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Introduction.

In this paper we shall investigate the monodromy group $G$ of generalized
hypergeometric equation (say GHGE, for brevity) in the form of Okubo type, its
irreducibility conditions, explicit form of its invariant hermitian matrix and so on. As
we shall see later, there exists a complex reflection group $\tilde{G}$ induced from $G$ and
containing $G$ . We shall also study it and determine the case where $\tilde{G}$ is a finite irreducible
group. Then $G$ is also finite and the corresponding solutions of GHGE are algebraic
functions.

The equation of Okubo type is a system of first order linear differential equations
(see $(\#)$ in \S 1). It gives a fine perspective in the theory of Fuchsian equations to consider
those in the form ofOkubo type. K. Okubo showed in [5] that every Fuchsian equation
can be transformed into one of his type and its monodromy group up to conjugations
can be obtained by an algebraic computation. In particular, for GHGE, he obtained
the monodromy group in the joint work with Takano ([6]) and solved the connection
problem ([5], see also [7]). His theory says that n-th order Fuchsian equations in
general have $n^{2}-3n+2$ numbers of accessory parameters (see [5]). We may comprehend
above $\tilde{G}$ as the monodromy group of such equation, of which the number of accessory
parameters takes the special value $0$ , and GHGE as a limit of those equations.

For the single higher order GHGE, the monodromy group was obtained by A. H. M.
Levelt in his thesis [4]. We may say that it is integral, i.e:, it is a subgroup of $GL(n, \mathcal{O}_{K})$

if its parameters are rational numbers, where $\mathcal{O}_{K}$ is the ring of integers of a suitable
cyclotomic field $K$. Recently, in their joint work ([1]), F. Beukers and G. Heckman
investigated systematically the cases where the group due to Levelt come to be finite.
Theorem 4.8 in [1] has a particular importance which was brought by virtue of the
above integral property besides their good idea. Moreover they obtained various
consequences by studying a reflection subgroup of the monodromy group. The fact is
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that, as we shall see later (Lemma 4.5), the two groups due to Levelt and Okubo-Takar
are conjugate to each other in $GL(n, C)$ . In Proposition 4.6 we shall also state a relatic
between $G$ and $\tilde{G}$ on the finiteness which was pointed out by H. Nakajima.

In case the order of GHGE is equal to 2, it is just Gauss’ hypergeometric equatic
and $\tilde{G}$ coincides with $G$ . The determination of finite monodromy groups in this ca
was already done by H. A. Schwarz which, together with [12], gives a motivation $($

our present work. Thus we only consider the case where the order of GHGE $\geqq 3$ . $C$

Schwarz theory we also refer to [3] and [13].
In \S 1 we shall summarize several known results on GHGE in the form of Okut

type and its monodromy group. We intend to state those with short proofs
self-contained manner. In \S 2 we shall study the irreducibility conditions for GHG
which coincides with those obtained independently by Beukers-Heckman for the sing
higher order GHGE with a proof quite different from ours. Next we shall construct
\S 3 the invariant hermitian matrix explicitly under a suitable condition so that its signatu
will be computed directly. Those results are useful when we study discrete and arithmet
group ofGHGE in the future. Main result on the structure of $\tilde{G}$ and $G$ will be summarizt
in Theorem 4.3 in \S 4. Though the groups stated here are part of those obtained $t$

Beukers-Heckman, yet our elementary method is applicable to wider class of $Fuchsi^{r}$

equations. The results due to G. C. Shephard and J. A. Todd ([10]), and T. A. Spring
([11]) on complex reflection groups play important roles for those investigations. 1
a certain stage of computations of matrices we used the computer algebra syste
MACSYMA on DEC VAX-11/750.

Finally I wish to thank to my colleagues, Professor Haruhisa Nakajima for 1]

valuable suggestions on reflection groups, and Professor Teruo Hikita who guided $n$

to computer scienoes, especially, to MACSYMA.

\S 1. Generalized hypergeometric equations in the form of Okubo type and $i$

monodromy group $G$.
Let $S$ be the Riemann sphere. We consider the following system of linear ordina]

differential equations of first order on $S$ which we call of Okubo type;

$(\#)$ $(tI-B)\frac{dx}{dt}=Ax$ ,

where $t$ is a complex variable on $S,$ $x=^{t}(x_{1}, \cdots, x_{n})$ is a column n-vector, $I$ is the $nt$

$n$ unit matrix and, $A$ and $B$ are $n$ by $n$ constant matrices.
DEFINITION 1.1. The equation of Okubo type $(\#)$ is said to be a generaliz

hypergeometric equation if $B$ is the diagonal matrix
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$B=diag(0, \cdots, 0,1)=\left(\begin{array}{llll}0 & 0 & & \\ & \ddots & & \\0 & & 0 & 1\end{array}\right)$

and

$A=\left(\begin{array}{llll}-a_{1} & 0 & & 1\\ & \ddots & & |\\0 & & -a_{n-1} & 1\\b_{1} & \cdots & b_{n-1} & -a_{n}\end{array}\right)$

which has $n$ distinct eigenvalues $-\rho_{1},$ $\cdots,$ $-\rho_{n}$ (cf. [7], \S 1).

Throughout this paper we consider $(\#)$ satisfying the following assumption in
addition to Definition 1.1.

(A) None of the quantities $a_{i}(i=1,2, \cdots, n),$ $a_{j}-a_{k}(j\neq k;j, k=1, \cdots, n-1)$

and $\rho_{l}-\rho_{m}(l\neq m;l, m=1, \cdots, n)$ is an integer. Moreover each $\rho_{l}$ is not a positive
integer. Consequently there is no logarithmic solution.

The system (f) has three regular singular points $0,1$ and $\infty$ on $S$. We denote
$\exp(-2\pi\sqrt{-1}a_{j})$ and $\exp(-2\pi\sqrt{-1}\rho_{k})$ by $e_{j}$ and $f_{k}$ , respectively. The sums and
products; $\sum_{k=1}^{n},$ $\sum_{k=1}^{n-1},$ $\prod_{k=1}^{n}$ and $\prod_{k=1}^{n-1}$ are also abbreviated to $\sum_{k},$ $\sum_{k}^{\prime},$ $\prod_{k}$ and $\prod_{k}^{\prime}$ ,
respectively.

LEMMA 1.2. The characteristic exponents of $(\#)$ are

$(-a_{1}, \cdots, -a_{n-1},0)$ at $t=0$ ,

$(0, \cdots, 0, -a_{n})$ at $t=1$ ,

$(\rho_{1}, \rho_{2}, \cdots, \rho_{n})$ at $ t=\infty$ .
Riemann-Fuchs relation is simply the invariance of the trace of $A$ ;

(1.1) $\sum_{k}a_{k}=\sum_{k}\rho_{k}$ and, consequently, $\prod_{k}e_{k}=\prod_{k}f_{k}$ .

LEMMA 1.3. The non-trivial components $b_{j}$ are represented in terms of $a_{k}$ and $\rho_{k}$ ;

(1.2) $b_{j}=-\frac{\prod_{k}(\rho_{k}-a_{j})}{\prod_{k\neq j}(a_{k}-a_{j})}$ $(j=1,2, \cdots, n-1)$ .

$PR\infty F$ . By the definition, $\det(\rho I-A)=\prod_{k}(\rho+\rho_{k})$ . On the other hand we have
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det(pl-A) $=\prod_{k}’(p+a_{k})\{(\rho+a_{n})-\sum_{l}’\frac{b_{l}}{\rho+a_{l}}\}$ .

The lemma follows by setting $\rho=-a_{j}$ . q.e.

