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The Sequence of Luxemburg Norms
of Derivatives
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Abstract. In this paper we prove that the results obtained in [1] for L,-norm are still valid for an
arbitrary Luxemburg norm.

1. Introduction.

Let G = R be some domain and let ¢(¢): [0, + c0)—[0, + c0] be an arbitrary Young
function [2-3], i.e., ¢(0)=0, ¢(¢)=>0, ¢(¢)#0 and ¢(7) is convex. We denote by L4(G)
the set of all measurable functions f(x) on G such that

||f||,,,=inf{,l>0 : f o( f(x) |//1)a'xsl}<oo .
G

Then L4 (G) with the Luxemburg norm | - || ¢ 1s a Banach space. L,(G) is called Orlicz
space.

Recall that |- [,=] ||, when 1<p<oo and ¢(¢)=t?; and | - le=1"*llo When
&(t)=0 for 0<r<1 and ¢(r)= oo for ¢t> 1. Orlicz spaces are often arised in the study
of nonlinear problems (see, for example, [4-5]).

We obtained the following result in [1]:

THEOREM A. Let 1<p<oo and D"f(x)eL,(R), n=0,1, ---. Then there always
exists the limit

dy=lim | D"f| ",

and moreover
dy=0,=sup{| | : éesuppf (&)},
where the last equality is the definition of o + and f(&) is the Fourier transform of the

Sunction f(x).

Received October 22, 1992




142 HA HUY BANG AND MITSUO MORIMOTO

In this paper we prove that Theorem A still holds when we replace Lebesgue norm
I - Il , by general norm || - ||4. In [1] we used the Kolmogorov-Stein inequality [6-8] to
prove the existence of the limit d;. Unfortunately, we do not know the generalization
of the Kolmogorov-Stein inequality in the case of an arbitrary Luxemburg norm.
Therefore, here we had to use a new technique for the proof of the corresponding result.

Studying the properties of functions from L(G), without loss of generality we may
assume that ¢(¢) is left continuous. Actually, in the contrary case, there exists a point

t,>0 such that

lim_ () <Pp(ty)<o, P()=00, t>t,.

We put
¢(t) ’ t # tO
lI/(t)= ‘_ljfn_ ¢(t) , t=to .
Then y(¢) is left continuous, and it is obvious that Ly (G)=Ly(G)and | |lg=1 " .
2. Results.

THEOREM 1. Letn,<n,<:-- besome sequence of natural numbers and f(x) € Ly(R)
such that D™f(x)e Ly(R), k=1, 2, - - -. Then there always exists the limit

d;=lim | D™f g,
k— oo

and moreover
dy=a,=sup{|¢| : Eesuppf(&)} .

To prove this theorem we need the following results:

LeEMMA 1. Let g(x)€ Ly(R). Then g(x)e L, ;,(R).

PROOF. Let ¢>0 and y>0 be some number such that

¢(/(lglls+€)>0.
Then it follows from ¢(at)>ad(t), a>1, te[0, o) that
¢(/(llglls+2)) |g(x) |/ydx < j : ¢(19(x)1/(liglls+e))dx<1.

lg(x)| 27
Hence g(x)e L, ;,(R). (q.ed.)
Let 6>0. Denote by E, the set of all entire functions of exponential type ¢ and




LUXEMBURG NORMS 143

by M, 4 the space of all functions from E, which as functions of x € R belong to L4(R).
We have the following result [9, p. 191]:

LEMMA 2. Let f(z)eE, and
s+2=n 1/p
sup {J | f(x) l"dx} <A<

—w<s<o | Jg
with some p> 1. Then for each xe R
| f()<@n)'"24(1+a'/?),
where p~'4+q 1=1.
LeMMA 3. Let f(x)eM, ,. Then f(x) is bounded on R.

PrOOF. Without loss of generality we may assume that

) f " (£ Ddx<1.

Then using Jensen’s inequality we get for each se R

¢(2i f BT ldx)si f T 80£ () Dax
4 2n

s s

1 (= 1
sﬂ—f_wﬂlf(x)l)dxsg-

Therefore, there exists a number 4 < oo such that

s+2n
sup f | f(x)|dx<A

— oo <s< oo s

because of lim,_, ,, ¢(¢) = co. Therefore, it follows from Lemma 2 that f(x) is bounded.
(q.ed)

REMARK 1. We can prove that lim,, |, ,, f(x)=0if f(x)e M, , and ¢(¢)>0, ¢>0.
Actually, without loss of generality we may suppose that (1) is satisfied. Further, assume
the contrary that there exist a number ¢>0 and a sequence | x,|— oo such that

(2) Lfcn0|2320, n=1,2,---.

