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1. Introduction

In a previous paper [H1] we have shown that a connected closed symplectic
$S^{1}$ -manifold with the properties (i), (ii) and (iii) listed below must be simply connected
and have the same homology groups as $S^{2}\times\cdots\times S^{2}$ .

(i) The action admits a moment map.
(ii) The fixed points are all isolated.
(iii) The action is semi-free.
In this paper we shall prove the following

THEOREM 1.1. Let $M$ be a connected closed symplectic $S^{1}$ -manifold satisfying the
conditions (i), (ii) and (iii) listed above. Then $M$ has the same cohomology ring and the
same Chern classes as $S^{2}\times\cdots\times S^{2}$ .

Semi-free actions are the simplest and, in a sense, the basic type among $S^{1}$ -actions.
For example, if $M$ is any $S^{1}$ -manifold and if $Z/m$ is a maximal finite isotropy subgroup
then each component of the fixed point set of the restricted $Z/m$-action is an invariant
symplectic $S^{1}$ -submanifold on which the $S^{1}$ -action, made effective, is free or semi-free.
Thus our result above may be considered as the first step to investigate general
symplectic $S^{1}$ -manifolds admitting moment map.

The main idea of proof can be stated as follows. The critical points of the
moment map are precisely the fixed points of the action. Let $\Sigma_{1},$ $\cdots\Sigma_{n}$ be a suitably
chosen homology basis of $H_{2}(M)$ corresponding to the fixed points of index 2 and let
$x_{1},$ $\cdots,$ $x_{n}$ be the dual basis of $H^{2}(M)$ . Let $\xi=\xi(h_{1}, \cdots, h_{n})$ be the complex line
bundle over $M$ with $c_{1}(\xi)=x=h_{1}x_{1}+\cdots+h_{n}x_{n}$ where $h_{i}\in Z$. The $S^{1}$ -action on $M$

can be lifted to an action on $\xi$ and defines a weight $a_{i}=a_{i}(h_{1}, \cdots, h_{n})$ at each fixed
point $P_{i}$ . These weights $a_{i}$ satisfy certain relations coming from a fixed point formula.
Also they are related to $x^{n}[M]$ . Using these two facts and the linearity of $x$ and $a_{i}$

with respect to $h_{1},$ $\cdots,$ $h_{n}$ we determine all the values $x_{i_{1}}x_{i_{2}}\cdots x_{\iota_{n}}[M]$ which, in tum,
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are enough to determine the ring $H^{*}(M)$ in view of the Poincar\’e duality.
The choice of homology basis $\Sigma_{1},$ $\cdots\Sigma_{n}$ is made so that each $\Sigma_{i}$, as a cycle

contains the unique fixed point $P^{0}$ of index $0$ . If $P_{i}^{1}$ is the fixed point of index ’

contained in $\Sigma_{i}$ then the weight $a_{i}^{1}$ corresponding to $P_{i}^{1}$ becomes equal to $h_{i}$ with thi
choice.

The cycles $\Sigma_{1},$ $\cdots,$ $\Sigma_{n}$ are realized as the closures of orbits of a $C^{*}- actio1$

extending the given $S^{1}$ -action. Such a $C^{*}$-action can be obtained by using a pair $0$

$S^{1}$ -invariant almost complex structure and $S^{1}$ -invariant Riemannian metric on $\ovalbox{\tt\small REJECT}$

compatible with the given symplectic structure $\omega$ . The homotopy class of such pairs $i$

uniquely determined by that of $\omega$ . Hence the Chem classes of $M$ are well defined.
Finally the equivariant tangent bundle is determined in the localized equivarian

$K_{S^{1}}(M)$ using the localization theorem and the Chem classes of $M$ are identified.
In Section 2 we discuss the relations among moment maps, $C^{*}$-orbits ant

complex line bundles. The main results will be proved in Section 3 and Section 4.

2. Moment map, $C^{*}$-orbits and complex lne bundles.

Throughout this section $M$ will denote a connected closed symplectic manifold $0$

dimension $2n$ admitting a Hamiltonian $S^{1}$ -action. This means an action of $S$

preserving the given symplectic form $\omega$ endowed with a $C^{\infty}$ map $\mu:M\rightarrow R$ such that

$ d\mu=i(X)\omega$

where $X$ is the vector field generating the action of $e^{it}\in S^{1}$ .
We take a pair of invariant almost complex structure $J$ and invariant Riemannia

metric $\langle, \rangle$ such that

$\omega(JY, JZ)=\omega(Y, Z)$ and $\omega(Y, JZ)=\langle Y, Z\rangle$

for any tangent vectors $Y$ and $Z$. The existence of such pairs is well known. Suc
a pair will be called a compatible pair. It can be shown [H1] that the gradier
vector field grad $\mu$ with respect to $\langle$ $\rangle$ coincides with $JX$ and the $R_{+}$ -actio
$\psi,=Exp(-(\log r)JX)$ commutes with the given $S^{1}$ -action. Hence an action of $C^{*}o$

$M$ is defined by
$re^{i\theta}\cdot x=e^{i\theta}\psi_{r}(x)$ .

