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1. Introduction and main results.

In this paper we construct a system of a hard ball with radius r (e (0, c0)) interacting
with infinitely many point particles in R? (4> 2). All particles and the ball are undergoing
Brownian motions and when the distance between a particle and the center of the ball
attains a given constant r, they repel each other instantly. Saisho and Tanaka [5]
constructed a system of mutually reflecting finitely many hard balls by solving certain
stochastic differential equation of Skorohod type. Following the idea of [5], Saisho [4]
constructed a system of mutually repelling finitely many particles of m types: the number
of particles of type k is n, (3 r- ; m,=n< 00) and when the distance between two particles
of different type attains a constant r, they repel each other instantly. In case each type
consists of only one particle, the model of [4] is reduced to that of [5]. Our present
model in this paper is formally regarded as the case of m=2, n, =1 and n,= oo in the
model of [4].

Let M, be the set of all countable subsets n of R?\ U,(0) satisfying Ng(n)=
#(nnK)<oo for any compact subset K, where U/(x)={ye R?:|x—y|<r}. The
configuration space of a hard ball with radius r and infinitely many point particles is
defined by

X={x=(x0, X1, - ") ERH® : {x;—x0, i€ N} My},

where x, is the position of center of the hard ball and Xx; is that of the i-th point particle.
We put Wyo=C(w : [0, 0)—R?, w(0)=0) and W= Wg. Given x=(Xo, X;, - * *)€ X and
w=(wo, Wy, * - -)€ W, we consider the following equation (1.1) under the conditions
(1.2), (1.3) and (1.4):
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Eo(t) = X0+ Wo(1) + il J (Eo(s)— & (NL(S) ,
J= o

(1.1 ,
fi(t)=xi+Ws(t)+f (i) —Co(sDdLi(s),  ieN,
0
1.2) &ie ([0, ©)>RY), ieZ,,
(1.3) 1&(@)—So(®)|2r, ieN, te[0, ),
(1.4) L,, ie N are continuous nondecreasing functions with L,(0)=0 and

Li(?) =f Iy(1 $i(8) —So(s) DAL;(s) ,
0

where [, stands for the indicator function of a set 4.

Let Py be a Wiener measure on W, and P=P%*. We denote by u, a Poisson
distribution on R?\ U,(0) with intensity measure Adx, that is, for any disjoint system
{4, 45, -+, 4,,} < B(R*\ U/0)) such that | 4;|=f, dx< o0, i=1,2, - -, m, and >0,
N,,i=1,2, ---, m are independent random variables with

(“4 I ,l)"

HI(NA¢=n)_ X p(_A’IAll)9 i=1929 tt,m, nENU{O}'

Let I' be the map from X to M, defined by
I'(x)=I(xg, x1, " *)={x;—xo : ieN} .
Our main result of this paper is the following theorem.

THEOREM 1. Let fi be a probability measure on X such that I'ji=p, for some A>0,
where I'fi is the image measure of [i under the map I'. Then, for almost all (x, w) with
respect to P=[Q® P there exists a unique solution (((t), L(t)) of the equation (1.1).
Furthermore, the distribution of I'E(t) is p, for all t>0.

For the proof of Theorem 1, we first construct a system of a Brownian ball colliding
with finitely many Brownian particles on some torus by using a Skorohod equation
and the same procedure as that of [5] (Section 2). We also give an estimate concerning
the motion of the Brownian ball in a way uniform with respect to the number of the
particles (Lemma 2.6). The key idea of the proof of Lemma 2.6 is the decomposition
of additive functionals of reversible processes which is originally obtained by Lyons
and Zheng [2] for symmetric Markov processes associated with regular Dirichlet forms.
We generalize this decomposition by employing the penalty method given in [6].
Secondly we show that under the assumption of Theorem 1 the summation in the
equation (1.1) is in fact a finite sum for each >0 by Lemma 2.6. The proof of Theorem
1 is given in Section 3.
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2. Skorohod equation for a torus.

