The Sequence of Luxemburg Norms of Derivatives

Ha Huy BANG and Mitsuo MORIMOTO

Institute of Mathematics, Hanoi, and Sophia University

Abstract. In this paper we prove that the results obtained in [1] for L_p -norm are still valid for an arbitrary Luxemburg norm.

1. Introduction.

Let $G \subset \mathbb{R}$ be some domain and let $\phi(t)$: $[0, +\infty) \to [0, +\infty]$ be an arbitrary Young function [2-3], i.e., $\phi(0) = 0$, $\phi(t) \ge 0$, $\phi(t) \ne 0$ and $\phi(t)$ is convex. We denote by $L_{\phi}(G)$ the set of all measurable functions f(x) on G such that

$$||f||_{\phi} = \inf \left\{ \lambda > 0 : \int_{G} \phi(|f(x)|/\lambda) dx \le 1 \right\} < \infty.$$

Then $L_{\phi}(G)$ with the Luxemburg norm $\|\cdot\|_{\phi}$ is a Banach space. $L_{\phi}(G)$ is called Orlicz space.

Recall that $\|\cdot\|_{\phi} = \|\cdot\|_{p}$ when $1 \le p < \infty$ and $\phi(t) = t^{p}$; and $\|\cdot\|_{\phi} = \|\cdot\|_{\infty}$ when $\phi(t) = 0$ for $0 \le t \le 1$ and $\phi(t) = \infty$ for t > 1. Orlicz spaces are often arised in the study of nonlinear problems (see, for example, $\lceil 4-5 \rceil$).

We obtained the following result in [1]:

THEOREM A. Let $1 \le p \le \infty$ and $D^n f(x) \in L_p(\mathbb{R})$, $n = 0, 1, \dots$. Then there always exists the limit

$$d_f = \lim_{n\to\infty} \|D^n f\|_p^{1/n},$$

and moreover

$$d_f = \sigma_f = \sup\{|\xi| : \xi \in \operatorname{supp} \widetilde{f}(\xi)\},$$

where the last equality is the definition of σ_f and $\tilde{f}(\xi)$ is the Fourier transform of the function f(x).

Received October 22, 1992

In this paper we prove that Theorem A still holds when we replace Lebesgue norm $\|\cdot\|_p$ by general norm $\|\cdot\|_{\phi}$. In [1] we used the Kolmogorov-Stein inequality [6–8] to prove the existence of the limit d_f . Unfortunately, we do not know the generalization of the Kolmogorov-Stein inequality in the case of an arbitrary Luxemburg norm. Therefore, here we had to use a new technique for the proof of the corresponding result.

Studying the properties of functions from $L_{\phi}(G)$, without loss of generality we may assume that $\phi(t)$ is left continuous. Actually, in the contrary case, there exists a point $t_0 > 0$ such that

$$\lim_{t\to t_0^-} \phi(t) < \phi(t_0) \le \infty , \quad \phi(t) = \infty , \quad t > t_0 .$$

We put

$$\psi(t) = \begin{cases} \phi(t), & t \neq t_0 \\ \lim_{t \to t_0 -} \phi(t), & t = t_0. \end{cases}$$

Then $\psi(t)$ is left continuous, and it is obvious that $L_{\phi}(G) = L_{\psi}(G)$ and $\|\cdot\|_{\phi} = \|\cdot\|_{\psi}$.

2. Results.

THEOREM 1. Let $n_1 < n_2 < \cdots$ be some sequence of natural numbers and $f(x) \in L_{\phi}(\mathbf{R})$ such that $D^{n_k}f(x) \in L_{\phi}(\mathbf{R})$, $k = 1, 2, \cdots$. Then there always exists the limit

$$d_f = \lim_{k \to \infty} \|D^{n_k} f\|_{\phi}^{1/n_k},$$

and moreover

$$d_f = \sigma_f = \sup\{|\xi| : \xi \in \operatorname{supp} \tilde{f}(\xi)\}.$$

To prove this theorem we need the following results:

LEMMA 1. Let $g(x) \in L_{\phi}(\mathbf{R})$. Then $g(x) \in L_{1,loc}(\mathbf{R})$.

PROOF. Let $\varepsilon > 0$ and $\gamma > 0$ be some number such that

$$\phi(\gamma/(\|g\|_{\phi}+\varepsilon))>0$$
.