It is easy to see that a fixed point $P$ is a critical point of $\mu$ and vice versa. Th
function $\mu$ is a non-degenerate function in the sense of Bott and the index of $P$ is $equ|$

to twice the number of positive weights around $P$, cf. e.g. [At] or [AH]. Let $P$ be
fixed point. Then its unstable manifold $P^{u}$ is defined to be the set

$\{x\in M;\lim_{z\rightarrow 0}z\cdot x=P, z\in C^{*}\}$ .
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If the index of $\mu$ atPisequal to2then the c1osure $\overline{P^{u}}ofP^{u}$ coincides with the closure
of the C*-orbit of apoint near $P$ . In general, the closure $M(p)$ of aC*-orbit $C^{*}p$ is a
topologically embedded 2-sphere in $M$ and the set $M(p)$ minus $C^{*}p$ consists of two
fixed points; one is $n(p)=\lim_{z\rightarrow 0}z(p)$ and the other is $s(p)=\lim_{z\rightarrow\infty}z(p)$ , the former
being called the north pole and the latter the south pole. If $M(p)$ coincides with the
closure of the unstable manifold $P^{u}$ then $n(p)$ coincides with $P$ .

Note that the compatible pairs are not unique but their equivariant homotopy
class is uniquely determined by the symplectic form $\omega$ . The class depends even only on
the equivariant homotopy class of $\omega$ . The statement of Theorem 1.1 is eventually the
one which depends only on the equivariant homotopy class of the symplectic structure.
Therefore, in order to prove Theorem 1.1, we may take a suitable symplectic form
$\omega$ in the given equivariant homotopy class and an associated compatible pair $J$

and $\langle$ , $\rangle$ . If. we perturb symplectic structures and compatible pairs then the
corresponding stable and unstable manifolds vary. We shall see a particular case of
such variations in a moment. Recall that if $M$ satisfies the additional conditions (ii)

and (iii) then there are exactly $\left(\begin{array}{l}n\\q\end{array}\right)$ Pxed points of index $2q$ by [H1]. In particular we
have $n$ fixed points of index 2. Also there is a unique fixed point of index $0$ .

Let $P$ be a fixed point such that $0<index$ at $P<2n$ and suppose that there are
fixed points $P_{1},$ $\cdots,$ $P_{k}$ of index 2 such that the closures of their unstable manifolds
all have $P$ as their south poles with respect to the given symplectic form and the
compatible pair. Under this situation we shall show the following

LEMMA 2.1. There is a small change of symplectic forms and compatible pairs
such that the closures of the unstable manifolds of $P_{1},$ $\cdots,$ $P_{k}$ get apart from $P$ after
that change.

$PR\infty F$ . Take a point $q_{i}$ near $P$ lying on the unstable manifold of each $P_{i}$ . Thus
the closure of the unstable manifold of $P_{i}$ coincides with $M(q_{i})$ . It is sufficient to show
that, after a small perturbation of symplectic forms and compatible pairs near $P$, we
can arrange so that $M^{\prime}(q_{i})$ (the closure of the $C^{*}$-orbit of $q_{i}$ after the perturbation)
does not pass through $P$ but some $M^{\prime}(q_{i}^{\prime})$ does for each $i=1,$ $\cdots,$

$k$ where $q_{i}^{\prime}$ is
sufficiently close to $q_{i}$ .

We shall proceed by induction on $k$ . Thus we may assume that we have already
chosen points $q_{2}^{\prime},$

$\cdots,$
$q_{k}^{\prime}$ where $q_{i}^{\prime}$ is sufficiently close to $q_{i}$ such that $M^{\prime}(q_{i}^{\prime})$ passes

through $P$ but $M^{\prime}(q_{i})$ does not for $2\leq i\leq k$ after a small perturbation.
With a further perturbation and by virtue of the equivariant Darboux theorem

[We] we may assume that there exists a complex coordinate system $(z_{1},$ $\cdots,$ $z_{\kappa}$ ,
$w_{1},$ $\cdots,$ $w_{\lambda}$)($2\lambda=index$ at $P,$ $\kappa+\lambda=n,$ $0<\kappa,$ $\lambda$ ) such that the $S^{1}$ -action is of the form

$z(z_{1}$ , $\cdot$ .
$z_{\kappa},$ $w_{1}$ , $\cdot$ . . $w_{\lambda})=(z^{-1}z_{1}, \cdot. z^{-1}z_{\kappa}, zw_{1}, \cdot. zw_{\lambda})$ ,

the unstable manifold $P_{i}^{u}$ of $P_{i}$ passes through $e_{i}=(0, \cdots, 0,1,0, \cdots, 0)(1$ at the i-th
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place) for $i=1,$ $\cdots,$ $\kappa$ and the symplectic form $\omega$ is the standard one:

$\omega=\sum_{j=1}^{\kappa}dx_{j}\wedge dy_{j}+\sum_{j=1}^{\lambda}du_{j}\wedge dv_{j}$

where $z_{j}=x_{j}+\sqrt{-1}y_{j}$ and $w_{j}=u_{j}+\sqrt{-1}v_{j}$ . Here we may assume that $q_{1}=e_{1}$ and $q_{i}^{\prime}=e$

for $i\geq 2$ .
The vector field $X$ generating the above action is

(2.2) $X=\sum_{j=1}^{\kappa}(y_{j}\frac{\partial}{\partial x_{j}}-x_{j}\frac{\partial}{\partial y_{j}})+\sum_{j=1}^{\lambda}(-v_{j}\frac{\partial}{\partial u_{j}}+u_{j}\frac{\partial}{\partial v_{j}})$ .

Let $\rho$ be a $C^{\infty}$ function defined on $[0, \infty$ ) such that $0\leq\rho\leq 1$ and $\rho(r^{2})=1$ fo
$r^{2}\leq 1/4$ and $\rho(r^{2})=0$ for $r^{2}\geq 1/2$ .