For M,ne N and re (0, 1/2), we define a domain D,, in R®*14 by
DM={x=(xO7 X1s ° "7 xn)ER(n+1)d : pM(xia x0)>r3 lﬁlsn} ’

where py(x;; Xo)=min{|x;—x,+ Mz|: ze Z%}. We also define the set 4, of inward
normal unit vectors at xedD,, by

'Mx=U'Mx,l’

I1>0
N aa={neR"* VY |n|=1, U(x—In) " Dyy=Z} .
First we prove the following lemma.

LeMMA 2.1. For each M, ne N, D, satisfies Conditions (A) and (B): -
Condition (A). There exists a constant l,>0 such that

N =N 1, D for any xeoD,, .

Condition (B). There exist constants 6 >0 and Be[1, o) with the following property: for
any x€ 0D, there exists a unit vector I such that '

,n)>1/B forany ne U Ny
yeUg(x) ndDas

where {-, - denotes the usual inner product in R®* 14,
In addition we have

./Vx={n tn)=1,n=) c'n’, cizO}, X=(Xg, X1, """, X,) €EOD,,,
iel
where

I={ie{1,2, .- -,n} : pul(xis xo)=r} »

L Fo— % %~ %o
i ,0,-+,0, ,0,---,0),
" <ﬁ J2r )

(i+1)-th

andx~=(0, 'fl’ tt T, in)eR(nfl)d With .E'EKM=[—M/2, M/Z)d and.fi=x,--—xo (mOdMZd)
fori=1, - -, n.

ProoF. We introduce the domain D, defined by
Dy={x=(xq, X1, "+, X,)ER®* 1 ; Ixi—x0|>r, 1<i<n}.

It is easy to see that
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2.1) - Dpy= ﬂzd(Do‘*'(Mzo,O, --+,0),
Z0€
(2.2) Dy=Dy+(Mzo+yo, Mz, +y,, -+, Mz, +y,),

Vzo, -+ *, 2,€ Z%, Vyo € R%, where A+x={y+x : ye A}. If xe dD,,, (2.1) and (2.2) yield
XedoD,, and

2.3) DynU,x)=Dyn U (X)) +x—X, a>0.
If we take ae (0, (M/2—r)/\/2), for any y € U (%) and zo€ Z¢\ {0}, we have
| yi—Yo+Mzo|=|y;—yo+ Mzo— (X;— Xo) + (%, — %) |
2| X;—Xo+ Mz |— | yi— X | —|yo—Xo|
>M2—/2|y—%|>r.
Thus, we have ¥edD, and
Dy N U (X)=Dy N U(X) .
Combining this with (2.3), we obtain
DynUx)=(Deg N U (X)+x—%.
Moreover, it has been proved in [4] that D, satisfies Conditions (A) and (B) for

ielo

./Vx(Do)={n Cm|l=1,n= ) c'm’ c"ZO}, x=(xg, Xy, """, X,)€0D, ,

where

Io={i6{1, 2, tt n} lei-—xo|=r} N

mi=<xo_xi’0, . ',O,M,O, . .,0).
J2r J2r

(i+1)-th

Thus, we obtain Lemma 2.1. []

For given we Wiy*!'=C(w: [0, c0)—»R"*'M w(0)=0) and xeD,, Skorohod
equation for D), with reflecting boundary condition is written in the form

2.4) (D=x+w@)+o@), >0,

where a solution (, ) should be found under the following two conditons (2.5) and
(2.6) (we also call { a solution of (2.4)).

@.5) Le C([0, 0)—D,).
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(2.6) @ is an R™* Y.yalued continuous function with bounded variation
on each finite time interval satisfying ¢(0)=0 and

¢(t)=f n(s)dlolls
0

|I<P|I:=J lonn (C() ] @l 5

]
where
n(s)e Ny if {(s)edDy,,
ll@|l,=the total variation of ¢ on [0, ¢] .

