c\neq 0$ and $a=(c^{2}-1)/c$ .
We need the following definition (see [8, p. 20]).

DEFINITION 3.2. If $\gamma(s)$ is a curve in a Riemannian manifold $N$, parametrized by
arc length $s$, we say that $\gamma$ is a Frenet curve of osculating order $r$ when there exist
orthonormal vector fields $E_{1},$ $E_{2},$ $\cdots,$ $E_{r}$ , along $\gamma$ , such that:

$\dot{\gamma}=E_{1}$ , $\nabla_{\dot{\gamma}}E_{1}=\kappa_{1}E_{2}$ , $\nabla_{\dot{\gamma}}E_{2}=-\kappa_{1}E_{1}+\kappa_{2}E_{3}$ , $\cdot$ . . ,

$\nabla_{\dot{\gamma}}E_{r-1}=-\kappa_{r-2}E_{r-2}+\kappa_{r-1}E_{r}$ , $\nabla_{\dot{\gamma}}E_{r}=-\kappa_{r-1}E_{r-1}$

where $\kappa_{1},$ $\kappa_{2},$ $\cdots,$ $\kappa_{r-1}$ are positive $C^{\infty}$ functions of $s$ . $\kappa_{j}$ is called thej-th curvature of $\gamma$ .

So, for example, a geodesic is a Frenet curve of osculating order 1; a circle is a
Frenet curve of osculating order 2 with $\kappa_{1}$ a constant; a helix of order $r$ is a Frenet
curve of osculating order $r$ , such that $\kappa_{1},$ $\kappa_{2},$ $\cdots,$ $\kappa_{r-1}$ are constants.

THEOREM 3.3. Let $M$ be a mass-symmetric 2-type integral surface in $S^{5}(1)$ in $E^{6}$ .
Then $M$ is locally the Riemannian product ofa circle and a helix of order 4 or the product

of two circles.
$PR\infty F$ . We shall prove that the $X_{1}$ -curve is a helix of order 4 or a circle and the

$X_{2}$-curve is a circle. Next we obtain that, under the hypothesis of Theorem 3.3, $M$ lies
fully in $S^{5}(1)$ .

First ofall we observe that for the second fundamental form $h$ ofMin $E^{6}$ we have

(3.2) $h(X_{1}, X_{1})=a\xi_{1}-x$ , $h(X_{1}, X_{2})=c\xi_{2}$ , $h(X_{2}, X_{2})=c\xi_{1}-x$ .

From this and (3.1) we get

$\overline{\nabla}_{X_{1}}X_{1}=a\xi_{1}-x$ , $\overline{\nabla}_{X_{1}}\xi_{1}=-aX_{1}+\xi$ , $\overline{\nabla}_{X_{1}}\xi_{2}=-cX_{2}$ ,
(3.3)

$\overline{\nabla}_{X_{1}}x=X_{1}$ , $\overline{\nabla}_{X_{1}}\xi==-\xi_{1}$ .

Also we get

$\overline{\nabla}_{X_{2}}X_{2}=c\xi_{1}-x$ , $\overline{\nabla}_{X_{2}}\xi_{1}=-cX_{2}$ , $\overline{\nabla}_{X_{2}}\xi_{2}=-cX_{1}+\xi$ ,
(3.4)

$\overline{\nabla}_{X_{2}}x=X_{2}$ , $\overline{\nabla}_{X_{2}}\xi=-\xi_{2}$ , $\overline{\nabla}_{X_{2}}X_{1}=c\xi_{2}$ .

Let $X_{1}=E_{1}$ . From (3.3) we obtain
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$\overline{\nabla}_{E_{1}}E_{1}=a\xi_{1}-x=\kappa_{1}E_{2}$ , where $E_{2}=\frac{a\xi_{1}-x}{\sqrt{a^{2}+1}},$
$\kappa_{1}=\sqrt{a^{2}+1}$ .

$\overline{\nabla}_{E_{1}}E_{2}=-\sqrt{a^{2}+1}E_{1}+\frac{a}{\sqrt{a^{2}+1}}\xi=-\kappa_{1}E_{1}+\kappa_{2}E_{3}$

where

$E_{3}=\xi,$
$\kappa_{2}=\frac{a}{\sqrt{a^{2}+1}}$ if $a>0$ , or $E_{3}=-\xi,$

$\kappa_{2}=\frac{-a}{\sqrt{a^{2}+1}}$ if $a<0$ .

