A Note on the Rational Approximations to e

Takeshi OKANO

Saitama Institute of Technology (Communicated by K. Katase)

Introduction.

We have some consequences on the rational approximations to e. P. Bundschuh [2] proved the following inequality.

BUNDSCHUH'S THEOREM. For all integers p, q such that q > 0,

$$\left| e - \frac{p}{q} \right| > \frac{\log \log 4q}{18q^2 \log 4q} .$$

On the other hand, C. S. Davis [3] proved the following theorem.

DAVIS' THEOREM. For any $\varepsilon > 0$ there is an infinity of solutions of the inequality

$$\left| e - \frac{p}{a} \right| < \left(\frac{1}{2} + \varepsilon \right) \frac{\log \log q}{a^2 \log a}$$

in integers p, q. Further, there exists a number $q' = q'(\varepsilon)$ such that

$$\left| e - \frac{p}{q} \right| > \left(\frac{1}{2} - \varepsilon \right) \frac{\log \log q}{q^2 \log q}$$

for all integers p, q with $q \ge q'$.

The last inequality suggests the possibility of replacing the constant 1/18 in Bundschuh's theorem by a larger one; which will be done in this note.

THEOREM. Let p, q be positive integers such that $q \ge 2$. Then

$$\left| e - \frac{p}{q} \right| > \frac{\log \log q}{3q^2 \log q} \ .$$

§1. Lemma.

LEMMA. Let p, q be positive integers. Let p_n/q_n be the n-th convergent of e. Then

$$\left| e - \frac{p}{q} \right| > \frac{\log \log q}{\gamma_N q^2 \log q}$$

for all integers p, q such that $q \ge q_{3N+1}$ $(N \ge 6)$, where γ_N is any constant such that

$$\gamma_N > \left(2 + \frac{3}{N+1/2}\right) \left(1 + \frac{\log\log((4N+7)/e)}{\log(N+7/4)}\right).$$

PROOF. If p/q is not a convergent of e, then

$$\left| e - \frac{p}{q} \right| > \frac{1}{2q^2} .$$

Therefore, the lemma is proved in this case. We must consider the case that p/q is a convergent of e. The continued fraction of e is

$$e = [a_0, a_1, a_2, a_3, \cdots] = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, \cdots].$$

In other words, $a_0 = 2$, and for $m \ge 1$,

$$a_{3m} = a_{3m-2} = 1$$
 and $a_{3m-1} = 2m$.

Case 1. Let $n=3m \ (m>N)$. Since $q_{3m+1}=a_{3m+1}q_{3m}+q_{3m-1}=q_{3m}+q_{3m-1}$, we have

$$\left| e - \frac{p_{3m}}{q_{3m}} \right| > \frac{1}{q_{3m}(q_{3m+1} + q_{3m})} > \frac{1}{3q_{3m}^2}$$

As we can see that $\log \log x/\log x$ $(x \ge 16)$ is a strictly decreasing function, we have

$$\frac{\log\log q_{3m}}{\log q_{3m}} \leq \frac{\log\log q_{18}}{\log q_{18}} = 0.1768 \cdot \cdot \cdot < 1/3,$$

therefore

$$\left| e - \frac{p_{3m}}{q_{3m}} \right| > \frac{\log \log q_{3m}}{q_{3m}^2 \log q_{3m}}.$$

Case 2. Let n=3m+1 $(m \ge N)$. Since $q_{3m+2}=a_{3m+2}q_{3m+1}+q_{3m}=2(m+1)q_{3m+1}+q_{3m}$, we have

$$\left|e^{-\frac{p_{3m+1}}{q_{3m+1}}}\right| > \frac{1}{q_{3m+1}(q_{3m+2}+q_{3m+1})} > \frac{1}{2(m+2)q_{3m+1}^2}.$$

Now we must estimate q_{3m+1} . Since $q_{3m+1} \ge 2(2m+1)q_{3m-2} \ge \cdots \ge 2^m(2m+1)(2m-1)\cdots$

 $5 \cdot 3 \cdot 1$, we have

$$\log q_{3m+1} \ge m \log 2 + \sum_{k=1}^{m} \log(2k+1) \ge m \log 2 + \int_{0}^{m} \log(2x+1) dx$$

$$= m \log 2 + (m+1/2) \log(2m+1) - m \ge (m+1/2) \log((4m+2)/e) .$$

Conversely,

$$q_{3m+1} \leq (4m+3)q_{3m-2}.$$

Hence,

$$q_{3m+1} \leq \prod_{\mu=1}^{m} (4\mu + 3)$$
.

