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Introduction.

Let $X$ be a hypersurface in $P^{3}$ of degree $d$ defined over an algebraically closed field
$k$ of characteristic $0$ . For $d\leq 4$ , singularities on $X$ and properties of the resolution $\tilde{X}$ of
$X$ have been studied. For example, if $X$ is normal, then it is known that $\tilde{X}$ is birationally
equivalent to one of the following surfaces:

$d=1,2$ : a rational surface;
$d=3$ : a rational surface or an elliptic ruled surface;
$d=4$ : a $K3$ surface, a rational surface, an elliptic ruled surface or a ruled surface

over a curve of genus 3.
(The case of $d=1$ or 2 is clear. For $d=3$ , see Hidaka-Watanabe [3], and for $d=4$,
Umezu [8]. The argument in [8].can also be applied to the case of $d\leq 3.$)

On the other hand, not many things are known about the case of higher $d$. The
purpose of this paper is to prove the following

MAIN THEOREM. Let $\dot{X}$ be a normal quintic surface and $\tilde{X}$ denote its resolution. If
$X$ is ofgeneral type, then its irregularity $q(\tilde{X})$ vanishes.

REMARK. As we see in the following example, this result is not available for $d\geq 6$ .
EXAMPLE (Zariski). Let $(X_{0} : X_{1} : X_{2} : X_{3})$ be homogeneous coordinates of $P^{3}$ and

put

$X=\{X_{3}^{6}-(F(X_{0}, X_{1}, X_{2})^{2}+G(X_{0}, X_{1}, X_{2})^{3})=0\}$

where $F$ and $G$ are homogeneous polynomials of degree 3 and 2 respectively. Then the
irregularity of a resolution $\tilde{X}$ of $X$ is positive ([13]). The singularity of $X$ corresponds
to the singularity of the curve $C=\{F(X_{0}, X_{1}, X_{2})^{2}+G(X_{0}, X_{1}, X_{2})^{3}=0\}\subset\{X_{3}=0\}\simeq P^{2}$ .
If $F$ and $G$ are general, the singularity of $C$ is at the six points of $\{F(X_{0}, X_{1}, X_{2})=0\}\cap$

$\{G(X_{0}, X_{1}, X_{2})=0\}$ and each corresponding singular point on $X$ is defined locally by
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the equation $z^{6}=x^{2}+y^{3}$ . The exceptional curve of the minimal resolution of thi:
singularity is a smooth elliptic curve with self-intersection uumber $-1$ . Therefore, $i$

$\pi$

$\tilde{X}\rightarrow X$ is the minimal resolution of $X$, then we have $K^{2}ff=(\pi^{*}\mathscr{O}_{X}(2))^{2}-6=18$ , and $sc$

$\tilde{X}$ is of general type.

This paper is based on the report [9]. Yang [11] got the same result as a corollar]
of his close analysis of singularities on quintic surfaces of general type. Our method $i_{\iota}($

rather straightforward to the one aim, and also seems to be applicable to other surfaoe:
of lower degree. In fact, we are to use similar method to investigate some normal quinti $($

surfaces which are not of general type [6].

\S 1. Preliminanies.

In this section, we summarize some results about the invariants of normal two
dimensional singularity. Let $(Y, y)$ be a normal two dimensional singularity, $\pi:\tilde{Y}\rightarrow Y$

its minimal resolution and $A=\pi^{-1}(y)$ the exceptional set.

DEFINITION 1 (Wagreich [10]). We put

$p_{g}(Y, y)=\dim_{k}(R^{1}\pi^{*}\mathcal{O}\gamma)_{y}$ : the geometric genus of $(Y, y)$ ,

$p_{a}(Y, y)=$
$\sup_{D>0_{A},\epsilon uppD\subseteq 4}p_{a}(D)$

: the arithmetic genus of $(Y, y)$ .

By the definition we have $p_{g}(Y, y)\geq p_{a}(Y, y)\geq 0$ .
THEOREM (Artin [1]). $p_{g}(Y, y)=0$ if and only if$p_{a}(Y, y)=0$ .
Since we only have to deal with singularities with positive geometric genus, we see

from this theorem that it is sufficient to consider singularities with positive arithmetic
genus.

DEFINITION 2. We say that the singularity $(Y, y)$ is numerically Gorenstein if there
exists a divisor $K^{\prime}$ on $\tilde{Y}$ which is supported on $A$ and satisfies $A_{i}K^{\prime}=A_{i}K_{Y}$ for any
component $A_{i}$ of $A$ .

The following Lemma was pointed out by Y. Koyama.