The existence and uniqueness of solutions of Skorohod equations were studied by
many authors (Lions-Sznitman [1], Saisho [3], Tanaka [8]). By Lemma 2.1 we can
apply Theorem 4.1 in [3] and obtain the following resuit.

PROPOSITON 2.2. For each ne N and M e N the Skorohod equation (2.4) for Dy
has a unique solution.

REMARK 2.1. We denote by {(t, x, w) the unique solution of the Skorohod equa-
tion (2.4) for D,;, xeD,,, we W3*1. From (2.2), for any y,e R? we see that x'=
(x0+y0a Xy +y0’ Y xn+yO)EDM and

;i@t, x', wy=g;(t, x, w)+yo, i=1,2,--,n.

By the same procedure as in Section 2 of [6], we can construct a continuous
function ¥V(x) on R®* 1 with the following properties (2.7), (2.8) and (2.9):

2D V(x)=V(x+ Mz) for any xe R®* V4 zeZ®*1Vd,

(2.8) V(x)= inf |x—y|? if inf |x—y|</,,
yeDn yeDm

2.9 VV is bounded and Lipschitz continuous .

Given we Wi*!, xe R™* 1 and me N, we denote by {™(¢) the solution of

(2.10) C"‘(t)=x+w(t)—% f VIV (C™(s))ds .

0
The following result is Theorem 2 in [6].

PROPOSITION 2.3 ([6]). Let T>0 and x™,meN be a sequence of D,, which con-
verges to x€ D,,. Then the process {™(t, x™, w) converges to the solution {(t, x, w) of the
equation (2.4) uniformly in te[0, T] as m— 0.

Now let 7,, be the natural projection from R? to T),=R%/MZ?=K,, and define
Tag R(n+ l)d_)TnM+1 by
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Tp(Xos X1, 5 Xp) =(pgXo, TpgXy, =, MpgX,,) -

Put Dy, =m,Dy, and £(t, x, w)=m,L (¢, x, w). We denote by Q the uniform distribution
on Dy,,. The following proposition is the immediate consequence of Theorem 1 in [6].

PROPOSITION 2.4. Under QQ PE™*" the process {(t, x, w) is a Dy,-valued reversible
diffusion process.

As a corollary of Proposition 2.4 we obtain the following result.

COROLLARY 2.5. Under Q®PS™* Y the process

ﬁ(ts X, W) = ({l(t’ X, W)—Eo(t, X, W), Y &z(ts X, W)_Eo(ta X, W))

is a stationary process with stationary measure Q,, where Q. , xo€ Ty is the n-fold
product distribution of the uniform distribution on T\, \ U,(x,).

The following lemma is a key part of the proof of Theorem 1.

LEMMA 2.6. Let T>0. Then there exists a positive constant C, which depends only
on d and T, such that

J exp( sup | {o(t, x, w)—o(0, x, w) )Q(dx) P+ Y(dw) < C .
5‘;‘ xwht! te[0, T]

PROOF. Let {™(z) be the solution of (2.10). Put C';"(t)=nuc ™() and introduce a
probability measure Q™ on T7%; ' defined by

1

O™(dx)=—exp(—mV(x))dx , Z,= j exp(—mV(x))dx .
Z m T'b'; 1

It is known that the process {™(¢) is a reversible Markov progess under Q" PE+1

(see for instance Lemma 7.1 in [6]). If we define an additive functional F, by

F,(c~'"(-))=c~'"(t)—f‘(0)+§ f VvV (R (s))ds ,
fhen
F(™(T- -))=:“"(T—t)—ﬁm+§ f VV (T —s))ds
0

o~ ~ m T ~
=C"‘(T—t)—C"'(T)+7 VV({™(s))ds .
Tt
S N ~ N e ean
Put w™(2) =w™(t, x, w)=F({™(T—-)). Under Q"®PZ"* 1, by the reversibility of the
~ N ~
process {™(z), w™(¢) has the same distribution as that of F,({™(+))=mn,w(¢) and so is a
Brownian motion on 7%, !. Using Proposition 2.3, for any sequence x™, me N, of D,,

which converges to xe D,, we have
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S
w™(t, x™, w)—->w(t, x, w) , uniformly in z€[0, T] as m— 0 ,

where W(t, x, w)=w(t) =T —t) —{T) + ntp;(T— t) — 7,,0(T). Then we see that w(z) is
a Brownian motion on 7%/ ! under Q®P5"* 1. Since