At a point $(x_{1}, y_{1}, \cdots, x_{\kappa}, y_{\kappa}, u_{1}, v_{1}, \cdots, u_{\lambda}, v_{\lambda})$ we define a linear transformatio]

$A$ by the matrix

$A=\frac{1}{\sqrt{1-\alpha^{2}}}D(\varphi)^{-1}BD(\varphi)$

where $B$ is given by

$B=\left\{\begin{array}{llllllll} & & & & & \alpha & 0 & \\ & & & & & 0 & -\alpha & \\ & E_{2\kappa} & & & & | & | & 0\\ & & & & & \alpha & 0 & \\ & & & & & 0 & -\alpha & \\\alpha & 0 & \cdots & \alpha & 0 & & & \\0 & -\alpha & \cdots & 0 & -\alpha & & & \\ & & 0 & & & & E_{2\lambda} & \end{array}\right\}$

where $z_{1}=x_{1}+iy_{1}=re^{-i\varphi},$ $\alpha=tr^{2}\rho(r^{2})$ with $0\leq t\leq 1,$ $E_{m}$ is the identity matrix $0$

degree $m$ and $D(\varphi)$ is the orthogonal matrix corresponding to the given action of $e^{i}$

on $(z_{1}, \cdots, z_{\kappa}, w_{1}, \cdots, w_{\lambda})$ . Here we are regarding linear transformations as acting $0l$

the row vectors from the right by matrix multiplication.
Then we define a new almost complex structure $J_{t}^{\prime}$ at $(x_{1},$ $y_{1},$ $\cdots,$ $x_{\kappa},$ $y_{\kappa},$ $u_{1}$

$v_{1},$ $\cdots,$ $u_{\lambda},$ $v_{\lambda}$) by

$J_{t}^{\prime}=AJA^{-1}$

where $J$ is the complex multiplication by $\sqrt{-1}$ on $(z_{1}, \cdots, z_{\kappa}, w_{1}, \cdots, w_{\lambda})$ . It can $b$

easily seen that $J_{t}^{\prime}$ is $S^{1}$ -invariant and compatible with $\omega$ , i.e. $\omega(J_{t}^{\prime}Y, J_{t}^{\prime}Z)=\omega(Y,$ $Z$
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for any vectors $Y$ and $Z$ . Explicitly $J_{t}^{\prime}$ is given by the matrix

$\frac{1}{1-\alpha^{2}}D(\varphi)^{-1}CD(\varphi)$

where $C$ is given by

$[^{-(1}0^{+\alpha^{2})0}0_{2\alpha}01+\alpha^{2}0-(1+\alpha^{2})2\alpha 0001+\alpha^{2}2\alpha 00$

$-(1+\alpha^{2})02\alpha 02\alpha 002\alpha 01+\alpha^{2}02\alpha 0$

$-(1+\alpha^{2})00_{0}1+\alpha^{2}0]$

The gradient vector field $grad_{t}\mu$ with respect to the Riemannian metric $\langle$ , $\rangle_{t}$ defined
by $\langle Y, Z\rangle_{t}=\omega(Y, J_{t}^{\prime}Z)$ coincides with $J_{t}^{\prime}X$ (cf. [H1]). From this together with (2.2) it
follows that

(2.3) $-grad_{t}\mu_{\langle x_{1},0,x_{2},0,\cdots,x_{\kappa},0,u_{1},0,\cdots,0)}=\frac{1}{1-\alpha^{2}}\{-((1+\alpha^{2})x_{1}+2\alpha u_{1})\frac{\partial}{\partial x_{1}}$

$-((1+\alpha^{2})x_{2}+2\alpha u_{1})\frac{\partial}{\partial x_{2}}-\cdots$

$-((1+\alpha^{2})x_{\kappa}+2\alpha u_{1})\frac{\partial}{\partial x_{\kappa}}$

$+(2\alpha\sum_{j=1}^{\kappa}x_{j}+(1+\alpha^{2})u_{1})\frac{\partial}{\partial u_{1}}\}$ .

Here we recall $\alpha=t|z_{1}|^{2}\rho(|z_{1}|^{2})$ . Therefore the trajectory $of-grad_{t}\mu=-J_{t}^{\prime}X$ passing
through $e_{1}=q_{1}$ tends to $+\infty$ along the $u_{1}$ -axis for $t>0$ . This shows that the unstable
manifold of $P_{1}$ is not adherent to $P=(0, \cdots, 0)$ . On the other hand the trajectory
passing through $e_{j}=q_{j}^{\prime}$ with $ 2\leq j\leq\kappa$ tends to $P$ via the $x_{j}$-axis. This means that the
closure $M_{t}(q_{j}^{\prime})$ of the orbit of $q_{j}^{\prime}$ with respect to the $C^{*}$ action corresponding to $J_{t}^{\prime}$

passes through $P$ . Moreover $M_{t}(q_{j})$ which is different from but close to $M_{t}(q_{j}^{\prime})$ does
not pass through $P$ for $2\leq j\leq k$ .

On the other hand it follows from (2.3) that there exists a point $q_{1}^{\prime}$ near $q_{1}$ such
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that $M_{t}(q_{1}^{\prime})$ passes through $P$. If we take $t$ small enough then $q_{1}^{\prime}$ can be arbitrarily clos
to $q_{1}$ . Therefore $M_{t}(q_{1}^{\prime})$ is different from $M_{t}(q_{j}^{\prime})$ and also from $M_{t}(q_{j})$ for $2\leq j\leq k$ fo
sufficiently small $t$ . This means that $M_{t}(q_{1}),M_{t}(q_{2}),$ $\cdots,$ $M_{t}(q_{k})$ cannot pass through P. $[$

We apply Lemma 2.1 to the fixed points $P$ in the downward inductive order wit
respect to the values $\mu(P)$ and arrive to the following

PROPOSITION 2.4. Let $M$ be a connected closed symplectic $S^{1}$ -manifold satisfyin
the conditions (i), (ii) and (iii). Then, with a suitable choice of symplectic forms an
compatible pairs within the given equivariant homotopy class, we can arrange so that th
closures of the unstable manfolds of all the fixed points of index 2 have the fixed poin
$P^{0}$ of index $0$ as their south poles.