REMARK 1.4. We only note that, if we substitute (1.2) for $b_{j}$ in $(\#)$ and elimina
$x_{1},$ $\cdots,$ $x_{n-1}$ , then $x=x_{n}$ just satisfies the classical GHGE (see Erd\’elyi [2])

(b) $[\delta(\delta+a_{1}-1)\cdots(\delta+a_{n-1}-1)-t(\delta+\rho_{1})\cdots(\delta+\rho_{n})]x=0$ ,

where $\delta=t(d/dt)$ , which has

$nFn-1\left(\begin{array}{lll}\rho_{1} & \cdots & \rho_{n}.t\\a_{1} & \cdots & a_{n-1}\end{array}\right)=\sum_{k=0}^{\infty}\frac{(p_{1})_{k}.\cdot.\cdot\cdot(p_{n})_{k}}{(a_{1})_{k}\cdot(a_{n-1})_{k}k!}t^{k}$

as its particular solution at $t=0$ , where $(\alpha)_{k}=\alpha(\alpha+1)\cdots(\alpha+k-1)$ . So the system $($

is equivalent to the equation (b) (for details, see [7], \S 1 and also \S 5).

From Lemma 1.3, the equation $(\#)$ is determined explicitly by its characteris)

exponents: i.e.,

THEOREM 1.5. The system $(\#)$ is accessory parameter free.
THEOREM 1.6 (Gauss-Okubo formula; [5] and [7], Theorem 1). The system}

has only $n$ singular solutions defined at $0$ and 1, corresponding to the characteris
exponents $-a_{j}$ and the normalization conditions $g_{j}(0)=\epsilon_{j}$ :

$\left\{\begin{array}{l}X_{J}\langle t)=t^{-a_{j}}\sum_{m=O}g_{j}(m)p(j=1,2,\cdots,n-1)\\X_{n}(t)=(t-1)^{-a_{n}}\Sigma\infty g_{n}(m)(t-1)^{m}\end{array}\right.\infty$

where the j-th components and the others of the n-vector $\epsilon_{j}$ are 1 and $0$, respective
Moreover, in any simply connected domain contained in $S^{*}=S\backslash \{0,1, \infty\},$ $\iota$

Wronskian of these solutions is

det $X=(\prod_{k=1}^{n}\frac{\Gamma(1-a_{k})}{\Gamma(1-\rho_{k})})t^{-\Sigma_{l}a}{}^{t}(t-1)^{-a_{\mathfrak{n}}}$ ,

where $X$ is the matrix $[X_{1}, \cdots, X_{n}]$ , from which the linear independence of the solutio
follows (see (A), in particular, the assumption on $\rho_{l}$).

Now we fix a point $\theta\in S^{*}$ . Let $\mu_{0}$ and $\mu_{1}$ be simple loops which start at $\theta$ ,
around $0$ and 1, respectively, once in the positive direction and retum to $0$ . $T$

composition $\mu_{\infty}=\mu_{1}\cdot\mu_{0}$ which is the loop $\mu_{0}$ followed by $\mu_{1}$ is a simple loop surroundi
$\infty$ in the negative direction. The loops $\mu_{\alpha}(\alpha=0,1, \infty)$ generate the fundamental gro
$\pi_{1}(S^{*}, 0)$ with the fundamental relation $\mu_{\infty}^{-1}\cdot\mu_{1}\cdot\mu_{0}=1$ . If the basis SC for solutions



GENERALIZED HYPERGEOMETRIC FUNCTIONS 393

$(\#)$ is continued analytically along $\mu_{\alpha},$

$\mathfrak{X}$ is transformed into $XM_{\alpha}$ where $M_{\alpha}\in GL(n, C)$

is called the circuit matrix around $\alpha$ with respect to $\mathfrak{X}$ . Thus a group representation $\varphi$

of $\pi_{1}(S^{*}, l\})$ into $GL(n, C)$ is determined by $\mu_{\alpha}\mapsto M_{\alpha}$ . We call the image $\mathscr{G}$ of $\varphi$ the
monodromy group of $(\#)$ with respect to $X$ . If $\mathfrak{X}^{\prime}$ is another basis for solutions of $(\#)$ ,
there exists $T\in GL(n, C)$ which satisfies $X^{\prime}=\mathfrak{X}T$. Let $\mathscr{G}^{\prime}$ be the monodromy group with
respect to $X^{\prime}$ . Then we have $\mathscr{G}^{\prime}=T^{-1}\mathscr{G}T$, i.e., the monodromy group of $(\#)$ is determined
uniquely up to a conjugation. Now set $\mathfrak{X}=X$ stated in Theorem 1.6. Let $G$ be the
corresponding monodromy group. Then we obtain:

LEMMA 1.7. The circuit matrices are represented as $M_{\alpha}=I+C_{\alpha}(\alpha=0,1)$ , where

$C_{0}=\left(\begin{array}{llll}e_{1}-1 & & 0 & \\ & \ddots & & \\ & & e_{n-1}-1 & \\ & 0 & & 1\end{array}\right)\cdot\left(\begin{array}{lllll}1 & & 0 & & p_{1}\\ & \ddots & & & |\\ & 0 & 1 & & p_{n-1}\\0 & \cdots & \cdots & 0 & 0\end{array}\right)$

(1.3)

$C_{1}=(e_{n}-1)(\frac{0}{q_{1}\cdots q_{n-1}1})$

The components $p_{j}$ and $q_{j}$ are called the connection coefficients with respect to $X$

which were calculated explicitly by Okubo [5] (see also [7], Theorem 3). However, for
observing the group structure of $G$, it is sufficient to obtain only the products $p_{j}q_{j}$ when
all of them take non-zero values under which we shall study $G$ from \S 3 on (cf. also
Theorem 2.3 below). Let $G^{\prime}$ be a group generated by matrices, say $M_{\acute{0}}$ and $M_{1}^{\prime}$ , which
are given by substituting $p_{j}^{\prime}$ and $q_{j}^{\prime}$ for $p_{j}$ and $q_{j}$ in (1.3), respectively. We denote it by
$G(p_{1}^{\prime}, \cdots,p_{n-1}^{\prime} ; q_{1}^{\prime}, \cdots, q_{n-1})$ (for brevity, $G$( $p_{j}^{\prime}$ ; $q_{j}^{\prime}$ )) if necessary. Then $G=G(p_{j} ; q_{j})$ .

LEMMA 1.8. Suppose $p_{j}q_{j}\neq 0$ for allj $(1 \leq j\leq n-1)$ . For any set { $p_{1}^{\prime},$ $\cdot\cdot,p_{n-1}^{\prime}$ ; $q_{1}^{\prime}$ ,
$q_{n-1}^{\prime}\}$ there exists a non-singular diagonal matrix $D$ up to a non-zero scalar multiple

which satisfies $G(p_{j}^{\prime} ; q_{j}^{\prime})=D^{-1}GD$ or, more precisely, $M_{\alpha}^{\prime}=D^{-1}M_{\alpha}D(\alpha=0,1)$ , if and
only if $p_{k}^{\prime}q_{k}^{\prime}=p_{k}q_{k}$ for all $k(1\leq k\leq n-1)$ .

$PR\infty F$ . We first note that, for any non-singular diagonal matrix $D=$

$diag(\tau_{1}, \cdots, \tau_{n}),$ $X\cdot D$ is also a basis for solutions of $(\#)$ and the corresponding
monodromy group is $D^{-1}GD$ generated by $D^{-1}M_{\alpha}D=I+D^{-1}C_{\alpha}D$ , where
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(1.4) $|_{D^{-1}C_{1}D=(e_{n}-1)(\frac{0}{(\tau_{1}/\tau_{n})q_{1}\cdots(\tau_{n-1}/\tau_{n})q_{n-1}1}1}^{D^{-1}C_{0}D=diag(e_{1}-1,\cdots,e_{n-1}-1,1)\cdot\left(\begin{array}{lllll}1 & & 0 & & (\tau_{n}/\tau_{1})p_{1}\\ & \ddots & & & |\\ & 0 & l & & (\tau_{n}/\tau_{n-1})p_{n-1}\\0 & \cdots & \cdots & 0 & 1\end{array}\right)}$

Thus the conditions $M_{\alpha}^{\prime}=D^{-1}M_{\alpha}D$ lead to $p_{j}^{\prime}=(\tau_{n}/\tau_{j})p_{j}$ and $q_{j}^{\prime}=(\tau_{j}/\tau_{n})q_{j}$ which imp
$p_{j}^{\prime}q_{j}^{\prime}=p_{j}q_{j}$ . The converse is obvious from (1.4) and relations $\tau_{j}/\tau_{n}=p_{j}/p_{j}^{\prime}=q_{j}^{\prime}/q_{j}$ . q.e.