LEMMA 1. If $(Y, y)$ is numerically Gorenstein, then $p_{a}(Y, y)\leq-K^{\prime 2}/8+1$ . In
particular we have $p_{a}(Y, y)\leq 1$ if $K^{\prime 2}\geq-7$ .

$PR\infty F$ . Let $D$ be a divisor with support on $A$ . Then we have

$p_{a}(D)=(D^{2}+DK^{\prime})/2+1=(D+K^{\prime}/2)^{2}/2-K^{\prime 2}/8+1$ .
By the negativity of the intersection matrix of $A$ , we get the desired inequality.
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DEFINITION 3 (Wagreich [10]). If $p_{a}(Y, y)=1,$ $(Y, y)$ is said to be an elliptic
singularity.

As for an elliptic singularity, there exists a unique minimal divisor $E$ on $\tilde{Y}$ among
effective divisors $D$ which is supported on $A$ and satisfies $p_{a}(D)=1$ . The divisor $E$ is
called the minimal elliptic cycle (Laufer [4]). We define a sequence of effective divisors
$\{Z_{1}, \cdots, Z_{l}\}$ on $\tilde{Y}$ which is called the elliptic sequence as follows (Tomari [7], Yau
[12]). For $Z_{1}$ we choose the fundamental cycle. Suppose that we have defined from $Z_{1}$

to $Z_{k}$ . If $Z_{k}E<0$ , we define $\{Z_{1}, \cdots, Z_{k}\}$ as the elliptic sequence. Assume $Z_{k}E=0$ . Then
let $B_{k+1}$ denote the connected component containing $E$ of the sum of irreducible
components $A_{i}$ of $A$ satisfying $Z_{k}A_{i}=0$ . We define $Z_{k+1}$ to be the fundamental cycle
of $B_{k+1}$ . Since supp $Z_{k}\mp\supset suppZ_{k+1}$ , we can define the elliptic sequence $\{Z_{1}, \cdots, Z_{l}\}$ as
a finite sequence.

First Yau defined the elliptic sequence on the minimal good resolution. But his
definition is valid for our case too, and his results which we need here are reformulated
as in the Theorem below (The proof goes similarly as in [12], or even more simply.).
We also refer to Tomari [7] as a direct reference, in which he extended the notion of
the elliptic sequence to any resolution and showed its properties.

THEOREM (Tomari [7], Yau [12]). Let $(Y, y)$ be a numerically Gorenstein elliptic
singularity and $\{Z_{1}, \cdots, Z_{l}\}$ its elliptic sequence. Then we have

(1) $p_{g}(Y, y)\leq l$,
(2) $K^{\prime}=-\sum_{i\Leftarrow 1}^{l}Z_{i}$ .

COROLLARY 1. If $(Y, y)$ is a numerically Gorenstein elliptic singularity, we have
$p_{g}(Y, y)\leq-K^{\prime 2}$ .

$PR\infty F$ . From (2) of the Theorem and the definition of the elliptic sequence, we
have $K^{\prime 2}=\sum_{i=1}^{l}Z_{i}^{2}\leq-l$. Combining this with (1) of the Theorem, we get the result.

COROLLARY 2. Let $(Y, y)$ be as above. Then there exists an effective divisor $E$

supported on $A$ and satisfying the following conditions:

$p_{a}(E)=1$ , $p_{g}(Y, y)E\leq-K^{\prime}$ .
$PR\infty F$ . The minimal elliptic cycle $E$, which is described in the definition of the

elliptic sequence, satisfies these conditions. The first one is obvious. By the definition
of the elliptic sequence, we see that $E\leq Z_{i}$ for all $i$. Hence the second condition follows
from (1) and (2) of the Theorem.

\S 2. The proof of the main theorem.

In the sequel we fix the notations as follows:
$X\subset P^{3}$ : a normal quintic surface
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$\pi:\tilde{X}\rightarrow X$ : the minimal resolution
$q=q(\tilde{X})=\dim H^{1}(\tilde{X}, \mathcal{O}X)$

$p_{g}=p_{g}(\tilde{X})=\dim H^{2}(\tilde{X}, \mathscr{O}X)$

$p=\dim_{k}R^{1}\pi_{*}\mathscr{O}\chi=\sum_{x\epsilon X}p_{g}(X, x)$

$H\subset X$ ; a general hyperplane section of $X$ (hence a non-singulat curve of
genus 6 with $\omega_{X}\simeq \mathscr{O}_{X}(H))$

$\tilde{H}=\pi^{-1}(H)\simeq H$

$\tilde{D}$ : the effective divisor on $\tilde{X}$ such that $Kff\simeq \mathscr{O}\chi(\tilde{H}-\tilde{D})$ (the support of $\tilde{D}$

coincides with $\bigcup_{p.(X.x)>0}\pi^{-1}(x))$

ASSUMPTION. We assume that $\tilde{X}$ is of general type.