As mentioned in Section 1 the symplectic manifold $M$ we are considering has $(_{q}^{n}$

fixed points of index $2q$ . We shall label them as $P_{I}^{q}$ where $I=(i_{1}, \cdots, i_{q})$ ranges ove
all sequences of 1 $Si_{1}<\cdots<i_{q}\leq n$ . We shall abbreviate $P_{\emptyset}$ simply as $P^{0}$ .

We choose a symplectic form and associated compatible pair as stated $i^{t}$

Proposition 2.4 so that the closure of the unstable manifold of $P_{i}^{1}$ , denoted by $\Sigma_{i}$, ha
$P^{0}$ as its south pole for each $i=1,$ $\cdots,$ $n$ . The oriented 2-spheres $\Sigma_{1},$ $\cdots,$ $\Sigma_{n}$ give
homology basis of $H_{2}(M;Z)$ . Let $x_{1},$ $\cdots,$ $x_{n}$ be the dual basis of $H^{2}(M;Z)$ .

For a sequence $h=(h_{1}, \cdots, h_{n})\in Z^{n}$ let $\xi(h)$ be the complex line bundle over A
such that

$c_{1}(\xi(h))=x(h)=h_{1}x_{1}+\cdots+h\mu_{n}$ .
Since $M$ is simply connected as mentioned in Section 1 the $S^{1}$-action on $M$ can $b$

lifted to the action on $\xi=\xi(h)$ and the lifting is uniquely determined by the $S^{1}$ -modul
structure of $\xi$ restricted to a specified fixed point [HY]. Set $e_{j}=(0,$ $\cdots,$ $0,1,0,$ $\cdots,$

$C$

(1 at the j-th plaoe) and we shall determine the lifting of action on $\xi(e_{i})$ by requirin
$\xi(e_{i})|P^{0}$ to be the trivial $S^{1}$ -module. Then the lifting to the general $\xi(h)$ is $als|$

determined since we have
$\xi(h)=\xi(e_{1})^{\hslash_{1}}\cdots\xi(e_{n})^{\hslash_{n}}$ .

We set

$t^{a\oint\langle h)}=\xi(h)|P_{I}^{q}$

where $t$ denotes the standard $S^{1}$ -module. It is easy to see that

(2.5) $a_{I}^{q}(h)=\sum_{j=1}^{n}h_{J}o_{I}^{q}(e_{j})$

and

(2.6) $a^{0}(h)=0$
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for all $h(a^{0}=a_{\emptyset}^{0})$ . Moreover we have

(2.7) $a_{i}^{1}(h)=h_{i}$ .
In fact, since $c_{1}(\xi(e_{j}))=x_{j},$ $\xi(e_{j})|\Sigma_{i}$ is trivial for $i\neq j$ and is equal to the standard line
bundle over the oriented 2-sphere $\Sigma_{j}$ for $i=j$. Since we have normalized so that
$\xi(e_{j})|P^{0}=1$ we have

$\xi(e_{j})|P_{i}^{1}=t^{\delta_{ij}}$ .

Hence $a_{i}^{1}(e_{j})=\delta_{ij}$ and $a_{i}^{1}(h)=\sum_{j}h_{J}\delta_{ij}=h_{i}$ .
We now recall an integrality theorem of Atiyah-Segal [AS], see also [H2]. Let, in

general, $M$ be an almost complex $S^{1}$ -manifold with only isolated fixed points
$P_{0},$ $P_{1},$ $\cdots,$ $P_{\chi-1}$ . Here $\chi$ is the Euler number of $M$. Let $\{m_{ik}\}_{k=1}^{n}$ be the weights
around $P_{i}$ . Moreover Let $\xi$ be a complex line bundle with a lifted $S^{1}$ -action. Then,
setting

$t^{a_{i}}=\xi|P_{i}$

we have

LEMMA 2.8. The sum

$\varphi(t)=\sum_{i}\frac{1-t^{a_{i}-a_{O}}}{\prod_{k}(1-t^{m_{ik}})}$

must be a Laurent polynomial in $t$ .

We apply Lemma 2.8 in our present situation with $P_{0}=P^{O}$ and $\xi=\xi(h)$ . In
particular $a_{0}=0$ by (2.6). At $P_{i}=P_{I}^{q}$ the weights are +1 with multiplicity $q$ and $-1$

with multiplicity $n-q$ . Therefore
$\prod(1-t^{m_{ik}})=(1-t)^{q}(1-t^{-1})^{n-q}=(1-t)^{n}(1-t^{-1})^{n-q}$ .

Hence we finally get

PROPOSITION 2.9. In the present situation

$\varphi(t)=\frac{1}{(1-t)^{n}}\sum_{v=0}^{n-1}(-1)^{\nu}t^{v}\sum_{i_{1}<\cdots<i_{n- v}}(1-t^{a_{l_{1}\cdot\cdot j_{*-v}}^{n-.v}(h)})$

must be a Laurent polynomial in $t$ .