REMARK 1.9. From this lemma we can choose appropriate $n-1$ non-ze]

quantities among $p_{j}$ and $q_{j}$ in (1.3) which take any preassigned values. For exampl
for an arbitrary choice of $n-1$ non-zero $q_{j}^{\prime}(1\leq j\leq n-1)$ , the group $G^{\prime}=G(p_{j}^{\prime}$ ; $q$

conjugate to $G$ is determined uniquely by taking $p_{j}^{\prime}=p_{j}q_{j}/q_{j}^{\prime}$ .
Next we calculate $p_{j}q_{j}$ explicitly. By Lemma 1.2 the eigenvalues of $M_{\infty}=M_{1}\cdot A$

are $f_{k}(1\leq k\leq n)$ and, consequently, $\det(fI-M_{\infty})=\prod_{k}(f-f_{k})$ . On the other hand,
direct computation of $\det(fI-M_{\infty})$ by (1.3) shows

(1.5) $\prod_{k}(f-f_{k})=[(f-e_{n})-(e_{n}-1)\sum_{l}’[(e_{l}-1)+\frac{e_{l}(e_{l}-1)}{f-e_{l}}]p_{l}q_{l}]\cdot\prod_{k}’(f-e_{k})$ .

By setting $f=e_{j}$ we obtain:

THEOREM 1.10 \langle Okubo-Takano [6], see also [7], Theorem 2).

(1.6) $p_{j}q_{j}=-\frac{\prod_{k}(e_{j}-f_{k})}{e_{j}(e_{j}-1)(e_{n}-1)\prod_{k\neq j}(e_{j}-e_{k})}$

$=-\frac{\prod_{k}\sin\pi(a_{j}-p_{k})}{\sin\pi a_{j}\cdot\sin\pi a_{n}\cdot\prod_{k\neq j}^{\prime}\sin\pi(a_{j}-a_{k})}$ $(j=1,2, \cdots, n-1)$ .

The latter relation is implied by (1.1).

\S 2. Irreducibility conditions for $G$.
Let $\mathfrak{h}$ be an $n$ by $n$ matrix defined by
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(2.1) $\mathfrak{h}=\left(\begin{array}{llll}1 & 0 & & p_{1}\\ & \ddots & & |\\0 & & 1 & p_{n-1}\\q_{1} & \cdots & q_{n-1} & 1\end{array}\right)$ .

By setting $f=1$ in (1.5) and noting that $\det(\mathfrak{h})=1-\sum_{l}^{\prime}p_{l}q_{l}$ , we obtain

(2.2) $\det(\mathfrak{h})=\prod_{k}\frac{1-f_{k}}{1-e_{k}}=\prod_{k}\frac{\sin\pi\rho_{k}}{\sin\pi a_{k}}$ .

The last relation is also implied from (1.1).
We $re$mind that the monodromy group $G$ is reducible if and only if there exists a

non-zero proper linear subspace $V$ in $C^{n}$ which is invariant under the action of $G$ , and
otherwise $G$ is irreducible. Let $\langle g_{1}, \cdots, g_{m}\rangle$ be the group generated by $g_{1},$ $\cdots,$ $g_{m}$ . Since
$G=\langle M_{0}, M_{1}\rangle,$ $G$ is reducible if and only if there exists $V(\neq\{0\}, C^{n})$ with $VM_{\alpha}\subset V$ for
$\alpha=0,1$ .

THEOREM 2.1. $Iff_{k}=1$ for some $k(1\leq k\leq n)$ , then $G$ is reducible (cf. (A) in \S 1).
$PR\infty F$ . From (2.2) rank$(\mathfrak{h})=n-1$ . Let $W$ be a subspace of column vectors defined

by $\{w\in C^{n} ; \mathfrak{h}w=0\}$ . Then dim $W=1$ and, for any $w\in W$, we can easily see $M.w=w$
$(\alpha=0,1)$ . Let $V$ be the subspace of row vectors $v$ which satisfy $v\cdot w=0$ for any $w\in W$.
Then dim $V=n-1$ and $VM_{\alpha}\subset V(\alpha=0,1)$ follow. q.e. $d$ .

Let $E$ be the $n$ by $n$ diagonal matrix diag$(e_{1}-1, \cdots, e_{n}-1)$ . Then the next lemma
also follows directly from (2.2).

LEMMA 2.2. $Iff_{j}\neq 1$ for allj $(1 \leq j\leq n)$ , then $det(E\cdot \mathfrak{h})\neq 0$ .
THEOREM 2.3. Under the $conditionsf_{j}\neq 1$ , thefollowing statements are equivalent:
(a) The monodromy group $G$ of $(\#)$ is irreducible.
(b) All the components $p_{j}$ and $q_{j}$ are non-zero.
(c) $e_{j}\neq f_{k}(j=1,2, \cdots, n-1 ; k=1,2, \cdots, n)$ .
$PR\infty F$ . The equivalence between (b) and (c) follows directly from (1.5).
$(a)\Rightarrow(c)$ . It is sufficient to see the case where $e_{1}=f_{1}$ . Then $p_{1}=0$ or $q_{1}=0$ by (1.6)

and, consequently, l-dimensional linear subspace $\{(*, 0, \cdots, 0)\in C^{n}\}$ or $(n-1)-\dim en-$

sional $\{(0, *, \cdots, *)\}$ is invariant under $G,$ $re$spectively. Similarly, if $e_{j}=f_{k}$ , then $G$ is
reducible.

$(b)\Rightarrow(a)$ . Let $V$ be a subspace invariant under $G$ . For any $v\in V,$ $vC_{\alpha}$ (see (1.3))

must be in $V$ because $vM_{\alpha}=v(I+C_{\alpha})$ is in $V$. Let us denote the k-th row vector of
$E\cdot h=C_{0}+C_{1}$ by $\mathfrak{z}_{k}$ . Lemma 2.2 shows the linear independence of $\mathfrak{z}_{1},$ $\cdots,$ $\mathfrak{z}_{n}$ . For any
$v=(v_{1}, \cdots, v_{n})\in C^{n}$ , the following relations hold:
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(2.3) $\left\{\begin{array}{l}vC_{0}=v_{1}\mathfrak{z}_{1}+\cdots+v_{n-1}\mathfrak{z}_{n-1}\\vC_{1}=v_{n}\mathfrak{z}_{n}\end{array}\right.$

Now we consider two cases separately:
Case 1. There exists a vector $v\in V$ with $v_{n}\neq 0$ .
Case 2. The n-th components of all vectors in $V$ are zero.