$\overline{\nabla}_{E_{1}}E_{3}=-\xi_{1}=-\kappa_{2}E_{2}+\kappa_{3}E_{4}$ ,

where

$E_{4}=-\frac{\xi_{1}+ax}{\sqrt{a^{2}+1}}$ if $a>0$ , or $E_{4}=\frac{\xi_{1}+ax}{\sqrt{a^{2}+1}}$ if $a<0$ , $\kappa_{3}=\frac{1}{\sqrt{a^{2}+1}}$ .

$\overline{\nabla}_{E_{1}}E_{4}=-\frac{1}{\sqrt{a^{2}+1}}\xi=-\kappa_{3}E_{3}$ if $a>0$ , or

$\overline{\nabla}_{E_{1}}E_{4}=\frac{1}{\sqrt{a^{2}+1}}\xi=-\kappa_{3}E_{3}$ if $a<0$ .

Thus $\kappa_{4}=0$ and the $X_{1}$ -curve is a helix of order 4. The case $a=0$ corresponds to $\kappa_{2}=$

and henoe the $X_{1}$ -curve is a circle.
Now we put $X_{2}=v_{1}$ . From (3.4) we obtain

$\overline{\nabla}_{v_{1}}v_{1}=c\xi_{1}-x=\kappa_{1}v_{2}$ , where $v_{2}=\frac{c\xi_{1}-x}{\sqrt{c^{2}+1}}$ , $\kappa_{1}=\sqrt{c^{2}+1}$ ,

$\overline{\nabla}_{v_{1}}v_{2}=-\sqrt{c^{2}+1}v_{1}$ .

So $\kappa_{2}=0$ and the $X_{2}$-curve is a circle. This completes the proof of the theorem.

Now, on $M$ we may choose local $\infty ordinates$ such that the immersion (2.3) $i$

$x=x(u, v)$ with $x_{u}=X_{1}$ and $x_{v}=X_{2}$ . Thus, from equations (3.3) and (3.4), by diree
computation we find

(i) $x_{uuuu}+\frac{c^{4}+1}{c^{2}}x_{uu}+x=0$ ,

(3.5)
(ii) $x_{vvv}+(c^{2}+1)x_{v}=0$ ,
(iii) $c^{2}x_{uu}-(c^{2}-1)x_{vv}+x=0$ .
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We want to find the general solution ofthe system (3.5). We need the following lemma.

LEMMA 3.4. Suppose $c^{2}\neq 1$ . Then the general solution of the ordinary $d\iota fferential$

equation

(3.6) $f^{\langle iv)}+\frac{c^{4}+1}{c^{2}}f^{\prime\prime}+f=0$

$is$

(3.7) $f(t)=c_{1}\cos ct+c_{2}\sin ct+c^{3}\cos\frac{t}{c}+c_{4}\sin\frac{t}{c}$ ,

$c_{i}=const$ . , $i=1,2,3,4$ .

The functions cos $ct$ , sin $ct$ , cos $t/c$ , sin $t/c$ are linearly independent and the function $f(t)ts$

periodic withperiod $T=2\pi\sqrt{lm}$ ifandonly ifc2 is the rational number $c^{2}=l/m,$ $l,$ $m$ integers.

PROOF. The differential equation (3.6) is of 4-th order, linear and homogeneous.
So the general solution of this is given by (3.7). Let $A\cos ct+B\sin ct+C\cos t/c+$

$D\sin t/c=0$ . If we take $t=0,$ $\pi c,$ $2\pi c,$ $\pi/c,$ $2\pi/c$ , we see that $A=B=C=D=0$ unless
$c^{2}=1$ . So the functions cos $ct$, sin $ct$, cos $t/c$, sin $t/c$ are linearly independent.

If the function $f(t)$ is periodic with period $T$ then

($c_{1}(\cos cT-1)+c_{2}$ sin $cT$) cos $ct+$ ( $-c_{1}$ sin $cT+c_{2}(\cos cT-1)$) sin $ct$

$+(c_{3}(\cos\frac{T}{c}-1)+c_{4}\sin\frac{T}{c})\cos\frac{t}{c}+(-c_{3}\sin\frac{T}{c}+c_{4}(\cos\frac{T}{c}-1))\sin\frac{t}{c}=0$ .

Since the functions cos $ct$ , sin $ct$ , cos $t/c$ and sin $t/c$ are linearly independent we conclude
that $cT=2\pi l$ and $T/c=2\pi m$ where $l,$ $m$ are integers. Thus the function $f(t)$ is periodic
if and only if $c^{2}=l/m$ .