Therefore,

$$\log q_{3m+1} \le \sum_{\mu=1}^{m} \log(4\mu+3) \le \int_{1}^{m+1} \log(4x+3) dx$$

$$= (m+7/4)\log(4m+7) - m - 7\log 7/4$$

$$\le (m+7/4)\log((4m+7)/e),$$

$$\log \log q_{3m+1} \le \log(m+7/4) + \log \log((4m+7)/e).$$

As we can see that

$$l(x) = \frac{\log \log((4x+7)/e)}{\log(x+7/4)} \qquad (x \ge 6)$$

is a strictly decreasing function, we have

$$\log \log q_{3m+1} \le (1+l(N))\log(m+7/4) \le (1+l(N))\log((4m+2)/e).$$

From these consequences, we find

$$\begin{split} \frac{\log\log q_{3m+1}}{\log q_{3m+1}} &\leq \frac{1+l(N)}{m+1/2} \\ &\leq (2+3/(N+1/2)) \left(1 + \frac{\log\log((4N+7)/e)}{\log(N+7/4)}\right) \frac{1}{2(m+2)} \\ &< \frac{\gamma_N}{2(m+2)} \; . \end{split}$$

Therefore,

$$\left| e - \frac{p_{3m+1}}{q_{3m+1}} \right| > \frac{\log \log q_{3m+1}}{\gamma_N q_{3m+1}^2 \log q_{3m+1}}.$$

Case 3. Let n=3m+2 $(m \ge N)$. We can prove the lemma in this case similarly in the case 1.

This completes the proof.

§2. Proof of the theorem.

It suffices only to consider that p/q is a (3m+1)-th convergent of e. If N=22, then

$$(2+3/(N+1/2))\left(1+\frac{\log\log((4N+7)/e)}{\log(N+7/4)}\right)=2.9873\cdots$$

Hence we can choose γ_{22} so that $\gamma_{22}=3$. From Lemma, for all positive integers p, q such that $q \ge q_{3m+1}$ $(m \ge 22)$,

$$\left| e - \frac{p}{q} \right| > \frac{\log \log q}{3q^2 \log q} .$$

We deffine δ_m as follows:

$$\left| e^{-\frac{p_{3m+1}}{q_{3m+1}}} \right| > \frac{1}{2(m+2)q_{3m+1}^2} = \frac{\log\log q_{3m+1}}{\delta_m q_{3m+1}^2 \log q_{3m+1}},$$

i.e.

$$\delta_m = \frac{2(m+2)\log\log q_{3m+1}}{\log q_{3m+1}}.$$

We show that $\delta_m \leq 3$ for $m \leq 21$.

$$\begin{split} \delta_1 &= 2.0527 \cdots, \ \delta_2 &= 2.7211 \cdots, \ \delta_3 &= 2.7975 \cdots, \ \delta_4 &= 2.7942 \cdots, \ \delta_5 &= 2.7757 \cdots, \\ \delta_6 &= 2.7553 \cdots, \ \delta_7 &= 2.7364 \cdots, \ \delta_8 &= 2.7195 \cdots, \ \delta_9 &= 2.7047 \cdots, \ \delta_{10} = 2.6916 \cdots, \\ \delta_{11} &= 2.6801 \cdots, \ \delta_{12} = 2.6699 \cdots, \ \delta_{13} = 2.6607 \cdots, \ \delta_{14} = 2.6525 \cdots, \ \delta_{15} = 2.6451 \cdots, \\ \delta_{16} &= 2.6384 \cdots, \ \delta_{17} = 2.6322 \cdots, \ \delta_{18} = 2.6266 \cdots, \ \delta_{19} = 2.6214 \cdots, \ \delta_{20} = 2.6166 \cdots, \\ \delta_{21} &= 2.6121 \cdots \end{split}$$

This completes the proof of the theorem.

ACKNOWLEDGEMENT. The author would like to thank the referee who gave him many useful advices.

References

- [1] S. LANG, Introduction to Diophantine Approximations, Addison-Wesley (1966).
- [2] P. Bundschuh, Irrationalitätsmaße für e^a , $a \neq 0$ rational order Liouville-Zahl, Math. Ann., 192 (1971), 229–242.

[3] C. S. Davis, Rational approximations to e, J. Austral. Math. Soc. Ser. A, 25 (1978), 497-502.

Present Address:

Department of Mathematics, Saitama Institute of Technology Fusaiji, Okabe-machi, Saitama 369–02, Japan