0O~ E@) = Tawlt) 4 (HT—1)—0(T ),

we obtain Lemma 2.6 from Doob’s inequality. [

REMARK 2.2. From Remark 2.1 we see that the distribution of the process
7, x, w), 6,,®Q,, ®PR"* V) does not depend on x,€ Ty, and coincides with that of
the process (#(t, x, w), QQ P S+ 1),

3. Proof of Theorem 1.

In this section we give a proof of Theorem 1. Without loss of generality we can
assume r € (0, 1/2). First we introduce a system of a Brownian ball colliding with finite-
ly many Brownian particles. Let M, neN. Given w=(wq, wy, - -+, w,)e Wi*! and
x=(xg, X1, ***, X, ) ER®* V9 with p,(x; x0)>r, 1<i<n, we consider the following
equation (3.1) under the conditions (3.2), (3.3) and (3.4):

&3 () =Xo+wo(t) + En: > Jt(f’é’(S)—éj-“(S)JrMZ)dL?,’z(S),,
4Jo

(3.1) mheE
et =stm@+ T [ @O-EO+MILES . 1<izn,
zeZ4 Jo
3.2) EMe C([0, ©)->RY), 0<i<n,
(3.3) Pu(CH(®), ES W) =r, 1<i<n, te[0, ),
(3.4) LY, ze Z% 1<i<n, are continuous nondecreasing functions with

LY. (0)=0 and
L¥(1)— j 1 (| E3(5) — EM(s) + Mz )dLY.(s) .
[¢]

The following Proposition is obtained by the equivalence of the Skorohod equation
(2.4) for D), and the equation (3.1), which can be shown by the same procedure as
that of the proof of Theorem 4.1 in [5].

PROPOSITION 3.1. Foreachne N and M € N the equation (3.1) has a unique solution.

We denote the unique solution of the equation (3.1) for x and w by E¥(¢, x, w) =
(&M@, x, w), 0<i<n), LM(t, x, w)=(LY(t, x, w), 1<i<n, ze Z").
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For x=(xq, x;, - - -)e X and w=(wy, w,, - - )€ W we put
{io, il’ Tt in}={iGN: xi—xoeKM} ’ 0=i0<i1< c <in .
We also put xp, =(x;,, x;,, * ", X;,), Wyy=(wW;,, wy,, -, w; ) and

EM(t, xp0, Wirp) if i=i, for some ke {0, 1, ---, n},

EM@, x, W)={

x;+wi(t), otherwise ,
> LY (¢, X0 Wap) 5 if i=i, for some ke{l,2, ---, n},
LMt x, w)=| =%+
0, otherwise .

For T'>0 and M € N we introduce measurable subsets A,(M), A,(M), A;(M) and A(M)
of Xx W by :

Al(M)={(x, W) . EiGN, 32‘6[0, m S.t. xi—XOEKM, x,-—x0+wi(t)¢K3M/2} 9
A (M)={(x,w) : JieN, Ite[0, T]s.t. x;—xo¢ Ky, x;—Xo+wWi(1) € Kpy2}

Ay(M)={(x, w) : Sup |8/, x, w)—xo|> M8},

AM)=A4,(M) L A (M) L A3(M) .
ReMARK 3.1. For any (x, w)e A(M) and any t€[0, 7] we have

min | £, x, w)—CM(E, x, W)+ Mz|>r,  ieliy, L0},
zeZ4\{0}

|EM(@, x, w)—EM(t, x, w)|>r, i¢{iy, i),
and so (&EM(1, x, w), LM(t, x, w)), t€[0, T] is the unique solution of (1.1).