Let us consider the following exact sequence:
$0\rightarrow H^{1}(X, \mathscr{O}_{X})\rightarrow H^{1}(\tilde{X}, \mathcal{O}\chi)\rightarrow R^{1}\pi_{*}\mathscr{O}\chi\rightarrow H^{2}(X, \mathscr{O}_{X})\rightarrow H^{2}(X, \mathscr{O}\chi)\rightarrow 0$ .

Since $H^{1}(X, \mathscr{O}_{X})=0$, we have

$p_{g}=4-p+q$ . $(*)$

On the other hand, since $X$ is of general type, $0<\chi=1-q+p$, and so by $(*)0\leq p\leq 4$ .
LEMMA 2. If $q>0$ , then $0<q<p-1\leq 3$ .
$PR\infty F$ . We have already got $p-1\leq 3$ . Suppose $q>0$ . Then we have $0<q\leq p$ from

the above exact sequence. So it is enough to deduce a contradiction by assuming $q=p$
or $p-1$ . If $q=p$, then $p_{g}=4$ by $(*)$ and so

$H^{O}(\tilde{X}, \mathscr{O}_{X}(K\chi))=H^{O}(\tilde{X}, \mathscr{O}p(H-\tilde{D}))=H^{0}(X, \mathscr{O}ff(\tilde{H}))$ .
Sinoe $|\tilde{H}|$ has no base points, this implies $\tilde{D}=0$ and hence $q=p=0$, a contradiction.

If $q=p-1$ , then $p_{g}=3$ . Therefore there is a unique singular point $x\in X$ such that
$p_{g}(X, x)>0$ and moreover

$H^{0}(\tilde{X}, \mathscr{O}ff(K\chi))=\{\pi^{*}f|f\in H^{0}(X, \mathscr{O}_{X}(H)), f(x)=0\}$ .
Hence $|K\chi|$ has no fixed components exoept for those of $\pi^{-1}(x)$ . Therefore, if $X$ has an
exceptional curve of the first kind, it must lie on $\pi^{-1}(x)$, contradicting our hypothesis
that the resolution $\pi:X\rightarrow X$ is minimal. Hence $\tilde{X}$ is a minimal surface. But then, from
$2p_{g}-2=4\geq\tilde{H}^{2}+\tilde{D}^{2}=K^{2}ff$, we obtain $q=0$, again a contradiction. (For the case of
$2p_{g}-2>K^{2}r$ c.f. Bombieri [2]. As for the case of $2p_{g}-2=K^{2}z$ in general, we refer to
Miyanishi-Nakamura [5]. But in the present situation we can also prove as follows.
By $4=\tilde{H}^{2}+\tilde{D}^{2}$ we have $\tilde{D}^{2}=-1$ and hence $x$ is an elliptic singular point by Lemma
1 $(K^{\prime}=-\tilde{D})$ . Applying Corollary 1, we obtain $p=p_{g}(X, x)=1$ and so $q=p-1=0.$)

Let $\overline{X}$ be the minimal model of $X$ and $\mu;\tilde{X}\rightarrow X$ the induced blow-down. If $q>0$,
by Bombieri [2] we have $2\chi\leq K_{X}^{2}$, and hence, by Lemma 2 and $(*)$ , one of the following
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cases occurs:
$q$ $p$ $\chi$

$K_{X}^{2}$

(I) $\left\{\begin{array}{ll}2 & 4 1 \geq 2\\1 & 4 1 \geq 2\end{array}\right.$

(II) 1 3 2 $\geq 4$

LEMMA 3 $(q\geq 0)$ . Assume that
$K_{X}^{2}\geq 2$ [resp. $\geq 3$] and $\tilde{D}^{2}\leq-4$ [resp. $\leq-3$].

Then there exists on $\tilde{X}$ a unique exceptional curve $E$ of the first kind, and $X$ is obtained
from $\tilde{X}$ by contracting E. Moreover the following equations hold:

$K_{X}^{2}=2$ [resp. 3], $\tilde{D}^{2}=-4$ [resp. $-3$] ,

$\tilde{D}\mu^{*}K_{X}=2$ [resp. 1], $\tilde{D}E=2$ .
$PR\infty F$ . Note first that $\tilde{H}$ and $\mu^{*}K_{X}$ are numerically independent. In fact, if $\tilde{X}=\overline{X}$,

then $\tilde{H}\tilde{D}=0$ and $Kp=-D^{2}>0$ ; if $\tilde{X}\neq\overline{X}$, then for any (-l)-curve $\Gamma$ on $\tilde{X}$ we have
$\Gamma\mu^{*}K_{X}=0$ and $\Gamma\tilde{H}>0$ because $\tilde{X}$ is the minimal resolution of $X$. Put $\tilde{H}\mu^{*}K_{X}=d$ and
$(\mu^{*}K_{X})^{2}=a$ . The Hodge index theorem implies

$\left|\begin{array}{ll}5 & d\\d & a\end{array}\right|=5a-d^{2}<0$ .