3. Proof of Theorem 1.1. First part.

We continue with the situation of Section 2. First we shall deduce the following
theorem from Proposition 2.9.
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THEOREM 3.1. With a suitable indexing of the fixed points $\{P_{I}^{q}\}$ we have

$a_{I}^{q}(h)=h_{I}=h_{i_{1}}+\cdots+h_{i_{q}}$

where $I=(i_{1}, \cdots, i_{q}),$ $i_{1}<\cdots<i_{q}$ .
$PR\infty F$ . We set

$X^{q.k}=\sum_{I}(a_{I}^{q}(h))^{k}$

$X^{q,k}$ is a homogeneous polynomial of degree $k$ in $h_{1},$ $\cdots,$ $h_{n}$ by (2.5). From (2.7)
follows

(3.2) $X^{1.k}=h_{1}^{k}+\cdots+h_{n}^{k}$ .
We also set

$Q^{q,k}(h_{1}, \cdots, h_{n})=\sum_{I}h_{I}^{k}$ .

We shall show the following assertions.

ASSERTION 1.

$X^{q.1}=Q^{q,1}$ for all $q$ .
ASSERTION 2. Given $q$, the assumptions

$X^{q.k}=Q^{q.k}$ for $1\leq k\leq n-q+1$

imply

$a_{I}^{q}(h)=h_{I}$ for all $k$

and hence also

$X^{q.k}=Q^{q.k}$ for all $k$ .
ASSERTION 3. Given $q$, the assumptions

$a_{I}(h)=h_{I}$ for all $r>q$ and $I$

imply

$X^{s,n-q+1}=Q^{s.n-q+1}$ for $s\leq q$ .
If we admit these assertions for a moment then the descending induction wit

respect to $q$ starting from $q=n$ and also using (2.7) or (3.2) yields Theorem 3.1 as ca
be seen easily.

We set

$f(t)=\sum_{\nu=0}^{n-1}(-1)^{\nu}t^{\nu}\sum_{J}(1-t^{a_{J}^{*-}\langle h)})$ .
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Then, by Proposition 2.9, we must have

(3.3) $f^{\prime}(1)=0$ , $f^{\prime\prime}(1)=0,$ $\cdots$ , $f^{\langle n-1)}(1)=0$ .
But

(3.4) $f^{\langle i)}(1)=-i!\sum_{\nu=0}^{n-1}(-1)^{\nu}\sum_{j=0}^{i}\sum_{J}\left(\begin{array}{l}a_{J}^{n-\nu}(h)\\j\end{array}\right)\left(\begin{array}{l}v\\i-j\end{array}\right)$ .

On the other hand $\left(\begin{array}{l}a\\j\end{array}\right)$ is a polynomial of degree $j$ in $a$ . If we write it as

(3.5) $\left(\begin{array}{l}a\\j\end{array}\right)=m_{j}^{j}a^{j}+\cdots+m_{1}^{j}a$

then we have

$\sum_{J}\left(\begin{array}{l}a_{J}^{n-\nu}(h)\\j\end{array}\right)=m_{j}^{j}X^{n-v,j}+\cdots+m_{1}^{j}X^{n-\nu,1}$

Hence the homogeneous part of degree $k$ in (3.4) is

(3.6) $-i!\sum_{\nu=0}^{n-1}(-1)^{v}\{m_{k}^{i}\left(\begin{array}{l}v\\0\end{array}\right)+m_{k}^{i-1\left(\begin{array}{l}v\\1\end{array}\right)+}\cdots+m_{k}^{k}\left(\begin{array}{l}v\\i-k\end{array}\right)\}X^{n-\nu,k}$

Now (3.3) holds for any sequence $h=(h_{1}, \cdots, h_{n})$ of integers. Therefore, if we put
(3.4) and (3.6) in (3.3), then each homogeneous part must vanish independently. Thus

(3.7) $\sum_{\nu=0}^{n-1}(-1)^{v}\{m_{k\left(\begin{array}{l}v\\0\end{array}\right)+m_{k}^{i-1\left(\begin{array}{l}v\\1\end{array}\right)+}}^{i}\cdots+m_{k}^{k}\left(\begin{array}{l}v\\i-k\end{array}\right)\}X^{n-\nu,k}=0$

for $k=1,$ $\cdots,$ $n-1$ and $i=k,$ $k+1,$ $\cdots,$ $n-1$ .
At this point we remark that the polynomials $Q^{q,k}$ also satisfy the same equations

(3.7). This could be checked by calculation. But a more conceivable way is to consider
the standard $S^{1}$ -action on the product $S^{2}\times\cdots\times S^{2}$ . In this case we have $a_{I}^{q}(h)=h_{I}$

and, consequently, $X^{q,k}=Q^{q,k}$ .
Fixing $k$ , we shall view (3.7) as linear equations for the unknowns $X^{n,k},$

$\cdots,$
$X^{1,k}$ .

Since $m_{k}^{j}\neq 0$ the equations (3.7) are equivalent to the equations

(3.8) $\sum_{\nu=0}^{n-1}(-1)^{\nu}\left(\begin{array}{l}v\\l\end{array}\right)X^{n-\nu,k}=0$ , $l=0,1,$ $\cdots,$ $n-1-k$ ,

where $ 1\leq k\leq$ n-l.
We first consider the case $k=1$ . From (3.8) it follows that $X^{q,1}$ must be a multiple

of $X^{1,1}$ for all $q$ . But $X^{1,1}=h_{1}+\cdots+h_{n}=Q^{1,1}$ by (3.2). Hence we must have

$X^{q,1}=Q^{q,1}=\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)(h_{1}+\cdots+h_{n})$ .
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This proves Assertion 1.
The proof of Assertion 3 is similar. Namely suppose that $a_{I}^{r}(h)=h_{I}$ and hen

$X^{r,k}=Q$”
$k$ for all $r>q$ and $k$ . We consider $X^{q.n-q+1},$ $\cdots,$

$X^{2,n-q+1}$ as the unknow
and $X^{n.n-q+1},$ $\cdots,$

$X^{q+1.n-q+1}$ and $X^{1,n-q+1}$ as the knowns in (3.8) with $k=n-q+$
The coefficients matrix for the unknowns is