Case 1. For any $v$ with $v_{n}\neq 0,$ $vC_{1}=v_{n}\mathfrak{z}_{n}\in V$. Thus $\mathfrak{z}_{n}$ and, in particula
$\mathfrak{z}_{n}/(e_{n}-1)=(q_{1}, \cdots, q_{n-1},1)$ which we denote by $v_{0}$ are in $V$. By (2.3) we $ha$

$v_{0}C_{0}=q_{1}\theta_{1}+\cdots+q_{n-1}l_{n-1}=((e_{1}-1)q_{1}, \cdots, (e_{n-1}-1)q_{n-1}, *)\in V$ and, $conseque\iota l$

ly, $v_{0}C_{0}\cdot C_{0}=(e_{1}-1)q_{1}\mathfrak{z}_{1}+\cdots+(e_{n-1}-1)q_{n-1}\mathfrak{z}_{n-1}=((e_{1}-1)^{2}q_{1},$ $\cdots,$ $(e_{n-}$

$-1)^{2}q_{n-1},$ $*$) $\in V$ and so on. Repeating this process, we obtain that all vectors
$(e_{1}-1)^{k}q_{1}\mathfrak{z}_{1}+\cdots+(e_{n-1}-1)^{k}q_{n-13_{n-1}}$ $(k=0,1, \cdots, n-2)$

in addition to $\mathfrak{z}_{n}$ are contained in $V$. Vandermond’s determinant

det $\left(\begin{array}{lll}q_{1} & \cdots & q_{n-1}\\(e_{1}-1)q_{1} & \cdots & (e_{n-1}-1)q_{n-1}\\\cdots & \ldots\cdot & \cdots\\ & (e_{n-1}-l)^{n-2}q_{n-1} & \end{array}\right)=\prod_{i}^{\prime}q_{i}\cdot\prod_{j>k}(e_{j}-e_{k})$

is non-zero from the assumptions (A) and $q_{j}\neq 0$ , which leads to the linear independen$($

of the above $n$ vectors. Thus $V=C^{n}$ .
Case 2. For any $v=(v_{1}, \cdots, v_{n-1}, O)\in V,$ $vC_{0}=(v_{1}(e_{1}-1),$ $\cdots,$ $v_{n-1}(e_{n-1}-$ ]

$\sum_{j}^{\prime}(e_{j}-1)v_{j}p_{j})$ is in $V$, where the last component must be zero. Next $vC_{0}\cdot C_{0}$

$(v_{1}(e_{1}-1)^{2}, \cdots, v_{n-1}(e_{n-1}-1)^{2}, \sum_{\acute{j}}(e_{j}-1)^{2}v_{j}p_{j})$ is in $V$ and also $\sum_{j}^{\prime}(e_{j}-1)^{2}v_{j}p_{j}=$

Repeating it $n-1$ times, we obtain

$\sum_{j}^{\prime}(e_{j}-1)^{k}v_{j}p_{j}=0$

As in the first case,

$(k=1,2, \cdots, n-1)$ .

det $\left(\begin{array}{lll}(e_{1}-1)p_{1} & \cdots & (e_{n-1}-1)p_{n-1}\\(e_{1}-1)^{2}p_{1} & \cdots & (e_{n-1}-1)^{2}p_{n-1}\\(e_{1}-1)^{n-1}p_{1} & \cdots & (e_{n-1}-1)^{n-1}p_{n-1}\end{array}\right)=\prod_{i}^{\prime}(e_{i}-1)p_{i}\cdot\prod_{j>k}(e_{j}-e_{k})$

is not zero which leads $v_{j}=0$ for all $j(1\leq j\leq n-1)$ . Thus $v=0$ and, consequently, $v$

have $V=\{0\}$ . $q.e.($

We can restate Theorems 2.1 and 2.3 as follows:

THEOREM 2.4. The monodromy group $G$ of $(\#)$ is irreducible if and only if
(2.4) $e_{j}\neq f_{k}\neq 1$ $(j=1,2, \cdots, n-1 ; k=1,2, \cdots, n)$ ,
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i.e., none of the quantities $a_{j}-\rho_{k}$ and $\rho_{k}$ is an integer.

REMARK 2.5. The theorem was obtained independently in [1] (Propositions 2.7
and 3.3) by a method completely different from ours.

\S 3. The invariant hermitian matrix.

DEFINITION 3.1. Let or be a group in $GL(n, C)$ . An $n$ by $n$ herimitian matrix $\mathfrak{H}$ is
sai$d$ to be S-invariant or invariant under $\mathfrak{H}$ if $g\mathfrak{H}g^{*}=\mathfrak{H}$ for any $geS$ , where $g^{*}$ is the
transposed complex conjugate of $g$ .

Now we assume that all $p_{j}q_{j}$ are real numbers. It should be noticed that, if all $a_{j}$

and $\rho_{k}$ are real, this assumption is always satisfied by (1.6). Then we can define an $n$

by $n$ constant matrix $h$ as follows;

(3.1)
$h=\left\{\begin{array}{lllll}\epsilon_{1} & & 0 & & \epsilon_{1}p_{1}\\ & \epsilon_{2} & & & \epsilon_{2}p_{2}\\ & 0 & \ddots & & |\\ & & & \epsilon_{n-1} & \epsilon_{n-1}p_{n-1}\\q_{1} & q_{2} & \cdots & q_{n-1} & 1\end{array}\right\}$

,

where $e$ach $\epsilon_{j}$ is equal to 1 or-l according to $p_{j}q_{j}\geq 0$ or $<0$ , respectively. In particular,
if $p_{j}q_{j}>0$ for all $j$, we have $h=\mathfrak{h}$ (see (2.1)). Let $r=\#\{j;p_{j}q_{j}<0\}$ for $j=1,2,$ $\cdots,$ $n-1$ .
Obviously we obtain

(3.2) $\det(h)=(-1)^{r}\det(\mathfrak{h})$ .
When the inverse matrix of $h$ exists, we denote it by $H=h^{-1}$ .

LEMMA 3.2. Suppose $f_{j}\neq 1$ for $anyj=1,2,$ $\cdots,$ $n$ and $p_{k}q_{k}$ be real numbers for all
$k=1,2,$ $\cdots,$ $n-1$ . Then:

(a) $H$ exists.
(b) If $h$ is hermitian, then $H$ is a non-degenerate hermitian matrix invariant under $G$ .
$PR\infty F$ . (a) Since $f_{j}\neq 1$ , we have $\det(\mathfrak{h})\neq 0$ by (2.2). Thus $H$ exists from (3.2).
(b) Non-degeneracy of $H$ follows immediately. The matrix $H$ is hermitian if and

only if so is $h$ . We show the G-invariance of $H$ as follows. Let $M_{0j}=I+(e_{j}-1)Q_{j}$

$(j=1,2, \cdots, n-1)$ be matrices;

(3.3) $I+(e_{j}-1)(\frac{\frac{0}{0\cdots 010\cdots 0pj}}{0}1$
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where the $(j,$ ]) $- th$ , the $(j, n)$-th and the other components of $Q_{j}$ are 1, $p_{j}$ and 1
respectively. Then we have $M_{0}=M_{01}M_{02}\cdots M_{O,n-1}$ and $M_{0j}M_{0k}=M_{0k}M_{0j}$ for an

$j$ and $k$ . Since $ G=\langle M_{0}, M_{1}\rangle$ , it is sufficient to show $M_{0j}HM_{0j}^{*}=H$ for all $j$ an
$M_{1}HM_{1}^{*}=H$. By (3.3)

(3.4) $M_{Oj}HM_{Oj}^{*}=H+(e_{j}-1)Q_{j}H+(\overline{e}_{j}-1)HQ_{j}^{*}+(e_{j}-1)(\overline{e}_{j}-1)Q_{j}HQ_{j}^{*},$

where $\overline{e}_{j}$ is the complex conjugate of $e_{j}$ . Since $H=H^{*}$ and $H$ is the inverse of $h$ who:
j-th row is identical with that of $Q_{j}$ up to $\epsilon_{j}$, we have $Q_{j}H=HQ_{j}^{*}=(Q_{j}H)^{*}=\epsilon_{j}E_{j}$

where $E_{jj}$ is the matrix whose $(j,j)$-th component and the others are 1 and $0$ , respectively
Moreover the only non-zero element of the j-th row of $Q_{j}^{*}$ is 1. Thus the right han
side of (3.4) equals $H+[(e_{j}-1)+(\overline{e}_{j}-1)+(e_{j}-1)(\overline{e}_{j}-1)]\epsilon_{j}E_{jj}=H$. The proof is th
same for $M_{1}$ . q.e.t

REMARK 3.3. In the case $h=\mathfrak{h}$ , this lemma was proved by Okubo ([5], Chapter V)

By interchanging the order of the components $x_{1},$ $\cdots,$ $x_{n-1}$ in (f) if necessary, $v$

may assume that $p_{j}q_{j}<0$ for $1\leq j\leq r$ and $p_{j}q_{j}\geq 0$ for $r+1\leq j\leq n-1$ . If $1\leq r\leq n-2$ , tf
direct computation of $\det(\lambda I-h)$ shows that the eigenvalues of $h$ are $-1((r-1)$-ple
1 ($(n-r-2)$-ple) and the roots of algebraic equation

(3.5) $\lambda^{3}-\lambda^{2}-(1-\sum_{j=1}^{r}p_{j}q_{j}+\sum_{j=r+1}^{n-1}p_{j}q_{j})\lambda+(1-\sum_{j=1}^{n-1}p_{j}q_{j})=0$ .