THEOREM 3.5. Let $x:M\rightarrow S^{5}(1)\subset E^{6}$ be a mass-symmetric 2-type immersion of
an integral surface $M$ into $S^{5}(1)$ . Then $M$ liesfully in $E^{6}$ and the position vector $x=x(u, v)$

of $M$ in $E^{6}$ is given by

(3.8) $x=\frac{1}{\sqrt{c^{2}+1}}[(c\cos\frac{u}{c})e_{1}+$ ($\sin cu$ sin $\sqrt{c^{2}+1}\dot{v}$)$e_{2}$

$-$ ($\sin cu$ cos $\sqrt{c^{2}+1}v$)$e_{3}+(c\sin\frac{u}{c})e_{4}$

$+$ ($\cos cu$ sin $\sqrt{c^{2}+1}v$)$e_{5}-$ ($\cos cu$ cos $\sqrt{c^{2}+1}v$)$e_{6}]$

where $c=const.\neq 0$ and $\{e_{i}\},$ $i=1,$ $\cdots,$
$6$ , is an orthonormal basis of $E^{6}$ .
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$PR\infty F$ . If $c^{2}\neq 1$ , according to Lemma 3.4, the general solution of the differentia
equation $($3.5 $(i))$ is

$x=A^{1}(v)$ cos $\frac{u}{c}+A^{2}(v)$ sin $cu+A^{3}(v)\sin\frac{u}{c}+A^{4}(v)coscu$

where $A^{i}(v),$ $i=1,$ $\cdots,$
$4$ , are $E^{6}$-valued smooth functions of the variable $v$ . Since tht

functions cos $u/c$, sin $cu$, sin $u/c$, cos $cu$ are linearly independent, every function $A^{i}(v$

must be a solution of the equation (3.5 (ii)). So

$A^{i}(v)=\frac{1}{\sqrt{c^{2}+1}}[(\sin\sqrt{c^{2}+1}v)A_{1}^{i}-(\cos\sqrt{c^{2}+1}v)A_{2}^{i}+cA_{3}^{i}]$ , $i=1,2,3,4$

where $A_{j}^{i},$ $i=1,$ $\cdots,$ $4,$ $j=1,2,3$ , are constant vectors in $E^{6}$ . Thus the solution of the
equations (3.5) (i) and (ii) is given by

$x=\frac{1}{\sqrt{c^{2}+1}}[(\sin\sqrt{c^{2}+1}vA_{1}^{1}-\cos\sqrt{c^{2}+1}vA_{2}^{1}+cA_{3}^{1})\cos\frac{u}{c}$

$+$ ($\sin\sqrt{c^{2}+1}vA_{1}^{2}$ -cos $\sqrt{c^{2}+1}vA_{2}^{2}+cA_{3}^{2}$) sin $cu$

$+$ ($\sin\sqrt{c^{2}+1}vA_{1}^{3}$ -cos $\sqrt{c^{2}+1}vA_{2}^{3}+cA_{3}^{3}$) sin $\frac{u}{c}$

$+(\sin\sqrt{c^{2}+1}vA_{1}^{4}-\cos\sqrt{c^{2}+1}vA_{2}^{4}+cA_{3}^{4})$ cos $cu]$ .

On the other hand, from this and (3.5 (iii)) we find $(A_{1}^{1}, A_{2}^{1}, A_{3}^{2}, A_{1}^{3}, A_{2}^{3}, A_{3}^{4})=$

$(0,0,0,0,0,0)$ . Thus the position vector $x$ of $M$ is given by (3.8) where $e_{1},$ $\cdots,$ $e_{6}$ are
the constant vectors $A_{3}^{1},$ $A_{1}^{2},$ $A_{2}^{2},$ $A_{3}^{3},$ $A_{1}^{4},$ $A_{2}^{4}$ , respectively.

As $x=x(u, v)$ in (3.8) is the solution of the differential system (3.5), we have at the
point $x(O, 0)$

$x=\frac{1}{\sqrt{c^{2}+1}}(ce_{1}-e_{6})$ , $x_{u}=\frac{1}{\sqrt{c^{2}+1}}(-ce_{3}+e_{4})$ , $x_{v}=e_{5}$ ,

(3.9)
$x_{uv}=ce_{2}$ , $x_{vv}=\sqrt{c^{2}+1}e_{6}$ , $x_{uvv}=c\sqrt{c^{2}+1}e_{3}$ .