Then it follows from $\phi(at) \ge a\phi(t)$, $a \ge 1$, $t \in [0, \infty)$ that

$$\phi(\gamma/(\|g\|_{\phi} + \varepsilon)) \int_{\|g(x)\| \ge \gamma} |g(x)|/\gamma dx \le \int_{-\infty}^{\infty} \phi(\|g(x)\|/(\|g\|_{\phi} + \varepsilon)) dx \le 1.$$
Hence $g(x) \in L_{1,loc}(\mathbf{R})$. (q.e.d.)

Let $\sigma > 0$. Denote by E_{σ} the set of all entire functions of exponential type σ and

by $M_{\sigma,\phi}$ the space of all functions from E_{σ} which as functions of $x \in \mathbb{R}$ belong to $L_{\phi}(\mathbb{R})$. We have the following result [9, p. 191]:

LEMMA 2. Let $f(z) \in E_{\sigma}$ and

$$\sup_{-\infty < s < \infty} \left\{ \int_{s}^{s+2\pi} |f(x)|^{p} dx \right\}^{1/p} \le A < \infty$$

with some $p \ge 1$. Then for each $x \in \mathbb{R}$

$$|f(x)| \le (2\pi)^{1/q} A(1+\sigma^{1/p})$$
,

where $p^{-1} + q^{-1} = 1$.

LEMMA 3. Let $f(x) \in M_{\sigma,\phi}$. Then f(x) is bounded on \mathbb{R} .

PROOF. Without loss of generality we may assume that

(1)
$$\int_{-\infty}^{\infty} \phi(|f(x)|) dx \le 1.$$

Then using Jensen's inequality we get for each $s \in R$

$$\phi\left(\frac{1}{2\pi}\int_{s}^{s+2\pi}|f(x)|dx\right) \leq \frac{1}{2\pi}\int_{s}^{s+2\pi}\phi(|f(x)|)dx$$

$$\leq \frac{1}{2\pi}\int_{-\infty}^{\infty}\phi(|f(x)|)dx \leq \frac{1}{2\pi}.$$

Therefore, there exists a number $A < \infty$ such that

$$\sup_{-\infty < s < \infty} \int_{s}^{s+2\pi} |f(x)| dx \le A$$

because of $\lim_{t\to\infty} \phi(t) = \infty$. Therefore, it follows from Lemma 2 that f(x) is bounded. (q.e.d.)

REMARK 1. We can prove that $\lim_{|x|\to\infty} f(x) = 0$ if $f(x) \in M_{\sigma,\phi}$ and $\phi(t) > 0$, t > 0. Actually, without loss of generality we may suppose that (1) is satisfied. Further, assume the contrary that there exist a number c > 0 and a sequence $|x_n| \to \infty$ such that

(2)
$$|f(x_n)| \ge 2c$$
, $n=1, 2, \cdots$

Taking account of

$$f(x)-f(x_n) = \int_{x_n}^x f'(t)dt$$
, $n=1, 2, \cdots$

and the Bernstein inequality [9, p. 183]

$$||f'||_{\infty} \leq \sigma ||f||_{\infty}$$

we get

$$|f(x)-f(x_n)| \le \sigma ||f||_{\infty} |x-x_n|, \quad n=1, 2, \cdots$$

Put

$$r = c/\sigma \|f\|_{\infty}$$
.

Then

(3)
$$|f(x)| \ge c$$
 for $|x-x_n| \le r$, $n=1, 2, \cdots$

because of (2) and

$$|f(x)-f(x_n)| \le \sigma ||f||_{\infty} |x-x_n| \le c, \quad n=1, 2, \cdots.$$

On the other hand, without loss of generality we may assume that

(4)
$$x_{n+1} - x_n \ge r$$
, $n = 1, 2, \cdots$

Combining (3) and (4), we get

$$1 \ge \int_{-\infty}^{\infty} \phi(|f(x)|) dx \ge \sum_{n=1}^{\infty} \int_{x_n}^{x_{n+1}} \phi(|f(x)|) dx \ge \sum_{n=1}^{\infty} r \phi(c) = \infty.$$

We thus arrive at a contradiction.

REMARK 2. In order that $\lim_{|x|\to\infty} f(x) = 0$, the condition $\phi(t) > 0$, t > 0 is necessary because of $f(x) \equiv c \in M_{\sigma,\phi}$, $0 \le c < \infty$ in the contrary case.