Similarly those for $r=0$ are 1 ($(n-2)$-ple) and the roots of $\lambda^{2}-2\lambda+det(\mathfrak{h})=0,$ $an\langle$

for $r=n-1,$ $-1$ ($(n-2)$-ple) and the roots of $\lambda^{2}-\det(\mathfrak{h})=0$ .
THEOREM 3.4. Under the same assumptions as in Lemma 3.2:
(a) If $0\leq r\leq n-2$ , then the signature $(p, q)$ of $H$ is equal to $(n-r, r)t$

$(n-r-1, r+1)$ according to $det(\mathfrak{h})>0$ $or<0$ , respectively.
(b) If $r=n-1$ , then $det(\mathfrak{h})>0$ and $(p, q)=(1, n-1)$ .
$PR\infty F$ . If $\lambda$ is an eigenvalue of $h$ , then $ 1/\lambda$ is one of $H$. Let us denote th

left hand side of (3.5) by $f(\lambda)$ . In case $1\leq r\leq n-2$ , we only note that $f(-1)$ :

$2(1-\sum_{j=1}^{r}p_{j}q_{j})>0,$ $f(1)<0$ and $f(O)=\det(\mathfrak{h})$ , and $f$ has a relative minimum $a\iota l$

maximum at $\lambda_{+}>1$ and $\lambda_{-}<-1/3$ , respectively. The assertion follows by an elementa]

consideration. The other cases are obvious. $q.e.($

From now on we assume that the monodromy group $G$ of ($) is irreducible an $($

all $a_{j}$ and $p_{k}$ are real numbers. Then, by (1.6) and Theorem 2.3, all $p_{j}q_{j}$ take real non-ze]

values. It was noticed in Remark 1.9 that, for investigating the group structure of $($

it is sufficient to study $G^{\prime}=G(p_{j}^{\prime} ; q_{j}^{\prime})=D^{-1}GD$ for an appropriate choice ofa set { $p_{j}^{\prime}$ ; $q$

with $p_{j}^{\prime}q_{j}^{\prime}=p_{j}q_{j}$ by which the matrices $M_{\alpha}$ are transformed into suitable forms accordir
to our purpose. We also note that the matrix (3.1), say $h^{\prime}$ , determined by $G^{\prime}coincid($

with $D^{-1}hD$ . From now on, if there is no danger of confusion, we denote $G^{\prime},$ $M_{\alpha}^{\prime},$ $p$
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$q_{j}^{\prime},$
$h^{\prime},$ $\cdots$ again by $G,$ $M_{\alpha},$

$p_{j},$ $q_{j},$
$h,$ $\cdots,$ $re$spectively.

From the above argument and Lemma 3.2, we easily obtain:

THEOREM 3.5. Suppose $\{a_{j} ; \rho_{k}\}$ be a set of real numbers satisfying the assumption
(A), the Riemann-Fuchs relation (1.1) and the conditions in Theorem 2.4. Then there exists
an irreducible monodromy group $G$ of $(\#)$ with parameters $\{a_{j} : \rho_{k}\}$ ofwhich corresponding
matrix $h$ defined by (3.1) is hermitian. And, consequently, $H=h^{-1}$ is a non-degenerate
hermitian matrix invarian $t$ under $G$ .

REMARK 3.6. Moreover, by the same $re$ason as above, we can choose $G$ so that
the corresponding $h$ is a real symmetric matrix.

Next we note that $M_{0}$ and $M_{1}$ are represented in terms of $e_{j}$ and $f_{k}$ . On the other
hand $2n$ quantities $\{a_{j} ; \rho_{k}\}$ have only one relation (1.1). Moreover $a_{j}$ and $\rho_{k}$ are not

integers from the assumption (A) and Theorem 2.4. Thus we may assume, without loss
of generality,

(3.6) $\left\{\begin{array}{l}0<a_{1}<a_{2}<\cdots<a_{n-1}<1\\0<\rho_{1}<\rho_{2}<\cdots<\rho_{n}<1\end{array}\right.$

THEOREM 3.7. Under the same assumptions as in Theorem 3.5 adding to (3.6), $H$

is a positive definite hermitian matrix if and only if the following condition holds;

(3.7) $0<p_{1}<a_{1}<\rho_{2}<a_{2}<\cdots<a_{n-1}<\rho_{n}<1$ and $\rho_{1}<a_{n}<p_{n}$ .

$PR\infty F$ . By Theorem 3.4, $H$ is positive definite if and only if $r=0$ and $\det(\mathfrak{h})>0$ ,

namely, $p_{j}q_{j}>0$ for all $j$ and, under (3.6), sin $\pi a_{n}>0$ from (2.2). Thus, by (1.6), we
obtain the first $re$lation in (3.7) which automatically leads to the second by the

Riemann-Fuchs relation (1.1). q.e. $d$ .

REMARK 3.8. By Theorem 3.4 there are no cases where $H$ is negative definite.

\S 4. The unitary reflection group $G$ containing $G$.
We remind that $M_{0}$ is represented by the products $M_{01}M_{02}\cdots M_{0.n-1}$ (see (3.3)),

where each $M_{0j}$ is a so-called generalized reflection. Let us denote the group
$\langle M_{01}, M_{02}, \cdots, M_{0,n-1}, M_{1}\rangle$ by $\tilde{G}$ which contains $ G=\langle M_{0}, M_{1}\rangle$ as its subgroup. Note

that the irreducibility of $G$ implies the same for $\tilde{G}$ . Our purpose of this section is:

$(*)$ Determine all cases where $\tilde{G}$ is a finite irreducible group for $n\geq 3$ .

When $n=2$ , it is equivalent to find all finite $G$ which was done by H. A. Schwarz in
his famous paper [9]. Suppose $\tilde{G}$ is finite. Then $G$ is also finite and, consequently, all

solutions of (f) are algebraic functions. Thus all quantities $a_{j}$ and $\rho_{j}(j=1,2, ’\cdot\cdot, n)$

are rational numbers. It should also be noticed that $\tilde{G}$ must be isomorphic to a finite

group generated by $n$ unitary reflections. All such groups were classified by
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Shephard-Todd [10]. We denote by STk the number $k(1\leq k\leq 37)$ of the group $c$

the table VII in [10].

LEMMA 4.1. Suppose $\tilde{G}$ be a finite irreducible group. Then it is isomorphic to $ol$

of ST25, $ST26$ and $G(m, 1,3)(m\geq 3)$ .
$PR\infty F$ . Since none of $a_{j}-a_{k}(j, k=1, \cdots, n-1)$ is an integer by the assumptic

(A), two of $a_{1},$ $\cdots,$ $a_{n-1}$ cannot be equal to 1/2 simultaneously. Thus $\delta$ is finite on
in the following four cases; ST25, ST26 and ST32 for primitive $\tilde{G}$ from the table VI
in [10], and $G(m, 1,3)(m\geq 3)$ for imprimitive $\tilde{G}$. But, for ST32 $(n=4),$ $a_{1},$ $a_{2}$ and $\ell$

must be equal to 1/3 or 2/3 which is impossible from the same reason as above. Lemrr
follows. $q.e.($

Since $n=3$ in all the possible cases, we restate several acquired results for the $lat($

use. The relations (1.1) and (1.6) are as follows:

(4.1) $a_{1}+a_{2}+a_{3}=\rho_{1}+p_{2}+\rho_{3}$ .