On the other hand, from (3.3) and (3.4) we find
$\langle x, x\rangle=1$ , $\langle x, x_{u}\rangle=0$ , $\langle x, x_{v}\rangle=0$ , $\langle x, x_{uv}\rangle=0$ ,

$\langle x, x_{vv}\rangle=-1$ , $\langle x, x_{uvv}\rangle=0$ , $\langle x_{u}, x_{u}\rangle=1$ , $\langle x_{u}, x_{v}\rangle=0$ ,

$\langle x_{u}, x_{uv}\rangle=0$ , $\langle x_{u}, x_{vv}\rangle=0$ , $\langle x_{u}, x_{uvv}\rangle=-c^{2}$ , $\langle x_{v}, x_{v}\rangle=1$ ,
(3.10)

$\langle x_{v}, x_{uv}\rangle=0$ , $\langle x_{v}, x_{vv}\rangle=0$ , $\langle x_{v}, x_{uvv}\rangle=0$ , $\langle x_{uv}, x_{uv}\rangle=c^{2}$ ,



2-TYPE INTEGRAL SURFACES 355

$\langle x_{uv}, x_{vv}\rangle=0$ , $\langle x_{uv}, x_{uvv}\rangle=0$ , $\langle x_{vv}, x_{vv}\rangle=c^{2}+1$ , $\langle x_{vv}, x_{uvv}\rangle=0$ ,

$\langle x_{uvv}, x_{uvv}\rangle=c^{2}(c^{2}+1)$ .
Combining (3.9) with (3.10) we obtain $\langle e_{t}, e_{j}\rangle=\delta_{ij}$ .

If we have $c^{2}=1$ , using a similar argument to that of the case $c^{2}\neq 1$ we obtain

$x=\frac{1}{\sqrt{2}}[(\cos u)e_{1}+$ ($\sin u$ sin $\sqrt{2}v$)$e_{2}-$ ($\sin u$ cos $\sqrt{2}v$)$e_{3}$

$+(\sin u)e_{4}+$ ($\cos u$ sin $\sqrt{2}v$)$e_{5}-$ ($\cos u$ cos $\sqrt{2}v$)$e_{6}$].

Moreover, in this case the corresponding equations (3.9) and (3.10) are valid if we put
$c=1$ . If $c=-1$ , changing the sign of $e_{1},$ $e_{2},$ $e_{3}$ gives the same result. Thus we again
conclude $\langle e_{i}, e_{j}\rangle=\delta_{ij}$ .

REMARK. Let $x:M\rightarrow S^{n}(1)$ be an isometric immersion of a compact surface $M$

into the sphere $S^{n}(1)$ . The total mean curvature is defined by

$\tau(x)=\int_{M}(\alpha^{\prime 2}+1)dV$

where $\alpha^{\prime}$ is the mean curvature of the surface $M$. The surface $M$ is said to be stationary if

$\delta(\int_{M}(\alpha^{\prime 2}+1)dV)=0$

for any $\delta$ , where $\delta$ is a normal variation. Weiner [10] shows that $M$ is stationary if and
only if

(3.11) $\Delta^{D}’ H^{\prime}=-2\alpha^{\prime 2}H^{\prime}+\frac{1}{\alpha^{2}}$ (tr $A_{H’}^{2}$) $H^{\prime}+\alpha^{\prime}(H^{\prime})$ ,

(see also [1]). We obtain the following.

PROPOSITION 3.6. If $M$ is a mass-symmetric 2-type integral surface of $S^{5}(1)$ , then
$M$ is not stationary.

$PR\infty F$ . Assume that $M$ is stationary. From (2.15) we have that $M$ is a Chen
surface of $S^{5}(1)$ , i.e. $\alpha^{\prime}(H^{\prime})=0$ . Therefore, we obtain from (3.11)

$\Delta^{D}’ H^{\prime}=\frac{trA_{1}}{2}(-\frac{(trA_{1})^{2}}{2}+trA_{1}^{2})\xi_{1}$

and since tr $A_{1}=a+c=(2c^{2}-1)/c\neq 0$ ,

$\Delta^{D^{\prime}}H^{\prime}=\frac{2c^{2}-1}{4c^{3}}\xi_{1}$ .
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On the other hand, from (2.12) we get

$\Delta^{D}’ H^{\prime}=\frac{trA_{1}}{2}\xi_{1}=\frac{2c^{2}-1}{2c}\xi_{1}$ .

Therefore we have $2c^{2}=1$ , a contradiction.
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