We have the following Bernstein inequality for Luxemburg norm:

LEMMA 4. Let $f(x) \in M_{\sigma,\phi}$. Then

(5)
$$||D^n f||_{\phi} \le \sigma^n ||f||_{\phi}, \quad n=1, 2, \cdots.$$

PROOF. Using Lemma 3, the following interpolation formula [9, p. 188]

$$f'(x) = \frac{\sigma}{\pi^2} \sum_{k=-\infty}^{\infty} \frac{(-1)^{k-1}}{(k-1/2)^2} f\left(x + \frac{\pi}{\sigma} (k-1/2)\right)$$

and

$$\sum_{k=-\infty}^{\infty} \frac{1}{(k-1/2)^2} = \pi^2,$$

we immediately get (5).

(q.e.d.)

REMARK 3. It is not difficult to show that Lemmas 1-4 and Remarks 1-2 still hold for *n*-dimensional case.

PROOF OF THEOREM 1. It follows from Lemma 1 and the Sobolev imbedding theorem that $f(x) \in C^{\infty}(\mathbb{R})$.

We shall begin by showing that

(6)
$$\limsup_{k \to \infty} \|D^{n_k} f\|_{\phi}^{1/n_k} \le \sigma_f.$$

It is enough to prove (6) for $\sigma_f < \infty$. Then using $f \in \mathcal{S}'$ (this follows from the proof of Lemma 1) and the well-known Paley-Wiener-Schwartz theorem, we obtain that f is an analytic function of exponential type σ_f . Therefore, by virtue of Lemma 4 we get (6).

Now we claim that

(7)
$$\lim_{k \to \infty} \inf \|D^{n_k} f\|_{\phi}^{1/n_k} \ge \sigma_f.$$

We divide the proof into two cases.

Case 1 $(\sigma_f < \infty)$. Assume the contrary that (7) does not hold. Then there exist a number $0 < \delta < \sigma_f$ and a subsequence $\{k_m\}$ (for simplicity of notation we assume that $k_m = m, m = 1, 2, \cdots$) such that

(8)
$$||D^{n_k}f||_{\phi}^{1/n_k} \leq \sigma_f - \delta, \quad k=1, 2, \cdots.$$

Let $\varepsilon > 0$ and

(9)
$$f_k(x) = k \int_0^{1/k} f(x+t)dt, \qquad k = 1, 2, \cdots.$$

Then by Jensen's inequality and $f_k(x) \in C^{\infty}(\mathbb{R})$ we obtain

$$\phi\left(\frac{|D^{n}f_{k}(x)|}{\|D^{n}f\|_{\phi} + \varepsilon}\right) \leq k \int_{0}^{1/k} \phi\left(\frac{|D^{n}f(x+t)|}{\|D^{n}f\|_{\phi} + \varepsilon}\right) dt$$

$$\leq k \int_{-\infty}^{\infty} \phi\left(\frac{|D^{n}f(x+t)|}{\|D^{n}f\|_{\phi} + \varepsilon}\right) dt = k \int_{-\infty}^{\infty} \phi\left(\frac{|D^{n}f(t)|}{\|D^{n}f\|_{\phi} + \varepsilon}\right) dt \leq k$$

for $k=1, 2, \cdots$ and $n=0, 1, \cdots$. Therefore, it follows from the left continuity of $\phi(t)$ that

$$\phi\left(\frac{|D^n f_k(x)|}{\|D^n f\|_{\phi}}\right) \leq k, \qquad k=1,2,\cdots; \quad n=0,1,\cdots.$$

Therefore,

(10)
$$\phi \left(\frac{\|D^n f_k\|_{\infty}}{\|D^n f\|_{\phi}} \right) \leq k, \qquad k = 1, 2, \cdots; \quad n = 0, 1, \cdots.$$

On the other hand, it is easy to check that $\sigma_f \leq \liminf_{k \to \infty} \sigma_{f_k}$. Therefore, there exists a number m such that

(11)
$$\sigma_{f_m} \geq \sigma_f - \delta/4.$$

Further, it follows from Theorem A that

$$\lim_{n\to\infty}\|D^nf_m\|_{\infty}^{1/n}=\sigma_{f_m}.$$

Therefore, there exists a number k_0 such that

(12)
$$||D^{n_k} f_m||_{\infty}^{1/n_k} \ge \sigma_{f_m} - \delta/4, \qquad k \ge k_0.$$

Combining (8), (10), (11) and (12), we get

$$m \ge \phi \left(\frac{\|D^{n_k} f_m\|_{\infty}}{\|D^{n_k} f\|_{\phi}} \right) \ge \phi \left(\left(\frac{\sigma_f - \delta/2}{\sigma_f - \delta} \right)^{n_k} \right), \qquad k \ge k_0.$$

This contradicts $\lim_{t\to\infty} \phi(t) = \infty$.