(4.2) $\left\{\begin{array}{l}p_{1}q_{1}=-\frac{sin\pi(a_{1}-\rho_{1})\cdot.sin\pi(a_{1}.-\rho_{2})\cdot sin\pi(a_{1}-\rho_{3})}{sin\pi a_{1}sin\pi a_{3}sin\pi(a_{1}-a_{2})}\\p_{2}q_{2}=-\frac{sin\pi(a_{2}-\rho_{1})\cdot.sin\pi(a_{2}.-\rho_{2})\cdot sin\pi(a_{2}-\rho_{3})}{sin\pi a_{2}sin\pi a_{3}sin\pi(a_{2}-a_{1})}\end{array}\right.$

In the proof of Lemma 3.2 we have already shown that $H$ is also $\tilde{G}$-invarian
Therefore, by Theorem 3.7, the G- and $\tilde{G}$-invariant hermitian matrix $H$ is positit
definite if and only if

(4.3) $0<\rho_{1}<a_{1}<\rho_{2}<a_{2}<\rho_{3}<1$ and $0<\rho_{1}<a_{3}<\rho_{3}<1$ .
Moreover, by Remark 1.9, we take $G(p_{j}q_{j} ; 1)$ for simplifying our later computation

(4.4) $|_{M_{1}=(}o_{0}oe_{3}-1e_{3}(e_{1}1-1)p_{1}q_{1}0100_{0)}.)$

, $M_{02}=\left(\begin{array}{lll}1 & 0 & 0\\0 & e_{2} & (e_{2}-1)p_{2}q_{2}\\0 & 0 & 1\end{array}\right)$ ,

The next theorem due to T. A. Springer ([11], 3.4) plays an important role fo
our following investigation. Let (5 be a finite complex reflection group and $\zeta$ a root $($

unity, of order $d$. We denote the degrees of (& by $d_{i}(i=1,2, \cdots, n)$ (cf. [10], Table VII

THEOREM 4.2 (Springer [11]). There exists $ge\mathfrak{G}$ with eigenvalue $\zeta\iota f$ and onl
if $d$ divides at least one degree $d_{i}$ .
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By virtue of these results we determine finite $\tilde{G}$ up to the complex conjugate. We
state our process of determinations explicitly only for the case $\tilde{G}\simeq ST25$ .

$[ST25]$ . By the Table VIII in [10], each $a_{j}$ is equal to either 1/3 or 2/3, and,
consequently, $a_{1}=1/3$ and $a_{2}=2/3$ from (4.3). It is sufficient to study the case
$(a_{1}, a_{2}, a_{3})=(1/3,2/3,1/3)$ , for the remaining (1/3, 2/3, 2/3) is its complex conjugate.
Set $\rho_{j}=c_{j}/d_{j},$ $(c_{j}, d_{j})=1$ . Sinoe the degrees of ST25 are {6, 9, 12} and $\rho_{j}$ are eigenvalues
of $M_{\infty},$ $d_{j}$ must be a divisor of 9 or 12 by Theorem 4.2. We first take all such possible
$\rho_{2}$ satisfying $1/3<\rho_{2}<2/3$ . Then $\rho_{2}$ is equal to one of {5/12, 4/9, 1/2, 5/9, 7/12}. We
note that, for carrying out this and the following processes, it is convenient to consider
$\rho_{j}$ in the form $d_{j}/36$ , where $c_{j}^{\prime}$ has 3 or 4 as its divisor.

Next, for each $\rho_{2}$ stated above, we seek all possible pairs of $\rho_{1}$ and $\rho_{3}$ satisfying (4.1)

and (4.3). Then there are only four cases;

(4.5) $(a_{j} ; p_{j})=(a_{1}, a_{2}, a_{3} ; \rho_{1}, \rho_{2}, \rho_{3})$

$=(\frac{1}{3}\frac{2}{3}\frac{1}{3}$ ; $\frac{1}{12},$ $\frac{5}{12}\frac{5}{6})$ $(\frac{1}{3}\frac{2}{3}\frac{1}{3}$ ; $\frac{1}{6},$ $\frac{5}{12}\frac{3}{4})$

$(\frac{1}{3}\frac{2}{3}\frac{1}{3}$ ; $\frac{1}{9},$ $\frac{4}{9}\frac{7}{9})$ $\frac{1}{3}\frac{2}{3}\frac{1}{3}$ ; $\frac{1}{12},$ $\frac{1}{2}\frac{3}{4}$

For each case, by substituting those values into (4.2), we obtain $M_{0j}$ and $M_{1}$ from
(4.4). Again by the Table VIII in [10], if $\tilde{G}$ is isomorphic to ST25, then the following
conditions should be satisfied;

(4.6) the orders of $M_{0}=M_{01}M_{02},$ $M_{01}M_{1}$ and $M_{02}M_{1}$ are equal to 2, 3, 4, or 6.

Since

$M_{0}^{n}=\left(\begin{array}{lll}e_{1}^{n} & 0 & (e_{1}^{n}-1)p_{1}q_{1}\\0 & e_{2}^{n} & (e_{2}^{n}-1)p_{2}q_{2}\\0 & 0 & 1\end{array}\right)$ ,

$M_{0}^{3}=I$ holds in any of (4.5). We checked by using MACSYMA that, for each case,
whether the conditions (4.6) for the remaining two matrices are satisfied or not. Then
they are fulfilled only for the third case in (4.5). In the other cases, $(M_{01}M_{1})^{n}\neq I$ and
$(M_{02}M_{1})^{n}\neq I$ for any $n=2,3,4,6$ .

For $(a_{j} ; \rho_{j})=(1/3,2/3,1/3;1/9,4/9,7/9)$ , we have

$M_{01}=\left(\begin{array}{llll}\omega & 0 & (\omega & -1)/3\\0 & 1 & & 0\\0 & 0 & & 1\end{array}\right)$ , $M_{02}=\left(\begin{array}{llll}1 & 0 & & 0\\0 & \omega^{2} & (\omega^{2} & -1)/3\\0 & 0 & & 1\end{array}\right)$ ,
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$M_{1}=\left(\begin{array}{lllll} & 1 & & 0 & 0\\ & 0 & & 1 & 0\\\omega & -1 & \omega & -1 & \omega\end{array}\right)$ ,

where $\omega=\exp(2\pi\sqrt{-1}/3)$ , and $(M_{01}M_{1})^{6}=(M_{02}M_{1})^{4}=I$. Let $T$ be a constant matri

$T=\left(\begin{array}{lll}1 & 0 & -1\\0 & 1 & -1\\0 & 0 & 3\end{array}\right)$ .

Then we have

$T^{-1}M_{01}T=\left(\begin{array}{lll}\omega & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ , $T^{-1}M_{02}T=\left(\begin{array}{lll}1 & 0 & 0\\0 & \omega^{2} & 0\\0 & 0 & 1\end{array}\right)$ ,

$T^{-1}M_{1}T=-\frac{\sqrt{}\overline{-1}}{\sqrt{}\overline{3}}\left(\begin{array}{lll}\omega & \omega^{2} & \omega^{2}\\\omega^{2} & \omega & \omega^{2}\\\omega^{2} & \omega^{2} & \omega\end{array}\right)$ ,

which are well-known generators of ST25 (see [10], p. 296). Thus $\tilde{G}$ is just the grou
ST25. Moreover, taking a matrix $S$,

$S=\frac{1}{\sqrt{}\overline{3}}\left(\begin{array}{lll}\omega & 1 & \omega^{2}\\\omega & \omega^{2} & 1\\\omega & \omega & \omega\end{array}\right)$ ,

we obtain

$(TS)^{-1}M_{0}(TS)=\left(\begin{array}{lll}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right)$ , $(TS)^{-1}M_{1}(TS)=\left(\begin{array}{lll}\omega & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ .

It shows that $G\simeq((Z/3Z)\times(Z/3Z)\times(Z/3Z))>\triangleleft(Z/3Z)$ and is contained in $G(3,1,3$

We note that $G$ is an imprimitive group, though $\tilde{G}$ is primitive.

[ST26] and $G(3,1,3)$. In these cases the order of each reflection is equal to 2 $c$

3. If $\tilde{G}$ is isomorphic to one of these groups, there necessarily exists at least one reflectio
of each order among $M_{01},$ $M_{02}$ and $M_{1}$ (see [10], p. 295 and the Table VIII). The
there are four possible cases on the choice of $a_{j}’ s$ up to complex conjugates;

$(a_{1}, a_{2}, a_{3})=(\frac{1}{3},$ $\frac{2}{3},$ $\frac{1}{2}),$ $(\frac{1}{3}\frac{1}{2}\frac{1}{3})$ $(\frac{1}{2}\frac{2}{3}\frac{1}{3})$ $(\frac{1}{3}\frac{1}{2}\frac{1}{2})$ .
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The degrees of ST26 and $G(3,1,3)$ are {9, 12, 18} and {3, 6, 9}, respectively. Similar
arguments to [ST25] show that there are 47 possible cases which we have to examine.
On the other hand, if $\tilde{G}$ is actually isomorphic to the group ST26 or $G(3,1,3)$ , then
the same condition as in (4.6) should also be satisfied. Performing the same calculation
as in [ST25] by using MACSYMA, we can see that there are only three possible cases;

(4.7) $(a_{j} ; \rho_{j})=(\frac{1}{3},$ $\frac{1}{2},$ $\frac{1}{3}$ ; $\frac{1}{18},$ $\frac{7}{18},$ $\frac{13}{18})$ ,

(4.7) $(\frac{1}{2}\frac{2}{3}\frac{1}{3}$ ; $\frac{1}{12},$ $\frac{7}{12}\frac{5}{6})$

1 1 1 1 4 7
(4.7) –3 –2 –2 ; –9 –9 –9

The case $(4.7)_{1}$ : By substituting $(4.7)_{1}$ into (4.4), we obtain

$M_{01}=\left(\begin{array}{lll}\omega & 0 & (\omega-1)/3\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ $M_{02}=\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & -1\\0 & 0 & 1\end{array}\right)$ $M_{1}=\left(\begin{array}{lllll} & 1 & & 0 & 0\\ & 0 & & 1 & 0\\\omega & -1 & \omega & -1 & \omega\end{array}\right)$

$M_{0}^{6}=(M_{01}M_{1})^{6}=(M_{02}M_{1})^{6}=I$ .

Taking $T=\left(\begin{array}{lll}l & 0 & 0\\1 & -1 & 0\\-2 & 1 & 1\end{array}\right)$ , we have

(4.8) $\left\{T^{-1}M_{01}T=-\frac{\sqrt{}\overline{-1}}{\sqrt{}\overline{3}}(\omega_{l}^{2}.\omega T^{-1}M_{1}T=(11\omega^{2}\omega^{2}\omega^{2}\omega\omega^{2}\omega^{2}\omega^{2}\omega)T^{-1}M_{O2}T=()\right.$

The case $(4.7)_{2}$ :

$M_{01}=\left(\begin{array}{lll}-1 & 0 & -1\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ $M_{02}=\left(\begin{array}{lll}1 & 0 & 0\\0 & \omega^{2} & (\omega^{2}-1)/3\\0 & 0 & 1\end{array}\right),$ $M_{1}=\left(\begin{array}{lllll} & 1 & & 0 & 0\\ & 0 & & 1 & 0\\\omega & -1 & \omega & -1 & \omega\end{array}\right)$ .

$M_{0}^{6}=(M_{01}M_{1})^{6}=(M_{02}M_{1})^{4}=I$ .
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If we take $T=\left(\begin{array}{lll}-1 & 1 & 0\\0 & 1 & 0\\1 & -2 & 1\end{array}\right)$ , then

(4.9) $\left\{\begin{array}{l}T^{-1}M_{O1}T=()\\T^{-1}M_{1}T=(^{1}\end{array}\right.$

1 $\omega)$ .

$T^{-1}M_{02}T=\frac{\sqrt{}\overline{-1}}{\sqrt{}\overline{3}}\left(\begin{array}{lll}\omega^{2} & \omega & \omega\\\omega & \omega^{2} & \omega\\\omega & \omega & \omega^{2}\end{array}\right)$ ,

Thus, in both cases, $\tilde{G}$ is just the group ST26 from (4.8), (4.9) and [10], p. 297. V
easily see that, in each case, $\langle M_{01}, M_{02}\rangle=\langle M_{0}\rangle$ from (4.8) and (4.9). Thus $G=\tilde{G}$ .
ST26 in both cases $(4.7)_{1}$ and $(4.7)_{2}$ .

The case $(4.7)_{3}$ :

$M_{01}=\left(\begin{array}{llll}\omega & 0 & (\omega & -l)/2\\0 & 1 & & 0\\0 & 0 & & 1\end{array}\right)$ $M_{02}=\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & -1/2\\0 & 0 & 1\end{array}\right),$ $M_{1}=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\-2 & -2 & -1\end{array}\right)$ .

$M^{6}=(M_{01}M_{1})^{6}=(M_{02}M_{1})^{3}=I$ .
If we take

(4.10) $S=\left(\begin{array}{lll}1 & 1 & 1\\0 & 1 & 0\\0 & -2 & -2\end{array}\right)$ ,

then we have

$S^{-1}M_{01}S=\left(\begin{array}{lll}\omega & & \\ & 1 & 1\end{array}\right)$ , $S^{-1}M_{02}S=\left(\begin{array}{lll}l & & \\ & 1 & 1\end{array}\right)$ $S^{-1}M_{1}S=\left(\begin{array}{lll} & & l\\1 & 1 & \end{array}\right)$ .

Thus $\tilde{G}=G(3,1,3)$ . Since $\langle M_{01}, M_{02}\rangle=\langle M_{0}\rangle$ , we obtain $G=\tilde{G}=G(3,1,3)$ .
$G(m, 1,3)(m\geq 4)$ . In [8] we found more general class of imprimitive groups $($

the analogy of the last case. Let us consider the case where

(4.11) $(a_{j} ; \rho_{j})=(\frac{n}{m}$ , $\frac{1}{2}$ , $\frac{1}{2}$ ; $\frac{n}{3m}$ , $\frac{n+m}{3m}\frac{n+2m}{3m})$ ,
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for any positive integer $n$ satisfying $(m, n)=1$ and $1\leq n<m/2$ . Then we have

$M_{01}=\left(\begin{array}{llll}\zeta_{m} & n & 0 & (\zeta_{m}^{n}-1)/2\\0 & & 1 & 0\\0 & & 0 & 1\end{array}\right)$ , $M_{02}=\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & -1/2\\0 & 0 & 1\end{array}\right)$ ,

$M_{1}=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\-2 & -2 & -1\end{array}\right)$ .

Taking the sam$e$ matrix $S$ as in (4.10), we obtain

$S^{-1}M_{01}S=\left(\begin{array}{llll}\zeta_{n} & m & & \\ & & 1 & 1\end{array}\right)$ , $S^{-1}M_{02}S=\left(\begin{array}{lll}1 & & \\ & 1 & 1\end{array}\right)$ , $S^{-1}M_{1}S=\left(\begin{array}{lll} & & 1\\1 & 1 & \end{array}\right)$ .