$A=\left\{\begin{array}{lll}(^{n-q}0)(^{n-q+1}0) & \cdots & (^{n-2}0)\\(^{n-q}1)(^{n-q+1}1) & \cdots & (^{n-2}1)\\(_{q-2}^{n-q})(^{n-q+1}q-2) & \cdots & (_{q-2}^{n-2})\end{array}\right\}$

However det $A=1$ as is well known and can be easily proved. Hence $X^{q.n-q+1},$ $\cdot$ .
$X^{2.n-q+1}$ are uniquely determined. As $X’ n-q+1=Q’ n-q+1$ for $r>q$ and $r=1$ we $ha^{1}$

$X^{s,n-q+1}=Q^{s.n-q+1}$ for $2\leq s\leq q$ .
This proves Assertion 3.

Finally we shall prove Assertion 2. Expanding $Q^{q.k}$ we have

$Q^{qJ}=\sum(h_{j_{1}}+\cdots+h_{j_{q}})^{k}j_{1}<\cdots<j_{q}$

$=\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)\sum_{j}h_{j}^{k}+k!\left(\begin{array}{l}n-k\\q-k\end{array}\right)\sum h_{j_{1}}\cdots h_{j_{k}}+remaining$ terms.

On the other hand

$X^{q,k}=\sum_{I}(h_{1}a_{I}^{q}(e_{1})+\cdots+h_{n}a_{I}^{q}(e_{n}))^{k}$

$=\sum_{J}(\sum_{I}a_{I}^{q}(e_{j})^{k})h_{j}^{k}+k!j_{1}\sum(\sum_{I}af(e_{j_{1}})\cdots a_{I}^{q}(e_{j_{k}}))h_{j_{1}}\cdots h_{j_{k}}+remaining$ terms.

Comparing the coefficients of $h_{i}^{k}$ and $h_{j_{1}}\cdots h_{j_{k}}$ in the equalities
$X^{q,1}=Q^{q,1},$ $\cdots$ , $X^{q.n-q+1}=Q^{q.n-q+1}$

we see that

(3.9) $\sum_{I}a_{I}^{q}(e_{j})^{k}=\left(\begin{array}{l}n-k\\q-1\end{array}\right)$ for $1\leq k\leq n-q+1$

and



SYMPLECTIC $S^{1}$ -MANIFOLDS 291

(3.10) $\sum_{I}a_{I}^{q}(e_{j_{1}})\cdots a_{I}^{q}(e_{j_{k}})=\left(\begin{array}{l}n-k\\q-k\end{array}\right)$ for $2\leq k\leq n-q+1$ .

Then, from (3.9) with $k=1$ and $k=2$ , we deduce easily that $a_{I}^{q}(e_{i})$ is equal to 1 or
$0$ and that

(3.11) $\#\{I;a_{I}^{q}(e_{i})=1\}=\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)$

for each $i$, where $\#$ denotes the number of the elements.
Assertion 2 readily follows from the following claim. Hence the proof of Theorem

3.1 is reduced to that of the claim.

CLAIM. The $a_{I}^{q}(e_{i})$ which are equal to 1 or $0$ and satisfy (3.10) and (3.11) must be

of the form

$a_{I}^{q}(e_{i})=\left\{\begin{array}{ll}1 & if i\in I\\0 & if i\not\in I\end{array}\right.$

with a suitable indexing of {I}.
$PR\infty F$ . We proceed by induction on n. We see that

$\#\{I;a_{I}^{q}(e_{n})=0\}=\left(\begin{array}{l}n\\q\end{array}\right)-\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)=\left(\begin{array}{ll}n & -1\\ & q\end{array}\right)$

by (3.11). We decompose the set {I} of indices into two parts $\{I^{0}\}$ and $\{I^{1}\}$ where

$a_{I^{O}}^{q}(e_{n})=0$ and $a_{I^{1}}^{q}(e_{n})=1$ .

Then we see, for each $i<n$ , that

(3.11) $\#\{I^{0} ; a_{I^{O}}^{q}(e_{i})=1\}=\left(\begin{array}{ll}n & -2\\q & -1\end{array}\right)=\left(\begin{array}{ll}n & -l-1\\ & -q1\end{array}\right)$ .

In fact, using (3.11) and (3.10) for $k=2$ , we have

$\#\{I^{0} ; a_{I^{O}}^{q}(e_{i})=1\}=\#\{I;a_{I}^{q}(e_{i})=1\}-\#\{I;a_{I}^{q}(e_{i})=a_{I}^{q}(e_{n})=1\}$

$=\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)-\sum_{I}a_{I}^{q}(e_{i})a_{I}^{q}(e_{n})$

$=\left(\begin{array}{ll}n & -1\\q & -1\end{array}\right)-\left(\begin{array}{ll}n & -2\\q & -2\end{array}\right)$

$=\left(\begin{array}{ll}n & -2\\q & -1\end{array}\right)$ .
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Similarly we have

(3.10) $\sum_{I^{O}}a_{I^{O}}^{q}(e_{j_{1}})\cdots a_{I^{O}}^{q}(e_{j_{k}})=\left(\begin{array}{lll}n & -1- & k\\ & q-k & \end{array}\right)$

for 2 $Sk\leq n-1-q+1$ where $j_{1}<\cdots<j_{k}\leq n-1$ . In fact

$\sum_{I^{O}}a_{I^{O}}^{q}(e_{j_{1}})\cdots a_{I^{O}}^{q}(e_{j_{k}})=\sum_{I}a_{I}^{q}(e_{j_{1}})\cdots a_{I}^{q}(e_{j_{k}})-\sum_{I}a_{I}^{q}(e_{j_{1}})\cdots a_{I}^{q}(e_{j_{k}})a_{I}^{q}(e_{n})$