Case 2 $(\sigma_f = \infty)$. Assume the contrary that (7) does not hold. Then there exist a number $C < \infty$ and a subsequence $\{k_m\}$ (for simplicity of notation we assume again that $k_m = m, m = 1, 2, \cdots$) such that

(13)
$$||D^{n_k}f||_{\phi}^{1/n_k} \leq C, \qquad k=1, 2, \cdots.$$

On the other hand, it is easy to check that $\lim_{m\to\infty} \sigma_{f_m} = \infty$. Therefore, there exist numbers m and k_0 such that

$$||D^{n_k}f_m||_{\infty}^{1/n_k} \ge C+1$$
, $k \ge k_0$.

Therefore, using (10) and (13) we get

$$m \ge \phi \left(\frac{\|D^{n_k} f_m\|_{\infty}}{\|D^{n_k} f\|_{\phi}} \right) \ge \phi \left(\left(\frac{C+1}{C} \right)^{n_k} \right), \qquad k \ge k_0.$$

This contradicts $\lim_{t\to\infty} \phi(t) = \infty$. The proof is complete.

For the periodic case, we can prove easily the following result:

THEOREM 2. Suppose that $f(x) \in C^{\infty}(\mathbb{R})$ is an arbitrary 2π -periodic function and $\phi(t)$ is an arbitrary Young function. Then there exists the limit

$$d_f = \lim_{n \to \infty} |||D^n f|||_{\phi}^{1/n},$$

and moreover

$$d_f = \sigma_f = \sup\{|k| : k \in \operatorname{supp} \tilde{f}(\xi)\},$$

where $\|\cdot\|_{\phi}$ is the $L_{\phi}(0, 2\pi)$ -norm.

REMARK 4. Theorem 1 still holds for any (L, l^q) -amalgam cases.

REMARK 5. Theorem 1 gives us certain information about the support of the Fourier transform of a function when we know the behaviour of a subsequence of

 L_{ϕ} -norm of its derivatives.

REMARK 6. Let $f(x) \in L_{\phi}(\mathbf{R})$ and $\sigma_f < \infty$. Then $D^n f(x) \in L_{\phi}(\mathbf{R})$, $n = 1, 2, \cdots$. Therefore, using tables of the Fourier transform, in many cases, we can find the limit d_f without any concrete calculation.

REMARK 7. We have obtained some results in this direction for n-dimensional case, but the picture is different. It will be published elsewhere.

References

- [1] Ha Huy BANG, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1990), 73-76.
- [2] R. O'Neil, Fractional integration in Orlicz spaces I, Trans. Amer. Math. Soc. 115 (1965), 300-328.
- [3] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press (1970).
- [4] M. A. Krasnoselsky and Y. B. Rutisky, Convex Functions and Orlicz Spaces, GITTL, Moscow (1958); English transl., Noordhoff (1961).
- [5] Tran Duc Van, Nonlinear differential equations and function spaces of infinite order, (in Russian), Izdatelstvo Belorussian State Univ. (1983).
- [6] A. N. Kolmogorov, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Transl. 4 (1949).
- [7] E. M. Stein, Functions of exponential type, Ann. of Math. 65 (1957), 582-592.
- [8] Ha Huy BANG, Some problems of function spaces of infinite order, Doctoral Thesis, Inst. Math., Hanoi (1987).
- [9] N. I. AKHIEZER, Lectures on the Approximation Theory, Nauka (1965).

Present Addresses:
HA HUY BANG
INSTITUTE OF MATHEMATICS,
P.O. Box 631, Bo Ho, 10000, HANOI, VIETNAM.

MITSUO MORIMOTO
DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY,
KIOICHO, CHIYODA-KU, TOKYO, 102 JAPAN.