Taking account of

f(X)—f(x..)=r f'®de, n=1,2,---

and the Bernstein inequality [9, p. 183]
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1/ e <0l flleo »
we get
| f)—fxD) <o fllol x—x0], n=1,2,---.
- Put’
r=clo|| fll -
Then
A3) Jfx)|=c for |x—x,|<r, n=1,2,---

because of (2) and

| fG)—f(x) <ol fllol X—x41<c, n=1,2,---.
On the other hand, without loss of generality we may assume that
)] Xpi1—Xp2T, n=1,2,---.
Combining (3) and (4), we get

Xn+1

1>~ gaseas= £ [T 60 s0onaxz 5 rae=co.

Xn

We thus arrive at a contradiction.

REMARK 2. Inorderthatlim,, ., f(x)=0, the condition ¢(z) >0, t>0is necessary
because of f(x)=ceM, 4, 0<c<oo in the contrary case.

We have the following Bernstein inequality for Luxemburg norm:

LEMMA 4. Let f(x)eM, ,. Then

(5) ID"flle<o”lflleg, n=1,2,---.
Proor. Using Lemma 3, the following interpolation formula [9, p. 188]
o & (=11 ( T )
"(xX)=—= —— flx+—(k—1/2

S n? k=z—oo (k—1/2)? s o ( 2)

and
o0 1 2
X G—1/22 "’

we immediately get (5). (q.ed.)

REMARK 3. Itis not difficult to show that Lemmas 1-4 and Remarks 1-2 still hold
for n-dimensional case.
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PrOOF OF THEOREM 1. It follows from Lemma 1 and the Sobolev imbedding
theorem that f(x)e C*(R).
We shall begin by showing that

© lirglﬁﬂlp | D™f g™ <o, .

It is enough to prove (6) for o, < 0o. Then using f € &’ (this follows from the proof of

Lemma 1) and the well-known Paley-Wiener-Schwartz theorem, we obtain that f is an

analytic function of exponential type o ,. Therefore, by virtue of Lemma 4 we get (6).
Now we claim that

(7) lim inf | D™} 2 0,

We divide the proof into two cases.

Case 1 (6, < 0). Assume the contrary that (7) does not hold. Then there exist a
number 0<é <o, and a subsequence {k,,} (for simplicity of notation we assume that
Kn=m, m=1,2, ---) such that

(8) ID™fll}™<6,—~6, k=1,2,--
Let £é>0 and
1/k
) ﬁ‘(x)=kJ f(x+1t)de, k=1,2, -
0

Then by Jensen’s inequality and f,(x) e C*(R) we obtain

¢< | D) | )Skr”‘¢(lD"f(x+t)l)dt
IDfllg+e 0 ID™fll,+e

® ID"f(x+t)l> _ f‘” ( | D (1) )
k ——  Mdt=k — - ldt<k
= I-w¢(llDVII¢+8 =)o, e )

fork=1,2, ---andn=0, 1, - - -. Therefore, it follows from the left continuity of ¢(¢) that

¢(1Dm(x)')sk’ k=1,2,---; n=0,1,---.
1D llg
Therefore,
ID"fill
(10) ¢(—————~——>Sk, k=1,2,---; n=0,1,---.
ID"f |l

On the other hand, it is easy to check that o,<lim infy , ., 6,. Therefore, there
exists a number m such that

an 67, 20;—0/4.
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Further, it follows from Theorem A that

im | D", | =0y, .

Therefore, there exists a number k, such that
- (12) ID™full ™20y, —6/4,  k2k,.
Combining (8), (10), (11) and (12), we get

1Dyl o=32)")
mzo D™, )Z"’(( a—s) ) ke

This contradicts lim,_, ., ¢(¢) = c0.

Case 2 (6,=00). Assume the contrary that (7) does not hold. Then there exist
a number C< oo and a subsequence {k,} (for simplicity of notation we assume again
that k,,=m, m=1, 2, - - -) such that

(13) ID™fllg™<C,  k=1,2,---.

On the other hand, it is easy to check that lim,,., 0, =oco. Therefore, there exist
numbers m and k, such that

ID"full™=C+1,  k2k,.
Therefore, using (10) and (13) we get

I D™f ol oo C+1\™
m2¢(m)2¢((7) ) k2ko.

This contradicts lim,_, ., ¢(¢) = co0. The proof is complete.
For the periodic case, we can prove easily the following result:

THEOREM 2. Suppose that f(x)e C*(R) is an arbitrary 2n-periodic function and
@(t) is an arbitrary Young function. Then there exists the limit

dy=lim |IDf 3",

and moreover
d;=a,=sup{|k| : kesuppf(&)},
where || - |l is the Ly (0, 2r)-norm.
REMARK 4. Theorem 1 still holds for any (L, /9)-amalgam cases.

REMARK 5. Theorem 1 gives us certain information about the support of the
Fourier transform of a function when we know the behaviour of a subsequence of
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L,-norm of its derivatives.

REMARK 6. Let f(x)eL,(R) and 6,<oco. Then D"fix)e L,(R), n=1,2, - -.
Therefore, using tables of the Fourier transform, in many cases, we can find the limit
d; without any concrete calculation.

REMARK 7. We have obtained some results in this direction for n-dimensional
case, but the picture is different. It will be published elsewhere.
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