$=\left(\begin{array}{l}n-k\\q-k\end{array}\right)-\left(\begin{array}{l}n-(k+1)\\q-(k+l)\end{array}\right)$

$=\left(\begin{array}{lll}n & -1- & k\\ & q-k & \end{array}\right)$ ,

for $2\leq k\leq n-q$ .
Therefore, by inductive assumption, we see that

$a_{I^{O}}^{q}(e_{i})=\left\{\begin{array}{ll}1 & if t\in I^{0}\\0 & if i\not\in I^{0}\end{array}\right.$

where $I^{0}=(i_{1}, \cdots, i_{q})$ with 1 $Si_{1}<\cdots<i_{q}\leq n-1$ . From the very definition of {1
we have

$a_{I^{\circ}}^{q}(e_{n})=0$ .
Thus Claim is proved for $I^{0}$ .

Similar calculations show that

$(3.10^{\prime\prime})$ $\sum_{I^{1}}a_{I^{1}}^{q}(e_{j_{1}})\cdots a_{I^{1}}^{q}(e_{j_{k}})=\left(\begin{array}{lll}n & -1- & k\\q & -1- & k\end{array}\right)$

for $2\leq k\leq n-1-(q-1)+1,1\leq i_{1}<\cdots<i_{q-1}\leq n-1$ and

$(3.11^{\prime\prime})$ $\#\{I^{1} ; a_{I^{1}}^{q}(e_{i})=1\}=\left(\begin{array}{ll}n & -1-1\\q & -1-1\end{array}\right)$

for 1 $Si\leq n-1$ . Hence, if we regard $I^{1}$ as a sequence $(i_{1}, \cdots, i_{q-1})$ with 1
$i_{1}<\cdots<i_{q-1}\leq n-1$ , we also see that

$a_{I^{1}}^{q}(e_{i})=\left\{\begin{array}{l}lifi\in I^{1}\\0ifi\not\in I^{1}\end{array}\right.$

with a suitable indexing of {I 1} where $1\leq i\leq n-1$ . From the definition of $\{I^{1}\}$ we $h^{e}$

$a_{I^{1}}^{q}(e_{n})=1$

where we regard $I^{1}$ as a sequence $(i_{1}, \cdots, i_{q-1}, n)$ . Thus Claim also holds for $I^{1}$ .
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This completes the proof of Claim and hence of Theorem 3.1. $\square $

PROPOSITION 3.12. Let $x=x(h)=\sum h_{i}x_{i}$ as in Section 2. Then we have

$x^{n}[M]=n!h_{1}\cdots h_{n}$ .
$PR\infty F$ . Let $\xi$ be the complex line bundle over $m$ with $c_{1}(\xi)=x(h)$ endowed with

a lifted $S^{1}$ -action such that $\xi|P^{0}=1$ (trivial $S^{1}$ -module). Consider the element $u$ in
$K_{S^{1}}(M)$ defined by

$u=\prod_{i=1}^{n}(1-\xi^{-1}t^{a_{t}^{1}(h)})$

and set

$\varphi(t)=p_{1}(u)\in K_{S^{1}}(pt)=R(S^{1})=Z[t, t^{-1}]$ ,

where $p_{1}$ is the Gysin homomorphism of the projection $p:M\rightarrow pt$ . Then it can be
shown that $\varphi(1)=x^{n}[M]$ , cf. e.g. [H2]. On the other hand we have

$\varphi(1)=\sum_{q\neq 1}\sum_{I}\frac{\prod_{i=1}^{n}(1-t^{a_{i}^{1}(h)-af(h)})}{(1-t^{-1})^{q}(1-t)^{n-q}}$ .

This shows that $\varphi(1)$ depends only on $\{a_{I}^{q}(h)\}$ .
At our present situation the $\{a_{I}^{q}(h)\}$ are the same as the standard $S^{1}$ -action on

$S^{2}\times\cdots\times S^{2}$ . Therefore $x^{n}[M]=\varphi(1)$ must coincide with the standard one. Since
$x_{i}^{2}=0$ and $x_{1}\cdots x_{n}$ is the positive generator of $H^{2n}(S^{2}\times\cdots\times S^{2})$ we have

$(h_{1}x_{1}+\cdots+h_{n}x_{n})^{n}[S^{2}\times\cdots\times S^{2}]=n$ ! $h_{1}\cdots h_{n}x_{1}\cdots x_{n}[S^{2}\times\cdots\times S^{2}]$

$=n!h_{1}\cdots h_{n}$ .
Hence we have $x^{n}[M]=n!h_{1}\cdots h_{n}$ in the present situation. $\square $

COROLLARY 3.13. We have

$H^{*}(M ; Z)\cong Z[x_{1}, \cdots, x_{n}]/(x_{1}^{2}, \cdots, x_{n}^{2})$ .
In particular $M$ has the same cohomology ring as $S^{2}\times\cdots\times S^{2}$ .