LEMMA 3.2.
Y. P(AM))<oo.

M=1

PROOF. First put A(M)={(x,w): #('x N Ky)>exp(M)}. Since I'jfi=pu;, by
Chebychev’s inequality we have

P(AM))<iM?exp(— M) .
Using Doob’s inequality for the submartingale (exp(8] w(¢)|), Pw), we obtain
P(A(M)) < P(A(M)) + P(A,(M) \ A(M))

< AMexp(— M) +exp(M)Py( sup |w(t)|>M]/4)
te[0,T]

<exp(—M){AM’+(T)},
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where ¢(T) = [, exp(8| w(T)|)Py(dw). Thus,
(3.5) Mi P(A (M)< o .

We introduce the measurable sets A, (M), ke N defined by
Ay (M)={(x,w) : Jie N, It€[0, T] s.t.

Xi—X0€ Kyt 1\ Kypwrs x;—xo+w; (1) €Ky )n} -

Then we have

PUL)S 3. P 4(M))

0

<Yy {P(A(M+k))+exp(M+k)PW( s{gpﬂlw(t)|>%(M+ 2k))}

k=0
< i exp(— (M + k)){A(M + k)* + exp(—2k)c(T)} ,
" k=0
which implies
(3.6) i P(A,(M))< oo .
M=1

We denote by p; , a Poisson distribution on K, \ U,(0) with intensity measure
Adx. Noting that the distribution of I'(x,,) under £ is u; 4, by the equivalence of the
equations (2.4) and (3.1) we obtain

(3.7 P(Ay(M))= P(tes[gpn | £8/(t, xpr, Wag) — X0 |> M|8)

n

—~~ 3 A
= f Ho(dxo) exp(—AKy \ U 0)) 2. —
Re n=0 Nn!

J dx, - dx,PR"*D( sup |{o(t, x, w)—xo|>M/8),
(Kar \ Upr(0) + x0)” - te[0, T}

where 715(dy) = fi(x, € dy). Using Remark 2.1 and Lemma 2.6, we have

(3-8) dxy - dx, PRI sup | {o(t, x, w)—xo | > M/8)
te[0,T]

J‘(KM \ Ur(0) +x0)"

=J dx; -+ dx PRtV sup |{o(t, x, w)—xo|> M/8)
(Tra \ Up(O))" te[0,T]

=|Tu \ U,0)I"Q@PF"* 1)(,:[ng] 1 {o(t)~Co(0) | > M/8)
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<| Ty \ U,(0)|"C exp(— M/8) .
Combining (3.7) and (3.8), we obtain
P(A3(M)) < Cexp(—M/8)

and
3.9 i P(A;(M))< oo .
M=1

Thus, Lemma 3.2 is derived from (3.5), (3.6) and (3.9). O

ProOOF OF THEOREM 1. Using Borel Cantelli’s lemma and Lemma 3.2, we obtain

P( U N A(M)‘)=1 :
m2>21 M>m

Thus, for almost all (x, w) with respect to P there exists M,e N such that (x, w)e
AM)', M>M,, and so

(¢, x, w), L(1, x, w)) =;i_{1f:° (&M@, x, w), LM(t, x, w))

=(EMo(t, x, w), LMo(t, x,w)),  te[0,T].

Thus, we obtain the first assertion of Theorem 1 from Remark 3.1.
Since the distribution of I'x, is u, , under fi, by Corollary 2.5 and Remark 2.2
we see that under P the process

”M(ts X, W)= {nMcé‘{(t’ xa W)—TCMc(L)[(t, x9 W) B iE {ils Tty ln}}
is a stationary process whose stationary measure is a Poisson distribution on T, \ U,(0)
with intensity measure Adx. Since
F{(t, X, W) () KMls_,.=ﬂM(t, X, W) N KM/B—r

for (x, w)e A(M)-, te[0, T], we see that the distribution of ;;T‘ (t, x, w) vaguely converges
to I'fi as M — oo. Therefore, the distribution of I'é(¢) is u;. O
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