Since $a\geq 2$ , we have $d\geq 4$ . Moreover, let $E$ denote the divisor on $\tilde{X}$ such that
$\tilde{H}-\tilde{D}\simeq K\chi\simeq\mu^{*}K_{X}+E$ ,

that is, $E$ is the sum of the total transforms on $\tilde{X}$ of the exceptional (-l)-curves, one
from each stage of the successive blow-ups $\mu$ . Then we have

$5=\tilde{H}Kff=d+\tilde{H}E$ , $HE\geq 0$ .
If $d=5$ , then $\tilde{H}E=0$ . This means $E=0$ and so $\tilde{X}=\overline{X}$, since otherwise $E$ contains at least
one (-l)-curve $\Gamma$ , which necessarily intersects $\tilde{H}$. But this leads us to a contradiction
because $\tilde{X}=\overline{X}$ is impossible under our assumption:

2 [resp. $3$] $\leq K_{I}^{2}$ , $K^{2}ff=5+\tilde{D}^{2}\leq 1$ [resp. 2].

Therefore we obtain $d=4$ and $\tilde{H}E=1$ . From $\tilde{H}E=1$ and the definition of $E$, we can
deduce that $E$ is reduced and irreducible and that by contracting $E$ we obtain $\overline{X}$. Hence
we have 1 [resp. $2$] $\geq 5+\tilde{D}^{2}=K^{2}ff=K_{X}^{2}-1\geq 1$ [resp. 2], and so $K_{X}^{2}=2$ [resp. 3], $\tilde{D}^{2}=-4$

[resp. $-3$]. Moreoverwe have $\tilde{D}E=2$ since-l $=KffE=\tilde{H}E-\tilde{D}E$, and $\tilde{D}\mu^{*}K_{X}=2$ [resp.
1] since 4 [resp. $3$] $=K\chi\tilde{D}=\tilde{D}\mu^{*}K_{I}+\tilde{D}E$.

$PR\infty F$ OF THE MAIN TfflOREM. Case (II): If $\tilde{D}^{2}\geq-2$ , then by Lemma 1 and
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Corollary 1 we have $p\leq 2$ , a contradiction. If $\tilde{D}^{2}\leq-3$ , we are also led to a contradictio
since then we have $K_{X}^{2}=3$ by Lemma 3.

Case (I): If $\tilde{D}^{2}\geq-3$ , we get a contradiction as above, so $\tilde{D}^{2}\leq-4$ . Applyin
Lemma 3, we have that there exists on $\tilde{X}$ an exceptional curve $E$ of the first kind whos
contraction coincides with the morphism $\mu:\tilde{X}\rightarrow\overline{X}$ and that $\tilde{D}^{2}=-4$ . The’arithmeti
genus of each singular point of $X$ is not greater than 1 by Lemma 1, and hence, $b$

Corollary 2, there exist on $\tilde{X}$ effective divisors $E_{1},$ $E_{2},$ $E_{3},$ $E_{4}$ such that
(1) $p_{a}(E_{i})=1(i=1, \cdots, 4)$ ,
(2) $\sum_{i=1}^{4}E_{i}\leq\tilde{D}$ .

Since $\sum_{i=1}^{4}E_{i}\tilde{D}\geq\tilde{D}^{2}=-4$ by (2) and $0>E_{i}^{2}=E_{i}\tilde{D}$ by (1) and (2), we hav
$E_{i}^{2}=E_{i}\tilde{D}=-1(i=1, \cdots, 4)$ . Hence

$1=-E_{t}\tilde{D}=E_{i}K\chi=E_{i}\mu^{*}K_{X}+E_{i}E$ $(i=1, \cdots, 4)$ ,

where we note that $E_{i}\mu^{*}K_{X}\geq 0$ and $E_{i}E\geq 0$ . On the other hand $\tilde{D}\mu^{*}K_{X}=2$ and $\tilde{D}E=$

by Lemma 3, and so there exists an $i$ such that $E_{t}E=1$ and $E_{i}\mu^{*}K_{X}=0$ . For this $i$ we have
$(E_{i}+E)^{2}=0$ , $(\mu^{*}K_{X})^{2}=2$ and $(E_{i}+E)\mu^{*}K_{X}=0$ ,

which contradicts the Hodge index theorem. Thus we complete the proof.
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