Thus $\tilde{G}$ is certainly the group $G(m, 1,3)$ . If $n$ is odd, then $\langle M_{01}, M_{02}\rangle=\langle M_{O}\rangle$ and,
consequently, $G=\tilde{G}=G(m, 1,3)$ . However, if $m$ is even, we easily obtain
$\langle M_{01}, M_{02}\rangle\not\equiv\langle M_{0}\rangle$ and $ G\simeq\langle G(m/2,1,3), \zeta_{m}I\rangle$ by an elementary calculation. The case
(4.7) is aspecial case of (4.11). We note that, if $m/2<n<m$ in (4.11), $\tilde{G}$ (and also $G$ )
is the complex conjugate to the group determined by

$(\frac{m-n}{m}\frac{1}{2}\frac{1}{2}$ ; $\frac{m-n}{3m},$ $\frac{(m-n)+m}{3m}\frac{(m-n)+2m}{3m})$ .

Moreover, if $\tilde{G}$ and $G$ correspond to a parameter set $(a_{j} ; \rho_{j})$ , their complex conjugates
are given by $(1-a_{j} ; 1-\rho_{j})$ .

Now we summarize our results in a single theorem.

THEOREM 4.3. Suppose the monodromy group $G$ of $(\#)$ is irreducible. Then;
(a) $\tilde{G}$ is a finite primitive group $\iota f$ and only $\iota f(a_{j} ; \rho_{j})$ takes one of the following

values;

(I) $(I\pm\frac{1}{3},$ $\mathfrak{m}\pm\frac{2}{3},$ $\mathfrak{n}\pm\frac{1}{3}$ ; $\mathfrak{r}\pm\frac{1}{9},$ $\mathfrak{s}\pm\frac{4}{9},1\pm\frac{7}{9})$ ,

(II) $(I\pm\frac{1}{3},$ $\mathfrak{m}\pm\frac{1}{2},$ $\mathfrak{n}\pm\frac{1}{3}$ ; $\mathfrak{r}\pm\frac{1}{18},$ $\mathfrak{s}\pm\frac{7}{18},$ $t\pm\frac{13}{18})$ ,

(III) $(I\pm\frac{1}{2}$ , $\mathfrak{m}\pm\frac{2}{3}$ , $\mathfrak{n}\pm\frac{1}{3}$ ; $\mathfrak{r}\pm\frac{1}{12}$ , $\mathfrak{s}\pm\frac{7}{17}$ , $\iota\pm\frac{5}{6})$ ,

where I, $m,$ $n,$ $r,$ $s,$ $teZ,$ $n=r+s+t-I-m$ and the $sign\pm takeseither+simultaneously$

or –simultaneously. In each case the following properties are satisfied;
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order of
G $G$

$g$

G $M_{O}$ $M_{1}$ $M_{\infty}$

(I) ST25 $(Z_{3}xZ_{3}xZ_{3})>\triangleleft Z_{3}$ 81 3 3 9 10
(II) ST26 ST26 1296 6 3 18 $17^{2}$

(III) ST26 ST26 1296 6 3 12 271

where $g$ is the genus of the Riemann surface of the solutions for $(\#)$ .
(b) Suppose $m\geq 3.\tilde{G}$ is a finite imprimitive group $\iota f$

(IV) $(a_{j} ; \rho_{j})=(I\pm\frac{n}{m},$ $\mathfrak{m}\pm\frac{1}{2},$ $n\pm\frac{1}{2}$ ; $r\pm\frac{n}{3m},$ $\mathfrak{s}\pm\frac{m+n}{3m},$ $t\pm\frac{3m+n}{3m})$ ,

for any positive integer $n$ satisfying $(m, n)=1$ and $1\leq n\leq m$ . The following is simil
to (a);

$m$ ; odd $G(m, 1,3)$ $6m^{3}$ $2m$ 2 $3m$ $(m-1)(3m^{2}-2m-2)/2$

$m;$ even
$G(m, 1,3)\overline{\langle G(m/2,1,3),\zeta_{n}I\rangle}3m^{3}/2$ $\overline{m}\overline{2}\overline{3m}$

$(m-2)(3m^{2}-2m-4)/8$

$PR\infty F$ . It is easy to obtain the orders ofG from the Table VII in [10]. We on
note that, for even $m$ in (b), $G(m, 1,3)/G(m/2,1,3)\simeq Z/2Z$. Let us denote the order 1

$M_{\alpha}$ by $o_{\alpha}(\alpha=0,1, \infty)$ . The genus in each case is led from the orders $|G|$ and $o_{\alpha}l$

using the Hurwitz formula.

$g=1-|G|+\frac{|G|}{2}\{3-(1/0_{0})-(1/0_{1})-(1/0_{\infty})\}$ .

$q.e.|$

REMARK 4.4. Now we have to mention the relation between $G$ and the grou
$H(a;b)$ in [1]. We use the notations in [1] freely. For the classical generalize
hypergeometric equation (b) in \S 1, one of $b_{j}’ s$ is equal to 1 (say, $b_{n}=1$ ). $Sin($

$\det(\lambda I-M_{0})=(\lambda-1)\prod_{j}^{\prime}(\lambda-e_{j})=(\lambda-1)\prod_{j}^{\prime}(\lambda-b_{j}^{-1})=\det(\lambda I-h_{0})$ and $\det(\lambda I-$

$M_{\infty})=\prod_{j}(\lambda-f_{j})=\prod_{j}(\lambda-a_{j}^{-1})=\det(\lambda I-h_{\infty}^{-1})$ with $M_{1}M_{0}=M_{\infty}$ and $h_{\infty}h_{1}h_{0}=I,$ $G$

just the hypergeometric group defined in Definition 3.1 in [1]. Thus, by Levelt’s theore
([1], Theorem 3.5), we have:

LEMMA 4.5. $G$ is conjugate to $H(f_{1}^{-1}, \cdots, f_{n}^{-1} ; e_{1}^{-1}, \cdots, e_{n-1}^{-1},1)$ in $GL(n, C)$ .
We point out the following two facts. First, as was mentioned above, the case $(I^{\urcorner}$

has been obtained intuitively on the analogy of $G(3,1,3)$ . We checked by usiI
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MACSYMA that it is the only case for $\tilde{G}$ to be finite imprimitive when $3\leq m\leq 6$ , and
we easily see from Theorem 5.8 in [1] that the same is true for any $m\geq 3$ . Note also
that, in th$e$ case (I), the reflection subgroup $H_{r}$ of $H$ acts reducibly on $C^{3}$ ([1], Theorem
5.3) and, the cases (II) and (III) are (1/2)-shift of No. 10 and (1/6)-shift of No. 9 in the
Table 8.3 in [1], respectively.

Second, to obtain the key result stated in Theorem 4.8 in [1], it is important that,
under a suitable condition, $H$ is contained in $GL(n, \mathcal{O}_{K})$ , where $\mathcal{O}_{K}$ is the ring of integers
of a cyclotomic field $K$. Moreover, in each of our cases stated in Theorem 4.3, we also
have $\tilde{G}\subset GL(n, \mathcal{O}_{K})$ for a suitable $K$. Note that:

PROPOSITION 4.6. Let $G$ be an irreducible group with an invariant hermitian matrix
$H$ which is also invariant under $\tilde{G}$ . Let $K/Q$ be a finite Galois extension of which subfield
$K\cap R$ is also a Galois extension over $Q$ and let $X^{-1}\tilde{G}X\subset GL(n, \mathcal{O}_{K})$for some $X\in GL(n, C)$ .
Then $\tilde{G}$ is finite $\iota f$ and only if so is $G$ .

On the other hand our result shows that, for the cases which are listed on the Table
8.3 in [1] satisfying either $\alpha_{1}=0$ or $\beta_{1}=0$ , the corresponding $\tilde{G}$ are all infinite groups.
For several (probably, for all) cases, we can easily check that the trace of $M_{0j}M_{j}$ is not
an algebraic integer.
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