PROOF. By Proposition 3.12 we have

$(h_{1}x_{1}+\cdots+h_{n}x_{n})^{n}[M]=n$ ! $h_{1}\cdots h_{n}$

for any sequence $(h_{1}, \cdots, h_{n})\in Z^{n}$ . It follows that

(3.14) $x_{i_{1}}\cdots x_{i_{n}}[M]=\left\{\begin{array}{ll}1 & if i_{1}, \cdots, i_{n} are mutually distinct,\\0 & otherwise.\end{array}\right.$
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From (3.14) and the Poincar\’e duality it follows easily that the $x_{I}=x_{i_{1}}\cdots x_{i_{q}}$ whe
$I=(i_{1}, \cdots, i_{q})$ with $i_{1}<\cdots<i_{q}$ form a basis of $H^{2q}(M;Z)$ which is known to be

free module of rank $\left(\begin{array}{l}n\\q\end{array}\right)$ by [H1]. Then we also have

$x_{i}^{2}=0$

since $x_{i}^{2}x_{I}=0forallthebasiselementsx_{I}ofH^{2(n-2)}(M;Z)$ . $\square $

Corollary 3.13 is nothing but the first part of Theorem 1.1.

4. Proof of Theorem 1.1. Second part.

We use the same notations as in Sections 2 and 3. We shall prove the followin
theorem which is clearly a statement equivalent to the second part of Theorem 1.1.

THEOREM 4.1. The Chem class of $M$ is given by

$c(TM)=\prod_{i=1}^{n}(1+2x_{i})$

where $TM$ is the complex tangent bundle of $M$.
$PR\infty F$ . Sinoe $H^{*}(M;Z)$ has no torsion it is sufficient to determine $ch(T\ovalbox{\tt\small REJECT}$

which should be equal to

(4.2) $ch(TM)=\sum_{i=1}^{n}e^{2x_{i}}$ .

We consider the following natural commutative diagram:

$S^{-1}K_{S^{1}}(M)$
$\underline{\varphi_{K}}$

$K_{S^{1}}(M)$
$\rightarrow^{F}$

$K(M)$

$\downarrow ch$ $\downarrow ch$ $\downarrow ch$

$\varphi_{H}$

$S^{-1}H_{S^{1}}^{**}(M ; Q)-H_{S^{1}}^{**}(M ; Q)\rightarrow H^{*}(M ; Q)$

where $S^{-1}$ denotes the localization.
Let $T_{S^{1}}M$ denote the equivariant complex tangent bundle. We need two lemmas
LEMMA 4.3.

$\varphi_{K}(T_{S^{1}}M)=\varphi_{K}(\sum\xi_{i}^{2}t^{-1})$

where $\xi_{i}=\xi(e_{i})$ is the equivariant complex line bundle as defined in Section 2.
LEMMA 4.4. The natural homomorphism $\varphi_{H}$ is injective.

Before proving these lemmas we shall show that they in fact imply (4.2). Fro]

Lemma 4.3 and Lemma 4.4 we see that
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$ch(T_{S^{1}}M)=ch(\sum\xi_{i}^{2}t^{-1})$ .
Hence we get

$ch(TM)=ch(\sum\xi_{i}^{2})=\sum e^{2x_{i}}$

It remains to prove Lemmas 4.3 and 4.4.
By the localization theorem the $S^{-1}K_{S^{1}}(pt)$-module $S^{-1}K_{S^{1}}(M)$ can be identified

with

$\sum_{P\oint}S^{-1}K_{S^{1}}(P_{I})$ .

Then $\varphi_{K}(T_{S^{1}}M)$ is given by

$\varphi_{K}(T_{S^{1}}M)=\sum_{P\oint}T_{S^{1}}M|P_{I}$

$=\sum_{P1}(qt+(n-q)t^{-1})$

which is equal to $\varphi_{K}(\sum_{i=1}^{n}\xi_{i}^{2}t^{-1})$ since

$\xi_{i}^{2}t^{-1}|P_{I}^{q}=\left\{\begin{array}{ll}t^{2}t^{-1}=t & if i\in I\\t^{-1} & if i\not\in I\end{array}\right.$

by Theorem 3.1. This proves Lemma 4.3.
As to Lemma 4.4 we consider the Gysin sequence of the $S^{1}$ fibering ES $\times M\rightarrow M_{S^{1}}$

where ES $\rightarrow BS^{1}$ is the universal $S^{1}$ bundle. Using the fact that $H^{odd}(M)=0$ we see
easily that the Gysin sequence is split, i.e.

$0\rightarrow H^{q}(M_{S^{1}})\rightarrow^{Ue}H^{q+2}(M_{S^{1}})\rightarrow H^{q+2}(M)\rightarrow 0$

is exact where

$e\in H_{S^{1}}^{2}(pt)=H^{2}(BS^{1})$ , $H_{S^{1}}^{**}(pt)=Q[e]$ .
This means that $H_{s^{1}}^{**}(M)=H^{**}(M_{S^{1}})$ is $H_{S^{1}}^{**}(pt)$-torsion free and consequently that
$\varphi_{H}$ is injective.

This completes the proof of Theorem 4.1. $\square $

REMARK. Actually it can be shown that

$T_{S^{1}}M=\sum\xi_{i}^{2}t^{-1}$

in $K_{S^{1}}(M)$ strengthening Lemma 4.3.

5. Concluding remarks.

Let $m$ be as above. Using the fact that $M$ is simply connected and has the same
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cohomology ring as $S^{2}\times\cdots\times S^{2}$ it can be shown that $M$ has the same homoto]
type as $S^{2}\times\cdots\times S^{2}$ .

In dimension 4 it is known that $M$ is diffeomorphic to $S^{2}\times S^{2}$ , cf. [Au], [AH]
In general $M$ has the same Pontrjagin classes as $S^{2}\times\cdots\times S^{2}$ sinoe they have $t$

same Chem classes. In particular, in dimension 6, theorem of Wall [Wa] implies th
$M$ is diffeomorphic to $S^{2}\times S^{2}\times S^{2}$ .
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